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BRANCHING PROCESSES WITH DEPENDENCE BUT
HOMOGENEOUS GROWTH1

By Peter Jagers

Chalmers University of Technology

A (general) branching process, where individuals need not reproduce
independently, satisfies a homogeneous growth condition if, vaguely, one
would not expect the progeny from any one individual to make out more
than its proper fraction of the whole population at any time in the fu-
ture. This notion is made precise, and it is shown how it entails clas-
sical Malthusian growth in supercritical cases, in particular for popula-
tion size-dependent Bienaymé–Galton–Watson and Markov branching pro-
cesses, and for nondecreasing age-dependent processes with continuous life
span distributions.

1. Introduction. It is easy to envisage general branching processes with
possible interaction between individuals, instead of the classical independence.
If the interaction stabilizes during supercritical growth, so that in the limit
individuals reproduce independently, like members of a classical, general mul-
titype and supercritical branching population, then a coupling device can be
used to establish Malthusian, that is, exponential, growth.

Indeed, assume that individual reproductions in the limiting infinite pop-
ulation tend not to exceed those of finite populations. Then the coupling can
be constructed through imaginary abortions so that the resulting, thinned
reproduction process equals what would have been the case, had the popula-
tion been infinite [Jagers (1997)]. The population of nonaborted individuals,
from any time onwards, must asymptotically grow exponentially (or die out),
and if no abortions occur after a finite (but random) time, the same must be
ultimately true of the original, not thinned population.

A particularly lucid case is that of population size dependence in single-type
populations. If m�n� denotes the expected offspring per individual in an n-
size generation and m = m�∞� the same in an imaginary infinite population,
then in many cases the coupling will be successful—and Malthusianness thus
established—if

∑�m�n� −m� < ∞�
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However, as pointed out [Jagers (1997)], exponential growth can occur even
in cases where this coupling fails. In particular Klebaner (1984, 1985, 1989)
managed to show that

∑�m�n� −m�/n < ∞

essentially suffices for Bienaymé–Galton–Watson processes to exhibit Malthu-
sian growth ∼ mn.

For a binary splitting cell model, Gyllenberg and Webb (1990) arrived at
the same type of main condition in a deterministic context.

The purpose of the present paper is to establish Klebaner-type criteria for
simple and certain age-dependent branching processes, thus replacing the, in
that regard, rather preliminary attempts made in Jagers (1997).

Basic in this is the concept of symmetric or homogeneous growth [Jagers
(1997)] crucially linked to the factor 1/n in Klebaner’s formula.

Consider a general (possibly multitype) branching population. Its proba-
bility space can be constructed explicitly in the traditional Ulam–Harris or
Neveu (1986) tree manner, only the probability measure is not required to
have the (conditional) independence properties of classical branching. How-
ever, it must be required that only finitely many individuals are born in finite
time intervals, so that individuals can be numbered as they are born into
the population, arbitrarily for individuals born together but always so that a
mother precedes her daughter, X1�X2�X3� � � � �

The population size at time t, zχt , can be generally defined by some charac-
teristic χ [cf. Jagers (1989)], though a certain care has to be exerted in allowing
the population as a whole to affect the measure used. We shall only consider
simple size processes like those alive, �zt�, or �yt�, the total population of all
those born. In the specific cases we shall go into deeper, life spans of different
individuals will be presumed independent of one another and of everything
else. In a model where dependence is on population size, the latter may thus
influence reproductions but not life spans.

Denote the birth time of an individual x by τx and x’s daughter process,
the number of individuals stemming from x and alive at t by zt�x�. Further,
write yt�x� for all those stemming from x born by t, alive or not. For simplic-
ity, write τi instead of τXi

, even though that is ambiguous with individuals
labelled in the Ulam–Harris manner. Let �x be the σ-algebra containing all
information about matters that occurred up to τx, that is, �τx

, and abbreviate
�Xi

further into �i. Interpret 0/0 and 1/z∞ as zero, and keep in mind that
the latter convention means that sums over elements divided by zτx will only
be taken over those where τx < ∞, finitely many in case of extinction. To
avoid uninteresting complications, we assume that a daughter cannot be born
simultaneously with her mother.

