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GENEALOGICAL PROCESSES FOR FLEMING–VIOT MODELS
WITH SELECTION AND RECOMBINATION

By Peter Donnelly1 and Thomas G. Kurtz2

University of Oxford and University of Wisconsin—Madison

Infinite population genetic models with general type space incorporat-
ing mutation, selection and recombination are considered. The Fleming–
Viot measure-valued diffusion is represented in terms of a countably infin-
ite-dimensional process. The complete genealogy of the population at each
time can be recovered from the model. Results are given concerning the
existence of stationary distributions and ergodicity and absolute continu-
ity of the stationary distribution for a model with selection with respect to
the stationary distribution for the corresponding neutral model.

1. Introduction. The Fleming–Viot measure-valued diffusion arises as
the large population limit of a wide class of population genetics models. To-
gether with the Dawson–Watanabe process which arises from branching mod-
els, it is one of the more well studied measure-valued processes. For a recent
review of available results about the Fleming–Viot process, see Ethier and
Kurtz (1993) and references therein.

Measure-valued diffusions are often motivated by first considering a class
of prelimiting finite-population models. The dynamics in such discrete con-
texts are easily specified in terms of the behavior of the individuals in the
population, and the composition of the population is naturally represented as
a measure on the set, E, of possible types. Measure-valued diffusions then
arise because the associated discrete measure-valued processes behave sensi-
bly (after appropriate rescaling) in the large population limit. On the other
hand, the discrete population models which keep track of the fates of indi-
viduals make no sense for infinite-population sizes. Thus, while it might be
convenient in applications to think of the measure-valued diffusion as describ-
ing the evolution of a hypothetically infinite population, it is difficult to make
this precise.

Donnelly and Kurtz (1996, 1999) have recently given a discrete construction
of a class of neutral measure-valued population processes. Loosely speaking,
the idea is to “bring back the particles.” First, a (one-dimensional) process P
describing the total mass of the measure-valued process is constructed. Con-
ditional on P, an E∞-valued process, X, is described with the property that
for any t the collection �X1�t��X2�t�� � � �� is exchangeable. For fixed t, the
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components of X, which we call particles, thus “carry” an empirical measure
Z�t�, the de Finetti measure associated with the exchangeable sequence. As
t varies, the process Z̃ ≡ PZ (exists a.s. and) is a version of the appropri-
ate measure-valued process. The particle process X can be thought of as a
description of the infinite population described by Z̃, with a careful choice of
labels for the individuals.

Aside from inherent interest, such discrete representations considerably
simplify the study of the measure-valued processes. One of the reasons is that
the discrete construction also carries the “genealogy” of the measure-valued
model in an explicit and simple form (much simpler, e.g., than the Dawson–
Perkins historical process). Many questions of interest, including sample path
properties, ergodicity and the structure of moment measures, are profitably
studied in terms of genealogy.

This paper constructs and exploits a discrete representation for Fleming–
Viot models with recombination and selection. In the next section, we describe
versions of the classical Moran model from population genetics. This is perhaps
the simplest of the class of finite-population models in the domain of attraction
of the Fleming–Viot diffusion. There are two natural methods for introducing
selection depending on whether the type of an individual affects the rate at
which the individual dies (so-called viability selection) or the rate at which it
reproduces (fertility selection). In each case the Fleming–Viot process arises
when the recombination probability and all differences between the fitnesses
of distinct individuals are of the order of the inverse of the population size.
The key to the discrete representation of the measure-valued diffusion is a
particular labelling of the individuals in the Moran model population. With
this labelling, the dynamics of individuals still make sense as the population
size goes to infinity.

The countable representation is described in Section 3. Informally, the neu-
tral construction appropriate to Fleming–Viot in Donnelly and Kurtz (1999)
is augmented with two types of additional events on each level. The first type,
“selective events,” results in potential discontinuities on a level due to addi-
tional births (fertility selection) or deaths (viability selection), which depend
on the type on the level and the current value of the empirical measure. The
second type of additional event, induced by recombinations, results in discon-
tinuities in which the type on a level is replaced by a random choice according
to a Markov kernel, which depends on the current type, and a random choice
from the empirical measure.

There are various ways to characterize the E∞-valued particle process X.
One is as a solution of an infinite system of ordinary stochastic differential
equations; another is via an associated martingale problem. These issues are
discussed in Section 4, where we give theorems concerning the uniqueness
of solutions to the system of equations (Section 4.1) and to the martingale
problem (Section 4.2). Further, provided X�0� is exchangeable, solutions to
either the system of stochastic equations or to the martingale problem are
exchangeable for any t. It follows from this exchangeability that for any k, the
joint distribution of any k-tuple Xi1�t�� � � � �Xik�t� is that of a “sample of size
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k” from Z�t�. (More formally, E�f�Xi1�t�� � � � �Xik�t�� � Z�t�� = 
f�Z�t�k�, so
that moment measures of the measure-valued process are related to the joint
distributions of collections of particles.) In fact, this exchangeability holds also
for any stopping time with respect to the filtration generated by the empiri-
cal measure process. By exchangeability, there is a one-to-one correspondence
between stationary distributions for X and those for the measure-valued pro-
cess (the latter being the de Finetti representing measures for the former),
and (see Section 5) the moment measures of the stationary distribution of the
measure-valued process are determined by the stationary finite-dimensional
distributions of the particle process X.

As they are specified in Section 4, the particle processes do not carry infor-
mation about genealogy. The problem is that when a selective (or recombina-
tion) event involves a choice from the empirical distribution of the particles,
the ancestry prior to this choice is not identifiable. Section 6 introduces a par-
ticular method for making selections from the empirical measure in such a
way that ancestral information prior to such events is known. Informally, the
idea is to choose uniformly from all the (neutral) genealogical paths leading
back from the time at which the choice is made. Loosely, one can think of the
choice at a selective (or recombination) event as choosing a particle “from in-
finity.” The specific mechanism introduced in Section 6 has the property that
while we cannot identify “which” particle is chosen at the time of the selec-
tive event, we do know who its ancestor was at any time strictly prior to that
event. In particular, the method allows us to trace genealogical information
back through selective and recombination events.

Sections 7 and 8 involve a detailed study of genealogical structure in the
model. In particular, the ancestral influence graph is introduced. This has a
very simple probabilistic structure and can be thought of as a supragenealogy,
in the sense that the true genealogy is contained within it. The joint distribu-
tion of a collection of particles at stationarity can be constructed by choosing
a type according to the stationary first moment measure of Z and tracing the
effects of mutation forward through the appropriate influence graph. Further,
if the ancestral influence graph is known from some time t back to s, and
the types on the (a.s. finite number of) levels in the graph at s are specified,
one can recover the actual genealogy of the population over the period from
t back to s. In the absence of selection, the influence graph is just the ances-
tral recombination graph [e.g., Griffiths and Marjoram (1997)]. In the absence
of recombination, it is a generalization to general diploid selection of Krone
and Neuhauser’s (1997) ancestral selection graph. They used graphical con-
structions from the particle system world to introduce their ancestral selection
graph for haploid selection in a finite-population size Moran model. In addition
to its more general setting, our approach actually couples the large popula-
tion limit of this genealogical process with the Fleming–Viot process. (In fact,
more is true in that we simultaneously couple genealogy for all times, rather
than simply back from a particular time, as would be typical in the coalescent
approach to population genetics models.)
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The question of whether and to what extent selection changes the distribu-
tion of the ancestral tree in genetics models has been of longstanding inter-
est [e.g., Tavaré (1984), Krone and Neuhauser (1997), Neuhauser and Krone
(1997) and references therein]. Krone and Neuhauser’s recent work and the
results described here (see in particular Section 8.4) at least provide accessi-
ble tools for tackling the problem. Neuhauser and Krone (1997) established
that, at stationarity, selection does not affect genealogy in the special cases of
no mutation or in the limit as the mutation rate goes to infinity. (Note that
in both these examples, the models in effect become neutral. If the mutation
rate is zero, then at stationarity all members of the population will have the
same type and no selective differences will be apparent. In the high mutation
rate case, knowing the shape of the genealogical tree gives no information
about the type of an individual sampled from along the tree, since the high
mutation rate will “randomize” the type to that of an independent draw from
the stationary distribution of the mutation process. It follows that information
about types provides no information about genealogy, so the genealogy must
be the same as in the neutral case.) In contrast, we show that, in a particular
nonstationary setting, genealogy under selection is different from genealogy
under neutrality.

In Section 8.5, we characterize the distribution of the type on a level im-
mediately after a selective birth event. In the case of genic selection, we show
that the expected fitness immediately after such an event is given by the mean
fitness of the population plus the variance in fitness across the population, a
result somewhat reminiscent of Fisher’s “fundamental theorem of natural se-
lection.” This observation leads us to conjecture, that apart from the special
limiting settings considered by Krone and Neuhauser, selection does change
genealogy. To illustrate the intuition, consider genic selection with a finite
number of types. The effect of selective events on a level is to (stochastically)
increase the fitness of the type on that level. This increases the chances that
different ancestors have the same (fitter) type, hence changing (in this case
increasing) coalescence rates.

Section 9 concerns ergodicity properties of the processes. We give conditions
on the mutation process which ensure uniqueness of stationary distributions,
respectively, uniform ergodicity, for the particle process (and hence for the
measure-valued process). We also prove that for the model with selection but
not recombination, stationary distributions under selection will be mutually
absolutely continuous with respect to those under neutrality provided only
that the mutation process is strongly connected (by which we mean that for
any two initial distributions there exists a time t at which the transient dis-
tributions are not mutually singular). This theorem considerably generalizes
known results.

If ��t
 is a filtration and U is a process with independent increments, we
will say thatU is compatible with ��t
 ifU is ��t
-adapted and for all t� s ≥ 0,
U�t+ s� −U�t� is independent of �t.
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Let F be a metric space. A function x� �0�∞� → F is cadlag if it is right
continuous at each t ≥ 0 and has left limits at each t > 0. The space of cadlag,
F-valued functions on �0�∞� will be denoted by DF�0�∞�.

2. Moran models with selection. We consider a variation of the classi-
cal Moran model in which mutation is assumed to occur continuously in time,
rather than at the moment of reproduction. In particular, our model consists of
a collection of n particles, each of which has a “type” represented as a point in a
complete, separable metric space E, that is,Xn�t� = �Xn1�t�� � � � �Xnn�t�� ∈ En.
Between birth and death events, the types of the particles evolve indepen-
dently according to a Markov process with generator B. We will refer to this
process as the mutation process. We first consider models with viability selec-
tion.

2.1. Models with viability selection. Let � �E� denote the space of proba-
bility measures on E and let � n�E� ⊂ � �E� be the subset of purely atomic
probability measures whose atoms have sizes that are multiples of 1/n. For
x = �x1� � � � � xn� ∈ En, let µx = �1/n�∑ni=1 δxi ∈ � n�E� and let β be a nonneg-
ative, bounded, measurable function defined on E×� �E�. The generator for
the particle model is given by

An0f�x� =
n∑
i=1

Bif�x�

+ 1
2

∑
1≤i�=j≤n

(
1 + 2

n
β�xj�µx�

)(
f�ηj�x � xi�� − f�x�

)
�

(2.1)

where Bi is just B operating on f as a function of xi and for x ∈ En and
z ∈ E, ηj�x � z� is the element of En obtained from x by replacing xj by z.
Note that the larger β�xj�µx� is, the more likely the jth particle is to “die”
and be replaced by a copy (the offspring) of a randomly selected particle, so
large β reduces the viability of an individual and corresponds to low fitness.

To avoid discussions of the domain of the generator, we assume that B is a
bounded operator, that is, for g ∈ B�E�,

Bg�z� = λ�z�
∫
E
�g�y� − g�z��q�z�dy��

where λ is a nonnegative, bounded, measurable function on E and q is a
transition function on E. We will need to consider an unbounded generator
later, but the extension of the results in that particular case follows by a simple
projection argument. More general unbounded generators can be handled as
in Donnelly and Kurtz (1996). If B is bounded, then An0 is also a bounded
operator, and existence and uniqueness of solutions of the martingale problem
for An0 are immediate.
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For µ ∈ � n�E�, there exists x ∈ En such that µ = �1/n�∑ni=1 δxi . Form ≤ n,
let µ�m� be the probability measure on Em defined by

µ�m� = 1
n�n− 1� · · · �n−m+ 1�

∑
δ�xi1 � ���� xim ��

where the sum is over all choices of 1 ≤ i1� � � � � im ≤ n with ik �= il. Note that
for µ ∈ � n�E�, µ�m� depends only on µ, not on the particular choice of x. For
f ∈ B�En�, define F ∈ B�� n�E�� by

F�µ� = 
f�µ�n��
and �nF by

�nF�µ� = 
An0f�µ�n���
It will be useful to note that if f ∈ B�Em�, m ≤ n, then

�nF�µ� =
m∑
i=1


Bif�µ�m�� + 1
2

∑
1≤i�=j≤m


"ijf− f�µ�m��

+ n−m
n

m∑
j=1

�
β�·� µ� ⊗ f�µ�m+1�� − 
βj�·� µ�f�µ�m���

+ 1
n

∑
1≤i�=j≤m

�
β�·� µ� ⊗"ijf�µ�m�� − 
βj�·� µ�f�µ�m����

(2.2)

where "ijf is the function of m− 1 variables obtained by setting the ith and
jth variables in f equal (note that a function g of m − 1 variables can be
viewed as a function of m variables and 
g�µ�m�� = 
g�µ�m−1��). The product
h = β�·� µ� ⊗ f is defined by

h�x1� � � � � xm+1� µ� = β�xm+1� µ�f�x1� � � � � xm�
and for 1 ≤ j ≤m, hj = βj�·� µ�f is defined by

hj�x1� � � � � xm�µ� = β�xj�µ�f�x1� � � � � xm��
In what follows, for x ∈ En, we will refer to xi as the type of the particle at

level i. We define a second generator for a Markov process in En by

Anf�x� =
n∑
i=1

Bif�x� +
∑

1≤i<j≤n
�f�θj�x � xi�� − f�x��

+
n∑
k=1

∑
1≤i<j≤n

(
2
n2
β�xk�µx�

)
�f�θjk�x � xi�� − f�x���

(2.3)

In this formula, for x ∈ En and z ∈ E, y = θj�x � z� is the element of En

satisfying

yk = xk� k ≤ j− 1�

yj = z�
yk = xk−1� k > j
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so θj�x � xi� = �x1� � � � � xj−1� xi� xj� � � � � xn−1�, with the obvious modification if
j = 1 or n. In words, we say that a copy of the particle at level i is inserted
at level j and the top level particle is killed. Similarly, y = θjk�x � xi� is the
element of En obtained from x by killing the particle at level k and, in the
resulting element of En−1, inserting a copy of the particle with index i at level
j, creating the new element on En.

The first term on the right-hand side of (2.3) models the changes in the
n particles due to mutation. We will refer to the transitions corresponding
to the second term as nonselective birth–death events and refer to transitions
corresponding to the third term as selective birth–death events.

Note that for An0 , the order in which the particles are numbered is not
important. In particular, if X̃ = �X̃1� � � � � X̃n� is a solution of the martin-
gale problem for An0 and �γ1� � � � � γn� is some permutation of �1� � � � � n�, then
�X̃γ1

� � � � � X̃γn� is also a solution. On the other hand, order is critical in so-
lutions of the martingale problem for An. For example, in each nonselective
birth–death event, the highest numbered particle dies.

Again setting F�µ� = 
f�µ�n��, we have the following relationship between
An0 and An:

�nF�µ� = 
An0f�µ�n�� = 
Anf�µ�n���(2.4)

This identity is the basis for the following theorem.

Theorem 2.1. Let An0 and An be given by (2.1) and (2.3), and let X̃ and
X be solutions of the respective martingale problems. Define

Z̃�t� = 1
n

n∑
i=1

δX̃i�t�� Z�t� = 1
n

n∑
i=1

δXi�t��

Suppose X̃�0� and X�0� have the same exchangeable distribution. Then for

each t > 0, X̃�t� and X�t� have the same exchangeable distribution,

E�f�X1�t�� � � � �Xn�t�� � � Z
t � = 
f�Z�t��n���(2.5)

and Z̃ and Z have the same distribution on D� �E��0�∞�.

