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des Télécommunications

We develop the filtering theory in the case where both the signal and
the observation are solutions of some stochastic differential equation driven
by a multidimensional fractional Brownian motion. We show that the clas-
sical approach fails to give a closed equation for the filter and we develop
another approach using an auxiliary process-valued semimartingale which
solves this problem theoretically.

1. Introduction. We pursue the study, initiated in Coutin and Decreuse-
fond (1997), Decreusefond and Üstünel (1998), of the fractional Brownian mo-
tion, in particular of the stochastic differential equations driven by such a pro-
cess. We here address the following filtering problem [see Kleptsyna, Kloeden
and Anh (1996a, b) for a related problem]. Assume that on some probability
space ���� �Ph

H̄
�� X� a signal, and Y� an observation of X� are given as the

solutions of the system (the notations will be precised below)

Xl
t = xl0 +

M∑
i=1

∫ t
0
KHi

�t� s�bl� i�Xs�ds+
∫ t

0
KHi

�t� s�al� i�Xs�dBi
s�

Yk
t =
∫ t

0
KH�t� s�hk�Xs�ds+

d∑
j=M+1

∫ t
0
KH�t� s�τk�j�Ys�dBj

s �

we aim to compute πt�f� =def Eh�f�Xt��Ys� s ≤ t	 for any sufficiently regu-
lar f�

The usual strategy, extensively developed for X and Y semimartingales,
that is, Hi = 1/2, i = 1� � � � � d [see, e.g., Pardoux (1989), Zakai (1969)], con-
sists of constructing a new probability measure, later denoted by PH̄� called
the reference probability measure, a PH̄ Brownian motion carrying the same
filtration as the observation process and such that, under PH̄� it is independent
of the signal process. The second step is to show that the optional projection
under Ph

H̄
can be transformed to a PH̄ conditional expectation to obtain an

equation for πt�f�� The tools used are the Girsanov theorem, some results
on weak solutions of stochastic differential equations, the Itô formula and two
technical lemmas; see Property (P) and Lemma 3.2 below. The extension of the
Itô formula to our setting is a tedious but rather straightforward extension
of the work done in Decreusefond and Üstünel (1998) [hereafter designated
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DU (1998)]. As a consequence, its statement and proof are postponed to the
Appendix. Actually, what is new in this part is the theorem on weak solutions
of SDEs driven by a multidimensional fBm (see Theorem 3.1) and the proof
that the observation process carries the whole information about the direct-
ing processes (see Theorem 3.2). Since martingale theorems cannot be used,
several key computations are made within the framework of the Malliavin cal-
culus. As a result of this preliminary work, the Zakai and Kallianpur–Striebel
equations for X are established.

Unfortunately and not very surprisingly, it turns out that these equations
are not closed in the sense that the filters are not given as solutions of
stochastic partial differential equations as for standard diffusions [see Üstünel
(1986)]. Actually, the time derivative of the filter depends here on the whole
sample-path of the signal. It is thus somewhat natural to work with function-
als depending on X from its very beginning. This is the objective of the second
part of this paper where we consider a � ��0�1	
RM�-valued, �� X

t � t ∈ I-
adapted semimartingale for the filters of which we can obtain closed equa-
tions.

The paper is organized as follows: the next section is devoted to some pre-
liminaries on fractional Brownian motions; in Section 3, the filtering problem
is posed and the Kallianpur–Striebel equation for the observation process is
established. The infinite-dimensional approach is studied in Section 4. The
Appendix contains the statement and proof of the Itô formula and the exten-
sion to the multidimensional setting of the results of Coutin and Decreusefond
(1997) [hereafter designated CD (1997)] on existence and uniqueness of strong
solutions of stochastic differential equations driven by a fractional Brownian
motion.

2. Preliminaries.

Definition 2.1. For any H ∈ �0�1�, the one-dimensional fractional Brown-
ian motion (fBm) of index H (called the Hurst parameter), �WH

t 
 t ∈ �0�T	
is the unique centered Gaussian process whose covariance kernel is given by

RH�s� t� = EH

[
WH

s W
H
t

] def= VH

2

(
s2H + t2H − �t− s�2H)�

where

VH
def= ��2− 2H� cos�πH�

πH�1− 2H� �

There exist at least two approaches to define a stochastic calculus with
respect to the fractional Brownian motion. The main problem is to give a
sense to something like

∫ t
0 us dW

H
s � The Riemann sums approach consists of

considering processes u such that∑
ti∈π

uti
(
WH

ti+1
−WH

ti

)
(1)
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converges in probability when the mesh of the subdivision π = �0 = t1 < · · · <
tn = t tends to 0� When H > 1/2� this can be done using different properties
of the fractional Brownian motion sample-paths.

Since for H > 1/2 the fBm is a Dirichlet process, (1) can be given a sense
using the approach developed by Föllmer (1980).

Since the fBm has 1/H bounded variation, one can use the work of Bertoin
(1989) in which it is proved that (1) converges whenever u has 1/β–bounded
variation with β + H > 1 and β ≥ 2� In the same vein, one can also cite
the papers Dai and Heyde (1996), Lin (1996), which consider more specifically
the case of the fractional Brownian motion. Young (1936) and more recently,
Lyons (1994), have extended these results so that they are now applicable to
the fractional Brownian motion of Hurst parameter less than 1/2.

Using the Hölder continuity of the sample-paths of WH, when H > 1/2�
Feyel and de la Pradelle (1996) also prove that (1) converges when u is β-
Hölder continuous with β+H > 1 [see Feyel and de la Pradelle (1996)].

One could also mention the works of Ciesielski, Kerkyacharian and Roy-
nette (1993), where a pathwise stochastic integral is defined through the no-
tion of Besov spaces.

The approach we use here, valid for any H ∈ �0�1� and which has been
set in DU (1998), rests on the fact that WH is a Gaussian process so that we
have at our disposal the so-called Malliavin calculus framework (or stochastic
calculus of variation). For an introduction to this theory, we refer to Nualart
(1995), Üstünel (1995); for details specific to fBm we refer to DU (1998).

We summarize the notations and results of DU (1998) in the multidimen-
sional case. Let d ∈ N∗ and I = �0�T	� W = C0�I�Rd� be the real separable Ba-
nach space of continuous Rd-valued applications , null at time 0, equipped with
the supremum norm. W∗ denotes the strong topological dual of W� Hereafter
H̄ = �H1� � � � �Hd� is fixed in �0�1�d and PH̄ is the unique probability measure
on W such that the canonical process �Wt = �Wi

t� i = 1� � � � � d�� t ∈ �0�T	
has independent coordinates which are one-dimensional fBm of Hurst in-
dex Hi for i = 1� � � � � d� The canonical filtration is � = �� H̄

t = σ�Wu�
u ≤ t ∨ �H̄� t ∈ I, where �H̄ stands for the set of null sets of �W�PH̄��
The Cameron–Martin space (also called the reproducing kernel Hilbert space)
of this process, denoted by � , can be identified [see DU (1998) for the one-
dimensional case] as the space of functions h = �hi�i=1�����d of the form

hi�t� def=
∫ t

0
KHi

�t� s�ḣi�s�ds def= KHi
�ḣi��t��(2)

where ḣi belongs to L2�I� for i = 1� � � � � d and for any H ∈ �0�1��

KH�t� r� =
�t− r�H−1/2

��H+ 1
2�

F

(
1
2
−H�H− 1

2
�H+ 1

2
�1− t

r

)
1�0� t��r��(3)

The Gauss hypergeometric function F�α�β� γ� z� [see Nikiforov and Uvarov
(1988)] is the analytic continuation on C × C × C\�−1�−2� � � � × �z ∈ C�
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Arg�1− z� < π of the power series

+∞∑
k=0

�α�k�β�k
�γ�kk!

zk�

Here �α�k denotes the Pochhammer symbol defined by

�a�0 = 1 and �a�k def= ��a+ k�
��a� = a�a+ 1� · · · �a+ k− 1��

The norm on � is given by

�h�2
�

def=
d∑
i=1

�K−1
Hi
�hi��2

L2�I��

Hereafter, the same symbol denotes an integral operator and the kernel defin-
ing it. For instance, in the last equation, K−1

Hi
is the inverse of the operator

KHi
� From its very definition we know that

KH�t� r�=
r1/2−H

��H− 1/2�
∫ t
r
uH−1/2�u− r�H−3/2 du1�0� t	�r� for H>1/2(4)

and that [cf. Samko, Kilbas and Marichev (1993), Theorem 10.4]

KHf = I2H
0+ x

1/2−HI1/2−H
0+ xH−1/2f for H ≤ 1/2�(5)

KHf = I1
0+x

H−1/2I
H−1/2
0+ x1/2−Hf for H ≥ 1/2�(6)

These formula together with some results of Samko, Kilbas and Marichev
(1993) are the tools to show the properties of KH really needed for our consid-
erations. Actually, most of this work and related ones [CD (1997), DU (1998)]
can be done for a wide class of Gaussian processes. It is sufficient that the
covariance kernel R has a triangular square root K; that is,

R�t� s� =
∫ t∧s

0
K�t� r�K�s� r�dr�(7)

K�t� s� = 0 if s > t�(8)

which satisfies properties similar to those below.

Theorem 2.1. For any H ∈ �0�1�� KH satisfies the following properties:

(i) KH is a Hilbert–Schmidt operator on L2�I
R� and maps continuously

L2�I� onto a dense subset of W� namely I
H+1/2
0+ �L2�I
R��.