Definition 1. A branching process with possible dependence between in-
dividuals is said to grow homogeneously (or to exhibit symmetric growth) if
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there is a constant K such that

E

[
zt−τx�x�

zt

∣∣∣∣�x

]
≤ K

zτx
�

for all individuals x and t ≥ τx.

This means that the expected fraction of the future subpopulations, stemming
from anyone of the zt alive at any time t, are all of the same order of magni-
tude.

The obvious example of such a process is a Bienaymé–Galton–Watson pro-
cess with population size dependence. Since the reproductions of all individu-
als in the same, say kth, generation are affected by the same population size
and are otherwise independent, symmetry implies that

E

[
zn−k�x�

zn

∣∣∣∣�x

]
= 1

zk
�

for any x with τx = k. More about that in the next section.
Now we shall give the general result about Malthusianness for homoge-

neously growing populations, whose reproductions approach those of an inde-
pendent individual Malthusian population from above.

Thus, denote the reproductions of any individual x by ξx. In the general case
this is a point process telling at which ages x begets children of what types
from a general type space S. For single-type, age-dependent or Galton–Watson
processes it reduces to a random variable, telling us how many children x
splits into at death. Similarly, let ηx be the reproduction process of a general
Malthusian branching population with the finite reproduction kernel µ (defin-
ing the Malthusian parameter α, stable type distribution π, and fitness h).
Interpret “Malthusian branching population” to mean that the classical su-
percritical convergence theorem should hold [Jagers (1989)]. Assume that for
any measurable set A of types and age interval B, ξx�A×B� ≥ ηx�A×B� in
distribution given �x.

Then, by Strassen’s theorem [Lindvall (1992)] the two processes can be
coupled through imaginary abortions: ηx, can be thought of as arising from ξx
through deletion of some children. Again abusing notation somewhat, we let
ξx� ηx stand for a coupled version and write δx to indicate abortion or not of x,
so that δx = 1 if and only if x is an atom of ξmx but not of ηmx, mx denoting
x’s mother in the Ulam–Harris tree.

We now think of �x as referring to the process as defined on this new
space. Note that in a splitting process ξmx ∈ �x� but generally this need not
be the case. However, except for this general section we shall only deal with
splitting populations in this paper, that is, populations where childbearing
can only occur once in a mother’s life, at her death. Therefore we refrain from
further discussion of the measurability aspects of the problem. However, we
shall assume that the coupling has been so constructed that the future of the
actual process from any τx onwards is independent of ηmx, given �x and ξmx.
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Theorem 2. Let �zt� be a general branching process with symmetric
growth. Assume that there is a general supercritical Malthusian branching
population with minorizing reproductions as above. Assume that wt =
exp�−αt�zt is tight. Then, ∑

i

E
[
δi/zτi

]
< ∞

implies that wt tends in probability to some finite w ≥ 0, not identically zero
on the set of nonextinction.

Proof. The proof is from Jagers (1997), where there is also more about
the coupling and general construction. It is reproduced here for completeness,
and since there are slight differences in setup.

Write tildes over processes that count only nonaborted individuals, that is,
individuals born according to the η reproduction processes. Thus, z̃t−τx�x�
stands for the process starting from the individual x in the actual popula-
tion at time τx but thinned by the imaginary abortions. Similarly, w̃t−τx�x� =
exp�−α�t− τx��z̃t−τx�x� and so on.

For any u, zut records at time t+u the number of all living individuals born
up to u but only living individuals not stemming from an aborted individual
after u. If δxu = 0 precisely if x stems from an x′ with τx′ > u and δx′ = 1,
and δxu = 1 otherwise, and χx�a� indicates whether x is alive or not at age a,
thus

zut = ∑
τx≤t+u

δxuχx�t+ u− τx��

In analogy with other notation wu
t = exp�−α�t+ u��zut .