Remark 2.2. (a) The analogous result in the neutral case was proved in
Donnelly and Kurtz (1999) using a coupling argument. For the sake of variety,
we use a conditioning argument here.

(b) The result also holds with θj replaced by ηj in the definition of An.
The neutral version of that model was studied in Donnelly and Kurtz (1996).
We could also take

Anf�x� =
n∑
i=1

Bif�x� +
∑

1≤i<j≤n
�f�θj�x � xi�� − f�x��

+ ∑
1≤i�=j≤n

(
1
n
β�xj�µx�

)
�f�ηj�x � xi�� − f�x���

(2.6)
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(c) Note that we are only asserting that X�t� and X̃�t� have the same
distribution. The processesX and X̃ clearly do not have the same distribution.

Proof. Let �σ1� � � � � σn� be some permuation of �1� � � � � n�. By symmetry, if
X̃1� � � � � X̃n is a solution of the martingale problem forAn0 , then �X̃σ1

� � � � � X̃σn�
is a solution of the martingale problem for An0 . It follows that

E�f�X̃σ1
�t�� � � � � X̃σn�t�� � � Z̃

t �

−
∫ t

0
E�An0f�X̃σ1

�s�� � � � � X̃σn�s�� � � Z̃
s �ds

(2.7)

is an �� Z̃
t 
 martingale. Averaging (2.7) over all permutations, we see that


f� Z̃�t��n�� −
∫ t

0

An0f� Z̃�s��n��ds

is an �� Z̃
t 
 martingale. [Note that the conditioning in (2.7) can be dropped

since the averaged expressions are measurable with respect to the condition-
ing σ algebra.] It follows that if X̃ is a solution of the martingale problem for
An0 , then the corresponding empirical measure Z̃ is a solution of the martin-
gale problem for �n. By (2.4), it follows that Z̃ is a solution of the martingale
problem for �nF�µ� = 
Anf�µ�n��.

We apply Corollary 3.5 of Kurtz (1998a). LetE (in the notation of that corol-
lary) be En (in the notation of the present paper), E0 = �e�En� (the collection
of exchangeable probability measures onEn), γ�x� = µ�n�x and α�ν� dz� = ν�dz�
for ν ∈ E0 = �e�En�. Then C, in the corollary, is �n and it follows that there
exists a solutionX of the martingale problem forAn such that the correspond-
ing empirical measure process Z has the same distribution as Z̃. The identity
(3.6) in Kurtz (1998a) implies (2.5), which in turn gives the exchangeability of
X�t�.

Finally, if X̃�0� is exchangeable, then the exchangeability of X̃�t� follows
from the symmetry of An0 , and uniqueness of solutions of the martingale prob-
lems implies X̃�t� and X�t� have the same distribution. ✷

2.2. Models with fecundity selection. We now consider models with fecun-
dity selection. The Moran model now becomes

An0f�x� =
n∑
i=1

Bif�x�

+ 1
2

∑
1≤i�=j≤n

(
1 + 2

n
σ�xi� µx�

)
�f�ηj�x � xi�� − f�x���

(2.8)

where, as before, σ is a nonnegative, bounded, measurable function on E ×
� �E�, ∑ni=1Bif is the generator for n independent copies of the E-valued
Markov process with generator B and ηj�x � xi� is the element of En obtained
from x by replacing xj by xi. Note that the only difference between (2.1) and
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(2.8) is that in (2.8), β is replaced by σ which depends on the type of the parent
rather than on the type of the particle to be killed, that is, selection affects
the birth rate rather than the death rate. In particular, large σ gives a larger
rate of reproduction and hence higher fitness.

We take the generator of the ordered model to be

Anf�x� =
n∑
i=1

Bif�x� +
∑

1≤i<j≤n
�f�θj�x � xi�� − f�x��

+
n−1∑
i=1

∑
1≤j≤n

(
1
n
σ�xi� µx�

)
�f�θj�x � xi�� − f�x���

(2.9)

where θj is as above.
For F�µ� = 
f�µ�n��, we again define

�nF�µ� = 
An0f�µ�n�� = 
Anf�µ�n���

To check that the second equality holds, note that


Anf�µ�n�� =
n∑
i=1


Bif�µ�n�� +
∑

1≤i<j≤n
�
"ijf�µ�n�� − 
f�µ�n���

+ 1
n

n−1∑
i=1

i∑
j=1

�
σi+1"i+1�jf�µ
�n�� − 
σif�µ�n���

+ 1
n

n−1∑
i=1

n∑
j=i+1

�
σi"ijf�µ�n�� − 
σif�µ�n���

=
n∑
i=1


Bif�µ�n�� +
1
2

∑
1≤i�=j≤n

�
"ijf�µ�n�� − 
f�µ�n���

+ 1
n

n∑
i=2

i−1∑
j=1

�
σi"ijf�µ�n�� − 
σif�µ�n���

+ 1
n

n−1∑
i=1

n∑
j=i+1

�
σi"ijf�µ�n�� − 
σif�µ�n���

= 
An0f�µ�n���

The appearance of σi+1"i+1�jf in the second expression reflects the fact that
if an offspring is inserted at a level j below the original level i of the parent,
the new level of the parent is i+1. Equality of the second terms in the second
and third expressions follows from the fact that 
"ijf�µ�n�� = 
"jif�µ�n��. If
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f depends only on the first m variables (m ≤ n), then

�nF�µ� =
m∑
i=1


Bif�µ�m�� + ∑
1≤i<j≤m


"ijf− f�µ�m��

+ n−m
n

m∑
j=1

�
σj�·� µ�f�µ�m�� − 
σ�·� µ� ⊗ f�µ�m+1���

+ 1
n

∑
1≤i�=j≤m

�
σi�·� µ�"ijf�µ�m�� − 
σi�·� µ�f�µ�m����

(2.10)

The proof of the following theorem is exactly the same as the proof of The-
orem 2.1.

Theorem 2.3. Let An0 and An be given by (2.8) and (2.9), and let X̃ and
X be solutions of the respective martingale problems. Define

Z̃�t� = 1
n

n∑
i=1

δX̃i�t�� Z�t� = 1
n

n∑
i=1

δXi�t��

Suppose X̃�0� and X�0� have the same exchangeable distribution. Then for

each t > 0, X̃�t� and X�t� have the same exchangeable distribution,

E�f�X1�t�� � � � �Xn�t�� � � Z
t � = 
f�Z�t��m���

and Z̃ and Z have the same distribution on D� �E��0�∞�.

Remark 2.4. We could replace θj by ηj in either the second or third terms
in the definition of An. We will, in fact, make this substitution in the third
term in the model considered in the next section.

2.3. Models with recombination. Recombination can be included in the
above models. Let R�x�y�dz� be a transition function from E ×E→ E and
let α > 0. In the model to be considered, recombination events occur at rate α,
and conditioned on the occurrence of a recombination, R gives the probability
distribution that parents of types x and y have an offspring of type z. [See
Ethier and Kurtz (1993) for additional discussion of general recombination.]
We also specialize the selection mechanism to the usual diploid model, which
is essentially equivalent to taking

σ�x�µ� =
∫
E
σ�x�y�µ�dy��
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In the case of fecundity selection, the generator of the Moran model becomes

An0f�x� =
n∑
i=1

Bif�x� +
1

2n

∑
1≤i�=j �=k≤n

(
1 + 2

n
σ�xi� xk�

)

×
((

1 − 2α
n

)
f�ηj�x � xi��

+ 2α
n

∫
E
f�ηj�x � z��R�xi� xk� dz�−f�x�

)

=
n∑
i=1

Bif�x� +
n− 2

2n

(
1 − 2α

n

) ∑
1≤i�=j≤n

�f�ηj�x � xi�� − f�x��

+ 1
n2

(
1 − 2α

n

) ∑
1≤i�=j �=k≤n

σ�xi� xk��f�ηj�x � xi�� − f�x��

+ α

n2

∑
1≤i�=j �=k≤n

(
1 + 2

n
σ�xi� xk�

)

×
( ∫
E
f�ηj�x � z��R�xi� xk� dz� − f�x�

)

(2.11)

and the corresponding ordered model is

Anf�x� =
n∑
i=1

Bif�x� +
n− 2
n

(
1 − 2α

n

) ∑
1≤i<j≤n

�f�θj�x � xi�� − f�x��

+ 1
n2

(
1 − 2α

n

) ∑
1≤i�=k≤n−1

n∑
j=1

σ�xi� xk��f�θj�x � xi�� − f�x��

+ α

n2

∑
1≤i�=k≤n−1

n∑
j=1

(
1 + 2

n
σ�xi� xk�

)

×
( ∫
E
f�θj�x � z��R�xi� xk� dz� − f�x�

)
�

(2.12)

where θj and ηj are as above. The fact that


An0f�µ�n�� = 
Anf�µ�n��

follows as before.
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We will actually use a slightly different model, namely,

An0f�x� =
n∑
i=1

Bif�x� +
1

2n

∑
1≤i�=j �=k≤n

(
1 + 2

n
σ�xi� xk�

)

× �f�ηj�x � xi�� − f�x��

+ α
n

∑
1≤i�=k≤n

∫
E
�f�ηi�x � z�� − f�x��R�xi� xk� dz�

=
n∑
i=1

Bif�x� +
n− 2

2n

∑
1≤i�=j≤n

�f�ηj�x � xi�� − f�x��

+ 1
n2

∑
1≤i�=j �=k≤n

σ�xi� xk��f�ηj�x � xi�� − f�x��

+ α
n

∑
1≤i�=k≤n

( ∫
E
f�ηi�x � z��R�xi� xk� dz� − f�x�

)
�

(2.13)

where the corresponding ordered model is (see Remark 2.4 above)

Anf�x� =
n∑
i=1

Bif�x� +
n− 2
n

∑
1≤i<j≤n

(
f�θj�x � xi�� − f�x�

)

+ 1
n2

∑
1≤i�=j �=k≤n

σ�xi� xk�
(
f�ηj�x � xi�� − f�x�

)

+ α
n

∑
1≤i�=k≤n

(∫
E
f�ηi�x � z��R�xi� xk� dz� − f�x�

)
�

(2.14)

This model essentially treats recombination as a type of mutation. We will see
that for large n there is little difference between the two models.

The proof of the following theorem is exactly the same as the proof of The-
orem 2.1.

Theorem 2.5. Let An0 and An be given by (2.13) and (2.14), and let X̃ and
X be solutions of the respective martingale problems. Define

Z̃�t� = 1
n

n∑
i=1

δX̃i�t�� Z�t� = 1
n

n∑
i=1

δXi�t��

Suppose X̃�0� and X�0� have the same exchangeable distribution. Then for

each t > 0, X̃�t� and X�t� have the same exchangeable distribution,

E
[
f�X1�t�� � � � �Xn�t�� � � Z

t

]= 〈
f�Z�t��m�〉�

and Z̃ and Z have the same distribution on D� �E��0�∞�.
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3. Infinite-population limit. The point of introducing the ordered gen-
erators in (2.3), (2.9) and (2.14) is that they are well behaved (that is, converge
in an appropriate sense) as the population size n→ ∞, whereas the original
Moran model generators are not. LettingXn denote the solution of the martin-
gale problem for An (since the dependence on n is now important) and letting
Zn�t� = �1/n�∑ni=1 δXni �t�, we can view Xn as determining a process in E∞ in
which components with indices greater than n do not vary. Consequently, we
can view An as an operator on functions in B�E∞�. For example, in the case of
viability selection, if f depends only on the first m variables, then as n→ ∞,
the generator Anf given by (2.3) converges to

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
k=1

β�xk�µ��f�ψk�x�� − f�x���
(3.1)

where for x ∈ E∞, ψk�x� is the element in E∞ obtained by eliminating the
kth component and shifting the components above level k down one; that is,
y = ψk�x� satisfies

yi = xi� i < k�

yi = xi+1� i ≥ k�
In particular, if f depends on the first m components of x, then Af�x�µ�
depends on the first m+1 components. Similarly, the generator given by (2.6)
converges to

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

∫
E
β�xj�µ��f�ηj�x � y�� − f�x��µ�dy��

(3.2)

Observing that for large n and µ ∈ � n�E�, µ�m� is essentially product mea-
sure µm, for F�µ� = 
f�µm�, we can identify the limit of �n as

�F�µ� =
m∑
i=1


Bif�µm� + 1
2

∑
1≤i�=j≤m


"ijf− f�µm�

+
m∑
j=1

�
β�·� µ� ⊗ f�µm+1� − 
βj�·� µ�f�µm���
(3.3)

which satisfies

�F�µ� = 
Af�·� µ�� µm+1��
To make the meaning of this convergence precise, suppose that for each n,
Xn�0� is exchangeable and that Xn�0� ⇒ X�0� [X�0� will necessarily be ex-
changeable]. Then it is easy to check that the sequence of processes �Xn�Zn� is
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relatively compact in DE∞×� �E��0�∞� in the sense of convergence in distribu-
tion in the Skorohod topology, and, assuming f, Bif and β are all continuous,
any limit point �X�Z� will have the property that

f�X�t�� −
∫ t

0
Af�X�s��Z�s��ds(3.4)

is an �� X�Z
t 
 martingale and


f�Zm�t�� −
∫ t

0

〈
Af�·�Z�s���Zm+1�s�〉ds

= F�Z�t�� −
∫ t

0
�F�Z�s��ds

(3.5)

is an �� Z
t 
 martingale. [Note that the distinction between the two filtrations is

essential. In general, (3.5) will not be an �� X�Z
t 
 martingale. See Theorem 2.7

of Donnelly and Kurtz (1996).]
By the exchangeability of Xn�t� and the definition of Zn,

E
[
f�Xn1�t�� � � � �Xnm�t��

] = E[
f�Z�m�
n �t��]�

and passing to the limit, we have

E
[
f�X1�t�� � � � �Xm�t��

] = E[
f�Zm�t��]�
It follows that conditional on Z�t�, X1�t��X2�t�� � � � are iid with distribution
Z�t�, and hence that X�t� is exchangeable with de Finetti measure Z. In
particular,

Z�t� = lim
m→∞

1
m

m∑
i=1

δXi�t� a.s.(3.6)

and hence, Z is �� X
t 
-adapted and � X�Z

t = � X
t .

For fecundity selection, the limiting operators are

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m

(
f�θj�x � xi�� − f�x�

)

+ ∑
1≤j≤m

∫
E
σ�z�µ�(f�θj�x � z�� − f�x�)µ�dz��(3.7)

where, as above, θj�x � z� is the element of E∞ obtained from x by inserting
z ∈ E at the jth level, and

�F�µ� =
m∑
i=1


Bif�µm� +
∑

1≤i<j≤m

"ijf− f�µm�

+
m∑
j=1

�
σj�·� µ�f�µm� − 
σ�·� µ� ⊗ f�µm+1���
(3.8)
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Note that if σ ≤ σ̄ and we let β = σ̄ −σ , then (3.3) and (3.8) are the same. Of
course, � is the generator of the Fleming–Viot process with selection. See, for
example, Ethier and Kurtz (1993).

The infinite-population limit for the generator given in (2.12) is

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

∫
E×E

σ�y1� y2��f�θj�x � y1�� − f�x��µ�dy1�µ�dy2�

+ α
m∑
j=1

∫
E×E

(∫
E
f�θj�x � z��R�y1� y2� dz� − f�x�

)

× µ�dy1�µ�dy2�

(3.9)

while the limit for the generator given in (2.14) is

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

∫
E×E

σ�y1� y2��f�ηj�x � y1�� − f�x��µ�dy1�µ�dy2�

+ α
m∑
j=1

∫
E

(∫
E
f�ηj�x � z��R�xj� y�dz� − f�x�

)
µ�dy��

(3.10)

Letting Hjf�x1� � � � � xm+1� =
∫
E f�ηj�x � z��R�xj� xm+1� dz�, the limit of �n,

�F�µ� =
m∑
i=1


Bif�µm� +
∑

1≤i<j≤m

"ijf− f�µm�

+
m∑
j=1

�
σj�·� ·�f�µm+1� − 
σ�·� ·� ⊗ f�µm+2��

+ α
m∑
j=1

�
Hjf− f�µm+1���

(3.11)

is the same for both of these models, partially justifying our claim that the two
approaches to the treatment of recombination are asymptotically equivalent.