(ii) There exists a constant cH such that for any t� s in I�

KH�t� s� ≤ cHs
−�H−1/2��t− s�−�1/2−H�+ �
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(iii) For any H > 1/2 and any 0 ≤ γ ≤H− 1/2�

I
−γ
0+ �KH�·� s���t�=

�t− s�H−1/2−γ

��H+ 1
2 − γ�

F

(
1
2
−H�H�− 1

2
�H+ 1

2
−γ�1− t

s

)
1�0� t��s�

and ∣∣I−γ0+ �KH�·� s���t�
∣∣ ≤ cH�γs

−�H−1/2� for any t� s ∈ I�
(iv) t �→KH�t� s� is �H− 1/2�-Hölder continuous for H > 1/2 and any s�

(v) K′
H =def I

−1
0+KH is a continuous map from I

�1/2−H�+
0+ �L2�I�� onto the

space I
�H−1/2�+
0+ �L2�I���

Notation 1. For any λ ≥ 0�

Hol�λ� =
{
f� I→ R
 �f�Hol�λ�

def= sup
s�=t

�f�t� − f�s���t− s�−λ < +∞
}

and for any f� the integrals

Iαa+�f��x� =
1

��α�
∫ x
a
f�t��x− t�α−1 dt� x ≥ a�

Iαb−�f��x� =
1

��α�
∫ b
x
f�t��x− t�α−1 dt� x ≤ b�

where α > 0 are, respectively, called right and left fractional integrals of order
α� When α < 0�

Iαa+f
def= dn

dtn
(
Iα+na+ f

)
where n = −�α	�

Proof of Theorem 2.1. Equation (7) is actually the definition of KH�
Equations (5), (6) and property (i) follow from Samko, Kilbas and Marichev
(1993), Theorem 10.4. The upper bound (ii) has been proved in DU (1998).

For H > 1/2� (v) is a direct consequence of (6). For H < 1/2� from (5)
and Lemma 10.1 of Samko, Kilbas and Marichev (1993), which stands that
for any u ∈ L2�I� [respectively, v ∈ L2�I
 s1−2H ds�] there exists û ∈ L2�I�
[respectively, ṽ ∈ L2�I�] such that

xH−1/2I
1/2−H
0+ u = I

1/2−H
0+ xH−1/2û

and

I2H−1
0+ x1/2−Hv = x1/2−HI2H−1

0+ ṽ�

respectively. It follows that

�KHf�′ = I2H−1
0+ x1/2−HI1−2H

0+ � ̂
I
H−1/2
0+ f� = x1/2−H�

˜̂
I
H−1/2
0+ f��

again by Lemma 10.1 of Samko, Kilbas and Marichev (1993).
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By (4) and Fubini’s theorem,

I
−γ
0+ �KH�·� s���t�

= d

dt
I

1−γ
0+

(
s1/2−H

��H− 1/2�
∫ •

s
uH−1/2�u− s�H−3/2 du1�0�·	�s�

)
�t�

= s1/2−H

��H− 1/2���1− γ�
d

dt

(∫ t
0
�t− r�−γ

∫ r
s
uH−1/2�u− s�H−3/2 dudr

)
�t�

= s1/2−H�1− γ�−1

��H− 1/2���1− γ�
d

dt

(∫ t
s
uH−1/2�u− s�H−3/2�t− u�1−γ du

)
�t�

= s1/2−H

��H− 1/2���1− γ�
∫ t
s
uH−1/2�u− s�H−3/2�t− u�−γ du

= �t− s�H−1/2−γ

��H+ 1
2 − γ�

F

(
1
2
−H�H− 1

2
�H+ 1

2
− γ�1− t

s

)
1�0� t��s�

and the first part of (iii) follows. The second part is a consequence of the regu-
larity properties of the hypergeometric functions [see, for instance, Nikiforov
and Uvarov (1988)]. As a corollary, for any s ≥ 0 and any 0 ≤ γ ≤ H − 1/2�
the function t �→KH�t� s� belongs to Iγ0+�L∞� and by Besov space embeddings
[see Samko, Kilbas and Marichev (1993), Feyel and de la Pradelle (1996)] it
also belongs to Hol�H− 1/2� and∣∣KH�t� s� −KH�r� s�

∣∣ ≤ cs−�H−1/2��t− s�H−1/2

and thus property (iv) is proved. ✷

The definition of the so-called divergence and hence of our integral needs
the definition of the Gross–Sobolev derivative.

Definition 2.2. Let X be a separable Hilbert space. For an X-valued
smooth cylindric functional F of the form F�ω� = f�l1�ω�� � � � � ln�ω��x, where
f belongs to the Schwartz space on Rn, l1� � � � � ln to W∗ and x to X, the Gross–
Sobolev derivative of F, denoted by ∇F, is defined by

∇F�ω� =
d∑
j=1

n∑
i=1

∂f

∂xi
�l1�ω�� � � � � ln�ω��RHj

�lji � ⊗ xej�

where �ej� j = 1� � � � � d is the canonical basis of Rd and for any l ∈ W∗� lj

is the jth component of l� that is,

l�w� =
d∑
j=1

lj�"w�ej#Rd��

For any p ≥ 1 and any k ≥ 0� the Sobolev space Dp�k� H̄�X� is the completion
of the set � of cylindric functionals with respect to the norm,

�F�p�k� H̄ def= �F�Lp + ��∇�k�F�HS�Lp�
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where � · �HS stands for the Hilbert–Schmidt norm. For any k < 0, Dp�k� H̄�X�
is the strong dual of Dp�−k� H̄�X�� The space D∞�X� =

⋂
p≥1� k>0 Dp�k� H̄�X� is

the space of test functions and the space D−∞�X� =
⋃
p≥1� k<0 Dp�k� H̄�X� is the

space of distributions. It is well known that ∇ can be extended as a continuous
operator from Dp�k� H̄ into Dp�k−1� H̄�� �� for any p ≥ 1 and any k�

Notation 2. By ∇̇F� we mean the inverse image of ∇F by the map KH̄

where

KH̄� L2�I
Rd� → �
not=

n⊗
i=1

�i

u = �ui� 1� � � � � d� �→ �KHi
�ui�� 1� � � � � d��

Moreover, for any one Gross–Sobolev differentiable random variable ϕ� for any
ψ ∈ L0�� �� we set

∇ψϕ def= "∇ϕ� ψ#� �
Recall that for any u and v in D2�1�� �� the trace of ∇u◦∇v is defined by

trace�∇u◦∇v� = ∑
n�m≥0

"∇fnu� fm#� "∇fmv� fn#� �

where �fn = �f1
n� � � � � f

d
n�� n ≥ 0 is an orthonormal basis of � � Expanding

the scalar-product in � as the sum of scalar products in �i� we obtain

trace�∇u◦∇v� = ∑
n�m≥0

( d∑
i� j=1

"∇j
f
j
n
ui� fim#�i

)( d∑
i� j=1

"∇j
f
j
m
vi� fin#�i

)
�(9)

We say that a process u belongs to Domp δH̄ when there exists c such that
for any F ∈ Dp∗�1� H̄,

�E�"∇F�u#� 	� ≤ c�F�Lp∗ �W�

and we define δH̄u by

E�"∇F�u#� 	 = E�F · δH̄u	�

Notation 3. Here and hereafter, we denote by p∗ the conjugate of p, that
is, 1/p∗ + 1/p = 1�

Here δH̄, called the divergence operator, is a continuous operator from
Dp�k� H̄�� � into Dp�k−1� H̄� Since in the case of the standard Brownian mo-
tion (d = 1� H̄ = �1/2�), the divergence coincides with the Skohorod integral,
which itself is an extension of the Itô classical stochastic integral, it is some-
what natural to use the notion of divergence to define a stochastic integral
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with respect to the fractional Brownian motion. Henceforth, we set for any
(not necessarily adapted) process u = �ui�i=1�����d ∈ L2�W× I�Rd��∫ 1

0
usδH̄Ws

def= δH̄�KH̄u��
where

KH̄u
def= �KHi

ui� i = 1� � � � � d��
Following is a list of useful properties of δH̄, all excerpted from DU (1998).

1. The process

�P1�
{∫ t

0
�KHi

�t� s��i=1�����d δH̄Ws = δH̄
(�RHi

�t� ·��i=1�����d
)
� t ∈ I

}

is nothing but the d-dimensional fractional Brownian motion ��Wi
t� i =

1� � � � � d�� t ∈ I�
2. The process

�P2� B
def= {�Bi

t�i=1�����d� t ∈ I
} = {∫ t

0
�1�0� t	�s��i=1�����d δH̄Ws� t ∈ I

}
is a standard Brownian motion constructed on �W� ��t�t≥0�PH̄�� Moreover,
B and W have the same filtration.

3. In fact, we have for any adapted processes u ∈ Dom δH̄�

�P3�
∫ t

0
us δH̄Ws =

d∑
i=1

∫ t
0
uis dB

i
s�

It is thus justifiable to use the notation
∫
us dBs instead of δH̄�KHu�� When

u is anticipating,
∫
us dBs has to be understood as a Skohorod integral.

4. As a consequence, for u adapted and u ∈ L2�W× I�Rd�� the process

t �→
d∑
i=1

∫ t
0
KHi

�s� r�uir dBi
r

is a martingale for any s and thus the Burkholder–Davis–Gundy inequality
entails that for all p > 1, there exists Cp > 0 such that

�P4� E
[∣∣∣∣ d∑
i=1

∫ t
0
KHi

�t� s�uis dBi
s

∣∣∣∣
p]
≤ Cp E

[∣∣∣∣∫ t0
d∑
i=1

K2
Hi
�t� s��uis�2 ds

∣∣∣∣
p/2]

�

Corollary 2.1. Let H ∈ �0�1� and u be adapted processes such that for
some p > 1/H,

E
[

sup
s∈I

�us�p
]
<∞�

and �Zt� t ∈ I� be the process defined by

Zt =
∫ t

0
KH�t� s�us dBs�(10)
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The process Z admits a version with Hölder continuous sample-paths of any
order less than H�

Proof. Using Property (P4), we have

E
[∣∣Zt −Zs

∣∣p] ≤ cpE
[∣∣∣∣∫

I

∣∣KH�t� u� −KH�s� u�
∣∣2�us�2 ds

∣∣∣∣
p/2]

≤ cpVHE
[

sup
s∈I

�us�p
]
�t− s�pH�

The result follows by the Kolmogorov criterion. ✷

Lemma 2.1. Let H ∈ �0�1� and choose p ∈ �1�2�� Set

�
p
H

def= Lp�I
xp�H+3/2�−2 dx� and �
p∗
H = Lp∗�I
x−p∗p−1��H+3/2�−2� dx��

Furthermore, let u be an RN-valued, adapted process such that

E
[�u�p∗∞ ] < +∞�

where p∗ is the conjugate of p�

(i) The operator � =def I
1
0+ ◦K−1

H is a continuous bijective map from

�
p∗
H into I

1/2−H
0+ �� p∗

H ��

(ii) The process �Zt =
∫ t

0 KH�t� s�us dBs� t ∈ I belongs to �
p∗
H and =

� �Z� has a modification equal to
∫ •

0 us dBs� dt⊗ dPH̄ a.e.