Clearly,

0 ≤ zt+u − zut ≤ ∑
τx>u

δxzt+u−τx�x�

and

∣∣wt+u −wu
t

∣∣ ≤ wt+u
∑
τx>u

δx
zt+u−τx�x�

zt+u
�

Thus for any ε′� v > 0 the homogeneous growth condition yields

�
(∣∣wt+u −wu

t

∣∣ > ε′�wt+u ≤ v
) ≤ �v/ε′�KE

[ ∑
τx>u

δx/zτx

]

for all t and starting types s ∈ S. But∣∣wt+u −wt′+u
∣∣ ≤ ∣∣wt+u −wu

t

∣∣+ ∣∣wu
t −wu

t′
∣∣+ ∣∣wt′+u −wu

t′
∣∣�

Since, with Iu = �x� τmx ≤ t < τx < ∞�,

wu
t = ∑

x∈Iu
exp�−ατx�w̃t+u−τx�x� →

∑
x∈Iu

exp�−ατx�w̃�x��
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as t→ ∞, the tilded daughter processes being independent individual super-
critical branching processes with Malthusian parameter α, it follows that

lim
t� t′→∞

P
(∣∣wu

t −wu
t′
∣∣ > ε′

) = 0�

Hence,

lim sup
t� t′→∞

P
(∣∣wt+u ∧ v−wt′+u ∧ v

∣∣ > ε′
) ≤ 2�v/ε′�KE

[ ∑
τx>u

δx/zτx

]
�

Since u can be chosen so as to render the right-hand side arbitrarily small,
the convergence in probability follows by completeness and tightness. ✷

Now define the (conditional) abortion probability

εx = E�δx ��x−��
where �x− is �τx−, the σ-algebra of events strictly preceding τx. We write εi
for εXi

and �i− for �Xi−. If εx turns out to be a function of population size
immediately before τx, zτx−, the process is said to be population size dependent.

Corollary 3. The summation convergence condition of Theorem 2 can be
replaced by

∑
E�εi/zτi� < ∞�

Proof. Write mi for Xi’s mother and ri for her rank among her sisters,
and let ri �∈ ηmi

mean that the individual would not have been born, had the
population been infinite (and hence since she is born into the actual one that
she is aborted). With superscripts denoting conditional expectation then,

E
�i−�δi/zτi� = P

�i−�δi = 1�E�i−�1/zτi � δi = 1

= εiE
�i−

[
1/zτi � τi < ∞� ri �∈ ηmi

]
�

Since zτi is independent of ηmi
, given �i− and τi < ∞, and 1/zτi = 0 if τi = ∞,

indeed,

E
�i−�δi/zτi� = εiE

�i−
[
1/zτi � τi < ∞] = εiE

�i−�1/zτi�/��i−�τi < ∞�
= εiE

�i−�1/zτi��
as for any t, �τi < ∞�∩ �τi ≤ t� ∈ �t, so that τi is measurable with respect to
�i−, and thus P

�i−�τi < ∞� = 1 on the set τi < ∞. But only such sets matter
in the expectations summed. ✷

Corollary 4. Consider a single-type splitting population with continu-
ously distributed life spans. Write T1 < T2 < · · · for the successive splitting
times, mx = E�ξx��x−�, ξx now simply denoting x’s number of children, and
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m = E�ηx��x−� = E�ηx�. Then,∑
E�εi/zτi� =

∑
E
[�mi −m�/zTi

]
�

mi being short for m indexed by the individual splitting at Ti.
In particular, if the process is population size dependent, then mi = m�zTi

�.

