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We consider a single class, acyclic network of G/G/1 queues. We
impose some mild assumptions on the service and external arrival pro-
cesses and we characterize the large deviations behavior of all the pro-
cesses resulting from various operations in the network. For the network
model that we are considering, these operations are passing-through-a-
single-server-queue (the process resulting from this operation being the
departure process), superposition of independent processes and determin-
istic splitting of a process into a number of processes. We also characterize
the large deviations behavior of the waiting time and the queue length
observed by a typical customer in a single server queue. We prove that the
assumptions imposed on the external arrival processes are preserved by
these operations, and we show how to apply inductively these results to
obtain the large deviations behavior of the waiting time and the queue
length in all the queues of the network. Our results indicate how these
large deviations occur, by concretely characterizing the most likely path
that leads to them.

1. Introduction. Consider a single class, acyclic network of G/G/1
queues. Customers arrive at the network in a number of independent streams
and are treated uniformly by the network. Different streams may share a
queue and the first-come—first-serve (FCFS) policy is implemented. A con-
stant fraction p,; of customers departing a queue i is routed to queue j and a
fraction p,;, leaves the network. The aim of this paper is to derive large
deviations results for the waiting time and the queue length observed by an
arbitrary customer at different queues of the network.

The main application area that motivates the study of such systems is the
design and the operation of high speed, packet-switched communication
networks. These networks will accommodate various types of traffic, namely,
digitized voice, encoded video and data. The interesting problem arising is
how to estimate and prevent congestion, which may cause long delays and
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packet losses. It is desirable to operate the network in a regime where packet
loss probabilities are very small, for example, on the order of 10~°. Moreover,
large delays should also have a correspondingly small probability. Thus, the
need for understanding the large deviations behavior of such a network
arises. In this paper, we consider single class networks, which from the
application point of view means that we are dealing only with one type of
traffic in the network. For this reason, the FCFS assumption can be made
without loss of generality.

The problem of estimating tail probabilities of rare events in a single
queue has received extensive attention in the literature and has been ap-
proached by two main methodologies. The first one is to use large deviations
theory, as we do in this paper. This approach is used in [18] to estimate the
tail probability of the queue length in a G/G/1 queue. In that paper, a
discrete time model was used in contrast to the continuous time model that
we use in this paper. Similar results are obtained in [11]. The second
approach is to use spectral decomposition techniques. This second approach is
used in [20] to estimate the tail probability of the queue length in a queue
with a deterministic server and Markov modulated arrival process. Results
for the single queue case were first obtained in [24], [26], [22] and later in
[27], [32] and [23]. In all of these papers, the large deviations results obtained
are used to derive appropriate admission control schemes for networks.

The extension of these ideas to networks appears to be a rather challeng-
ing problem. Researchers have been able to obtain some bounds on the tail
probabilities for delays and queue lengths in various networks models (see [7,
12, 13, 33)), but it is not clear whether these bounds are tight. Recently, large
deviations results for two queues in tandem, with renewal arrivals and
exponential servers, were reported in [21]. In [16], a very interesting ap-
proach is used to obtain results for networks with deterministic servers. The
departure process from a single G/D /1 queue is characterized in the large
deviations regime, using a discrete time model, in an attempt to treat the
whole network inductively. The main focus of [16] is to apply the large
deviations results obtained to resource management for networks. A large
deviations upper bound for the departure process appears also in [9]. It is
important to point out that the departure process is a very difficult process
for which to obtain exact results (see, e. g., [4]). However, we should note that
it is not very clear to us how the large deviations result for the departure
process in [16] can be applied inductively. The crux of the matter
is that [16] uses a technical result from [14] in order to obtain the large
deviations behavior of the departure process. The latter result holds under
certain technical assumptions on the arrival process. Since the departure
process from a queue is the arrival process in another downstream queue in
the network, one would need at this point to verify that the same technical
assumptions hold for the departure process. This is not done in [16] and
appears to be rather difficult.

In the present paper, we consider a continuous time model and we extend
the work in [16] to a network of G/G /1 queues. The objective is to obtain the
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large deviations behavior of waiting times and queue lengths in all the nodes
of the network. To this end, we initially seek to characterize the large
deviations behavior of the aggregate arrival process in each node. Our results
are self-contained in the sense that we do not need the technical results of
[14]. Instead, we impose certain assumptions on the external arrival pro-
cesses and we characterize the large deviations behavior of all the processes
resulting from various operations in the network. For the network model that
we are considering, these operations are passing-through-a-queue (the pro-
cess resulting from this operation being the departure process), superposition
of independent processes and deterministic splitting of a process into a
number of processes. We prove that the assumptions imposed on the external
arrival processes are preserved by these operations, and thus we are able to
apply these results inductively to obtain large deviations results for the
aggregate arrival process in each node. As a by-product of our analysis we
also obtain large deviations results for the internal traffic in the network. For
a single queue, in isolation, we characterize the large deviations behavior of
the waiting time incurred by a typical customer and, by using ideas from
distributional laws (see [5, 3]), the large deviations behavior of the queue
length observed by a typical customer. Finally, we compose the large devia-
tions behavior of the aggregate arrival process in each node of the network
with the results for a single queue to obtain the large deviations behavior of
the waiting time and queue length in each node.