Proof. From Samko, Kilbas and Marichev [(1993), page 188], it is
known that K∗

H maps �
p
H into I

H+1/2
1− �� p

H � and is a bijection. It follows
that � = �I−1

1−K
∗
H�∗−1 is a continuous bijective map from �� p∗

H �∗ = �
p
H onto

�IH+1/2
1− �� p

H ��∗ = I
1/2−H
0+ �� p∗

H � and the first point follows.
Moreover, using Property (P4),

E
[∫

I

∣∣∣∣∫ t0 KH�t� s�us dBs

∣∣∣∣
q

t−qp
−1��H+3/2�−2� dt

]

≤ E
[∫

I

∣∣∣∣∫ t0 KH�t� s�2u2
s ds

∣∣∣∣
q/2

t−qp
−1��H+3/2�−2� dt

]

≤ cE
[
sup
s∈I

�us�q
] ∫

I
t−qp

−1��H+3/2�−2�+qH dt < +∞�

since p < 2 and H ∈ �0�1�� For any I
H−1/2
1− �� p

H �-valued cylindric functional
G� using stochastic integration by parts and ordinary Fubini’s theorem, we
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have

E
[
"� �Z�� G#

I
1/2−H
0+ �� p∗

H ��IH−1/2
1− �� p

H �
]

= E
[
"Z� � ∗�G�#� p∗

H ��
p
H

]
= E
[∫

I

∫ t
0
KH�t� s�us∇̇s�� ∗�G���t�dsdt

]

= E
[∫

I
us

∫ 1

s
KH�t� s��� ∗�∇̇sG���t�dtds

]

= E
[∫

I
usK

∗
H� ∗�∇̇sG��s�ds

]
= E
[∫

I
usI

1
1−�∇̇sG��s�ds

]

= E
[∫

I

∫ r
0
us∇̇sGdsdr

]
= E
[∫

I

∫ r
0
us dBs G�r�dr

]
�

Hence dPH̄ ⊗ dt almost everywhere; we have

� �Z��t� =
∫ t

0
us dBs or equivalently Zt = �KH◦I−1

0+ �
(∫ •

0
us dBs

)
�t�� ✷

3. Application to the filtering theory. As mentioned in the introduc-
tion, our purpose is to study the conditional law, �πt� t ∈ I� of a signal
process �Xt� t ∈ I given the past of an observed process �Yt� t ∈ I� namely
πt�f� = E�f�Xt��σ�Ys� s ≤ t�	 for any regular function f when X�Y are so-
lutions of the following system of equations: for any l ∈ �1� � � � �M and any
k ∈ �1� � � � �N�

�S0�
Xl

t = xl0 +
M∑
i=1

∫ t
0
KHi

�t� s�bl� i�Xs�ds+
∫ t

0
KHi

�t� s�al� i�Xs�dBi
s�

Yk
t =
∫ t

0
KH�t� s�hk�Xs�ds+

d∑
j=M+1

∫ t
0
KH�t� s�τk�j�Ys�dBj

s �

where d = N +M� for any i ∈ �1� � � � � d� �Bi
t� t ∈ I is the Brownian

motion mentioned in properties �P2� and �P3� and for any i ∈ �1� � � � �M� any
j ∈ �M+ 1� � � � � d� any l ∈ �1� � � � �M� any k ∈ �1� � � � �N� bl� i, al� i� hk and
τk�j are regular deterministic functions.

Hypothesis I. For technical reasons (see Theorems B.1 and 4.1), we
assume hereafter that for any i ∈ �1� � � � � d�

Hi ≥ 1/2 and H =HM+1 = · · · =Hd�

Remark 3.1. A KH�t� s� factor in the stochastic integrals is mandatory to
have meaningful equations, since Wt =

∫ t
0 KH�t� s�dBs� It is also necessary in

the drift part of Y in order to apply the Girsanov theorem; see Theorem 3.1. In
opposition, the KH�t� s� term in the drift part of X is just here to symmetrize
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the role of X and Y� Existence and uniqueness of such a system of equations
are a straightforward generalization of the work done in CD (1997), hence we
postpone its development to Section 4.

Let �W�� � ��t� t ∈ I��PH̄�� the canonical probability space defined in the
introduction. Consider the following d-dimensional fbm-SDE:

�S1�
Xl

t = xl0 +
M∑
i=1

∫ t
0
KHi

�t� s�bl� i�Xs�ds+
∫ t

0
KHi

�t� s�al� i�Xs�dBi
s�

Yk
t =

d∑
j=M+1

∫ t
0
KH�t� s�τk�j�Ys�dBj

s �

where we have the following hypothesis.

Hypothesis II. Here xl0 belongs to R� the RM-valued applications bi =
�bl� i�Ml=1� a

i = �al� i�Ml=1� and the RN-valued map τj = �τk�j�Nk=1 are bounded,
twice differentiable with bounded derivatives for any i = 1� � � � �M� and any
j = 1+M� � � � � d�

Theorem A.1 and Hypothesis II ensure the existence of a unique pair �X�Y�
of continuous adapted processes strong solution of (S1).

Hypothesis III. Then h� RN → RN belongs to C1
b�RN�RN� and there ex-

ists a constant λ > 0 such that ττT�y� ≥ λIN� for any y ∈ RN�

Definition 3.1. Let Ph
H̄

be the probability measure on �W�� � defined by

dPh
H̄

dPH̄

∣∣∣∣
�t

def= E�LT��t� not= Lt�

where

Lt = exp
[∫ t

0

d∑
j=M+1

�τ−1�Ys�h�Xs��j dBj
s − 1

2

∫ t
0
�τ−1�Ys�h�Xs��2 ds

]
�

Notation 4. Consider the processes

W̃i
t =Wi

t for i = 1� � � � �M�

W̃
j
t =W

j
t −

d∑
k=M+1

∫ t
0
KH�t� s��τ−1�Ys��j� khk�Xs�ds� j=M+1� � � � � d�

Theorem 3.1. Assume that hypothesis II and III hold:

(i) The law of the Rd-valued process ��W̃i
t� i = 1� � � � � d�� t ∈ I under

the probability measure Ph
H̄

is the same as the law of the canonical process

��Wi
t� i = 1� � � � � d�� t ∈ I under PH̄�
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(ii) The process ��Xt�Yt�� t ∈ I� under the probability measure Ph
H̄
� has

the same law as the process ��X̃t� Ỹt�� t ∈ I strong solution of (S0).

Proof. (i) Set h̄�x� =∑N
k=1 h

k�x�ek+M and let �t1� � � � � tm be fixed in �0�1	�
Consider the d ·m-dimensional square integrable martingale

Zt1�����tm
r

def=
(∫ r

0
KHl

�tj� s�dBl
s
 l = 1� � � � d� j = 1� � � � �m

)

and the Rd·m-valued process

At1�����tm
r

def=
(∫ r

0
KHl

�tj� s�h̄l�Xs�ds
 l = 1� � � � d� j = 1� � � � �m
)
�

The classical Girsanov theorem for multidimensional Brownian motion stands
that Zt1�����tm −At1�����tm has under Ph

H̄
the same law as Zt1�����tm has under PH̄;

in particular,

Eh�f�Zt1�����tm
r −At1�����tm

r �	 = E�f�Zt1�����tm
r �	�

for any r and any bounded f from Rm⊗Rd into R� Take r = max�t1� � � � � tm�;
it follows that

Eh�f�� � � � �Wl
tj
−KHl

�h̄l◦X��tj�� � � � � �	 = E�f�� � � � �Wl
tj
� � � � � �	�

where Eh denotes the expectation under Ph
H̄

and the first point follows.
(ii) For any t ∈ I� �Xt�Yt� is the end value of the �PH̄�� � semimartingale

��Xt�r��Yt�r��� r ∈ I defined by

Xl
t�r� = xl0 +

M∑
i=1

∫ r
0
KHi

�t� s�bl� i�Xs�ds+
M∑
i=1

∫ r
0
KHi

�t� s�al� i�Xs�dBi
s�

Yk
t �r� =

d∑
j=M+1

∫ r
0
KH�t� s�τk�j�Ys�dBj

s for any l and k�

The classical Girsanov theorem stands that ��Xt�r��Yt�r�� r ∈ I is a
�Ph

H̄
�� � semimartingale with the following decomposition:

Xl
t�r� = xl0 +

M∑
i=1

∫ r
0
KHi

�t� s�bl� i�Xs�ds+
M∑
i=1

∫ r
0
KHi

�t� s�al� i�Xs�dBi
s�

Yk
t �r� =

∫ r
0
KH�t� s�hk�Xs�ds+

d∑
j=M+1

∫ r
0
KH�t� s�τk�j�Ys�dB̃j

s �

where

B̃
j
t = B

j
t −
∫ t

0
�τ−1�Ys�h�Xs��j ds for j =M+ 1� � � � � d



1070 L. COUTIN AND L. DECREUSEFOND

are independent standard Brownian motions. Taking r = T, we see that
��Xt�Yt�� t ∈ I is a weak solution on �W�� �Ph

H̄
� of the system (S0) with

directing processes �Bi� B̃j
 i = 1� � � � �M� j =M+ 1� � � � � d� Since pathwise
uniqueness holds for (S0) by Theorem A.1, by a straightforward generalization
of Proposition 3.20 of Revuz and Yor (1994), we obtain the uniqueness of the
solution in law of the system (S0) and the second point follows. ✷

We recall now the usual notations which we use hereafter.