Note that we are not really claiming to have proved a limit theorem in this
section in that we have not yet proved a uniqueness result for the limiting
martingale problem and there are technical difficulties to overcome unless
one makes continuity assumptions on B, σ , β and R. Uniqueness for the
martingale problem for � given by (3.11) follows by duality arguments [see
Ethier and Kurtz (1993)]. In Section 4.1, we will prove uniqueness for a system
of stochastic differential equations corresponding to (3.10), and in Section 7
we will prove convergence of the finite-dimensional system corresponding to
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(2.14). In Section 4.2, we will consider uniqueness for the martingale problem
for the infinite system.

4. Demographic representation of infinite-population models with
selection and recombination. In Donnelly and Kurtz (1996, 1999), the
“demography” of the infinite particle models was represented in terms of a
collection of independent unit Poisson processes �Lij� 1 ≤ i < j
. In the con-
struction of the solution of the martingale problem for the neutral (no selec-
tion) model without recombination given by

Af�x� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x���(4.1)

the jump times of Lij determine when level j “looks down” to level i and
a copy of the type at level i is inserted at level j. To be precise, suppose
that E ⊂ �d (or some more general linear space) and that we can write the
mutation process as a solution of a stochastic differential equation

X0�t� =X0�0� +
∫
U×�0� t�

h�X0�s−�� u�M0�du× ds��(4.2)

where M0 is a Poisson random measure on U × �0�∞� with mean measure
ν ×m for some measure ν on U and Lebesgue measure m. Any pure jump
Markov process in E can be represented in this way. For X0 satisfying (4.2),
the corresponding generator is

Bf�x� =
∫
�f�x+ h�x�u�� − f�x��ν�du��

For simplicity, we assume that B is a bounded operator which allows us to
assume that ν�U� <∞.

With this mutation process, the solution of the martingale problem for (4.1)
can be obtained as the solution X�t� = �X1�t��X2�t�� � � �� of the system of
stochastic differential equations

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xj−1�s−� −Xj�s−��dLik�s��

(4.3)

where the �Mj
 are independent copies of M0 and independent of the �Lij
.
(Of course, we always assume thatX�0� is independent of the driving Poisson
processes.) The second term on the right-hand side determines the evolution
of the mutation process on level j, the third term determines when a copy
of the type at level i is inserted at level j and the fourth term reflects the
insertion of new particles at levels below level j.
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Note that when a copy of the particle at level i is inserted at level j, we can
interpret the particle at level i as being the parent of the new particle at level
j, and consequently, we can trace the ancestry of any particle back to time
zero. (If the mutation process has a stationary version, we can construct a
version with time starting at −∞ and trace ancestry into the indefinite past.)
For each t ≥ 0 and k = 1�2� � � �, let Ntk�s�, 0 ≤ s ≤ t, be the level at time
s of the ancestor of the particle at level k at time t. In terms of the Lij, for
0 ≤ s ≤ t,

Ntk�s� = k−
∑

1≤i<j<k

∫ t
s
I�Ntk�u�>j
 dLij�u�

− ∑
1≤i<j≤k

∫ t
s
�j− i�I�Ntk�u�=j
 dLij�u� �

(4.4)

For s < t, the set of values

4�s� t� = {
Ntk�s� � k = 1�2� � � �

}
(4.5)

is finite; that is, only finitely many individuals alive at time s have descen-
dants alive at time t, and for each t, 4�·� t� determines a version of Kingman’s
(1982) coalescent which models the genealogy of a neutral population. [See
the discussions of genealogy in Donnelly and Kurtz (1996, 1999).]

Griffiths and others [see Griffiths and Majoram (1997) for a recent survey]
have considered genealogies for models with recombination, introducing an
ancestral recombination graph as a generalization of the coalescent. Krone
and Neuhauser (1997) have given a description of genealogy for a population
subject to certain kinds of selection in terms of a corresponding ancestral selec-
tion graph. In our setting, which includes both selection and recombination,
we will refer to the analogous object as the ancestral influence graph. We will
generalize the system (4.3) to the model with generator (3.10) in such a way
that for each t, the ancestral influence graph for the infinite population at
time t is embedded in the corresponding demography in a manner analogous
to the embedding of Kingman’s coalescent in the neutral demography.

Note that if σ̄ ≥ σ , then we can rewrite A as

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

σ̄
∫
E×E

(
σ�y1� y2�
σ̄

f�ηj�x � y1��

+ σ̄ − σ�y1� y2�
σ̄

f�x� − f�x�
)
µ�dy1�µ�dy2�

+
m∑
j=1

α
∫
E

( ∫
E
f�ηj�x � z��R�xj� y�dz� − f�x�

)
µ�dy��

(4.6)
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Written in this form, the jth term in the selection operator has the following
interpretation. At the jump times of a Poisson process with intensity σ̄ , a
sample of size 2, say U1 and U2, is drawn from the empirical measure Z (that
is, if the jump time is τ, E�f�U1�U2� � Z�τ�� = 
f�Z�τ�2�). Conditioned on
U1 and U2, with probability σ̄−1σ�U1�U2�, the particle at level j is replaced
by a particle of type U1, and with probability σ̄−1�σ̄ − σ�U1�U2��, there is
no change, that is, X�τ� = X�τ−�. To describe the recombination events, let
r:E×E× �0�1� → E have the property that if V is uniformly distributed on
�0�1�, then r�y1� y2�V� has distribution R�y1� y2� ·�. At the jump times of a
Poisson process with parameter α, a sample U is drawn from the empirical
measure Z, a uniform random variable V is generated and the type on the
jth level is set equal to r�Xj�τ−��U�V�.

To build these descriptions into a stochastic equation, we must have a way
to generate samples from the empirical measure. Let ρ:� �E� × �0�1� → E
have the property that if µ ∈ � �E� and V is uniformly distributed on �0�1�,
then ρ�µ�V� has distribution µ. [See Blackwell and Dubins (1983) for a con-
struction of such a ρ with nice continuity properties.] We will later give a
special method for generating ρ that has other uses in our setting, but for the
moment, we leave the choice of ρ arbitrary. For j = 1�2� � � �, let Kj be a Pois-
son random measure on �0�1�3 × �0�∞� with mean measure σ̄m4, where md

is d-dimensional Lebesgue measure, and let Jj be a Poisson random measure
on �0�1�2 × �0�∞� with mean measure αm3. Of course Kj��0�1�3 × �0� ·�� is a
Poisson process with intensity σ̄ and Jj��0�1�2 × �0� ·�� is a Poisson process
with intensity α. Following the terminology of Krone and Neuhauser, we will
refer to the jump times of the Kj as σ̄-branch points and the jump times of
the Jj as α-branch points.

The desired system of equations is given by

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xj−1�s−� −Xj�s−��dLik�s�

+
∫
�0�1�3×�0� t�

(
ρ�Z�s−�� u1� −Xj�s−�

)
× I�0� σ̄−1σ�ρ�Z�s−�� u1�� ρ�Z�s−�� u2����u3�
×Kj�du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

(
r�Xj�s−�� ρ�Z�s−�� u1�� u2� −Xj�s−�

)
×Jj�du1 × du2 × ds��

(4.7)
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To understand the Kj integral term, note that

Nσ�j�t� =
∫
�0�1�3×�0� t�

I�0� σ̄−1σ�ρ�Z�s−�� u1�� ρ�Z�s−�� u2����u3�

×Kj�du1 × du2 × du3 × ds�
is a counting process with intensity 
σ�Z�t�2�, and at each jump time τσ�j� k
of Nσ�j, the type at level j is replaced by a random type with distribution
satisfying

E�g�Xj�τσ�j� k�� � Z�τσ�j� k�� =

σ1g�Z�τσ�j� k�2�

σ�Z�τσ�j� k�2� �

where σ1g�y1� y2� = σ�y1� y2�g�y1�. For the more general σ appearing in (3.7)
(but with the insertion operator θj replaced by ηj), the selection term in (4.7)
can be replaced by∫

�0�1�2×�0� t�
�ρ�Z�s−�� u1� −Xj�s−��I�0� σ̄−1σ�ρ�Z�s−�� u1��Z�s−����u2�

×Kj�du1 × du2 × ds��
(4.8)

Note that this term gives a different system in the case of diploid σ , reflect-
ing the fact that different systems of stochastic differential equations may
correspond to the same martingale problem.

4.1. Uniqueness for the infinite system. In this subsection we consider a
more general system that combines the selection and recombination terms
into a single term. In place of �Kj
 and �Jj
 in (4.7), the equations will be
driven by Poisson random measures (denoted �Kj
) on a general space of the
form S× �0�∞�, where for definiteness we will assume that S is a complete,
separable metric space (S = �0�1�3∪�0�1�2 in (4.7)). Specifically, theKj will be
independent Poisson random measures on S×�0�∞�, each with mean measure
ζ ×m for some finite measure ζ on S.

Fix µ0 ∈ � �E�, and define γ� E∞ → � �E� by

γ�x� = lim
n→∞

1
n

n∑
i=1

δxi�

if the limit exists in the weak topology and by γ�x� = µ0 otherwise. The
system is

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xj−1�s−� −Xj�s−��dLik�s�

+
∫
S×�0� t�

�q�Xj�s−��Z�s−�� u� −Xj�s−��Kj�du× ds��

(4.9)
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where Z�t� = γ�X�t�� and X�0�, �Mj
, �Lij
 and �Kj
 are independent.
Applying Itô’s formula, we see that any solution of (4.9) is a solution of the
martingale problem for

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

β
∫
E
�f�ηj�x � z�� − f�x��Q�xj�µ�dz��

(4.10)

where β = ζ�S� and Q is the transition function given by

Q�xj�µ�C� =
1
β

∫
S
I�q�xj�µ�u�∈C
ζ�du��

It will actually be convenient to think of q as a function of x rather than µ
and to allow q to depend on an additional stochastic process ξ.

To be specific, let ��t
 be a filtration and assume that �Kj
, �Lij
 and
�Mj
 are compatible with ��t
 and X�0� is �0-measurable. Let ξ be a cadlag
��t
-adapted process with values in a complete, separable metric space F.
Assume that

q:E×E∞ ×F×S→ E�(4.11)

The system then becomes

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xj−1�s−� −Xj�s−��dLik�s�

+
∫
S×�0� t�

�q�Xj�s−��X�s−�� ξ�s−�� u� −Xj�s−��Kj�du× ds��

(4.12)

A solution of (4.12) will still be a solution of the martingale problem for (4.10) if

Q�Xj�t−��Z�t−��C�

= 1
β

∫
S
I�q�Xj�t−��X�t−��ξ�t−�� u�∈C
ζ�du�� a�s�

(4.13)

The basic assumption on q will be that there exists a constant D > 0 such
that ∫

S
I�q�xj� x� v� u��=q�yj� y� v� u�
ζ�du�

≤ D
(
I�xj �=yj
 + lim sup

m→∞
1
m

m∑
i=1

I�xi �=yi


)
a�s�

(4.14)
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Taking S = �0�1�3∪�0�1�2 and appropriately defining ζ and q, (4.7) is a special
case of (4.12).

We can write

Mj =
∞∑
k=1

δ�u1� j
k � s

1� j
k �� Kj =

∞∑
k=1

δ�u2� j
k � s

2� j
k ��

Let

@ = {�j� s1� jk � � j� k = 1�2� � � �
} ∪ {�j� s2� jk � � j� k = 1�2� � � �

}
∪ {�j�0� � j = 1�2� � � �

}
�

For Ntk�s� given by (4.4), that is, the ancestral level in the neutral genealogy,
let

τtk = sup
{
s < t � �Ntk�s�� s� ∈ @

}
and note that Xk�t� =XNtk�τtk��τtk�. Letting @t = ��j� s� ∈ @ � s < t
, it follows
that Z must be of the form

Z�t� = ∑
�j� s�∈@t

a�j� s� t�δXj�s��(4.15)

where

a�j� s� t� = lim
m→∞

1
m

m∑
k=1

I��Ntk�τtk�� τtk�=�j� s�
�

Properties of the neutral infinite alleles model imply that, for t > 0, this limit
exists and

∑
�j� s�∈@t a�j� s� t� = 1 a.s. One consequence of the representation

(4.15) is that the system (4.12) makes sense even without an assumption of
exchangeability. For any initial condition X�0�, under appropriate conditions
on q, we can construct a solution iteratively. Let X0

j�t� ≡ Xj�0� and for n =
0�1� � � �,

Zn�t� = ∑
�j� s�∈@t

a�j� s� t�δXnj�s� = lim
m→∞

1
m

m∑
i=1

δXni �t�(4.16)

and

Xn+1
j �t� =Xj�0� +

∫
U×�0� t�

h�Xn+1
j �s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xn+1

i �s−� −Xn+1
j �s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xn+1

j−1�s−� −Xn+1
j �s−��dLik�s�

+
∫
S×�0� t�

�q�Xn+1
j �s−��Xn�s−�� ξ�s−�� u� −Xn+1

j �s−��

×Kj�du× ds��

(4.17)
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Theorem 4.1. Suppose that there exists a constant D > 0 such that (4.14)
holds. Then:

(a) X = limn→∞Xn exists and X is the unique solution of (4.12).
(b) If X�0� is exchangeable and (4.13) holds, then for each f ∈ B�Em�,

m = 1�2� � � �,

E
[
f�X1�t�� � � � �Xm�t�� � � γ�X�

t

] = 
f� γ�X�t��m��
In particular, for each t ≥ 0, X�t� is exchangeable.

(c) For arbitrary X�0�, if (4.13) holds, then for each f ∈ B�Em�, m =
1�2� � � �,

lim
t→∞

E�f�X1�t�� � � � �Xm�t�� � � γ�X�
t � − 
f� γ�X�t��m� = 0�

Proof. Let X̃T�nj �t� =Xn
NTj �t�

�t�, where againNTj gives the ancestral level

in the neutral genealogy determined by (4.4). For each T > 0 and j = 1�2� � � �,
define

M̃T
j �C× �0� t�� =

j∑
i=1

∫
C×�0� t�

I�NTj �s�=i
Mi�du× ds�

and define K̃j similarly. Since the Lij are independent of the Mj and Kj, it
follows that M̃j and K̃j are Poisson random measures with mean measures
ν ×m and ζ ×m, respectively (but not independent). Then

X̃
T�n+1
j �t� =XNTj �0��0� +

∫
U×�0� t�

h�X̃T�n+1
j �s−�� u�M̃j�du× ds�

+
∫
S×�0� t�

�q�X̃T�n+1
j �s−��Xn�s−�� ξ�s−�� u� − X̃T�n+1

j �s−��

× K̃j�du× ds��

(4.18)

and from this equation, it follows that X̃T�n+1
j �s� = X̃T�nj �s� until the time of

the first jump in K̃j�du × ds� at which Xn�s−� �= Xn−1�s−� [or, more pre-

cisely, q�X̃T�nj �s−�� Xn�s−�� ξ�s−�� u� �= q�X̃T�nj �s−�� Xn−1�s−�� ξ�s−�� u�].
Consequently, settingVT�n+1

j �t� = I�X̃T�n+1
j �t��=X̃T�nj �t�
 [and hence 1−VT�n+1

j �t� =
I�X̃T�n+1

j �t�=X̃T�nj �t�
� yields

V
T�n+1
j �t�

≤
∫
S×�0� t�

�1 −VT�n+1
j �s−��

× I�q�X̃T�nj �s−��Xn�s−��ξ�s−��u��=q�X̃T�nj �s−��Xn−1�s−��ξ�s−��u�
K̃j�du× ds�
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=
∫
S×�0� t�

�1 −VT�n+1
j �s−��

× I�q�X̃T�nj �s−��Xn�s−�� ξ�s−�� u��=q�X̃T�nj �s−��Xn−1�s−��ξ�s−�� u�


× �K̃j�du× ds� − ζ�du�ds�

+
∫
S×�0� t�

�1 −VT�n+1
j �s−��

× I�q�X̃T�nj �s−��Xn�s−�� ξ�s−�� u��=q�X̃T�nj �s−��Xn−1�s−�� ξ�s−�� u�
ζ�du�ds

≤ martingale +D
∫ t

0
Rn�s�ds�

where

Rn�s� = ∑
�i� r�∈@s

a�i� r� s�I�Xni �r��=Xn−1
i �r�
 = lim

m→∞
1
m

m∑
i=1

I�Xni �s��=Xn−1
i �s�
�

Setting t = T and taking expectations of both sides, we have

P�Xn+1
j �T� �=Xnj�T�
 ≤ D

∫ T
0
E�Rn�s��ds

= D
∫ T

0
lim
m→∞

1
m

m∑
i=1

P�Xni �s� �=Xn−1
i �s�
ds�

(4.19)

which in turn implies

E�Rn+1�T�� ≤ D
∫ T

0
E�Rn�s��ds�

It follows that limn→∞E�Rn�T�� = 0, so by (4.19), limn→∞P�Xn+1
j �T� �=

Xnj�T�
 = 0 for each j and henceXn converges. Uniqueness follows by essen-
tially the same estimates.