The proof of this is straightforward (and the corollary can easily be gener-
alized to cases where many mothers may give birth simultaneously, as in the
discrete time situation below). ✷

2. The Bienaymé–Galton–Watson case. A population size- (or state-)
dependent (Bienaymé–)Galton–Watson process is a discrete time branching
process �zn�, where given the history �n during the first n generations, zn+1
is the sum of zn i.i.d. nonnegative integer valued random variables, whose
distribution �pk�zn�� is determined by the present population size, zn. The
minorization condition can be expressed as∑

k≥j
pk�n� ≥

∑
k≥j

pk

for all j and n, pk = pk�∞� being thought of as the reproduction law “if
the population were infinite.” The latter is supposed to define a supercritical
Malthusian Galton–Watson process,

m = m�∞� = ∑
k

kpk > 1�
∑
k

k�log k�pk < ∞�

Similarly, write m�n� = ∑
k kpk�n�. A Galton–Watson process is sometimes

called nonlattice or aperiodic if the group generated by the possible transitions
of the process, viewed as a Markov chain, is all of Z [cf. Dubuc (1970) or
Athreya and Ney (1972), page 93].

In the present case ξx is just a random variable, x’s number of children and
ηx the number retained. Hence, if x belongs to the nth generation, ξx ��n ∼
�pk�zn�� and ηx ��n ∼ �pk�. Since

δxj = 1�ξx≥j� − 1�ηx≥j��

εxj = ∑
k≥j

pk�zn� −
∑
k≥j

pk

and ∑
j

εxj = m�zn� −m�

Theorem 5. A population size-dependent Galton–Watson process is sym-
metrically dependent. Make the minorization assumption above, assume that
m�n� ↘ m > 1 and ∑

n

�m�n� −m�/n < ∞�



1166 P. JAGERS

Then �wn = zn/m
n� is tight. If further �z∞n � is aperiodic and

∑
k�log k�2pk <

∞, then wn has a nontrivial limit in probability.

Lemma 6. Let �zn� be an aperiodic Galton–Watson process with
∑

kpk =
m > 1 and

∑
k�log k�2pk < ∞. Then the Greens function

G�1� k� = ∑
n

��zn = k�

is O�1/k�, as k→ ∞.

This follows from Theorem 9 in Dubuc (1970); compare also Athreya and Ney
[(1972), page 93]. The theorem itself is due to Klebaner (1985), with almost
sure convergence in the conclusion and a condition (C), a sort of generalized or
uniform x log x, replacing our x log2 x-condition. For a thorough classification
of behavior of models described by recurrence relations, see Keller, Kersting
and Rösler (1987).

Proof of the theorem. With yk still denoting the total population, τi =
k ⇔ yk−1 < i ≤ yk. Thus, if �k denotes the realized kth generation, �x ∈
Nk� τx < ∞� in Ulam–Harris notation, then

∑
εi/zτi =

∑
k

yk∑
i=yk−1+1

εi/zk�

∑
k

∑
x∈�k−1

∑
j

εxj/zk = ∑
k

∑
x∈�k−1

�m�zk−1� −m�/zk

= ∑
k

zk−1�m�zk−1� −m�/zk�

Writing g�n� = m�n� −m, we can conclude that∑
E�εi/zτi� =

∑
E�zk−1g�zk−1�/zk��

However, given �k−1� zk is larger than or equal to a variable U which is
binomial zk−1�1 − p0�zk−1�. Since if Z is Bin�n�p�,

E

[
1

Z+ 1

]
= 1 − �1 − p�n+1

�n+ 1�p �

E
[
1/zk� zk ≥ 1 ��k−1

] ≤ E�1/U�U ≥ 1�
≤ E�2/�U+ 1�� ≤ 2/�zk−1�1 − p0�zk−1���
≤ 2/�zk−1�1 − p0���

Hence, ∑
E�εi/zτi� ≤

∑
CE�g�zk−1�� zk−1 ≥ 1��

for some constant C. But by assumption g�k� = m�k� −m does not increase

and
∑

g�k�/k < ∞. Further, zn
d≥ z∞n , where the latter is Galton–Watson with
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reproduction distribution �pk�, “as if the population were infinite all the time.”
By Lemma 6, with G�1� k� the Greens function of �z∞n �, thus

∑
n

E
[
g�zn�� zn ≥ 1

] ≤ ∑
n

E
[
g�z∞n �� z∞n ≥ 1

]

= ∑
n

∑
k

g�k���z∞n = k� = ∑
k

g�k�G�1� k�

≤ c
∑
k

g�k�/k < ∞�

where c is the ordo constant from Lemma 6. It follows that
∑

E�εi/zτi� con-
verges, as required by Corollary 3.