Notation 5.

�t = σ�Ys� s ≤ t� t ∈ I� � = ∨t∈I�t�

� Y
t = σ�Wj

s � s ≤ t� j =M+ 1� � � � � d� t ∈ I� � Y = ∨t∈�0�T	� Y
t �

σt�f� = Eh�f�Xt�Lt�� 	� πt�f� = E�f�Xt���t	�
Here �σt� t ∈ I is the so-called unnormalized filter and �πt� t ∈ I is the
normalized filter; they both operate on bounded continuous real-valued func-
tions and the well-known Kallianpur–Striebel formula holds; for all t ∈ I PH̄

and Ph
H̄

almost everywhere,

πt�f� =
σt�f�
σt�1�

�

Lemma 3.1. Let U and V be two processes and α ∈ R; suppose that U =
Iα0+�V� then U and V have the same filtration up to the evanescent sets of
�W�PH̄��

Proof. By symmetry it is sufficient to show that for any t ∈ I� Ut is
σ�Vs� s ≤ t-measurable. When α > 0� it is clear that Ut is almost surely the
limit of

1
��α�

∫ t−1/n

0
�t− s�α−1Vs ds

as n goes to +∞� Each of these integrals (i.e., for n fixed) can be approx-
imated by a Riemann sum involving values of V up to time t − 1/n and
hence is σ�Vs� s ≤ t-measurable and so does Ut� When α < 0� by definition
of Iα�

Ut =
dn

dtn
Iα+n0+ �V��t��

where n = −�α	� Since any derivative can be computed as the limit of left-
sided increments, it follows that Ut is σ�Vs� s ≤ t-measurable for any
t ∈ I� ✷
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Theorem 3.2. If hypotheses II and III are fulfilled, then the σ-field ��t�
t ∈ I is identical to the σ-field �� Y

t � t ∈ I up to the evanescent sets of
�W�PH̄��

Proof. Denote by �� Ỹ
t � t ≥ 0 the σ-field generated by the sample-paths

of Ỹ =def
∑d

j=M+1

∫ •
0 τ�Ys�·�j dBj

s . Since Y = � −1�Ỹ�, by Lemma 2.1 and a
previous lemma, it follows that � = � Y� Moreover, by construction, we have
� Y
t = σ�Bj

s � s ≤ t� j =M+ 1� � � � � d hence by Kallianpur [(1980), page 219],
we know that � Ỹ = � Y and the proof is thus complete. ✷

We now construct a regular version of the conditional probability of PH̄

given the filtration � � which, following Pardoux (1989), enables us to treat
�PH̄� ��t� t ∈ I� as a conditional expectation. Denote by pX and pY the
projections

pX� RM+N → RM� pY� RM+N → RN

x = �x1� � � � � xM� � � � � xd� �→ �x1� � � � � xM�� x �→ �xM+1� � � � � xd��
Set P�

H�ω� ·�� the probability measure on �W�� � defined by

P�
H�ω� ·� = �pX�∗�PH̄��·� ⊗ δpY�ω��

where �pX�∗�PH̄� is the image by the application pX of the probability measure
PH̄� and δy is the Dirac measure at y� We denote by E�·�� 	 the expectation
under P�

H�ω� ·�� As a consequence of the Fubini theorem, for any adapted,
continuous process, dominated in L1� �Ht� t ∈ I� �E�Ht�� 	� t ∈ I is a con-
tinuous version of the optional projection of H given the filtration ��t� t∈I�

Lemma 3.2. Let A = �A1� � � � �AM� be such that KHi
�Ai� belongs to

D2�1��i� for any i ∈ �1� � � � �M and C be an ��t� t ∈ I� adapted, continuous

process such that
∫
I E��Cs�2	ds is finite. We have, PH̄ almost everywhere, for

all t ∈ I,

E
[∫ t

0
Ai
s dB

i
s��
]
= 0� i = 1� � � � �M�(11)

E
[∫ t

0
Cs dB

j
s ��
]
=
∫ t

0
E�Cs�� 	dBj

s � j =M+ 1� � � � � d�(12)

Proof. Since � = � Y is the filtration of a standard Brownian motion, (12)
is a consequence of Lemma 2.2.4 of Pardoux (1989). As to (11), the problem is
originating from the fact that A is not supposed to be adapted. Nevertheless,
fix i ∈ �1� � � � �M and remark that it is sufficient to show that for all g ∈
L2�I�RN��

E
[∫

I
Ai
s dB

i
s exp

(∫
I

N∑
j=1

gj�s�dBj+M
s − 1

2�g�2
L2�I�RN�

)]
= 0�
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Using properties �P3� and �P4�, we have

A
g
t

def= exp
(∫ t

0

N∑
j=1

gj�s�dBj+M
s − 1

2�g�2
L2��0� t	�RN�

)

= 1+
∫ t

0
Ags

N∑
j=1

gj�s�dBj+M
s �

Hence, Formula (21) of Theorem 3.7 of DU (1998) yields to

E
[∫

I
Ai
s dB

i
s A

g
T

]
=

N∑
j=1

E
[∫

I
Ai
s dB

i
s ·
∫ t

0
Ags g

j�s�dBj+M
s

]

= E�"A� B#� 	 +E�trace�∇A◦∇B�	�
where

As =KHi
�Ai��s�ei and Bs =

N∑
j=1

KHj
�hjAh̄��s�ej+M�

It is then clear that "A� B#� is zero and by (9), we have

trace�∇A◦∇B�

=
d∑
k=1

d∑
l� j>M

∑
m�n≥0

〈�∇k
fkm
KHi

�Ai��ei� fn
〉
�

〈"∇jBl� flm#�l
· ej� gn

〉
�

=
d∑

l>M

∑
m≥0

d∑
k=1

〈∇k
fkm
KHi

�Ai�� "∇iBl� flm#�l

〉
�
= 0�

since ∇iBl = 0 for any i ≤M� ✷

Theorem 3.3 (Zakai equation). Assume that Hypotheses II and III are
fulfilled. The unnormalized filter solves the following equation for all f ∈
C2
b�RM
R�� PH̄ almost everywhere for all t ∈ I:

σt�f� = f�x0� +
M∑
i=1

M∑
l=1

∫ t
0

Eh

[
Ls

∂f

∂xl
�Xs�K′

Hi
�bl� i◦X��s� ��

]
ds

+
M∑
i=1

M∑
l=1

M∑
k=1

∫ t
0

Eh

[
Ls

∂2f

∂xl∂xk
�Xs�K′

Hi
�al� i◦X · ∇̇i•Xk

s ��s� ��
]
dr

+
M∑
i=1

M∑
l=1

∫ t
0

Eh

[
Ls

∂f

∂xl
�Xs�K′

Hi
�al� i◦X · ∇̇i• log�Ls���s� ��

]
dr

+
M∑
i=1

M∑
l=1

d∑
j=M+1

∫ t
0

Eh�Ls�τ−1�Ys�h�Xs��jf�Xs� �� 	dBj
s �

(13)
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where

∇̇iu log�Lt� =
N∑

j� k=1

M∑
l=1

∫ t
u
�τ−1�Ys��k� j

∂hk

∂xl
�Xs�∇̇iuXl

s dB
j+M
s

− 1
2

N∑
j� k�m=1

M∑
l=1

∫ t
u
�τ−1�Ys��j�m�τ−1�Ys��j� k

× ∂�hmhk�
∂xl

�Xs�∇̇iuXl
s ds�

(14)

Corollary 3.1 (Kallianpur–Striebel equation). Assume that Hypotheses
II and III are fulfilled. For all f ∈ C2

b�RM
R�� the normalized filter solves the
following equation: PH̄ almost everywhere for all t ∈ I,

πt�f� = f�x0� +
M∑
i=1

M∑
l=1

∫ t
0

E
[
∂f

∂xl
�Xs�K′

Hi
�bl� i◦X��s� ��

]
ds

+
M∑
i=1

M∑
l=1

M∑
k=1

∫ t
0

E
[

∂2f

∂xl∂xk
�Xs�K′

Hi
�al� i◦X · ∇̇i•Xk

s ��s� ��
]
dr

+
M∑
i=1

M∑
l=1

∫ t
0

Eh

[
∂f

∂xl
�Xs�K′

Hi
�al� i◦X · ∇̇i• log�Ls���s� ��

]
dr

+
M∑
i=1

M∑
l=1

d∑
j=M+1

∫ t
0

Eh��τ−1�Ys�h�Xs��jf�Xs� �� 	dB̃j
s �

(15)

where for j =M+ 1� � � � � d,

B̃
j
t = B

j
t −

d∑
k=M+1

∫ t
0
πs
(
τ−1�Ys�k� jhk

)
ds =

∫ t
0
πs
(
τ−1�Ys�k� jhk

)
dỸs

are independent �Ph
H̄
� ��t� t ∈ I�� standard Brownian motions and Ỹ = � �Y��

Proof of Theorem 3.3. As a consequence of Theorems A.1 and A.2 and
Lemma A.5, X satisfies the hypothesis of Theorem B.1. Following Lepingle
and Mémin (1978), �Lt� t ∈ �0�1	 is a square integrable adapted process,
dominated in Lp�W� for all p > 1 and