Let V be an E∞-valued process adapted to ��t
 for which the empirical
measure process

ZV�t� = lim
m→∞

1
m

m∑
i=1

δVi�t� = γ�V�t��

exists, and let Y satisfy

Yj�t� = Yj�0� +
∫
U×�0� t�

h�Yj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Yi�s−� −Yj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Yj−1�s−� −Yj�s−��dLik�s�

+
∫
S×�0� t�

�q�Yj�s−��V�s−�� ξ�s−�� u� −Yj�s−��Kj�du× ds��

(4.20)
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If Y�0� is exchangeable and (4.13) holds, then we claim that

E�f�Y1�t�� � � � �Ym�t�� � � γ�Y�� γ�V�
t � = 
f� γ�Y�t��m��(4.21)

This identity is a consequence of the corresponding identity for the neutral
model, that is, the solution of (4.20) without the Kj integral terms. To see
that the more general identity holds, first replaceKj by the counting measure
obtained by setting

Kεj�du× �kε
� =Kj�du× �kε� �k+ 1�ε��I�Kj�S×�kε� �k+1�ε��≤1
�

and let Yε denote the solution of the resulting equation. During time inter-
vals of the form �kε� �k + 1�ε�, the system evolves as the neutral particle
system, while at time kε, the Yεj�kε� are conditionally independent given
�kε = σ�V�s��Yε�s� � s < kε� with

P
{
Yε1�kε� ∈ C1� � � � �Y

ε
m�kε� ∈ Cm � �kε

} = m∏
i=1

Q�Yεi �kε−��ZV�kε−��Ci��

and (4.21), with Y replaced by Yε, follows by the corresponding result for the
neutral particle system and this conditional independence. Letting ε → ∞,
(4.21) follows and, as a consequence, we have

E
[
f�Xn+1

1 �t�� � � � �Xn+1
m �t�� � � γ�Xn+1�� γ�Xn�

t

] = 
f� γ�Xn+1�t��m��(4.22)

Letting n→ ∞, we obtain part (b).
If X�0� is not exchangeable, let Y denote the solution of (4.20) with V =X

and Yj�0� =X1�0� for all j. Then

E
[
f�Y1�t�� � � � �Ym�t�� � � γ�Y�� γ�X�

t

] = 
f� γ�Y�t��m��(4.23)

Letting n→ ∞ in (4.18), we have that X̃Tj �t� ≡XNTj �t��t� satisfies

X̃Tj �t� =XNTj �0��0�+
∫
U×�0� t�

h�X̃Tj �s−�� u�M̃j�du×ds�

+
∫
S×�0� t�

�q�X̃Tj �s−��X�s−�� ξ�s−�� u�− X̃Tj �s−��K̃j�du× ds��
(4.24)

and similarly defining ỸTj �t� ≡ YNTj �t��t�, we have

ỸTj �t� = YNTj �0��0� +
∫
U×�0� t�

h�ỸTj �s−�� u�M̃j�du×ds�

+
∫
S×�0� t�

�q�ỸTj �s−��X�s−�� ξ�s−�� u�− ỸTj �s−��K̃j�du×ds��
(4.25)

Consequently, setting Ct = �Nti�0� = 1� all i
 (that is, the event that the
neutral population at time t has a unique common ancestor, necessarily at
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the bottom level, at time 0), we have X�t� = Y�t� on Ct. Then

E
[
ICth�X1�t�� � � � �Xm�t�� � � γ�Y�� γ�X�

t

]
= E[ICth�Y1�t�� � � � �Ym�t�� � � γ�Y�� γ�X�

t

]
�

and since limt→∞P�Ct� = 1, part (c) follows. ✷

4.2. Corresponding martingale problem. To be able to apply certain gen-
eral theorems regarding martingale problems without making continuity as-
sumptions on q [and the selection and recombination mechanisms in (3.10)],
we need to show that the generator has a particular representation. For sim-
plicity, we assume that B: C̄�E� → C̄�E�, although that assumption could be
relaxed as well. We consider the process with generator (4.10).

Let F = � �E�∞ and define E:x ∈ E∞ → �ψ1� ψ2� � � �� ∈ F by

ψj�x�dz� = Q�xj� γ�x�� dz��

Let �0 be a countable subset of C̄�E� that is closed under multiplication and
is dense in C̄�E� in the sense of convergence of bounded sequences, uniformly
on compact subsets. Let � �A0� = �∏mi=1 fi�xi� � fi ∈ �0�m = 1�2� � � �
. Define
A0 � � �A0� ⊂ C̄�E∞� → C̄�E∞ ×F� by

A0f�x� ν� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

β
∫
E
�f�ηj�x � z�� − f�x��νj�dz�

(4.26)

and observe that for µ = γ�x�,

Af�x�µ� =
m∑
i=1

Bif�x� +
∑

1≤i<j≤m
�f�θj�x � xi�� − f�x��

+
m∑
j=1

β
∫
E
�f�ηj�x � z�� − f�x��Q�xj�µ�dz�

= A0f�x�E�x���

It follows that A satisfies the conditions of Theorem 2.7 of Kurtz (1998a), and
the results of that paper will be used in several places in the current paper.

Note that under the assumption that B is a bounded operator, any solution
of the martingale problem for A with � �A� = � �A0� is a solution of the
martingale problem for A with � �A� = ⋃

mB�Em�. [First extend A to the
linear span of � �A0� and then close the operator under bounded pointwise
convergence. See Ethier and Kurtz (1986), Proposition 4.3.1.] As in (3.11), for
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f ∈ B�Em�, define F�µ� = 
f�µm� and

�F�µ� = 
Af�·� µ�� µm��(4.27)

We will also, on occasion, need to incorporate information about the driving
processes �Kj
, �Lij
 and �Mj
 into the state description of the process. Let
�U ⊂ ��U� ��S ⊂ ��S�� be countable and be an algebra (that is, closed under
finite unions and complements) that generates the σ algebra ��U� ���S��.
For C ∈ �U, let λUC�j have values in �−1�1
 and satisfy

λUC�j�t� = λUC�j�0��−1�Mj�C×�0� t���

For C ∈ �S, define λSC�j similarly and

λLij�t� = λLij�0��−1�Lij�t��

Note, for example, that

Mj�C× �0� t�� = − 1
2

∫ t
0
λUC�j�s−�dλUC�j�s��(4.28)

so Mj can be recovered from �λUC�j � C ∈ �U
. The generator Aλ for the
process �X�λL� λU� λS� can be derived using Itô’s formula. If �X�λL� λU� λS�
is a solution of the martingale problem for Aλ, and if Lij, Mj and Kj are
defined in terms of λL, λU and λS as in (4.28), then X will satisfy (4.9).

If we set � = ��i� j� � 1 ≤ i < j
 andEλ = �−1�1
�×�−1�1
�U×�−1�1
�S ,
then the state space for �X�λL� λU� λS� is E∞ ×Eλ. Let Fλ ∈ � �Eλ� be the
infinite product measures with factors 1

2δ−1 + 1
2δ1. [Note that Fλ will be a sta-

tionary distribution for �λL� λU� λS�.] Then for f ∈ B�Em×Eλ�, considered as a
function in B�E∞ ×Eλ�, define Fλf�x1� � � � � xm� =

∫
Eλ
f�x1� � � � � xm� v�Fλ�dv�

and note that

FλAλf�x1� � � � � xm� = AFλf�x1� � � � � xm� γ�x���(4.29)

As a consequence of this identity, we have the following lemma.

Lemma 4.2. If X is a solution of the martingale problem for A, then there
exists a solution �X̃� λL� λU� λS� of the martingale problem for Aλ such that X

and X̃ have the same distribution. In particular, any solution of the martingale
problem for A is a weak solution of (4.9).

Remark 4.3. A process X is a weak solution of (4.9) if there exists a prob-
ability space on which are defined Poisson random measures �M̂j
, �L̂ij
 and
�K̂j
 with the same joint distributions as �Mj
, �Lij
 and �Kj
 and a process
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X̂ with the same distribution as X such that

X̂j�t� = X̂j�0� +
∫
U×�0� t�

h�X̂j�s−�� u�M̂j�du× ds�

+
j−1∑
i=1

∫ t
0
�X̂i�s−� − X̂j�s−��dL̂ij�s�

+ ∑
1≤i<k<j

∫ t
0
�X̂j−1�s−� − X̂j�s−��dL̂ik�s�

+
∫
S×�0� t�

�q�X̂j�s−�� Ẑ�s−�� u� − X̂j�s−��K̂j�du× ds��

(4.30)

where Ẑ�t� = γ�X̂�t��.

Proof. The existence of the solution of the martingale problem for Aλ
follows from Corollary 3.5 and Theorem 2.7 of Kurtz (1998a). Then, as observed
above, any solution of the martingale problem for Aλ satisfies (4.9). See Kurtz
(1998b) for further discussion of results of this type. ✷

We are primarily interested in solutions X of the martingale problem for
A for which �X1�t��X2�t�� � � �� is exchangeable. In particular, exchangeability
implies

γ�X�t�� = lim
n→∞

1
n

n∑
i=1

δXi�t� a�s�

To be precise, for ν0 ∈ �e�E∞�, the collection of exchangeable probability distri-
butions onE∞, we will say thatX is a solution of the exchangeable martingale
problem for �A� ν0� if there exists a filtration ��t
 such that for each f ∈ � �A�,

f�X�t�� −
∫ t

0
Af�X�s��ds

is an ��t
 martingale and for each t ≥ 0, X�t� is exchangeable.
Let 	 be the collection of functions of the form f�xκ1

1
� � � � � xκ1

m
�−f�xκ2

1
� � � � �

xκ2
m
�, where f ∈ B�Em� for some m ≥ 1 and for i = 1�2, �κi1� � � � � κim� is a per-

mutation of �1� � � � �m�. Let �	 �E∞� ⊂ � �E∞� be the collection of probability
measures ν0 ∈ � �E∞� satisfying

∫
E∞ hdν0 = 0 for each h ∈ 	 and note that

�	 �E∞� = �e�E∞�. It follows that the exchangeable martingale problem for
�A� ν0� is just the restricted martingale problem for �A�	 � ν0� in the sense of
Kurtz [(1998a), Section 3].

We assume that F in (4.11) is a linear space and that the process ξ in
(4.12) is the unique solution of a stochastic differential equation driven by
�Mj
, �Lij
 and (possibly) additional independent Poisson random measures
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�Hα
, but that ξ is independent of �Kj
. We write

ξ�t� = ξ�0� +∑
j

∫
U×�0� t�

Fj�ξ�s−�� u�Mj�du× ds�

+∑
ij

∫ t
0
Gij�ξ�s−��dLij�s�

+∑
α

∫
Uα×�0� t�

Hα�ξ�s−�� u�Hα�du× ds��

(4.31)

[See (6.2) for a particular example.] If X is a solution of (4.9), then, at least
formally, �X�ξ� is a solution of the martingale problem for an operator A1 =
A0 +B1, where

B1f�x� v� =∑
j

β
∫
S

(
f�ηj�x � q�xj� γ�x�� u��� v� − f�x� v�

)
ζ�du��(4.32)

and if X is a solution of (4.12), then �X�ξ� is a solution of the martingale
problem for A2 = A0 +B2, where

B2f�x� v� =∑
j

β
∫
S

(
f�ηj�x � q�xj� x� v� u��� v� − f�x� v�

)
ζ�du��(4.33)

We will assume that solutions of the stochastic equations are, in fact, solutions
of the corresponding martingale problems (an assertion that is usually easy to
check using Itô’s formula) and, in addition, we will assume that any solution
of the martingale problem for A1 is a weak solution of the system (4.9) and
(4.31) and that any solution for A2 is a weak solution of the system (4.12)
and (4.31) (assertions that can usually be proved by the argument used in the
proof of Lemma 4.2).

Theorem 4.4. Let A be given by (4.10) and let q satisfy (4.11) and (4.14).
Let 4 ⊂ E∞ ×F be the set of �x� v� such that

Q�xj� γ�x��C� =
1
β

∫
S
I�q�xj� x� v� u�∈C
ζ�du�� C ∈ ��E��

for all j = 1�2� � � � and t ≥ 0. Let A1 = A0 +B1 and A2 = A0 +B2 be defined
on the same domain with B1and B2 given by (4.32) and (4.33), respectively,
and assume that �X�ξ� is a solution of the martingale problem for A1 if and
only if it is a weak solution of the system (4.9) and (4.31) and that �X�ξ� is a
solution of the martingale problem for A2 if and only if it is a weak solution of
the system (4.12) and (4.31). Suppose that every process �X�ξ� that solves the
system (4.9) and (4.31) or the system (4.12) and (4.31) satisfies �X�t�� ξ�t�� ∈ 4
a.s., t > 0. Then:

(a) For each ν0 ∈ � �E∞� there exists a unique solution of the martingale
problem for �A� ν0�.
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(b) If ν0 ∈ �e�E∞� andX is a solution of the martingale problem for �A� ν0�,
then X is a solution of the exchangeable martingale problem for �A� ν0� and
Z = γ�X� is a solution of the martingale problem for � given by (4.27).

(c) If Z is a solution of the martingale problem for � and, for f ∈ B�Em�,

f� νm0 � = E�
f�Zm�0���, then there exists a solution X of the exchangeable
martingale problem for �A� ν0� such that the distribution of γ�X� is the same
as the distribution of Z.

Remark 4.5. In Section 6, we will apply this theorem to obtain existence
and uniqueness for A given in (3.10). More generally, the methods of Section
6 can be applied to (4.10) with

Q�y�µ�C� =
∫
Em
h�y�x1� � � � � xm�C�µ�dx1� · · ·µ�dxm��

In particular, models of frequency-dependent selection [see, for example,
Neuhauser (1998)] with selection parameters of the form

σ�x�µ� =
∫
Em
s�x� x1� � � � � xm�µ�dx1� · · ·µ�dxm�

are covered.

Proof of Theorem 4.4. Existence of solutions of the martingale problem
for A is immediate since, by Itô’s formula, any solution of (4.12) is a solution
of the martingale problem. Uniqueness for the martingale problem will fol-
low from uniqueness for the system provided every solution of the martingale
problem is a weak solution of the system. It follows from Lemma 4.2 that
every solution X of the martingale problem for A is a weak solution of (4.9)
and hence can be coupled with a solution ξ of (4.31) to give a solution of the
martingale problem for A1. However, A1f�x� v� = A2f�x� v� for �x� v� ∈ 4, so
by the assumption �X�t�� ξ�t�� ∈ 4, t > 0, �X�ξ� is a solution of the martin-
gale problem for A2 and hence is a weak solution of the system (4.12)–(4.31).
Uniqueness for (4.12) then gives uniqueness for the martingale problem.