It remains to check the asserted tightness of �wn� = �zn/mn�. We shall
show that �E�wn�� is bounded. By the assumptions on g, or rather m�n�−m,
there exists a G ≥ g which does not increase, is such that xG�x� is nonde-
creasing and concave on �+ and satisfies

∑
G�n�/n < ∞. In terms of this G,

E�wn ��n−1� = wn−1 + zn−1g�zn−1�/mn ≤ wn−1 + zn−1G�zn−1�/mn

for any n. Hence,

E�wn� ≤ E�wn−1� + E�zn−1G�zn−1��/mn

≤ E�wn−1� + E�zn−1�G�E�zn−1��/mn

≤ E�wn−1��1 +G�mn−1�/m��
where we used in turn the concavity of xG�x�, that E�zn−1� ≥ mn−1, and that
G does not increase. It follows that

E�wn� ≤
∞∏
k=1

�1 +G�mk�� < ∞�

as
∑

G�k�/k < ∞ ⇔ ∑
G�mk� < ∞. ✷

3. Markov branching. In continuous time the natural formulation of
Markovian population size-dependent branching is to make the death inten-
sity population size dependent, call it µ�n�, and the same for the reproduction
distribution, pk�n�, as in the Galton–Watson case.

Since individuals do not age, there is complete symmetry between all those
present in a population at the birth of any new member, and as in the Galton
Watson case,

E

[
zt−τx�x�

zt

∣∣∣∣�x

]
= 1

zτx

for all t ≥ τx. In other words:

Lemma 7. Population size-dependent Markov branching processes grow
homogeneously.
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Now write µ = µ�∞�� m�n� = ∑
kpk�n�� m = m�∞� and introduce the cor-

responding Malthusian parameters α�n� = µ�n��m�n� − 1�� n = 1�2� � � � �∞�
α = α�∞�.

Lemma 8. Assume that µ�n� → µ > 0� m�n� ≥ m,
∑�m�n� −m�/n < ∞�

and that for all n and k,

µ�n�∑
i≥k

pi�n� ≥ µ
∑
i≥k

pi�

Then �exp�−αt�zt� t ≥ 0� is tight.

Proof. With

At =
∫ t

0
α�zu�du�

the random variables

Wt = exp�−At�zt� t ≥ 0�

constitute a nonnegative martingale with respect to its natural filtration.
Hence, W∞ = limt→∞Wt exists almost surely and

E�W∞� ≤ lim
t→∞

E�Wt� = 1�

However,

exp�−αt�zt = Wt exp�At − αt� = Wt exp
(∫ t

0
�α�zu� − α�du

)
�

The last assumption of the lemma serves to ensure that the population grows
at least as fast as it would have done in an environment of an infinite pop-

ulation, zu
d≥ z∞u , if z∞u denotes the size of the latter population, that is, a

Markov branching process defined by parameters µ and pk and no population
size dependence. Since the latter grows as exp�αu�, if it does not die out (and
only this case needs checking), it is enough that

∫ ∞

0

{
α�c exp�αu�� − α

}
du

converges or equivalently
∫ ∞

0

{
m�c exp�αu�� −m

}
du < ∞�

However, that follows from the the first assumption, after a substitution of
variable. ✷
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Theorem 9. Let �zt� be a continuous time, single type, population size-
dependent Markov branching process, satisfying the x log x-condition

∑
k ·

�log k�pk < ∞ as well as the conditions of the preceding lemma. Then the
process exhibits Malthusian growth, zt ∼ exp�αt� on the set of nonextinction,
as t→ ∞.