Our approach provides particular insight on how these large deviations
occur, by concretely characterizing the most likely path that leads to them.
Characterizations of most likely paths were obtained for the single queue
case in [2], [1] and [14]. After the submission of the present paper the work in
[8] and [10] was brought to our attention. In [8] the author independently
obtained the large deviations behavior for a network model of G/D /1 queues
similar to ours, when the external arrival processes are bounded. In [10] the
authors obtain the large deviations behavior of the departure process of a
G/G /1 queue, in isolation.

It is interesting to note that in order to obtain the large deviations
behavior of the superposition operation we prove a general result that
connects the stationary distribution (i.e., as it is seen at a random time) and
the Palm distribution (i.e., as it is seen by a typical customer) of a point
process in the large deviations regime. This result could be of independent
interest.

Regarding the structure of the paper, we start in Section 2 by reviewing
some results from the theory of large deviations that we use in the sequel. In
Section 3 we present the network model that we are considering and estab-
lish our notation. In Section 4 we treat the single queue case. This section is
comprised of two subsections. In Section 4.1 we review the existing result for
the large deviations behavior of the waiting time and we completely charac-
terize the most likely path along which the waiting time takes large values.
In Section 4.2, using an idea from distributional laws, we obtain the tail
probability of the queue length. In Section 5 we derive the large deviations
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behavior of the departure process from a G/G /1 queue. Particular attention
is given to the way that such a deviation occurs. In Section 5.1, some special
cases are studied. Namely, we apply the result for the departure process of a
G/G/1 queue to a G/D /1 queue and an M /M /1 queue. For the latter case,
Burke’s theorem is verified in the large deviations regime. In Sections 6 and 7
we study the large deviations behavior of the processes resulting from the
following operations: superposition of independent processes and determinis-
tic splitting of a process into a number of processes, respectively. In Section
6.1 we prove a result that connects the Palm and the stationary distribution
of a point process in the large deviations regime. This result is used in the
rest of Section 6 to derive the large deviations behavior of the superposition
process. In Section 8, we treat, as an example, a network consisting of two
queues in tandem. We characterize the way that the waiting time in the
second queue reaches large values and we include some numerical results.
Finally, in Section 9 we provide some concluding remarks and discuss some
open problems.

2. Preliminaries. In this section we review some basic results from
large deviations theory that will be used in the sequel.

We first state that Gartner—Ellis theorem (see [6] and [15]), which estab-
lishes a large deviations principle (LDP) for random variables. It is a general-
ization of Cramér’s theorem, which applies to independent and identically
distributed (iid) random variables.

Consider a sequence {S;, S,, ...} of random variables with values in R and
define

(1) A,(0) 2 TlogE[e":].

For the applications that we have in mind, S, is a partial sum process.
Namely, S, = X7, X;, where X;, i > 1, are identically distributed, possibly
dependent random variables.

ASSUMPTION A.
(1) The limit

1
(2) A(6) 2 lim A,(0) = lim —logE[e""]
n— o n—oow N

exists for all 0, where +« are allowed both as elements of the sequence A ,(6)
and as limit points.

(ii) The origin is in the interior of the domain D, £ {#|A(6) < %} of A(6).

(iii) A() is differentiable in the interior of D, and the derivative tends to
infinity as 6 approaches the boundary of D,.

(iv) A(#) is lower semicontinuous, that is, lim inf, _, A(6,) = A(0), for
all 6.
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THEOREM 2.1 (Géartner-Ellis). Under Assumption A, the following in-
equalities hold.
Upper bound: For every closed set F,

1 S
(3) lim sup —logP[—n e F} < — inf A*(a).
now N n acF
Lower bound: For every open set G,
1 S
(4) liminf—logP[—n € G] > — inf A*(a),
n->o N n ace@G
where
(5) A*(a) £ sup(fa — A(0)).
0

We say that {S,} satisfies a LDP with good rate function A*(-). The term
“good” refers to the fact that the level sets {a|A*(a) < k} are compact for all
k < o, which is a consequence of Assumption A (see [15] for a proof).