If ν0 ∈ �e�E∞� and X is a solution of the martingale problem for �A� ν0�,
then by part (b) of Theorem 4.1,X is a solution of the exchangeable martingale
problem of �A� ν0�. Let Z = γ�X�. Then for f ∈ � �A�, it follows that

E
[
f�X1�t�� � � � �Xm�t�� � � Z

t

]
−
∫ t

0
E
[
Af�X1�s�� � � � �Xm�s��Z�s�� � � Z

s

]
ds

(4.34)

is an �� Z
t 
 martingale and by part (b) of Theorem 4.1, (4.34) is


f�Z�t�m� −
∫ t

0

Af�·�Z�s���Z�s�m�ds�

which gives part (b).
To prove part (c), apply Corollary 3.7 of Kurtz (1998a) withE in the corollary

corresponding toE∞ in the present paper,Y to the presentZ,Z to the present
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X, E0 = � �E�, C = � and α�µ�dx�, the transition function from � �E� to E∞

determined by ∫
E∞
f�x�α�µ�dx� = 
f�µm�

for f ∈ B�Em� considered as a subset of B�E∞�. If Z is a solution of the
martingale problem for �, then the corollary gives existence of the desired
X. ✷

4.3. Systems for viability selection. In this section we have concentrated on
systems with fecundity selection. Similar systems can be developed for models
with viability selection. The model given by (3.1) is particularly appealing in
the case of genic selection. Taking α = 0 for simplicity, the corresponding
system is

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫ t
0
�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

∫ t
0
�Xj−1�s−� −Xj�s−��dLik�s�

+
j∑
k=1

∫
�0�1�×�0� t�

�Xj+1�s−� −Xj�s−��I�0� β̄−1β�Xk�s−����u�

×Kk�du× ds��

(4.35)

where β̄ is a constant satisfying 0 ≤ β ≤ β̄ and the Kk have mean measure
β̄m2.

5. Stationarity. Let �e�E∞� ⊂ � �E∞� be the collection of exchangeable
distributions.

Lemma 5.1. Under the conditions of Theorem 4.4, if F is a stationary dis-
tribution for A, then F ∈ �e�E∞�.

Proof. Under the conditions of Theorem 4.4, every solution of the mar-
tingale problem for A is a weak solution of (4.12). Consequently, the lemma
follows from part (c) of Theorem 4.1. ✷

Note that there is a one-to-one correspondence between F ∈ �e�E∞� and
F̃ ∈ � �� �E��, where we take F̃ to be the distribution of the de Finetti measure
corresponding to F. By the definition of F̃ and �, for every f ∈ B�Em� and
F�µ� = 
f�µm�,∫

E∞
AfdF =

∫
� �E�


Af�µm+2�F̃�dµ� =
∫
� �E�

�F�µ�F̃�dµ��
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Theorem 5.2. Suppose that F ∈ �e�E∞� and that F̃ ∈ � �� �E�� is the
distribution of the corresponding de Finetti measure. If for f ∈ B�Em� and
F�µ� = 
f�µm�,

0 =
∫
E∞
AfdF =

∫
� �E�


Af�µm+2�F̃�dµ� =
∫
� �E�

�F�µ�F̃�dµ�(5.1)

for A given by (4.10), then F is a stationary distribution for A and F̃ is a
stationary distribution for �.

Remark 5.3. Since any measure in � �� �E�� corresponds to an exchange-
able distribution in � �E∞�, it follows that there is a one-to-one correspon-
dence between exchangeable stationary distributions for A and stationary
distributions for the Fleming–Viot process generated by �. If A satisfies the
conditions of Theorem 4.4, then by Lemma 5.1, every stationary distribution
for A is exchangeable, so there is a one-to-one correspondence between sta-
tionary distributions for A and stationary distributions for �. In particular, if
FZ ∈ � �� �E�� is the stationary distribution for the Fleming–Viot process, Z,
then the corresponding stationary distribution FX ∈ � �E∞� for X is charac-
terized by∫

Em
f�x1� � � � � xm�FmX�dx1 × · · · × dxm� =

∫
� �E�


f�µm�FZ�dµ��

where FmX ∈ � �Em� is the marginal on Em of FX.

Proof of Theorem 5.2. Using the representation of A given in (4.26), the
theorem follows from Theorem 3.1 of Kurtz and Stockbridge (1996) for E lo-
cally compact and from Theorem 2.7 of Kurtz (1998a) for general complete,
separable E. (The usual form of Echeverria’s theorem need not apply since we
do not want to assume that σ is continuous. For example, in a simple model
of heterozygote advantage, σ�x�y� = σ0I�x �=y
 for some σ0 > 0.) ✷

Suppose that a stationary distribution FX exists. (We will discuss existence
in Section 9.) Then with Fλ as in Section 4.2, it follows from (4.29) that FX×Fλ
will be a stationary distribution for Aλ. [Theorem 2.7 of Kurtz (1998a) again
applies.] Let �X�λL� λU� λS� be a stationary solution with marginal distribu-
tion FX×Fλ. We can assume that the process is defined on the doubly infinite
time interval �−∞�∞�. If, as in (4.28), we define

Mj�C× �r� t�� = − 1
2

∫ t
r
λUC�j�s−�dλUC�j�s��

Kj�C× �r� t�� = − 1
2

∫ t
r
λSC�j�s−�dλSC�j�s�

and

Lij��r� t�� = − 1
2

∫ t
r
λLij�s−�dλLij�s��
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then X will satisfy

Xj�t� =Xj�r� +
∫
U×�r� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

∫
�r� t�

�Xi�s−� −Xj�s−��Lij�ds�

+ ∑
1≤i<k<j

∫
�r� t�

�Xj−1�s−� −Xj�s−��Lik�ds�

+
∫
S×�r� t�

�q�Xj�s−��Z�s−�� u� −Xj�s−��Kj�du× ds�

(5.2)

for −∞ < r < t <∞.

6. Incorporating genealogy. It is not clear how to define ρ�µ�u� so that
(4.7) satisfies the conditions of Theorem 4.1 and hence has a unique solution.
Even if it were, it would not be possible to recover the genealogy from the
solution of this equation, since, in particular, the ancestry of particles substi-
tuted by the selection term is not identifiable. We need to be able to generate
samples from the empirical measure Z in a way that satisfies the conditions
of Theorem 4.1 and that allows us to identify the ancestors of the individual
sampled. We accomplish this goal by introducing a family of “genetic markers”
which allow us to trace the ancestry of any observed particle.

6.1. The marker process. Each particle will be assigned a marker in the
space E0 = �0�1�∞. The mutation process for the markers (the marker process
to distinguish it from the original mutation process) will have generator

BMf�x� =
∞∑
k=1

∫ 1

0
�f�ηk�x � z�� − f�x��dz�(6.1)

that is, each component of the marker process evolves independently as a unit
rate jump process such that at each jump time, the new value is uniformly
distributed on �0�1� independently of the previous value. We define a neutral
particle process in E∞

0 with mutation operator BM as a solution of

ξj�t� = ξj�0� +
∑
l

∫
�0�1�×�0� t�

�u− ξjl�s−��elHjl�du× ds�

+
j−1∑
i=1

�ξi�s−� − ξj�s−��dLij�s�

+ ∑
1≤i<k<j

�ξj−1�s−� − ξj�s−��dLik�s��

(6.2)

where theHjl are independent Poisson random measures on �0�1�×�0�∞� with
Lebesgue mean measure and el is the element in E0 whose lth component is
1 and all other components are 0.
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The system of equations (4.7) for the particle model with selection and
recombination becomes

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

�Xj−1�s−� −Xj�s−��dLik�s�

+
∫
�0�1�3×�0� t�

�ρX�s−� u1� −Xj�s−��

× I�0� σ̄−1σ�ρX�s−� u1�� ρX�s−� u2����u3�
×Kj�du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

�r�Xj�s−�� ρX�s−� u1�� u2� −Xj�s−��

×Jj�du1 × du2 × ds��

(6.3)

where ρX�s−� u� will be defined to be a function of ξ�s−� and X�s−�. In par-
ticular, we must define ρX so that if V is uniformly distributed on �0�1�, then
the conditional distribution of ρX�s−�V� given � X

s is Z�s−� [= Z�s� since Z
is continuous].

To define ρX, we linearly order E0 lexicographically, that is, for y� ỹ ∈ E0,
y < ỹ if there exists k ≥ 1 such that yi = ỹi for i < k and yk < ỹk. With this
ordering, for 0 ≤ p < 1, we can define the pth percentile of �ξ1�t�� � � � � ξn�t��
to be the point ξkn�p� t��t� such that kn�p� t� ≤ n and

#�k ≤ n � ξk�t� ≤ ξkn�p� t�
 ≥ �np� + 1

and

#�k ≤ n � ξk�t� ≥ ξkn�p� t�
 ≥ n− �np��
Since infinitely many components of ξi change during any postive time in-
terval and the changes are independent on different levels, with probability
1, ξi�t� �= ξj�t� for i �= j, and hence kn�p� t� is uniquely determined and
�p � kn�p� t� = k
 is an interval of length n−1. Consequently, if V is uniformly
distributed on �0�1� and independent of the σ algebra σ�J�K�L�M�H�, then

P
{
kn�V� t� = k � σ�J�K�L�M�H�} = 1

n
� k = 1� � � � � n�

so that kn�V� t� is independent of σ�J�K�L�M�H�.

Lemma 6.1. Let V be independent of ξ and uniformly distributed on �0�1�.
Then ξ∞�V� t� ≡ limn→∞ ξkn�V� t��t� exists a.s. in the sense that, with probability
1, for each l there exists nl�V� t� such that n ≥ nl�V� t� implies

ξkn�V� t�� l = ξ∞� l�V� t��
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In addition, with Ntj given by (4.4),

Nt�V� s� ≡ lim
n→∞N

t
kn�V� t��s�(6.4)

exists a.s. for every s < t and determines a path back through the neutral
genealogy, “starting from infinity”;

ρX�V� t� ≡ lim
s→t−

XNt�V� s��s�(6.5)

exists a.s. and

lim
n→∞P�Xkn�V� t��t� = ρX�V� t�
 = 1�(6.6)

Remark 6.2. (a) By (6.4), Nt�V� ·� gives a randomly selected path start-
ing at infinity, back through the neutral genealogy to time zero. The distribu-
tion of Nt�V� ·� is uniform over all such paths in the sense that it is the limit
of random paths selected uniformly over the paths back from the first n levels
at time t�

(b) Since kn�V� t� is independent of � X
t and is uniformly distributed over

�1� � � � � n
, (6.6) justifies describing ρX�V� t� as a sample from the distribution
Z�t�. If V1 and V2 are independent and uniformly distributed over �0�1�,
then kn�V1� t� and kn�V2� t� are independent and uniformly distributed over
�1� � � � � n
. It then follows that

E�f�ρX�V1� t�� ρX�V2� t�� � � X
t � = lim

n→∞E�f�Xkn�V1� t��t��Xkn�V2� t��t�� � � X
t �

= lim
n→∞

1
n2

∑
1≤i� j≤n

f�Xi�t��Xj�t��

= 
f�Z�t�2��

that is, we can generate independent samples from Z�t� by using independent
uniform random variables.

(c) Let

q1�Xj�s−��X�s−�� ξ�s−�� u1� u2� u3�
=Xj�s−� + �ρX�s−� u1� −Xj�s−��I�0� σ̄−1σ�ρX�s−� u1�� ρX�s−� u2����u3�

and

q2�Xj�s−��X�s−�� ξ�s−�� u1� u2� = r�Xj�s−�� ρX�s−� u1�� u2��
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and set q = q1I�0�1�3 + q2I�0�1�. Using (6.6),∫
�0�1�3

I�q1�Xj�s−��X�s−�� ξ�s−�� u1� u2� u3�∈C
 du1 du2 du3

=
∫
�0�1�2

(
σ̄ − σ�ρX�s−� u1�� ρX�s−� u2��

σ̄
I�Xj�s−�∈C


+ σ�ρX�s−� u1�� ρX�s−� u2��
σ̄

I�ρX�s−� u1�∈C


)
du1 du2

=
∫
E2

( σ̄ − σ�x�y�
σ̄

I�Xj�s−�∈C
 +
σ�x�y�
σ̄

I�x∈C

)
Z�s−� dx�Z�s−� dy�

and ∫
�0�1�2

I�q2�Xj�s−��X�s−�� ξ�s−�� u1� u2�∈C
 du1 du2

=
∫
�0�1�2

I�r�Xj�s−�� ρX�s−� u1�� u2�∈C
 du1 du2

=
∫
E×�0�1�

I�r�Xj�s−�� x� u2�∈C
Z�s−� dx�du2

=
∫
E
R�Xj�s−�� x�C�Z�s−� dx��

so (4.13) holds, and any solution of (6.3) is a solution of the martingale problem
for (4.6).

Proof of Lemma 6.1. If we restrict the marker process to its first m com-
ponents, then the corresponding generator

m∑
i=1

∫ 1

0
�f�ηi�x � z�� − f�x��dz

is bounded and hence

Zmξ �t� = lim
n→∞

1
n

n∑
i=1

δ�ξi1�t�� ��� �ξim�t��

is purely atomic. [See Ethier and Kurtz (1993), Theorem 7.2 or Donnelly
and Kurtz (1996), Theorem 5.2.] Since ξ1� ξ2� � � � are conditionally iid given
Zξ�t�, it follows that with probability 1, for n sufficiently large, �ξkn�V� t��1� � � � �
ξkn�V� t��m� will fix on the location of one of the atoms of Zmξ �t�. Since m is
arbitrary, it follows that ξ�V� t� exists a.s.

For each l, the lth component of ξ�V� t�, ξl�V� t�, is the value of a mutation
that took place on some level kl�V� at some time sl�V� or was a value present
in the population at time zero. If ξkn�V� t�� l�t� = ξl�V� t� and sl�V� > 0, it follows

thatNtkn�V� t��sl� = kl�V� and thatNtkn�V� t��s� =N
sl�V�
kl�V��s� for all 0 ≤ s < sl�V�.

To prove (6.4), we need to show that

inf
l
�t− sl�V�� = 0 a�s�
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If we let snl �V� be the time of the mutation producing ξkn�V� t�� l�t�, the fact that
kn�V� t� is independent of L and H implies that t−sn1�V�� t−sn2�V�� � � � are iid
with distribution P�t− snk�V� > r
 = e−rI�0� t��r�. Since limn→∞ s

n
l �V� = sl�V�

a.s., it follows that t − s1�V�� t − s2�V�� � � � are independent with the same
distribution, and hence inf l�t− sl�V�� = 0 a.s. and (6.4) follows.

As in the proof of Theorem 4.1, define X̃Tv �s� = XNT�v� s��s�, 0 ≤ s < T,
which is well defined for almost every v. For each T > 0 and j = 1�2� � � �,
define

M̃T
v �C× �0� t�� =

∞∑
i=1

∫
C×�0� t�

I�NT�v� s�=i
Mi�du× ds�

and define K̃Tv , J̃Tv and �H̃Tvl
 similarly. As before, since theMi are independent
of the Lij and hence of NTv , M̃T

v will be a Poisson random measure on U ×
�0�T� with mean measure ν × m and, similarly, K̃Tv , J̃Tv and �H̃Tvl
 will be
Poisson random measures with the same distributions as Kj, Jj and �Hjl
,
respectively (but not independent). Let

τTv = sup
{
s<T � M̃T

v �U×�s�T��+ K̃Tv ��0�1�3×�s�T��+ J̃Tv ��0�1�2×�s�T�� > 0
}

and note that τTv < T a.s. and for τTv ≤ s < T, X̃Tv �s� = X̃Tv �τTv �, verifying the
existence of the limit in (6.5).

To verify (6.6), let γT�nv = sup�s < T �NT�v� s� =NTkn�v�T��s�
 and note that
limn→∞ γT�nv = T. Then

P�Xkn�V�T��T� �= ρX�V� t�
 ≤ P�γ
T�n
V < τTV


+P�Xkn�V�T��T� �=XNTkn�V�T��γT�nV ��γT�nV �


≤ P�γT�nV < τTV
 +E�1 − e−β�T−γT�nV ���

where β = ν�U� + σ̄ + α, and the limit follows. ✷

Theorem 6.3. For each initial condition X�0�, there exists a unique solu-
tion of (6.3).