Proof. It remains to check the convergence condition of Corollary 4. In
terms of g�n� = m�n�−m or rather Klebaner’s (1989) G ≥ g of the preceding
section, ∑

E
[
g�zTi

�/zTi

] ≤ ∑
E
[
zTi

G�zTi
�/z2

Ti

]
≤ ∑

E
[
zTi

G�zTi
�]E[1/z2

Ti
� zTi

≥ 1
]
�

since zG�z� increases whereas 1/z2 decreases. In the next step use that zG�z�
is concave and that E�zTi

� ≤ ci for any c > m�1� − 1 in order to conclude that

E
[
zTi

G�zTi
�] ≤ ciG�ci��

However, by a large deviations argument it is easy to check that for an ε <
m − 1 (the superscript ∞ denoting a process in the environment of infinitely

many individuals, z∞t
d≤ zt��

E
[
1/z2

Ti
� zTi

≥ 1
] ≤ E

[
1/�z∞Ti

�2� z∞Ti
≥ 1

]
≤ E

[
1/�z∞Ti

�2� z∞Ti
≥ εi

]+ P�z∞Ti
≤ εi� ≤ C/i2�

The claimed convergence follows. ✷

This theorem is again due to Klebaner (1994), with a.s. and L2-convergence
and a variance condition thus replacing the uniform x log x condition used in
the Galton–Watson case. Note that the present theorem does not require the
x log2 x. The first contribution to analysis of state-dependent Markov branch-
ing processes was Küster (1983).

4. Binary splitting with quiescence and aging Consider (population
size-dependent) binary splitting processes, where cells either have i.i.d. cycle
times (i.e., life spans) with a continuous distribution function L, ending with
a mitotic division, or else they are quiescent, that is, remain and do not divide.
Assume that cycling cells age in the sense that if T is a typical cycle time,
then

�
(
T > t+ u �T > u

) = 1 −L�t+ u�
1 −L�u� ≤ 1 −L�t� = ��T > t��

Loosely speaking, death intensity increases with age. Population size depen-
dence enters through the probability p�zt� with which a newborn cell embarks
upon the cell cycle, otherwise turning quiescent. The population (tumor) size
at t is denoted by zt. Again we consider the supercritical case: p�n� ↘ p > 1/2,
and refer to this process as population size-dependent supercritical splitting
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with aging. It is an age-dependent version of the Bell–Anderson cell size-
dependent tumor model considered by Gyllenberg and Webb (1990).

Lemma 10. The population size-dependent supercritical splitting process
with aging displays homogeneous growth.

Proof. At each split one mother cell disappears and two new cells are
added. Therefore, starting from one ancestor, zτn = �n/2� + 1� n = 1�2�3� � � �
as long as τn < ∞. By the aging assumption the expected contribution from a
newborn cell to the population later will not exceed that of an older cell. If �k

denotes the set of cells cycling at τk, then by symmetry it is even true that

E
[
zτn−τk�Xk�� τn ≤ t < τn+1 ��k

] ≤ E
[
zτn−τk�x�� τn ≤ t < τn+1 ��k

]
for any x ∈ �k. Hence,

E

[
zt−τk�Xk�

zt

∣∣∣∣�k

]

= ∑
n≥k

E

[
zt−τk�Xk�

zt
� τn ≤ t < τn+1 ��k

]

= ∑
n≥k

E

[
zτn−τk�Xk�

zτn
� τn ≤ t < τn+1 ��k

]

= ∑
n≥k

1
�n/2� + 1

E
[
zτn−τk�Xk�� τn ≤ t < τn+1 ��k

]

≤ ∑
n≥k

1
�n/2� + 1

E

[
1
zτk

∑
x∈�k

zτn−τk�x�� τn ≤ t < τn+1 ��k

]

≤ ∑
n≥k

1
�n/2� + 1

E

[
zτn
zτk

� τn ≤ t < τn+1 ��k

]

= 1
zτk

∑
n≥k

�
(
τn ≤ t < τn+1 ��k

) ≤ 1/zτk � ✷

Define α as the Malthusian parameter of the limiting, infinite population,

2p
∫ ∞

0
exp�−αt�L�dt� = 1�

If �z∞t � denotes an independent individual, binary splitting branching process,
whose probability law is defined by p and L, then clearly exp�−αt�z∞t has a
non-trivial limit, as t→ ∞. Write yt for the total population at t, that is, all
those born up to t and let the superscript c indicate that we only count cycling
cells in zct or yc

t .