It is important to note that A(-) and A*(-) are convex duals (Legendre
transforms of each other). Namely, along with (5), it also holds that

(6) A(6) = sup(ba — A*(a)).

The Gartner—Ellis theorem intuitively asserts that for large enough n and
for small ¢ > 0,

P[S, € (na — ne,na + ne)| ~ exp( —nA*(a)).

However, in this paper, we are mostly estimating tail probabilities of the
form P[S, < na] or P[S, > nal. We therefore define large deviations rate
functions associated with such tail probabilities.

Consider the case where S, = X7 ; X;, the random variables X;, i > 1,
being identically distributed, and let m = E[ X ]. It is easily shown (see [15])
that A*(m) = 0. Let us now define

A(a), ifa>m
7 A*+ A ’ )
(7) (a) {O, ifa<m,
and

_ A(a), ifa<m
8 A (a) 2 : :
®) (a) { , ifa>m.

Notice that A**(a) is nondecreasing and A* (a) is a nonincreasing function
of a, respectively. The convex duals of these functions are

A(6), if6=>0
9 A*(0) 2 : :
(9) (9) {+oc, if <0,
and

(10) A_(a)é{A(e), if 6 <0,

+ oo, if 6 > 0,
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respectively. In particular, A* (a) = sup,(fa — A7(0)) and A**(a) =
sup,(6a — A(9)).

Using the Gértner—Ellis theorem it can be shown that for all &;, ¢, > 0
there exists n, such that for all n > n,,

(11) exp(—n(A*~(a) + &,)) < P[S, < na] < exp(—n(A*"(a) — &,)),
and
(12) exp(—n(A**(a) + &,)) < P[S, = na] < exp(—n(A*"(a) — &)).

More specifically, the lower bound in (11) can be obtained by noting that
P[S, < nal = P[S, < nal, and using the lower bound of the Gartner-Ellis
theorem for the open set (—«, a). The upper bound can be obtained by an
argument similar to the one we use in the proof of Lemma 4.2. A similar
argument can be used for (12).

3. The network model. In this section, we formally define the network
model for which we will derive the large deviations behavior. Moreover, we
establish the notation that we will be using and state a set of assumptions on
the arrival and service processes.

Consider a directed acyclic graph (dag) with J nodes. For reasons that will
soon become apparent, we assume that any two directed paths do not meet in
more than one node. Each node of the graph is equipped with an infinite
buffer and a single server. Customers enter the network in a number of
independent streams A!, A% ..., AY. In particular, A’ is the stream of cus-
tomers that enter the network at node i. Customers are treated uniformly by
the network; that is, the network is assumed to be single class. Let Z denote
the set of integers. By A/, i € Z, we denote the interarrival time of the ith
customer in the jth stream [the interval between the arrival epochs of the
(i — Dst and the ith customer]. By B/, i € Z, we denote the service time of
the ith customer in the jth node. We assume that for each arriving stream j
the process {AJ, i € 7}, is stationary, and A/, i € Z, are possibly dependent
random variables. Moreover, for each node j, the service times By, i € Z, are
iid random variables. We also assume that interarrival and service times at a
specific node are mutually independent and that service times at different
nodes are independent.

Independent streams may share a queue and the FCFS policy is imple-
mented. A fraction p;;,p;j,,... of customers departing node i, which is
connected to nodes ji, j,,..., are routed to these nodes, respectively, and a
fraction p,, leaves the network. The exact way that the routing is performed
is not of importance in the large deviations regime. Roughly, out of every
1/p;; customers leaving node i, the routing mechanism sends one to node ;.
Figure 1 depicts an example of the class of networks considered. Such a
network is intended to model packet-switched communication networks.

We denote by Wi, W2,..., WY and L', L2,..., L’ the steady-state waiting
times and queue lengths incurred by a typical customer at nodes 1,2, ..., J of
the network, respectively. For each node j, W/ (resp. L?) denotes the waiting
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Fic. 1. A network example.

time incurred (resp. queue length observed) by the nth customer. We assume
that the process {(W/, LY); n € Z, j = 1,..., J} is stationary. (The existence
and stationarity of this process contains an implicit stability assumption.)