Proof. We apply Theorem 4.1 with S = �0�1�3 × �0�1�2 and

q�xj� x� v� u� = I�0�1�3�u�I�0� σ̄−1σ�ρx�s� u1�� ρx�s� u2����u3�ρx�s� u1�
+I�0�1�2�u�r�xj� ρx�s� u1�� u2��

where u = �u1� u2� u3� if u ∈ �0�1�3 and u = �u1� u2� if u ∈ �0�1�2. Noting that

I�q�xj� x� v� u��=q�yj� y� v� u�
 ≤ I�xj �=yj
 + I�ρx�s� u1��=ρy�s� u1�
 + I�ρx�s� u2��=ρy�s� u2�
�
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we see that (4.14) holds with

D = 2�σ̄ + α��
Existence of a unique solution then follows from Theorem 4.1. ✷

Corollary 6.4. Let A be given by (3.10) with 0 ≤ σ ≤ σ̄ . Then for each
ν0 ∈ � �E∞�, there exists a unique solution of the martingale problem �A� ν0�.

6.2. The ancestral type processes. Suppose X is a solution of (6.3) with ρ
given by (6.5). For j = 1�2� � � � and v ∈ �0�1�, define X̃Tj �t� = XNTj �t��t� and

X̃Tv �t� =XNT�v� t��t� (which by Lemma 6.1 will be defined for almost every v).
We want to derive the stochastic equations satisfied by X̃Tj and X̃Tv . As in the
proof of Lemma 6.1, for each T > 0 and j = 1�2� � � �, define

M̃T
j �C× �0� t�� =

∞∑
i=1

∫
C×�0� t�

I�NTj �s�=i
Mi�du× ds�

and define K̃Tj , J̃Tj and �H̃Tjl
 similarly. Again by the independence of the

Mi and the Lij, M̃
T
j will be a Poisson random measure on U × �0�T� with

mean measure ν×m and, similarly, K̃Tj , J̃Tj and �H̃Tjl
 will be Poisson random
measures with the same distributions as Kj, Jj and �Hjl
, respectively. For
v ∈ �0�1�, define

M̃T
v �C× �0� t�� =

∞∑
i=1

∫
C×�0� t�

I�NT�v� s�=i
Mi�du× ds��

as well as K̃Tv , J̃Tv and �H̃Tvl
.
Note that

ρX�v� t� = X̃tv�t−��
so for 0 ≤ t ≤ T,

X̃Tj �t� =XNTj �0��0� +
∫
U×�0� t�

h
(
X̃Tj �s−�� u

)
M̃T
j �du× ds�

+
∫
�0�1�3×�0� t�

(
X̃su1

�s−� − X̃Tj �s−�
)

× I�0� σ̄−1σ�X̃su1
�s−�� X̃su2

�s−����u3�
× K̃Tj �du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

�r�X̃Tj �s−�� X̃su1
�s−�� u2� − X̃Tj �s−��

× J̃Tj �du1 × du2 × ds�

(6.7)
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and for 0 ≤ t < T,

X̃Tv �t� =XNT�v�0��0� +
∫
U×�0� t�

h
(
X̃Tv �s−�� u

)
M̃T
v �du× ds�

+
∫
�0�1�3×�0� t�

(
X̃su1

�s−� − X̃Tv �s−�
)

× I�0� σ̄−1σ�X̃su1
�s−�� X̃su2

�s−����u3�
× K̃Tv

(
du1 × du2 × du3 × ds

)
+
∫
�0�1�2×�0� t�

(
r�X̃Tv �s−�� X̃su1

�s−�� u2� − X̃Tv �s−�
)

× J̃Tv �du1 × du2 × ds��

(6.8)

Since

X̃Tv �T� ≡ lim
t→T−

X̃Tv �t� = ρX�v�T�(6.9)

exists, it follows that the equations are satisfied on the closed interval �0�T�.
If K̃Tv and J̃

T

v (or K̃Tj and J̃Tj ) are both zero on the interval �0�T�, then
X̃Tv is just a version of the mutation process on the time interval �0�T�; that
is, it is the unique solution of the stochastic differential equation driven by
M̃T
v . Otherwise, to determine X̃Tv , we must know the values of 2K̃Tj ��0�1�3 ×

�0�T��+ J̃Tj ��0�1�2 ×�0�T�� processes X̃su for values of �u� s� in the support of
the counting measure

ITv =
∫
�0�1�3×�0�T�

�δ�u1� s� + δ�u2� s��K̃Tv �du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0�T�

δ�u1� s�J̃
T
v �du1 × du2 × ds��

(6.10)

where δ�u� s� is the measure on �0�1� × �0�∞� that puts unit mass at the point
�u� s�. [For example, if �u1� u2� u3� s� is a point in K̃Tv , we must know X̃su1

�s−�
and X̃su2

�s−� in order to evaluate X̃Tv �s�.] To determine each X̃su, we must in
turn determine the solutions corresponding to points in the support of Isu, so
to determine X̃Tv we must determine X̃su for �u� s� in the support of

IT�2v = δ�v�T� +
∫
�0�1�×�0�T�

�δ�u� s� + Isu�ITv �du× ds��

Iterating this relationship, we must determine X̃su for all �u� s� in the support
of

IT�n+1
v = δ�v�T� +

∫
�0�1�×�0�T�

Is�nu I
T
v �du× ds��

Let �IT�nv � denote IT�nv ��0�1� × �0�T��. In general, IT�nv will have points of
multiplicity greater than 1; however, limn→∞ �IT�nv � will be an upper bound on
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the number of solutions X̃su needed to determine X̃Tv . Since the martingale
properties of ITv imply

E��IT�n+1
v �� = 1 +

∫ T
0

∫ 1

0
E��Is�nu ���2σ̄ + α�duds

and E��Is�nu �� does not depend on u and is increasing in n, we have

lim
n→∞E��I

T�n
v �� = e�2σ̄+α�T�

Consequently, limn→∞ �IT�nv � <∞ a.s. and the support of

ĨTv = lim
n→∞I

T�n
v(6.11)

is finite.
Let

HTv = supp�ĨTv �(6.12)

To determine X̃Tv , we only need to consider a finite system of equations for
�X̃su � �u� s� ∈HTv 
.

7. Finite-dimensional approximation. Fleming–Viot processes arise
naturally as limits of finite-population models. In this section, we show how
this convergence can be obtained using the stochastic equations developed
above. In particular, consider the finite-dimensional system 1 ≤ j ≤ n:

Xnj�t� =Xj�0� +
∫
U×�0� t�

h
(
Xnj�s−�� u

)
Mj�du× ds�

+
j−1∑
i=1

(
Xni �s−� −Xnj�s−�

)
dLij�s�

+ ∑
1≤i<k<j

(
Xnj−1�s−� −Xnj�s−�

)
dLik�s�

+
∫
�0�1�3×�0� t�

I�kn�u1� s��=kn�u2� s��=j


× (
Xnkn�u1� s��s−� −X

n
j�s−�

)
× I�0� σ̄−1σ�Xnkn�u1� s��s−��X

n
kn�u2� s��s−����u3�

×Kj�du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

(
r�Xnj�s−��Xnkn�u1� s��s−�� u2� −Xnj�s−�

)
×Jj�du1 × du2 × ds��

(7.1)
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Then Xn is a solution of the martingale problem for

Anf�x� =
n∑
i=1

Bif�x� +
∑

1≤i<j≤n
�f�θj�x � xi�� − f�x��

+ 1
n2

∑
1≤i�=j �=k≤n

σ�xi� xk��f�ηj�x � xi�� − f�x��

+α
n

∑
1≤i�=k≤n

( ∫
E
f�ηi�x � z��R�xi� xk� dz� − f�x�

)
(7.2)

[which is just (2.14) without the factor �n−2�/n multiplying the second term].
For the analogue of (6.7) and (6.8), let X̃T�nj �t� = Xn

NTj �t�
�t�, j = 1� � � � � n, and

X̃T�nv �t� =Xn
NTkn�v�T��t�

�t�. Then for 0 ≤ t ≤ T,

X̃
T�n
j �t� =XNTj �0��0� +

∫
U×�0� t�

h�X̃T�nj �s−�� u�M̃T
j �du× ds�

+
∫
�0�1�3×�0� t�

�X̃s�nu1
�s−� − X̃T�nj �s−��I�0� σ̄−1σ�X̃s�nu1 �s−�� X̃s� nu2 �s−����u3�

× K̃Tj �du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

�r�X̃T�nj �s−�� X̃s� nu1
�s−�� u2� − X̃T�nj �s−��

× J̃Tj �du1 × du2 × ds�

(7.3)

and for 0 ≤ t ≤ T,

X̃T�nv �t� =XNTkn�v�T��0��0� +
∫
U×�0� t�

h�X̃T�nv �s−�� u�M̃T
kn�v�T��du× ds�

+
∫
�0�1�3×�0� t�

�X̃s�nu1
�s−� − X̃T�nv �s−��I�0� σ̄−1σ�X̃s�nu1 �s−�� X̃s�nu2 �s−����u3�

× K̃Tkn�v�T��du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

�r�X̃T�nv �s−�� X̃s� nu1
�s−�� u2� − X̃T�nv �s−��

× J̃Tkn�v�T��du1 × du2 × ds��

(7.4)

Theorem 7.1. Suppose Xn satisfies (7.1).

(a) For each T > 0, there exists a set 
T ⊂ �0�T� with Lebesgue measure
m�
T� = 0 such that for v ∈ �0�T� −
T,

lim
n→∞P�X̃

T�n
v �t� = X̃Tv �t�� 1 ≤ t ≤ T
 = 1�(7.5)

and similarly, with v replaced by j.
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(b) For each T > 0 and j = 1�2� � � � ,

lim
n→∞P�X

n
j�t� =Xj�t�� 1 ≤ t ≤ T
 = 1�(7.6)

(c) If X�0� is exchangeable, then for each t > 0, X�t� is exchangeable, and
letting Z�t� be the de Finetti measure for X�t� and

Zn�t� = 1
n

n∑
i=1

δXni �t�

for t ≥ 0, m = 1�2� � � �, and each f ∈ B�Em�,
lim
n→∞E��
f�Z�t�

m� − 
f�Zn�t�m��� = 0�(7.7)

Proof. Let γT�n�v� = max�t ≤ T � Nkn�v�T��t� = NT�v� t�
. Recall that
Nkn�v�T��t� = NT�v� t� implies Nkn�v�T��s� = NT�v� s� for s ≤ t. Since γT�n�v�
→ T for almost every v, it follows that

P�M̃T
v �= M̃T

kn�v�T�
 ≤ P�M̃T
v �U× �γT�n�v��T�� > 0


+P�M̃T
kn�v�T��U× �γT�n�v��T�� > 0


= 2E�1 − e−ν�U��T−γT�n�v����
which converges to zero. Similar inequalities hold for K and J, and by the
finiteness of HTv defined in (6.12), (7.5) follows.

Since Xnkn�u� s��s−� = X̃s�nu �s−� by definition and for n large X̃s�nu �s−� =
X̃su�s−� with high probability, it follows that Xn satisfies (7.6) with X the
solution of

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

(
Xi�s−� −Xj�s−�

)
dLij�s�

+ ∑
1≤i<k<j

(
Xj−1�s−� −Xj�s−�

)
dLik�s�

+
∫
�0�1�3×�0� t�

�X̃su1
�s−� −Xj�s−��

× I�0� σ̄−1σ�X̃su1
�s−��X̃su2

�s−��� �u3�
×Kj�du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

(
r�Xj�s−�� X̃su1

�s−�� u2� −Xj�s−�
)

×Jj�du1 × du2 × ds��

(7.8)

However, X̃s�nu �t� = XnNskn�u� s��t�
�t� → XNsu�t��t� for almost every u. Conse-

quently, since X̃su�t� =XNsu�t��t�, by (6.5), X is a solution of (6.3).
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IfX�0� is exchangeable, then the exchangeability of ��M̃t
j� K̃

t
j� J̃

t
j�
 implies

the exchangeability of

��X̃tj� X̃t� nj �� j = 1� � � � � n
�
Consequently,

P�Xj�t� =Xnj�t�
 = P�X̃tj�t� = X̃t�nj �t�


does not depend on j, 1 ≤ j ≤ n, and setting Ẑn�t� = �1/n�∑nj=1 δXj�t�, (7.6)
implies

lim
n→∞E��
f� Ẑn�t�

m� − 
f�Zn�t�m��� = 0�

However, the exchangeability of X�t� implies

lim
n→∞E��
f� Ẑn�t�

m� − 
f�Z�t�m��� = 0

and (7.7) follows. ✷

The following corollaries can also be obtained as applications of Theorems
4.1 and 4.4.

Corollary 7.2. If X satisfies (6.3), then X is a solution of the martingale
problem for A given by (3.10).

Proof. The corollary follows from (7.6), (7.7) and the fact thatXn is a solu-
tion of the martingale problem for An. In particular, for f�x� = f�x1� � � � � xm�
for f ∈ B�Em�, the martingale

f�Xn�t�� −
∫ t

0
Anf�X�s��ds

converges in L1 to f�X�t�� − ∫ t
0 Af�X�s��ds. ✷

Corollary 7.3. If X�0� is exchangeable, then for each t > 0, X�t� is ex-
changeable and for m = 1�2� � � � ,

E�f�X1�t�� � � � �Xm�t�� � � Z
t � = 
f�Z�t�m��(7.9)

Proof. By Theorem 2.5,

E

[
f�Xn1�t�� � � � �Xnm�t��

k∏
j=1


hj�Zn�tj�mj�
]

= E
[

f�Zn�t��m��

k∏
j=1


hj�Zn�tj�mj�
]
�
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which, passing to the limit, becomes

E

[
f�X1�t�� � � � �Xm�t��

k∏
j=1


hj�Z�tj�mj�
]

= E
[

f�Z�t�m�

k∏
j=1


hj�Z�tj�mj�
]

and (7.9) follows. ✷

8. The genealogical tree. We now assume that the Jj, Kj,Mj and Hjl
and the Poisson processes Lij are defined for the doubly infinite time interval.
Assume that X is defined for t0 ≤ t <∞ or, as in Section 5, for −∞ < t <∞,
and that for each such t, X�t� is independent of

� t = σ{Jj�· × �r� s���Kj�· × �r� s���Lij�r� s��Mj�· × �r� s���
Hij�· × �r� s�� � t ≤ r < s� i� j}�

[By uniqueness, this independence will hold for all t ≥ t0 if X�t0� is indepen-
dent of � t0 .] Let τ be a random variable satisfying �τ ≥ t
 ∈ � t for all t. Note
that �� t
 can be thought of as a filtration with time running backward and
τ is then a �� t
-stopping time. Following the usual development of stopping
times, we define

� τ = �A ∈ � � A ∩ �τ ≥ t
 ∈ � t all t
�
Let �τ− = σ�X�τ − s� � s > 0�. The independent increments properties of Jj,
Kj, Lij, Mj and Hij imply the following lemma.

Lemma 8.1. Let τ, � τ and �τ− be as above. Then �τ− is independent of
� τ. In particular, X�τ−� is independent of � τ and, if X is stationary with
marginal distribution FX, the distribution of X�τ−� is FX.