Lemma 11. The process �exp�−αt�zt� is tight, provided E�T� < ∞ and
n�p�n� − p� → 0, as n→ ∞.
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Proof. Note that for any fixed t0, exp�−αt�zt ≤ yt0
< ∞ for 0 ≤ t ≤ t0.

Therefore it is enough to check that lim sup exp�−αt�zt is a finite random
variable, and indeed since each quiescent cell had a cycling mother, that
lim sup exp�−αt�yc

t is finite.
Define αn by

2p�n�
∫ ∞

0
exp�−αnt�L�dt� = 1�

Then αn ↘ α. It is easy to check that indeed

0 ≤ αn − α ≤ a�p�n� − p�
for some a > 0. For any individual x, let bx denote its mother, b2x grand-
mother, and so on, gx its generation and Tx its life span (cell cycle duration).
Define rx = αzτx

and write

rn = rXn
= αzτn

= α��n+2�/2�

as before. Further, for any x, besides the ancestor, define

Ax =
gx∑
k=1

rbkxTbkx and An = AXn
�

Adapted to varying Malthusian parameters, and considering only cycling cells,
Nerman’s (1981) martingale then takes the form

Rn = 1 +
n∑

k=1

exp�−Ak�
(
ξk exp�−rkTk� − 1

)
�

where again somewhat cavalierly Tk stands for TXk
and ξk gives the number

of cycling children of Xk. Since it is nonnegative, it has an almost sure limit,
R∞. Following the approach from the paper quoted, N�t� u�, the number of
births between t and t+ u from mothers themselves born before t, satisfies

N�t� u� ≥
yc
t∑

k=1

{
ξk1�0� u��Tk� − 1

}
≥

yc
t∑

k=1

{
ηk1�0�u��Tk� − 1

}
�

the η in place of ξ indicating that some individuals may have been removed so
that the limiting branching process is obtained. But the martingale Mt = Ryc

t

and the function r�t� = rn on τn ≤ t < τn+1 in their turn satisfy

Mt ≥ exp�−r�t��t+ u��N�t� u� ≥ exp�−α�t+ u��N�t� u� exp�−α�t+ u�g�zt��
in terms of g�n� = p�n� − p.

To investigate �t + u�g�zt�, as t→ ∞ note that zτn = �n/2� + 1, whereas
E�τn� ≤ nE�T� on the set of growth (by induction, e.g.). Hence E�τng�zτn�� → 0
and the same must be true a.s. for �t + u�g�zt�, as t→ ∞. By martingale
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convergence further Mt → R∞ (on the set where yt→ ∞), and by the law of
large numbers,

yc
t∑

k=1

{
ηk1�0� u��Tk� − 1

}
/yt → 2pL�u� − 1 > 0

for a suitable u. It follows that

lim sup exp�−αt�yc
t

≤ lim sup exp�−αt�yc
t

N�t� u�∑yc
t

k=1�ηk1�0�u��Tk� − 1�
≤ C lim sup exp�−αt�N�t� u� ≤ C′ lim supMt = C′R∞ < ∞�

Here C and C′ are positive constants. ✷

The main result is rather direct from these lemmas and the basic Theo-
rem 2.

Theorem 12. Let �zt� be a binary splitting population size-dependent pro-
cess with aging and a continuous life length distribution L with a finite mean,
as defined. Assume that the probability of a newborn cell in an n-size popula-
tion entering the cell cycle satisfies p�n� ↘ p > 1/2 and

∑�p�n� − p�/n < ∞.
Let α be the root of

2p
∫ ∞

0
exp�−αt�L�dt� = 1�

Then exp�−αt�zt converges to a nonzero limit in probability on the set where
the population does not die out.