Lt = exp
( d∑
i=M+1

∫ t
0
�τ−1�Ys�h�Xs��i dBi

s − 1
2

∫ t
0
�τ−1�Ys�h�Xs��2 ds

)
�

Moreover, Lt is at least once Gross–Sobolev differentiable [see Nualart (1995)]
and for any i ∈ �1� � � � �M, ∇̇iu logLt is given by (14) since ∇jYs = 0 for any
j ≤M and any s ∈ I�

Let �gn� n ≥ 0� be a sequence of bounded real-valued functions twice difer-
entiable with bounded derivatives such that suppgn ⊂ �−n − 1� n + 1	 and
gn��−n�n	 ≡ IdR��−n�n	� It follows from the boundedness of h� ∂h/∂x and τ−1
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that �gn�Lt�� t ∈ I fulfills the hypothesis of Theorem B.1. Applying the Itô
formula (see Theorem B.1), we obtain

f�Xt�gn�Lt�

= f�x0� +
M∑
i=1

M∑
l=1

∫ t
0

∂f

∂xl
�Xs�gn�Ls�K′

Hi
�bl� i◦X��s�ds

+
M∑
i=1

M∑
l=1

∫ t
0
al� i�Xs�K′∗

Hi

(
∂f

∂xl
◦X · gn◦L

)
�s�dBi

s

+
M∑
i=1

M∑
l=1

M∑
k=1

∫ t
0
al� i�Xs�K′∗

Hi

(
∂2f

∂xl∂xk
◦X · gn◦L · ∇̇isXk

•

)
�s�ds

+
M∑
i=1

M∑
l=1

∫ t
0
al� i�Xs�K′∗

Hi

(
∂f

∂xl
◦Xg′n◦L · ∇̇isL•

)
�s�ds

+
N∑
j=1

∫ t
0
�τ−1�Ys�h�Xs�Ys��jf�Xs�g′n�Ls�dBj+M

s

+ 1
2

N∑
j=1

∫ t
0
g′′n�Ls���τ−1�Ys�h�Xs�Ys��j�2 ds

= f�x0� +
6∑
i=1

A
i�n
t �

(16)

Since f is bounded and �Lt� t ∈ I is uniformly integrable, for any t ∈ I�
Eh�f�Xt�gn�Lt� �� 	 converges in L1�W� to Eh�f�Xt�Lt �� 	� Since f is con-
tinuous and bounded L•f�X•� is an ��t� t ∈ I adapted, continuous process,
upperbounded by a random variable belonging to L1�PH̄�� �Eh�f�Xt�Lt �� 	�
t ∈ I is a continuous version of �σt�f�� t ∈ I�

For any l, i, k; al� i, bl� i and ∂f/∂xl are bounded; hence by Lemma 3.2, one
can exchange the conditioning and the integrals in the first two summands of
(16). We obtain that Eh�A2� n

t �� 	 = 0 and by uniform integrability of L� A1� n

converges in L1�W� to

∫ t
0

∂f

∂xl
�Xs�LsK

′
Hi
�bl� i◦X��s�ds�

Moreover, by Lemma A.5, for any i ∈ �1� � � � �M�

∇̇iuXk
s =

M∑
j=1

L
k�j
Vi
�s� u�al� i�Xu��

and according to (26), for any q ∈ �1�2	�

Eh

[�∇̇iuXk
s �q
] ≤ cu−qH

0
�
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It follows from Lemma A.5 and (6) that for any q ∈ �1�1/�3/2 − mini Hi�� ⊂
�1�2	�

Eh

[∣∣∣∣∫ t0 al� i�Xs�K′∗
Hi

(
∂f

∂xl
◦X · �Id− gn��L� ∇̇isXk

•

)
�s�ds

∣∣∣∣
]

= Eh

[∣∣∣∣∫ t0 ∂f

∂xl
�Xs��Id− gn��Ls�K′

Hi

(
al� i◦X · ∇̇i•Xk

s

)�s�ds∣∣∣∣
]

≤ c sup
s

(
Eh��Ls�q

∗
1��Ls�≥n	1/q

)

×
(∫ t

0
sq�Hi−1/2�

∫ t
s
�u− s�q�Hi−3/2�u−q�Hi−1/2�Eh��∇̇iuXk

s �q	duds
)1/q

≤ c sup
s

(
Eh��Ls�q

∗
1��Ls�≥n	1/q

)
×
(∫ t

0
sq�Hi−1/2�

∫ t
s
�u− s�q�Hi−3/2�u−q��Hi−1/2�+H0	 duds�1/q

≤ c sup
s

(
Eh��Ls�q

∗
1��Ls�≥n	1/q

)(∫ t
0
s−qH

0�t− s�q�Hi−3/2�+1 ds

)1/q

and the last integral is convergent because of the hypothesis on q� Thus, A3� n
t

converges in L1�W� to

M∑
i=1

M∑
l=1

M∑
k=1

∫ t
0
al� i�Xs�K′∗

Hi

(
∂2f

∂xl∂xk
◦XL∇̇isXk

•

)
�s�ds�

The term A4� n is handled similarly after the observation that

∇̇isLt = Lt

M∑
k=1

d∑
j� l=M+1

∫ t
s

∂hl

∂xk
�Xr�∇̇isXk

r�τ−1�j� l�Ys�dBj
s

−
∫ t
s

hl∂hl

∂x
�Xs�∇̇isXk

r�τ−1�j� l�Ys�ds�

We have PH̄ almost everywhere for all t ∈ I,

lim
n→∞Eh�A4� n

t �� 	=
∫ t

0
Eh

[
Ls

∂f

∂x
�Xs�K′

Hi
�a◦X∇̇i• log�Ls���s� ��

]
ds�(17)

As to A5� n� it is a martingale directed by a standard Brownian motion and the
usual proofs [see, e.g., Pardoux (1989)] can be used. It follows that PH̄ almost
everywhere, for all t ∈ I,

lim
n→+∞Eh�A5� n

t �� 	 =
N∑
j=1

∫ t
0

Eh��τ−1�Ys�h�Xs��jLsf�Xs��� 	dBj+M
s �(18)

Finally, A6� n
t is easily seen to converge to 0 in L1�W� by uniform integrability

of �Ls� s ∈ I� ✷
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Since there is no anticipative term in (13), the proof of (15) is identical to
the corresponding proof in Pardoux (1989). The second part of Corollary 3.1 is
a consequence of Lemma 2.1.

4. Infinite-dimensional approach. The conclusion of the previous sec-
tion is that all the potential technical problems due to the lack of martingale
properties can be overcome, thus the impossibility of establishing closed equa-
tions for the filters originates from the nature of the problem itself. On the
other hand, there is no anticipative term in the equations we obtain; hence,
it is reasonable to hope that something can be done if we filter functionals,
which depends on X up to time t� Consider now the process χ defined by

χ
r�t�=x0+

M∑
i=1

∫ r
0
KHi

�t� s�bi�Xs�ds+
M∑
i=1

∫ r
0
KHi

�t� s�ai�Xs�dBi
s�(19)

Denote by W the Banach space of continuous RM-valued functions equipped
with the sup norm. For any α > 0� let Vα be the Hilbert space Iα0+�L2�I
RM��
whose norm is given by

�f�Vα

def= �I−α0+ f�L2�I
RM��

Lemma 4.1. The process χ is a �σ�Bi
s� i = 1� � � � �M� s ≤ t�� t ∈ I-adapted

W-valued process.

Proof. Now χ is clearly �� X
t � t ∈ I-adapted. Moreover, for any r ∈ I�

by the techniques used above, for any p ≥ 1,

Eh��χr�t� − χr�s��p	 ≤ c�t− s�pmini Hi

and the Kolmogorov criterion ensures that χr belongs to W� ✷

Theorem 4.1. Let F� W → R be twice Vα-differentiable for some 0 < α <
mini�Hi − 1/2� such that DαF and D2

αF are continuous from W into Vα and
Vα ⊗ Vα, respectively. If χ is given by (19) then

F�χt� = F�x0� +
M∑
i=1

∫ t
0

〈
DαF�χs�� KHi

�·� s�bi�Xs�
〉
Vα
ds

+
d∑
i=1

∫ t
0

〈
DαF�χs�� KHi

�·� s�ai�Xs�
〉
Vα
dBi

s

+ 1
2

M∑
i=1

∫ t
0
�KHi

�·� s�ai�Xs��∗D2
αF�χs��KHi

�·� s�ai�Xs��ds

Here x0 is identified with the constant element of W equal to x0 everywhere.
Note that the scalar products in Vα can be explicitly computed using Theo-
rem 2.1(iii).
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Proof. Let �vi� 1 ≤ i ≤ M be an orthonormal family of Vα and 	 be a
W-valued standard Brownian motion. One can always consider that

χ
r�t� = x0 +

M∑
i=1

∫ r
0
KHi

�t� s�bi�Xs�ds

+
M∑
i=1

∫ r
0
KHi

�t� s�ai�Xs� ⊗ vi d	s�

(20)

By Theorem 2.1(v), for any s and almost any ω,

t �→KHi
�t� s�bi�Xs� and t �→KHi

�t� s�ai�Xs� ⊗ vi

belong to Vα and Vα⊗Vα, respectively. Moreover, by the very definition of the
Vα norm,

Eh

[∫
I
�KHi

�·� s�bi�Xs��2Vα
ds

]
= Eh

[∫ ∫
I×I

�I−α0+ �KHi
�·� s���t�bi�Xs��2 dtds

]