Throughout this section, FX ∈ �e�E∞� will be a stationary distribution for
X, FZ ∈ � �� �E�� will be the corresponding stationary distribution for the
Fleming–Viot process and π ∈ � �E� will be the distribution of an individual
sampled from the stationary distribution, that is,

π�4� = P�Xi�t� ∈ 4
 =
∫
� �E�

µ�4�FZ�dµ��(8.1)

8.1. The ancestral influence graph. Let J̃Tv , K̃Tv � · · · be defined as before
and, as in Section 6.2, we now set

ITv =
∫
�0�1�3×�−∞�T�

�δ�u1� s� + δ�u2� s��K̃Tv �du1 × du2 × du3 × ds�

+
∫
�0�1�2×�−∞�T�

δ�u1� s�J̃
T
v �du1 × du2 × ds�

(8.2)
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and similarly define

ITj =
∫
�0�1�3×�−∞�T�

�δ�u1� s� + δ�u2� s��K̃Tj �du1 × du2 × du3 × ds�

+
∫
�0�1�2×�−∞�T�

δ�u1� s�J̃
T
j �du1 × du2 × ds��

Define IT�1v = δ�v�T� + ITv and

IT�n+1
v = δ�v�T� +

∫
�0�1�×�−∞�T�

Is�nu I
T
v �du× ds��

and let ĨTv = limn→∞ IT�nv . Note that the sequence of measures is increasing
and, as in Section 6.2, supn E�IT�nv ��0�1� × �t�T��� < ∞ for all −∞ < t < T,
so the limit exists. Let

ĨTj =
∫
�0�1�×�0�T�

ĨsuI
T
j �du× ds��

Then HTj = supp�ĨTj � (the support of the measure ĨTj ) gives the index set
for the collection of processes X̃su that can “influence” the value of Xj�T� =
X̃Tj �T�. For −∞ < t ≤ T, let

4Tj �t� =
{
Nsu�t� � �u� s� ∈HTj � s > t

} ∪ �NTj �t�
�
4Tj �t� is the set of levels such that Xk�t�, k ∈ 4Tj �t�, can influence the value of
Xj�T�. Reversing time, let QTj �t� = �4Tj �T− t��. Then

QTj �t� = 1 +
∞∑
i=1

(
2
∫ T
T−t
I4Tj �s��i�Ki��0�1�3 × ds�

+
∫ T
T−t
I4Tj �s��i�Ji��0�1�2 × ds�

)

− ∑
1≤i<k

∫ T
T−t
I4Tj �s��i�I4Tj �s��k�dLik�s��

It follows that QTj is a Markov chain adapted to the filtration ��T−t� t ≥ 0

with transition intensities qk�k+1 = αk, qk�k+2 = σ̄k and qk�k−1 = (

k
2

)
and

QTj �0� = 1. More generally, if we define 4̂Tm�t� = ∪mj=14
T
j �t� and Q̂Tm�t� =

�4̂Tm�T − t��, then Q̂Tm is a Markov chain with the same transition intensities
and Q̂Tm�0� =m. Using the fact that E��Q̂Tm�t��2� ≥ E�Q̂Tm�t��2, we have

E�Q̂Tm�t�� =m+
∫ t

0

(
�2σ̄ + α�E�Q̂Tm�s�� − 1

2E�Q̂Tm�s��Q̂Tm�s� − 1��
)
ds

≤ m+
∫ t

0

(
�2σ̄ + α+ 1

2�E�Q̂Tm�s�� − 1
2E�Q̂Tm�s��2

)
ds�
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It follows that limm→∞E�Q̂Tm�t�� <∞ for all t > 0. Consequently, for t < T,

4̂T�t� =
∞⋃
j=1

4Tj �t�(8.3)

is a finite set with probability 1 and, hence, ∞ is an entrance boundary for
the Markov chain Q̂T∞�t� = �4̂T�T− t��. Since the Markov chain is irreducible
and positive recurrent,

τTUA = sup
{
t < T � �4̂T�t�� = 1

}
> −∞�(8.4)

Following Krone and Neuhauser (1997), we will refer to τTUA as the time of the
ultimate ancestor of the population at time T and refer to the graph deter-
mined by ��t� j� � j ∈ 4̂T�t�� τTUA ≤ t ≤ T
 as the ancestral influence graph.
Let kTUA be the unique level in 4̂T�τTUA−� and observe that �τTUA ≥ t
 ∈ � t and
kTUA is � τ

T
UA -measurable.

τTUA is not necessarily the time of the most recent common ancestor, since
4̂T�t� may include levels of particles that do not have descendants at time T.
For example, particles that play a role at a σ̄-branch point may not leave a
descendant. It is the case, however, that if we specify the type of XkTUA�τTUA�,
then X�T� is uniquely determined. The following result is a consequence of
Lemma 8.1.

Theorem 8.2. Suppose X is stationary with marginal distribution FX ∈
�e�E∞�. Then XkTUA�τTUA� =XkTUA�τTUA−� has distribution π given by (8.1).

8.2. Core of the ancestral influence graph. Let 4̂T be given by (8.3). Note
that for t < T1 < T2, 4̂T1�t� ⊃ 4̂T2�t�, and define

4̂�t� = ⋂
T>t

4̂T�t� = lim
T→∞

4̂T�t��

where the limit will exist in the sense that there exists T0 > t such that
4̂T�t� = 4̂T0�t� for all T > T0. Note that 4̂�t� is the subset of levels that are
in the ancestral influence graph for every T > t. Consequently, we will call
4̂ the core of the ancestral influence graph. It is clear that run backward in
time, 4̂ is a stationary, Markov process whose state space is the collection of
finite subsets of integers. In particular, Q�t� = �4̂�−t�� is a stationary version
of the Markov chain with transition intensities qk�k+1 = αk, qk�k+2 = σ̄k and
qk�k−1 = (

k
2

)
. Run forward in time, 4̂ will, of course, also be a Markov process,

and Q∗�t� = �4̂�t�� will be the stationary time reversal of Q. In particular, if
πQ is the stationary distribution forQ (and, hence, also forQ∗), the transition



1136 P. DONNELLY AND T. G. KURTZ

intensities for Q∗ are given by

q∗k� k−1 = π
Q
k−1

π
Q
k

α�k− 1��

q∗k� k−2 = π
Q
k−2

π
Q
k

σ̄�k− 2��

q∗k� k+1 = π
Q
k+1

π
Q
k

(
k+ 1

2

)
�

Now assume thatX is stationary on −∞ < t <∞. By part (c) of Theorem 4.1,
X�t� is exchangeable and, more generally, for each T, �X̃Tj 
 is exchangeable.

Exchangeability implies that Ẑ�t� = ∑
k∈4̂�t� δXk�t� is a Markov process whose

state space is the space �f�E� of finite, integer-valued measures on E. For
functions of the form

F

( m∑
i=1

δxi

)
=

m∏
i=1

f�xi��

!f! < 1, the generator for Ẑ is

�F

( m∑
i=1

δxi

)

=
m∏
i=1

f�xi�
(
m∑
j=1

Bf�xj�
f�xj�

+ q
∗
m�m+1

m

m∑
j=1

�f�xj� − 1� + q∗m�m−2

m�m− 1��m− 2�

× ∑
1≤i1 �=i2 �=i3≤m

[
σ�xi1� xi3�

σ̄

(
1

f�xi2�f�xi3�
− 1

)

+
(

1 − σ�xi1� xi3�
σ̄

)(
1

f�xi1�f�xi3�
− 1

)]

+ q∗m�m−1

m�m− 1�
∑

1≤i1 �=i2≤m

[∫
f�z�R�xi1� xi2� dz�
f�xi1�f�xi2�

− 1
])

=
m∏
i=1

f�xi�
(
m∑
j=1

Bf�xj�
f�xj�

+ q
∗
m�m+1

m

m∑
j=1

�f�xj� − 1� + q∗m�m−2

m�m− 1�

× ∑
1≤i2 �=i3≤m

[
1 + 1

m− 2

∑
i1 �=i2� i3

σ�xi1� xi3� − σ�xi2� xi3�
σ̄

]



GENEALOGIES FOR FLEMING–VIOT MODELS 1137

×
(

1
f�xi2�f�xi3�

− 1
)

+ q∗m�m−1

m�m− 1�
∑

1≤i1 �=i2≤m

[∫
f�z�R�xi1� xi2� dz�
f�xi1�f�xi2�

− 1
])
�

where the second equality follows by relabelling.
Let σ1�x�y� and σ2�x�y� satisfy ε ≤ σi�x�y� ≤ σ̄−ε, for some ε > 0, and let

E1 and E2 be core processes corresponding to σ1 and σ2 with the same initial
distribution. Then the distributions P1 and P2 of E1 and E2 restricted to a
bounded time interval �0�T� are mutually absolutely continuous. To describe
the Radon–Nikodym derivative, let 0 < τ1 < τ2 < · · · be the times at which Q∗

jumps by −2 and let i1�τi� and i2�τi� be the indices of the particles that are
eliminated. Then

dP1

dP2

∣∣∣∣
�T

= ∏
0<τi≤T

{
1 + 1

Q∗�τi−� − 2

∑
j �=i1�τi�� i2�τi�

1
σ̄

(
σ1�Xj�τi−��Xi1�τi��τi−��

− σ1�Xi2�τi��τi−��Xi1�τi��τi�−��
)}

×
{

1 + 1
Q∗�τi−� − 2

∑
j �=i1�τi�� i2�τi�

1
σ̄

(
σ2�Xj�τi−��Xi1�τi��τi−��

− σ2
(
Xi2�τi��τi−��Xi1�τi��τi−�

))}−1

�

If σ2 is a constant, σ2�x�y� ≡ σ0, then even though the system has “extra
births,” the model is neutral. [In particular, the third term on the right-hand
side of (3.11) vanishes.] Assuming that there is no recombination (that is,
α = 0), then the type process along the ancestral line of any individual in
the core process E2 at time T is just the mutation process. It follows that
the distribution of the type process along the ancestral line of an individual
in the core process E1 at time T is absolutely continuous with respect to the
distribution of the mutation process.

8.3. Level of true ancestor. Fix T and j. We would like to identify the level
N̂Tj �t� of the true ancestor at time t < T of Xj�T�. Of course, in the presence

of recombination, the definition of N̂Tj is ambiguous. For simplicity, in tracing

N̂Tj backward in time, we will not change N̂Tj at recombination times. If R is
symmetric in the sense that R�x1� x2� dz� = R�x2� x1� dz�, this convention is
equivalent to selecting the “true” ancestor randomly from the two individuals
contributing to a recombination.
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Then the desired level will satisfy

N̂Tj �t� =NTj �t�

+
∫
�0�1�3×�t�T�

�Ns�u1� t� −NsN̂Tj �s��t��I�0� σ̄−1σ�ρX�s−� u1�� ρX�s−� u2���u3�

× K̂j�du1 × du2 × du3 × ds��

where K̂Tj satisfies

K̂Tj �C× �t�T�� =
∞∑
i=1

∫
C×�t�T�

I�N̂Tj �s�=i
Ki�du1 × du2 × du3 × ds��

Note that the above equation essentially takes NTj �t� as a “first guess” and
then corrects this guess at each σ̄-branch point.

8.4. Effect of selection on genealogy. We define the agreement of ξi�t� and
ξj�s� by

a�ξi�t�� ξj�s�� = lim
m→∞

1
m

m∑
l=1

I�ξil�t�=ξjl�s�
�

Note that if ξil�t� = ξjl�s�, then either the mutation that produced this value
is in the ancestral line of both the ith level at time t and the jth level at time
s or this marker component was in the population at time zero. Let

τ�i� t� j� s� = 0 ∨ sup�u �Nti�u� =Nsj�u�
�

Then, by the law of large numbers,

a�ξi�t�� ξj�s�� = e−�t+s−2τ�i� t� j� s��a�ξNti�0��0�� ξNsj�0��0���(8.5)

In particular, it follows that ξ1�t�� � � � � ξn�t� contains complete information
about the neutral genealogy of the first n levels at time t. Similarly, if we
define

τ�V� t� j� s� = 0 ∨ sup�u �Nt�V�u� =Nsj�u�
�

then

a�ξ�V� t�� ξj�s�� = e−�t+s−2τ�V� t� j� s��a�ξNtV�0��0�� ξNsj�0��0���

We can introduce a similar structure into the model with selection and re-
combination by couplingX satisfying (6.3) with an E∞

0 -valued marker process
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Y giving a system for ��X1�Y1�� �X2�Y2�� � � ��:

Xj�t� =Xj�0� +
∫
U×�0� t�

h�Xj�s−�� u�Mj�du× ds�

+
j−1∑
i=1

�Xi�s−� −Xj�s−��dLij�s�

+ ∑
1≤i<k<j

�Xj−1�s−� −Xj�s−��dLik�s�

+
∫
�0�1�3×�0� t�

�ρX�s−� u1� −Xj�s−��

× I�0� σ̄−1σ�ρX�s−� u1�� ρX�s−� u2����u3�
×Kj�du1 × du2 × du3 × ds�

+
∫
�0�1�2×�0� t�

�r�Xj�s−�� ρX�s−� u1�� u2�

−Xj�s−��Jj�du1 × du2 × ds��

(8.6)

where ρX�s−� u� = limr→s−XNs�u� r��r�, and

Yj�t� = Yj�0� +
∑
l

∫
�0�1�×�0� t�

�u−Yjl�s−��elHjl�du× ds�

+
j−1∑
i=1

�Yi�s−� −Yj�s−��dLij�s�

+ ∑
1≤i<k<j

�Yj−1�s−� −Yj�s−��dLik�s�

+
∫
�0�1�3×�0� t�

�ρY�s−� u1� −Yj�s−��I�0� σ̄−1σ�ρX�s−� u1�� ρX�s−� u2����u3�

×Kj�du1 × du2 × du3 × ds��

(8.7)

where ρY�s−� u� = limr→s−YNs�u� r��r�. Existence and uniqueness for this sys-
tem is a consequence of the previous result. As in the case for ξ, if we define

τ̂�i� t� j� s� = 0 ∨ sup�u � N̂ti�u� = N̂sj�u�
�
then, as in (8.5),

a�Yi�t��Yj�s�� = e−�t+s−2τ̂�i� t� j� s��a�YN̂ti�0��0��YN̂sj�0��0���
Note that at time t, ζ�i� j� t� = t − τ̂�i� t� j� t� is the time since the most
recent common ancestor of the individuals at the ith and jth levels and that
�ζ�i� j� t�, 1 ≤ i < j
 determines the structure of the genealogical tree for the
population at time t. It is also clear that conditioned on �ζ�i� j� t�, 1 ≤ i < j
,
Y�t� is independent of X�t�.

The question of whether or not selection has an impact on the distribution
of the genealogical tree has been a recent issue. (See the discussion in the
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Introduction.) Suppose f is a function only of the marker process, say f�y� =
f�y1� � � � � ym�. Then, taking α = 0 for simplicity and assuming �X�0��Y�0��
is exchangeable,

E�f�Y�t��� = E�f�Y�0���

+E
[∫ t

0

(
m∑
i=1

BMi f�Y�s��

+ ∑
1≤i<j≤m

�f�θj�Y�s� � Yi�s��� − f�Y�s��
)
ds

]

+
∫ t

0
E

[
m∑
i=1

(
σ�Xi�s��Xm+1�s��

− σ�Xm+2�s��Xm+1�s���f�Y1�s�� � � � �Ym�s��
]
ds�

(8.8)

where the selection term has been manipulated using exchangeability and the
fact that

E�f��X1�t��Y1�t��� � � � � �Xm�t��Ym�t���� = E�
f� Ẑ�t�m���
Here Ẑ�t� denotes the de Finetti measure for �X�t��Y�t��.

If selection has no effect on the genealogy or, specifically, if the presence of
selection does not affect the one-dimensional distributions of Y, then the left-
hand side of (8.8) equals the first two terms on the right and, differentiating
by t,

E

[
m∑
i=1

�σ�Xi�t��Xm+1�t�� − σ�Xm+2�t��Xm+1�t���f�Y1�t�� � � � �Ym�t��
]
= 0�

Since, by exchangeability, each of the summands has the same distribution,
we have

E
[�σ�X1�t��Xm+1�t��−σ�Xm+2�t��Xm+1�t���f�Y1�t�� � � � �Ym�t��

]=0�(8.9)

The identity (8.9) is equivalent to the following: Given a sample of size m +
2 from the population, let �mt be the σ algebra corresponding to complete
information about the genealogy of the firstm individuals in the sample. Then

E
[
σ�X1�t��Xm+1�t�� � �mt

] = E[σ�Xm+2�t��Xm+1�t�� � �mt
]
�(8.10)

If we assume �X�Y� is stationary, then (8.9) and (8.10) hold under the less
encompassing assumption that the stationary distribution of the genealogy in
a model with selection is the same as the neutral genealogy (i.e., the tree given
by Kingman’s coalescent).