Proof. With εi = g�zτi� = p�zτi� − p, we must only check that∑
i

E�εi/zτi� < ∞�

However, this is clear since, as we have seen repeatedly, zτi = �i/2� + 1 on
�τi < ∞�. ✷

5. Bellman–Harris-type processes. The crucial step in Lemma 10 was
the monotonicity: when a process is delayed, splittings occur later and there-
fore the process tends to be smaller, provided the probability of dying without
children is nil. This makes it plausible that results from the preceding section
can be extended to general population size-dependent splitting processes with
a probability pk�n� of begetting k children if you die when population size is
n, at least provided life spans are i.i.d., aging is there and p0�n� = 0 for all n.

We refer to such processes as population size-dependent Bellman–Harris
processes and keep the notation from the preceding section wherever suitable.
Without mentioning, we also assume that reproduction decreases in distribu-
tion with increasing population sizes (as in the Galton–Watson case) and that
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in the limit pk = pk�∞�, together with the continuous life span distribution
L, defines a supercritical process with the Malthusian parameter α.

Lemma 13. Population size-dependent Bellman–Harris processes as above
with aging and p0�n� = 0, for all n, exhibit homogeneous growth.

Proof. Let �x denote the set of individuals alive at τx, besides x herself.
(We regard her mother but not possible sisters as dead.) Define a new branch-
ing population starting at τx by replacing the remaining life spans by i.i.d. L
life spans λ̃x′� x′ ∈ �x but making no other changes. By the aging assumption
the new initiating life spans are longer in distribution than the original ones,
and we can construct them on a suitably enlarged probability space so that
indeed λ̃x′ ≥ λx′ − τx + τx′ .

Let z̃t denote the resulting process, and write T̃1 < T̃2 < · · · for its suc-
cessive splitting times after starting at τx. T1� T2� � � � are the corresponding
times in the original process. By construction Ti ≤ T̃i. Clearly the probability
distribution for the number of children born in the original population at T1
is the same as that ruling the number in the new population at T̃1, namely
�pk�zτx��. By induction, this equality of reproduction distributions holds also
later and we can make the construction so that zTi

= z̃T̃i
for all i.

However, since the processes zt and z̃t both increase, the postponed version
must be smaller. We conclude that

E
[
zt−τx�x�/zt ��x

] ≤ E
[
zt−τx�x�/z̃t ��x

]
�

Yet, since z̃t ≤ zt, the number of children being added to x’s daughter process
according to �pk�zt−�� is smaller in distribution than if �pk�z̃t−�� governs
possible reproduction at t. We conclude that

E
[
zt−τx�x�/z̃t ��x

] ≤ E
[
z̃t−τx�x�/z̃t ��x

] = 1/zτx �

Lemma 14. Consider a population size-dependent Bellman–Harris process
with continuous life spans, m�n� ↘ m > 1, and

∑�m�n� −m�/n < ∞. Then,
in terms of the splitting times T1 < T2 � � � �

∑
n E��m�zTn

� −m�/zTn
� < ∞.

The proof is as in the Markov case.
Finally, tightness follows as in Lemma 11.

Theorem 15. Consider a Bellman–Harris process with population size de-
pendence and i.i.d. continuously distributed life spans with aging and finite
expectation. Denote the life span distribution by L. Assume that reproduction
distributions, �pk�n�� k = 1�2� � � �� if population size is n, distributionally ma-
jorize a reproduction �pk� k = 1�2� � � �� with mean m > 1 and

∑
k pkk log k <

∞, that m�n� ↘ m, and that
∑
n

�m�n� −m�/n < ∞�
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Then, as t→ ∞, exp�−αt�zt has a nontrivial limit in probability for α the
Malthusian parameter of the imaginary process in an infinite population en-
vironment, m

∫∞
0 exp�−αt�L�dt� = 1.

Do not overlook that we have, alas, had to require that p0�n� = 0 for all n.
It remains open to extend the symmetry argument from Lemma 10 to more
general population processes.

Acknowledgement. Thanks are due to Mikael Andersson and Serik Sag-
itov for their helpful comments and to the referee who improved Theorem 5
through the reference to Dubuc’s work.
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