≤ c
∫
I
s−2�Hi−1/2� ds < +∞�

by Theorem 2.1(vi). Consequently, we also have

Eh

[∫
I
�KHi

�·� s�bi�Xs� ⊗ vi�2Vα⊗Vα
ds

]
= Eh

[∫
I
�KHi

�·� s�bi�Xs��2Vα
ds

]
< +∞�

Hence the two maps,

s �→KHi
�·� s�bi�Xs� and s �→KHi

�·� s�ai�Xs� ⊗ vi�

belong to L2�Vα� and L2�Vα ⊗ Vα�, respectively. The space Vα is densely em-
bedded in W; hence �ι� Vα� W� (where ι denotes the embedding from Vα into
W) is a Wiener space and we are in position to apply the Itô formula for
Banach-valued processes given in Kuo (1975). We get

F�χt� = F�x0� +
M∑
i=1

∫ t
0

〈
DαF�χs�� KHi

�·� s�bi�Xs�
〉
Vα
ds

+
∫ t

0

〈( M∑
i=1

KHi
�·� s�ai�Xs� ⊗ vi

)∗
DαF�χs�� d	s

〉

+ 1
2

∫ t
0

trace
(( M∑

i=1

KHi
�·� s�ai�Xs� ⊗ vi

)∗
D2
αF�χs�

×
( M∑
j=1

KHj
�·� s�aj�Xs� ⊗ vj

))
ds�

Since vi is orthogonal to vj and 	�vi� = Bi� the result follows. ✷
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Define the infinite-dimensional filters by

σ̃t�F� def= Eh�F�χt�Lt ��t	 and π̃t�F� def= E�F�χt� ��t	 = σ̃t�F�/σ̃t�1��

Theorem 4.2 (Infinite-dimensional Zakai equation). Let F� W → R be
twice Vα-differentiable for some 0 < α < mini�Hi − 1/2� such that DαF and
D2
αF are continuous and bounded from W into Vα and Vα ⊗ Vα, respectively.

Assume that Hypothesis II, III hold; we have

σ̃t�F� = F�x0� +
d∑

j=M+1

∫ t
0
σ̃s
(
F× �τ−1�Ys�h◦ps�j

)
dBj

s

+
M∑
i=1

∫ t
0
σ̃s
("DαF� KHi

�·� s�bi◦ps#Vα

)
ds

+ 1
2

M∑
i=1

∫ t
0
σ̃s
(�KHi

�·� s�ai◦ps�∗D2
αF �KHi

�·� s�ai◦ps�
)
ds�

(21)

where ps�x� = xs for any x ∈ W�

Proof. Applying the standard integration by parts formula for semi-
martingales, we have

F�χt�Lt =
∫ t

0
F�χs�dLs +

∫ t
0
Ls dF�χs�

because the independence of the two sigma fields σ�Bi� 1 ≤ i ≤ M and
σ�Bj� M+ 1 ≤ d ≤ d implies that "F�χ�� L#t = 0� We thus obtain

LtF�χt� = F�x0� +
M∑
i=1

∫ t
0
Ls

〈
DαF�χs�� KHi

�·� s�bi�Xs�
〉
Vα
ds

+
M∑
i=1

∫ t
0
Ls

〈
DαF�χs�� KHi

�·� s�ai�Xs�
〉
Vα
dBi

s

+ 1
2

M∑
i=1

∫ t
0
Ls�KHi

�·� s�ai�Xs��∗D2
αF�χs��KHi

�·� s�ai�Xs��ds

+
d∑

j=M+1

∫ t
0
F�χs�Ls�τ−1�Ys�h�Xs��j dBj

s �

It remains once again to commute the conditional expectation with the
integrals. Since DαF and ai are bounded,∣∣〈DαF�χs�� KHi

�·� s�ai�Xs�
〉
Vα

∣∣
≤ sup

x∈B
�DαF�x��Vα

�ai�∞
(∫ 1

0
�I−γ0+KHi

�·� s��t��2 dt
)1/2

≤ sup
x∈B

�DαF�x��Vα
�ai�∞ s1/2−H
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by Theorem 2.1(iii). Thus,∫
I

Eh��"DαF�χs�� KHi
�·� s�ai�Xs�#Vα

�2	ds < +∞

so that we can apply Lemma 3.2. The other terms are handled similarly and
the proof is complete. ✷

It is then routine to prove the following.

Corollary 4.1 (Infinite-dimensional Kallianpur–Striebel equation). With
the hypothesis of the previous theorem, we have

π̃t�F� = F�x0� +
M∑
i=1

∫ t
0
π̃s
("DαF� KHi

�·� s�bi◦ps#Vα

)
ds

+ 1
2

M∑
i=1

∫ t
0
π̃s
(�KHi

�·� s�ai◦ps�∗D2
αF�·��KHi

�·� s�ai◦ps�
)
ds

+
∫ t

0

(
π̃s�F · τ−1�Ys�h◦ps� − π̃s�F� · π̃s�τ−1�Ys�h◦ps�

)
dỸs�

(22)

We have obtained a closed equation for π̃�F�; it thus remains to solve it,
and the original problem is solved observing that

πt�f� = π̃t�f◦pt�� that is, πt = p∗t π̃t�

Numerical procedures to derive an approximation of π̃t�F� are the subject of
our current investigations.

APPENDIX A

Multidimensional stochastic differential equations. In this section
we extend the results of CD (1997) in the multidimensional case. By an fBm-
SDE, we mean an equation of the form,

�E� Xl
t=xl+

d∑
i=1

{∫ t
0
KHi

�t� s�b�s�Xs�l� i ds+
∫ t

0
KHi

�t� s�σ�s�Xs�l� i dBi
s

}
�

where bl� i and σl� i are deterministic functions for i = 1� � � � � d and l =
1� � � � �m� xl ∈ R� and �Bi

t� t ∈ I� i = 1� � � � � d is the Brownian motion
mentioned in properties (P2) and (P3). Set

H0 = sup
i=1�����d

�Hi − 1
2 �� EH = �p ≥ 1� pH0 < 1 and αp = �1− pH0�−1

By a solution of the differential equation (E), we mean a Rm-valued adapted
stochastic process X = �Xt� t ∈ I such that(

t �→ E��Xt �2	) ∈ ⋃
α>α2

Lα�I� not= L
α2
+ �(23)
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Theorem A.1. Let b and σ be L-Lipschitz continuous with respect to their
second variable, uniformly with respect to their first variable: for all t in �0�T	;
for all x�y in Rm, and any i = 1� � � � � d, l = 1� � � � �m,

�bl� i�t� x� − bl� i�t� y�� + �σl� i�t� x� − σl� i�t� y�� ≤ L � x− y � �
Assume also that there exist x0 and y0 in Rm and αb > α1, ασ > 2α2 such that
for any l and i�

�H1� bl� i�·� x0� ∈ Lαb�I�Rm� and σl� i�·� y0� ∈ Lασ �I�Rm��
The differential equation (E) has a unique solution. Moreover, for this solution
and for any p ∈ EH ∩ �2�+∞��(

t �→ E��Xt �p	
)

is bounded on I.

Whenever b and σ satisfy the hypothesis of Theorem A.1 with αb ≥ 2 and the
boundedness of σ as supplementary conditions, the solution of (E) has almost
surely continuous sample-paths.

The proof is based on a standard Picard approximation scheme [as in CD
(1997)] where the Gronwall lemma is replaced by the following lemma.

Lemma A.1. For any p ≥ 1� consider

K
p
1 �t� s� def= sup

i=1�����d
�KHi

�t� s��p�

K
p
n+1�t� s� def=

∫ t
s
Kp

n�t� u�Kp
1 �u� s�du�

Set

H1 = max
j
�1/2−Hj�+ and H− = min

j
�Hj − 1/2��

R1. For p ∈ EH�

sup
t∈I

sup
i

∫ t
0
�KHi

�t� s��p ds < +∞�

R2. For p ∈ EH� the resolvent series,

+∞∑
n=1

zn�Kp
n1��t� =

+∞∑
n=1

zn
∫ t

0
K

p
1 �t� s1�ds1

×
∫ s1

0
K

p
1 �s1� s2�ds2 · · ·

∫ sn−1

0
K

p
1 �sn−1� sn�dsn

converges for all z ∈ C� More precisely, if T ≥ 1�

�Kp
n1��t� ≤ c

np
H

n∏
j=1

B�j�1+ pH−� + 1− pH0� 1− pH1�Tj�1+pH−��
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R3. For any φ ∈ Lαp
+ =not

⋃
α>αp

Lα�I��

t �→
∫ t

0
K

p
1 �t� s�φ�s�ds is bounded with respect to t on I�

R4. For any α > 0�∫ t
s
K2

2�t� u� �u− s�−α+ du ≤ B�1− α� 1− 2H1� s−2H0�t− s�−α+1−2H1
�

when α = 0� we have∫ t
s
K2

2�t� u�du ≤ B�1− 2H0� 1− 2H1� �t− s�1−2�H0+H1��

Proof. By homogeneity and according to Theorem 2.1(ii), for any β and
any i�∫ t

0
�KHi

�t� s��psβ ds ≤ cHB�1− p�1/2−Hi�+� β− p�Hi − 1/2� + 1�

×
(
t

T

)β+1+p�Hi−1/2�
Tβ−p��Hi−1/2�+�1/2−Hi�+�+1�

Since �t/T� ≤ 1 and T ≥ 1� using∫ t
0
�KHi

�t� s��psβ ds

≤ c
p
HB�β+ 1− pH0� 1− pH1�

× exp
(
�β+ 1+ pmini�Hi − 1/2�� ln t

− pmini��Hi − 1/2� + �Hi − 1/2� + �1/2−Hi�+� lnT
)
�

Notice that p ∈ EH entails that 1 + pmini�Hi − 1/2� > 0; thus (R1) follows
by taking β = 0� By induction on n� we get