At least in extreme examples, it is easy to check that (8.10) is not valid.
Suppose, for example, that there is no mutation, P�Xi�0� =Xj�0�
 = 0 for all
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i �= j and σ�x� x′� = I�x=x′
. Then σ�Xi�t��Xj�t�� = I�ζ�i� j� t�≤t
, and taking
m = 2 and G = �ζ�1�2� t� > t
 ∈ � 2

t , (8.10) implies

P
{
ζ�1�3� t� ≤ t � ζ�1�2� t� > t} = P{ζ�3�4� t� ≤ t � ζ�1�2� t� > t}�(8.11)

However, assuming the genealogy with selection is the same as the genealogy
without, the conditional probabilities in (8.11) can be calculated using prop-
erties of the �Lij
. Let τij = inf�s � Lij�t− s� < Lij�t�
. Then, since the τij are
independent exponentially distributed random variables,

p13�t� ≡ P�ζ�1�3� t� ≤ t � ζ�1�2� t� > t

= P�τ13 ≤ t� τ13 < τ23 � τ12 > t

= 1

2�1 − e−2t�
and setting τ = min�τ13� τ23� τ14� τ24� τ34
,

P�ζ�3�4� t� ≤ t � ζ�1�2� t� > t


=
∫ t

0
P�Nt3�0� =Nt4�0� � τ = s� τ12 > t
5e−5sds

=
∫ t

0

(
P�τ = τ34 � τ = s� τ12 > t


+P�Nt3�0� =Nt4�0�� τ �= τ34 � τ = s� τ12 > t

)
5−5s ds

=
∫ t

0

( 1
5 + 4

5p13�t− s�
)
5e−5sds

= 3
5 − 2

3e
−2t + 1

15e
−5t�

A comparison of the results of these two calculations demonstrates that (8.11)
fails.

8.5. Type distribution at a branch point. The following example demon-
strates that Lemma 8.1 does not, in general, hold with X�τ−� replaced by
X�τ�.

Proposition 8.3. LetX be stationary and satisfy the conditions of Lemma
8.1, and let FZ be the stationary distribution of the corresponding Fleming–
Viot process. Fix t and j, and let τ = sup�s < t � Kj��0�1�3 × �s� t�� > 0
.
Then

E�f�Xj�τ���

= E
[
f�X1�0��

(
1 − σ�X2�0��X3�0��

σ̄

)
+ f�X2�0��

σ�X2�0��X3�0��
σ̄

]

=
∫
� �E�

∫
E3

(
f�x1�

(
1 − σ�x2� x3�

σ̄

)
+f�x2�

σ�x2� x3�
σ̄

)

×µ�dx1�µ�dx2�µ�dx3�FZ�dµ�

(8.12)
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and

E

[∫
E
σ�Xj�τ�� z�Z�τ� dz�

]

= E
[
σ�X1�0��X4�0��

(
1 − σ�X2�0��X3�0��

σ̄

)

+ σ�X2�0��X4�0��
σ�X2�0��X3�0��

σ̄

]

=
∫
� �E�

∫
E3

(
σ�x1� x4�

(
1 − σ�x2� x3�

σ̄

)
+ σ�x2� x4�

σ�x2� x3�
σ̄

)

×µ�dx1�µ�dx2�µ�dx3�µ�dx4�FZ�dµ�

=
∫
� �E�


σ�µ2�FZ�dµ�

+ 1
σ̄

∫
� �E�

(∫
E

σ�x2� ·�� µ�2µ�dx2� − 
σ�µ2�

)
FZ�dµ�

≥
∫
� �E�


σ�µ2�FZ�dµ� = E
[
σ�X1�0��X2�0��

]

= E
[∫
E
σ�Xk�τ�� z�Z�τ� dz�

]

(8.13)

for k �= j.
In the case of genic selection,

E�σ�Xj�τ��� =
∫
E
σ dπ +

∫
� �E�

(
σ2� µ� − 
σ�µ�2)FZ�dµ��
Remark 8.4. The inequality in (8.13) makes explicit the intuitive idea that

the particle produced at a σ̄-branch point should be “more fit” than a particle
selected randomly from the population at that time.

Proof of Proposition 8.3. By Lemma 8.1, X�τ−� has distribution FX.
Note that for k �= j, Xk�τ� = Xk�τ−� a.s. If �u1� u2� u3� τ� is the point in Kj
at time τ, then

f�Xj�τ�� = f�Xj�τ−��I�σ̄−1σ�V�W��1��u3� + f�V�I�0� σ̄−1σ�V�W���u3��
where V = X̃τu1

�τ−� and W = X̃τu2
�τ−�. Consequently, (8.12) follows from the

fact that Xj�τ−��V�W is a sample of size 3 from Z�τ−� = Z�τ�, and the
distribution of Z�τ−� is FZ. ✷

9. Ergodicity. Let ν1� ν2 ∈ � �S� and let fi be the Radon–Nikodym deriv-
ative of νi with respect to ν1 + ν2. The the total variation distance !ν1 − ν2! is
given by ∫

S
�f1�s� − f2�s���ν1�ds� + ν2�ds���
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Define the overlap by

O�ν1� ν2� =
∫
S
f1�s� ∧ f2�s��ν1�ds� + ν2�ds���

Let ν0� µ1� µ2 ∈ � �S� be given by

ν0�C� =
1

O�ν1� ν2�
∫
C
f1�s� ∧ f2�s��ν1�ds� + ν2�ds��

and

µi�C� =
1

1 −O�ν1� ν2�
∫
C
�fi�s� − f1�s� ∧ f2�s���ν1�ds� + ν2�ds���

Then µ1 and µ2 are mutually singular and

νi = O�ν1� ν2�ν0 + �1 −O�ν1� ν2��µi�(9.1)

It follows that

!ν1 − ν2! = 2 − 2O�ν1� ν2�

and

O�ν1� ν2� = inf
G∈��S�

�ν1�G� + ν2�Gc���(9.2)

The infimum is achieved by G satisfying µ1�G� = 0 and µ2�Gc� = 0.
Let C be the generator of a Markov process with state space S and for ν ∈

� �S�, letPν�t� denote the one-dimensional distributions for the corresponding
process with initial distribution ν. We will say that C is strongly connected if
and only if for each ν1� ν2 ∈ � �S�, there exists a t > 0 such that Pν1�t� and
Pν2�t� are not mutually singular, that is, O�Pν1�t��Pν2�t�� > 0. Note that the
overlap will be a nondecreasing function of t.

A Markov process is uniformly ergodic if

lim
t→∞

sup
ν1� ν2∈� �S�

!Pν1�t� −Pν2�t�! = 0�(9.3)

Note that a uniformly ergodic Markov process has a unique stationary distri-
bution since, for t sufficiently large, the mapping ν → Pν�t� will be a (strict)
contraction. [See Meyn and Tweedie (1993), Chapter III, for further discus-
sion.]

Lemma 9.1. The Markov process with generator C is uniformly ergodic if
and only if there exists t > 0 such that

δ�t� = inf
ν1� ν2∈� �S�

O�Pν1�t��Pν2�t�� > 0�
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Proof. Suppose δ�t� > 0. Then by (9.1),

!Pν1�t� −Pν2�t�! = �1 −O�ν1� ν2��!Pµ1
�t� −Pµ2

�t�!
≤ �1 −O�ν1� ν2��2�1 − δ�t��
= �1 − δ�t��!ν1 − ν2!

and the lemma follows. ✷

9.1. Uniqueness of stationary distribution. Assume that the demography
is defined for all −∞ < t <∞. As in (8.4), let

τTUA = sup
{
t < T � �4̂T�t�� = 1

}
and also define

γTUA = sup
{
t < τTUA � �4̂T�t�� > 1

}
�

Note that τTUA − γTUA is exponentially distributed with parameter α + σ̄ and
that

P

{
τTUA >

T

2
� γTUA < 0

}
> 0�

Theorem 9.2. If the mutation process is strongly connected, then the par-
ticle process is strongly connected.

Proof. Let Pν�t� denote the one-dimensional distributions for the mu-
tation process with initial distribution ν ∈ � �E� and let P̂ν̂�t� be the one-
dimensional distributions of the particle process with ν̂ ∈ � �E∞�.

For γTUA ∨ 0 ≤ s < τTUA ∨ 0, let κ�s� denote the unique level in 4̂T�s�. Let
t0 = γTUA ∨ 0. Conditioned on Xκ�t0�, Xκ�s��s� is a version of the mutation
process independent of the demography. Let ν̂1� ν̂2 ∈ � �E∞� and let νi ∈ � �E�
be given by


f� νi� = E
[∫
f�xκ�0��ν̂i�dx� � τTUA >

T

2
� γTUA < 0

]
�

Then

O�P̂ν̂1�T�� P̂ν̂2�T�� ≥ P
{
τTUA >

T

2
� γTUA < 0

}
O

(
Pν1

(
T

2

)
�Pν2

(
T

2

))
�(9.4)

Since the probability on the right is positive for every T > 0, the theorem
follows. ✷

The following corollary is essentially Theorem 5.3 of Ethier and Kurtz
(1999).

Corollary 9.3. If the mutation process B is strongly connected, then there
is at most one stationary distibution for A and hence for �.
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Proof. If there were more than one stationary distribution for A, then
there would be two mutally singular stationary distributions. However, strong
connectedness for B implies strong connectedness forA, and hence one cannot
have two mutually singular stationary distributions for A. ✷

9.2. Existence of stationary distributions. Recall that uniform ergodicity
implies both existence and uniqueness of a stationary distribution.

Theorem 9.4. If the mutation process is uniformly ergodic, then the parti-
cle process is uniformly ergodic.

Remark 9.5. At least with the general form of recombination considered
here, the particle process may be uniformly ergodic without the mutation pro-
cess being uniformly ergodic. If α = 0, then the mutual absolute continuity
of the distribution of the Fleming–Viot processes with and without selection
implies that for f ≥ 0,

E�f�X1�t��� ≤ C�t�
Pν�t�� f��
where ν is the distribution of X1�0� and C�t� is a bound on the Radon–
Nikodym derivative. [See Ethier and Kurtz (1993), Theorem 3.3.] Conse-
quently, by (9.2)

inf
ν̂1�ν̂2∈� �E∞�

O�P̂ν̂1�t�� P̂ν̂2�t�� ≤ C�t� inf
ν1�ν2∈� �E�

O�Pν1�t��Pν2�t���

Proof of Theorem 9.4. The result follows from Lemma 9.1 and (9.4). ✷

Corollary 9.6. If the mutation process is uniformly ergodic, then there
exist unique stationary distributions for A and �.

9.3. Mutual absolute continuity of selective and neutral stationary distribu-
tions.

Theorem 9.7. Suppose that α = 0 and that the mutation process is strongly
connected. If there exists a (necessarily unique) stationary distribution F for �
and a stationary distribution F0 for the neutral �σ = 0� Fleming–Viot process,
then F and F0 are mutually absolutely continuous.

Remark 9.8. For the general form of recombination being considered here,
adding a recombination term to a model that has a stationary distribution
may give a model that does not have a stationary distribution. Even if the
new model has a stationary distribution, it need not be absolutely continuous
with respect to the original stationary distribution. On the other hand, if the
original model does not have a stationary distribution, adding a recombina-
tion term may produce a model with a stationary distribution. The observation
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made in (2.16) and (2.17) of Ethier and Kurtz (1999) gives a method of con-
structing examples of all these situations.

Proof of Theorem 9.7. Let Z denote the Fleming–Viot process with gen-
erator � and letZ0 be the corresponding neutral Fleming–Viot process. IfZ�0�
and Z0�0� have the same distribution, then for each t > 0, the distributions
of Z and Z0 on D� �E��0� t� are mutually absolutely continuous. [See Ethier
and Kurtz (1993), Theorem 3.3.] The strong connectedness of the mutation
process implies the strong connectedness of the Fleming–Viot processes, and
the theorem follows by Theorem A.1. ✷

9.4. Simulation of the stationary distribution. Krone and Neuhauser
(1997) pointed out that the construction of the ancestral selection graph (or,
similarly, the ancestral influence graph) provides a method of simulating a
sample of a given size from the stationary distribution of the Fleming–Viot
process. In particular, to simulate a sample of sizem, first simulate 4̂Tm�t� from
t = T back to

t = τT�mUA = sup�t < T � �4̂Tm�t�� = 1
�
Then specifying a value for XkT�mUA �τT�mUA �, the mutation process can be simu-

lated forward in time along the paths through the graph determined by 4̂Tm.
It is only necessary to simulate a graph that is equivalent to 4̂Tm in the sense
that it has the same branch points and coalescences among edges. It is not
necessary to simulate level changes that do not involve branching or coales-
cence. Note that this simulation of 4̂Tm requires only simulating exponentially
distributed random variables and uniform draws from finite sets.

To be correct, the specified value of XkT�mUA �τT�mUA � should have distribution
π, which, unfortunately, will in general be unknown. One approach to this
problem is to simulate 4̂Tm back to time τT�mUA − t0 for some large t0, and then
to simulate the type processes forward in time starting from the levels in
4̂Tm�τT�mUA − t0�.

The description of the core of the ancestral influence graph in Section 8.2
suggests another approach. Simulate the core �X1�t�� � � � �XQ∗�t��t�� forward
in time for a long period �0� t0�. Starting with m levels, simulate the ancestral
influence graph backward in time until a fixed number of levels k is reached
(or back to a fixed time and a random number of levels N). Let τ = sup�s <
t0 � Q∗�s� = k
 or sup �s < t0 � Q∗�s� = N
. Initialize the genealogy with
the types �X1�τ�� � � � �XQ∗�τ��τ�� and simulate the types forward through the
genealogy.

APPENDIX

A.1. Absolute continuity of stationary distributions. For i = 0�1, let
Ai be the generator of a Markov process with state space E, and for ν ∈ � �E�,
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let Piν�t� 4� denote the one-dimensional distributions of the process with initial
distribution ν. Call Ai strongly connected if for each ν� µ ∈ � �E� there exists
t > 0 such that Piν�t� ·� and Piµ�t� ·� are not mutually singular.

Theorem A.1. Let A0 and A1 be generators of Markov processes with state
space E such that for each ν ∈ � �E� and each t > 0�P0

ν�t� ·� and P1
ν�t� ·� are

mutually absolutely continuous. Suppose A1 is strongly connected. Then A0 is
strongly connected and if π0 and π1 are stationary distributions for A0 and
A1 respectively, then π0 and π1 are mutually absolutely continuous.

Proof. Let fν�t� x� satisfy P0
ν�t� dx� = fν�t� x�P1

ν�t� dx�. For ν� µ ∈ � �E�,
the strong connectedness of A1 implies that there exists a t > 0� ε > 0 and
γ ∈ � �E� such that

P1
ν�t� 4� ∧P1

µ�t� 4� ≥ εγ�4�� 4 ∈ ��E��

It follows that

P0
ν�t� 4� ∧P0

µ�t� 4� ≥ ε
∫
4
fν�t� x� ∧ fµ�t� x�γ�dx�� 4 ∈ ��E��

which, by the strict positivity of fν and fµ implies strong connectedness
for A1.

Suppose C ∈ ��E� satisfies π0�C� = 0. Then, since fπ0
is strictly positive,

it follows that P1
π0
�t�C� = 0 for all t > 0. There exists a t > 0, ε > 0 and

γ ∈ � �E� such that

P1
π0
�T�4� ∧P1

π1
�T�4� = P1

π0
�T�4� ∧ π1�4� ≥ εγ�4��(A.1)

Since (A.1) implies γ % π1, there exists h ≥ 0 such that εγ�4� = ∫
4 h�x�π1�dx�,

and the Markov property in turn implies

0 = E1
π0

[∫ T+K
T

IC�X�t��dt
]

≥ E1
π1

[
h�X�0��

∫ K
0
IC�X�t��dt

]
�

Strong connectedness implies uniqueness of stationary distributions, which in
turn implies ergodicity of the corresponding stationary process. Dividing the
right-hand side of the above inequality by K and letting K→ ∞, we obtain

0 = E1
π1
�h�X�0���π1�C� = επ1�C�

and, hence, obtain π1 % π0. Since we have verified strong connectedness for
A0, we can interchange the roles of A0 and A1 and show that π0 % π1.
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