Kp
n�1��t� ≤ c

np
H

n∏
j=1

B�j�1+ pH−� + 1− pH0� 1− pH1�Tj�1+pH−��

for any t ∈ I� By the usual criterions of convergence of series, one sees that∑+∞
n=1 z

n�Kp
n1��t� converges for all z provided that

1− pH1 > 0 and p�H0 +H1� < 2�

By the way, since 1/2−Hi ≤ �Hi − 1/2�� both conditions are satisfied when p
belongs to EH� Point (R3) follows from Hölder inequality and (2). As to point
(4), according to Theorem 2.1(ii),∫ t

s
K2

2�t� u� �u− s�−α+ du ≤
∫ t
s
�t− u�−2H1

u−2H0�u− s�−α+ du

≤ s−2H0
∫ t
s
�t− u�−2H1�u− s�−α+ du
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and the result follows by a change of variable. When α = 0� one can obtain a
finer upper bound, bounding u−2H0

by �u− s�−2H0
� ✷

Theorem A.2. Let b and σ be once continuously differentiable with respect
to their space variable, with bounded derivative, and satisfy (H1); assume fur-
thermore that σ is bounded. For any t ∈ I� the value at t of the solution of (E)
belongs to D2�1� Moreover, for any ξ ∈ � �

〈∇Xl
t� ξ
〉
�
=

d∑
i=1

〈
KHi

�KHi
�t� ·�σl� i◦X� ξi〉

�i

+
d∑

i� j=1

m∑
k=1

∫ t
0
KHj

�t� u�∂b
l� j

∂xk
�u�Xu�

〈∇iXk
u� ξ

i
〉
�i
du

+
d∑

i� j=1

m∑
k=1

∫ t
0
KHj

�t� u�∂σ
j� l

∂xk
�u�Xu�

〈∇iXk
u� ξ

i
〉
�i
dBj

u�

Proof. It is a straightforward generalization of the proof of Theorem 4.1
of CD (1997) The method consists of showing that the terms of the Picard
sequence constructed in the definition of the solution of �S0� form a bounded
sequence of D2�1� According to Üstünel [(1995), Proposition 3, page 37], X thus
belongs to D2�1 and the expression of ∇X is easy to derive. In order to control
the D2�1 norms, the Gronwall lemma is replaced by (R2) and (R3).

Theorem A.3. The equation

ξlt =
d∑
i=1

KHi
�KHi

�t� ·�σl� i◦X�ei

+
d∑

i� j=1

m∑
k=1

∫ t
0
KHj

�t� u�∂b
l� j

∂xk
�u�Xu�ξkuei du

+
d∑

i� j=1

m∑
k=1

∫ t
0
KHj

�t� u�∂σ
j� l

∂xk
�u�Xu�ξkuei dB

j
u�

(24)

where �e1� � � � �ed is the canonical basis of Rd, has at most one solution in the
set of � -valued processes which satisfy

t �→ E��ξt�2
H	 ∈ Lα2

+ �

Theorem A.4. For any l = 1� � � � �m and i = 1� � � � � d� set V
l� i
0 �t� s� =

KHi
�t� s� and

V
l� i
n+1�t� s� =

d∑
j=1

m∑
k=1

∫ t
s
KHj

�t� u�∂b
l� j

∂xk
�u�Xu�Vk� i

n �u� s�du

+
d∑
j=1

m∑
k=1

∫ t
s
KHj

�t� u�∂σ
l� j

∂xk
�u�Xu�Vk� i

n �u� s�dBj
u�
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Consider the Rm×m-valued process

LV�s� t� def=
+∞∑
n=0

Vn�t� s��

LV is the unique solution of the system of equations,

Ll� i�t� s� =KHi
�t� s� +

d∑
j=1

m∑
k=1

∫ t
s
KHj

�t� u�∂b
l� j

∂xk
�u�Xu�Lk� i�u� s�du

+
d∑
j=1

m∑
k=1

∫ t
s
KHj

�t� u�∂σ
l� j

∂xk
�u�Xu�Lk� i�u� s�dBj

u

(25)

such that �t �→ E��L�t� s��2	� belongs to L
α2
+ � For any t� s ∈ I� we have

E��LV�t� s��2	 ≤ c�t− s�−2H1
s−2νH�(26)

where

νH =
(⌈

2H1

1− 2H1

⌉
+ 1
)
H0�(27)

Theorem A.5 (Variation of the parameter formula). Assume that the hy-
potheses of Theorem A.2 hold and that Hi ≥ 1/2 for all i ∈ �1� � � � � d� The
following representation formula holds:

〈∇iXl
t� ξ

i
〉
�i
=

m∑
k=1

∫ t
0
L
l�k
Vi
�t� s�σk� i�Xs�K−1

Hi
ξ�s�ds�

Proof. Since Hi ≥ 1/2� H1 = 0 and νH =H0� we have

E
[∣∣∣∣ m∑
k=1

∫ t
0
L
l�k
Vi
�t� s�σk� i�Xs�K−1

Hi
ξ�s�ds

∣∣∣∣
2]
≤ c

m∑
k=1

E
[∫ t

0
L
l�k
Vi
�t� s�2 ds

]
�ξ�2

�

≤ c
∫ t

0
s−2H0

ds�ξ�2
� �

Hence, t �→ ∑m
k=1

∫ t
0 L

l�k
Vi
�t� s�σk� i�Xs�K−1

Hi
ξ�s�ds belongs to Lα2

+ and is a true
solution of (24). According to Theorem A.2, it is equal to ∇iXl

t� ✷

APPENDIX B

Itô formula. We prove a multidimensional version of the Itô formula
which is slightly different from DU (1998) in the one-dimensional case. Ac-
tually, it turns out that X does not fulfill the integrability hypothesis of The-
orem 5.1 of DU (1998) but satisfies some strong regularity properties which
are sufficient to prove the Itô formula. The proof here follows the same lines
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as the proof of the anticipative Itô formula in Nualart (1995). We say that a
process X fulfills hypothesis IV if the following holds.

Hypothesis IV. X is a continuous process, belonging to D2�1�� � such that
�sH0∇̇sXt� t ∈ I� is a uniformly continuous process in L2�W�� uniformly with
respect to s�

Note that according to Theorem A.5, when Hypothesis I holds, the solution
of (E) satisfies IV.

Theorem B.1. Assume that Hypothesis I holds. Let X = �Xl�l=1�����M be
given by

Xl = x0 +
d∑
i=1

{∫ t
0
KHi

�t� s�bl� is ds+
∫ t

0
KHi

�t� s�al� is dBi
s +
∫ t

0
cl� is dBi

s

}
�

where Bi are the Brownian motions mentioned in properties (P2) and (P3),
al� i� bl� i and cl� i are adapted processes, al� i� bl� i are bounded and cl� i be-
longs to L2�W × I�� for any i and any l� Assume furthermore that X fulfills
Hypothesis IV and that for any i, l�

E
[∫ 1

0

∫ s
0
�∇̇iral� is �2�sr�1−2Hi drds

]
< +∞�(28)

For all f ∈ C2�RM�R� with bounded derivatives, we have for all t ∈ I PH̄

almost everywhere,

f�Xt� = f�X0� +
d∑
i=1

M∑
l=1

∫ t
0

∂f

∂xl
�Xs�K′

Hi
�bl� i��s�ds

+
d∑
i=1

M∑
l=1

∫ t
0
al� is K′∗

Hi

(
∂f

∂xl
◦X
)
�s�dBi

s

+
d∑
i=1

M∑
l� k=1

∫ t
0

∂2f

∂xl∂xk
�Xs�K′

Hi
�al� i∇̇i•Xk

s ��s�ds

+
d∑
i=1

M∑
l=1

∫ t
0

∂f

∂xl
�Xs�cl� i�Xs�dBi

s

+ 1
2

d∑
i=1

M∑
l� k=1

∫ t
0

∂f

∂xl∂xk
�Xs�cl� is ci� ks ds�

Remark B.1. One should remark that the null set out of which the pre-
vious Itô formula holds depends on t; hence when a formula for processes is
wanted, one should verify that both sides of the equality are continuous with
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respect to t. Before we start the proof it is useful to recall two expressions
which follow immediately from the definitions of KHi

and I
Hi−1/2
0+ ,

KHi
�t+ α� s� −KHi

�t� s�

= s1/2−Hi

∫ t+α
t

uHi−1/2�u− s�Hi−3/2 du 1�0� t	�s�

+ s1/2−Hi

∫ t+α
s

uHi−1/2�u− s�Hi−3/2 du 1�t� t+α	�s��
(29)

��Hi − 1/2�IHi−1/2
t− �f�u���s�

=
∫ t
s
f�u��u− s�Hi−3/2 du

=
E−1∑
n=0

1�0� tn	�s�
∫ tn+1

tn

f�u��u− s�Hi−3/2 du

+ 1�tn� tn+1	�s�
∫ tn
s
f�u��s− u�Hi−3/2 du�

(30)

for any subdivision of �0� t	�

Proof. Let E ∈ N∗� and IE =def �tn� n = 0� � � � � E a subdivision of �0� t	
with t0 = 0 and tE = t� the mesh of which is �IE� =def supi=0�����E−1�ti+1 − ti��
We have

f�Xt� − f�X0� =
E−1∑
n=0

f�Xtn+1
� − f�Xtn

��

According to the Taylor expansion, we can write

f�Xt� − f�X0� =
E−1∑
n=0

M∑
l=1

∂f

∂xl
�Xtn

��Xl
tn+1

−Xl
tn
�

+
E−1∑
n=0

M∑
l� k=1

∫ 1

0

∂2f

∂xl∂xk
�uXtn

+ �1− u�Xtn+1
�du

× �Xl
tn+1

−Xl
tn
��Xk

tn+1
−Xk

tn
�

=
E−1∑
n=0

( M∑
l=1

S
n� l
1 +

M∑
k� l=1

S
n� l� k
2

)
�

We first deal with the first-order terms Sn� l1 ,

S
n� l
1 =

d∑
i=1

∂f

∂xl
�Xtn

�
∫
I
�KHi

�tn+1� s� −KHi
�tn� s��bl� is ds

+
d∑
i=1

∂f

∂xl
�Xtn

�
∫
I
�KHi

�tn+1� s� −KHi
�tn� s��al� is dBi

s

+
d∑
i=1

∂f

∂xl
�Xtn

�
∫ tn+1

tn

cl� is dBi
s =

3∑
j=1

d∑
i=1

B
l� i� n
j �



1086 L. COUTIN AND L. DECREUSEFOND

Step 1. We show that if we set


 l� i� E
1 =

E−1∑
n=0

B
l� i� n
1 −

∫ t
0

∂f

∂xl
�Xs�sHi−1/2I

Hi−1/2
0+ �u1/2−Hibl� iu ��s�ds�(31)

then PH̄ a.e., 
 l� i� E
1 goes to 0 when the mesh of the subdivision �IE� goes to 0,

because, observe that

∫ t
0

∂f

∂xl
�Xs�sHi−1/2I

Hi−1/2
0+ �u1/2−Hibl� iu ��s�ds

=
∫ t

0
u1/2−Hibl� iu I

Hi−1/2
t−

(
∂f

∂xl
�Xs�sHi−1/2

)
�u�du�

According to (29),

��Hi − 1/2�Bl� i� E
1

=
E−1∑
n=0

∫ tn
0

∂f

∂xl
�Xtn

�s1/2−Hibl� is

∫ tn+1

tn

uHi−1/2�u− s�Hi−3/2 duds

+
∫ tn+1

tn

∂f

∂xl
�Xtn

�s1/2−Hibl� is

∫ tn+1

s
uHi−1/2�u− s�Hi−3/2 duds�

Applying (30) to the function

f�u� =
E−1∑
n=0

∂f

∂xl
�Xtn

�uHi−1/2 1�tn� tn+1��u��

we obtain

B
l� i� E
1 =

∫ t
0
s1/2−Hibl� is I

Hi−1/2
t−

(
uHi−1/2

E−1∑
n=0

∂f

∂xl
�Xtn

�1�tn� tn+1	�u�
)
�s�ds�

Since �Xs� s ∈ I� is a continuous process, b and ∂f/∂xl are bounded, for all
s ∈ �0�1	,

I
Hi−1/2
t−

(
uHi−1/2

E−1∑
n=0

∂f

∂xl
�Xtn

�1�tn� tn+1	�u�
)
�s�

converges in L1�W� and almost everywhere to

I
Hi−1/2
t−

(
uHi−1/2 ∂f

∂xl
�Xu�

)
�s�

when the mesh of the subdivision IE goes to zero. Since b is bounded, by
dominated convergence, the first point is established.
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Step 2. We prove that
∑E−1

n=0 B
l� i� n
2 goes to

∫ t
0
s1/2−Hial� is I

Hi−1/2
t−

(
∂f

∂xl
�Xu�uHi−1/2

)
�s�dBi

s

−
M∑
k=1

∫ t
0
s1/2−Hial� is I

Hi−1/2
t−

(
∂2f

∂xl∂xk
�Xu�uHi−1/2∇̇isXk

u

)
�s�ds

in L2 when the mesh of the subdivision IE goes to zero. Since a and ∂f/∂xl are
bounded, the properties of the Skohorod integral [see, for instance, Nualart
(1995)], allow writing

∂f

∂xl
�Xtn

�
∫
I
�KHi

�tn+1� s� −KHi
�tn� s�	al� i�Xs�dBi

s

=
∫
I

∂f

∂xl
�Xtn

��KHi
�tn+1� s� −KHi

�tn� s�	al� i�Xs�dBi
s

+
M∑
k=1

∫
I

∂2f

∂xl∂xk
�Xtn

�∇̇isXk
tn
�KHi

�tn+1� s� −KHi
�tn� s�	al� i�Xs�ds�

Proceeding as above, we obtain

E−1∑
n=0

B
l� i� n
2 =

∫
I
s1/2−Hial� is I

Hi−1/2
t−

( E−1∑
n=0

∂f

∂xl
�Xtn

�1�tn� tn+1	�u�uHi−1/2
)
�s�dBi

s

+
∫
I
s1/2−Hial� is I

Hi−1/2
t−

(
∇̇is
[E−1∑
n=0

∂f

∂xl
�Xtn

�
]
1�tn� tn+1	�u�uHi−1/2

)
�s�ds�

Set

� l� i� E
s = s1/2−Hial� is I

Hi−1/2
t−

( E−1∑
n=0

∂f

∂xl
�Xtn

�1�tn� tn+1	�u�uHi−1/2
)
�s��

� l� i
s = s1/2−Hial� is I

Hi−1/2
t−

(
∂f

∂xl
�Xu�uHi−1/2

)
�s��

For the stochastic integral, recall that

E
[∣∣∣∣∫ t0 �� l�i�E

s −� l� i
s �dBi

s

∣∣∣∣
2]

= E
[∫ t

0
�� l�i�E

s −� l� i
s �2 ds

]

+
∫ ∫

�0� t	2
∇̇ir�� l� i� E

s −� l� i
s �∇̇is�� l� i� E

r −� l� i
r �drds�

(32)



1088 L. COUTIN AND L. DECREUSEFOND

Since al� i is bounded, we have

E
[∫

I
�� l� i� E

s −� l� i
s �2ds

]
≤ �al� i�∞

∫ t
0

∫ t
0
s1−2Hi ds

E
[∣∣∣∣IHi−1/2

t−

(
uHi−1/2

[ E−1∑
n=1

{
∂f

∂xl
�Xtn

� − ∂f

∂xl
�Xu�

}
1�tn� tn+1	�u�

])
�s�
∣∣∣∣
2]
ds�

Recall that for g ∈ L∞�I� and Hi > 1/2�∣∣IHi−1/2
t− �uHi−1/2g��s�∣∣ ≤ c�g�∞�t− s�2Hi−1 ≤ c�g�∞�(33)

since Hi − 1/2 ≥ 0� for any i� Considering that ∂F/∂xl is bounded, it follows
by dominated convergence that

E
[∫

I
�� l� i� E

s −� l� i
s �2 ds

]
−→ 0 as �IE� → 0�

Since a is adapted, the trace term in (32) (i.e., the rightmost summand) can
be decomposed in the sum,∫ ∫

�0� t	2
�sr�1/2−Hial� ir ∇̇iral� is I

Hi−1/2
t−

(
ζEuu

Hi−1/2)�s�
× I

Hi−1/2
t−

(∇̇isζEuuHi−1/2
)�r�drds

+
∫ t

0

∫ t
0
�sr�1/2−Hial� is al� ir I

Hi−1/2
t−

(∇̇irζEuuHi−1/2)�s�
× I

Hi−1/2
t−

(∇̇isζEuuHi−1/2)�r�drds�
where

ζEu =
E−1∑
n=0

{
∂f

∂xl
�Xtn

� − ∂f

∂xl
�Xu�

}
1�tn� tn+1	�u��

Denote by C1 and C2 the two summands of the last sum. By the Cauchy–
Schwarz inequality, (33) and (28) and Fubini’s theorem,

E��C1�	 ≤ c�a�∞�ζE�∞E
[∫ ∫

�0� t	2
∣∣∇̇iras�sr�1/2−Hi

∣∣2 drds]1/2

×E
[∫ t

0

∫ t
r

∣∣IHi−1/2
t−

(∇̇isζEuuHi−1/2)�r�∣∣2 drds]1/2

≤ cE
[∫ t

0

∫ s
0

(∫ t
r
�u− r�Hi−3/2∇̇isζEu uHi−1/2 du

)2

drds

]1/2

≤ cE
[∫ t

0

∫ t
r
�t− r�Hi−1/2

∫ t
r
�∇̇irζEu �2u2Hi−1�u− r�Hi−3/2 dudrds

]1/2

�

Moreover,

E��∇̇irζEu �2	 ≤ c
E−1∑
n=1

E��∇̇irXtn
− ∇̇irXu�2	1�tn� tn+1	�u��
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hence according to Hypothesis IV, (33) and the dominated convergence theo-
rem, one concludes that C1 tends to 0 in L1�W� with the mesh of the subdivi-
sion. On the other hand, by the Cauchy–Schwarz inequality again,

E��C2�	 ≤ cE
[∫ ∫

�0� t	2
∣∣IHi−1/2
t−

(∇̇irζEuuHi−1/2)�s�∣∣2�sr�1−2Hi dsdr

]1/2




thus the same majorizations can be used again and it follows thatC2 converges
to 0 in L1�W�� Following the same reasoning, one shows that∫ t

0
s1/2−Hial� is I

Hi−1/2
t− �ζEuuHi−1/2��s�ds

goes to 0 in L1�W� and thus completes the proof of the second step.

Step 3. One can prove by the standard semimartingale techniques that

E−1∑
n=0

Cl� i� n −
d∑
i=1

∫ t
0

∂f

∂xl
�Xs�cl� is dBi

s�(34)

when the mesh of the subdivision IE goes to 0 in L2�W��

Step 4. We deal now with the second-order terms. Since al� i and bl� i are
bounded, following CD (1997), the processes �∫ t0 KHi

�t� s�bl� is ds� t ∈ I and
�∫ t0 KHi

�t� s�al� is dBi
s� t ∈ I are Hölder continuous in L2� and they have null

quadratic variation. The only terms which do not go to 0 when the mesh of
the subdivision IE goes to 0 in L2�W�PH̄� are of the form

E−1∑
n=0

1
2

∫ tn+1

tn

cl� is dBi
s

∫ tn+1

tn

ci� ks dBi
s

∫ 1

0

∂2f

∂xk∂xl
�uXtn

+ �1− u�Xtn+1
��

As in the classical Itô formula, they converge to

1
2

M∑
l� k=1

∫ t
0

∂f

∂xl∂xk
�Xs�cl� is ci� ks ds

when the mesh of the subdivision IE goes to 0, in L1�W�� ✷
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