In this paper, we derive large deviations results for the steady-state
waiting times W' W2 ..., W7 and the corresponding queue lengths
LY L% ...,L7, incurred at nodes 1,2,...,J of the network, respectively (as
these random variables are seen by a typical customer). Our strategy is first
to obtain large deviations results for the steady-state waiting time and the
corresponding queue length in a single G/G/1 queue. Then it suffices to
derive a LDP for the partial sum of the aggregate arrival process in each
queue of the network and apply the result for the single queue case. It is
important to note that by the definition of the network all the streams
sharing the same queue are independent. Therefore, from the model descrip-
tion, it is apparent that it suffices to obtain LDP’s for the processes resulting
from the following operations:

1. Passing-through-a-queue (the process resulting from this operation being
the departure process).

2. Superposition of independent streams.

3. Deterministic splitting of a stream to a number of streams.
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Let {A,, i € Z} be an arbitrary external arrival process and {B,, i € Z} be
an arbitrary service process. Hereafter, we will be using the notation Sf j £
Yi_; X,; i <j for the partial sums of the random sequence {X;; i € Z} along
with the convention S¥; £ 0; i > j.

AssumMPTION B.

(i) The sequence of partial sums {S{,; n > 1} satisfies

1
(13) lim —logP[S{, < na] = =AY (a),
nox N ’
where
(14) Az(0) & lim, ,.(1/n)logE[exp(6S{,)], if6<0,
4 + oo, if 6 > 0,
and
(15) % (@) = sup(fa — A;(9)).
6

The limit in the upper branch of (14) exists for all 6, where +« are allowed

both as elements of the sequence and as limit points. We will say that {S{"‘n;

n > 1} satisfies a one-sided LDP. Moreover, we assume that A% (a) is a
strictly convex function of a in the intersection of the interior of its domain
and the interval (— o, E[ A;]), and that A; has moments of all orders, that is,
E[AP] < o for all p > 0.

(i) The sequence of partial sums {an; n > 1} satisfies the requirements
of the Gartner—Ellis theorem with limiting log-moment generating function

1
(16) Ap(9) & lim —logE[exp(6S7, )]

and large deviations rate function

(17) Ny(@) & sup(0a — Ay(0)).

Moreover, we assume that A%(a) is a strictly convex function of a in the
interior of its domain and that B; has moments of all orders, that is,
E[B?] < « for all p > 0.

AssumpTioN C.

(1) For every &y, &5, a > 0, there exists M, such that, for all n > M,,
(18) exp(—n(A%y (a) + &,)) <P[Sf, —ia < en,i=1,...,n].

(ii) For every &, &5, a > 0, there exists My such that, for all n > My,

exp(—n(A5 (a) + &,))

19
(19) SP[Sfj—(j—i+1)a£aln,1£isj£n]
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and

exp(—n(A% (a) + &,))

20
(20) <P[SE,-(j-i+1)a=—&n,1<i<j<n]|

We consider external arrival and service processes that satisfy Assump-
tions B and C. We will show that these assumptions are satisfied by the
processes resulting from the three operations mentioned above. In this way,
our approach provides a calculus of acyclic networks since we will be able to
determine the large deviations behavior of each individual queue inductively.

Assumption B provides a LDP for the arrival and service processes. Based
on these LDP’s we will derive LDP’s for all the processes of interest in the
network. Note that only the tail probability of the external arrival processes
corresponding to “many arrivals” is characterized by Assumption B. We will
prove that in order to estimate probabilities of large waiting times and long
delays, as we do in this paper, only such a tail probability of the aggregate
arrival process in each queue of the network is needed. The strict convexity
assumption on the large deviations rate functions of interest is needed to
avoid some technical issues that have to do with the differentiability of the
corresponding limiting log-moment generating functions.

Assumption C is needed in order to derive a LDP for the departure process
of a G/G /1 queue. It intuitively asserts that besides the LDP for the partial
sum random variable S, ,, we also have a LDP for the partial sum process
{Sl’i, i=1,...,n} for the arrivals and {Si,j, 1 <i <j < n} for the service
times. In other words, (18) and (19) guarantee that, with high probability, the
partial sum process follows a path that never overshoots the straight line of
slope a, in order to reach an improbable level S; , < na. A similar interpreta-
tion can be given to (20). Mild mixing conditions on the arrival and service
processes suffice to guarantee Assumption C. A thorough treatment is given
in [14]. In the Appendix we provide some conditions under which Assumption
C is satisfied, based on the results of [14]. In [8] a uniform bounding condition
is given under which the above assumption is true. We should note here that
we do not need the full power of the sample path large deviations results in
[14] and [8] to establish our results. We only need Assumptions B and C,
which, as we will show, are preserved by the internal traffic in the network.

Assumptions B and C are satisfied by processes that are used to model
external arrival and services in communications networks, such as renewal
processes, stationary processes with mild mixing conditions, as well as
Markov-modulated processes with some uniformity assumptions on the sta-
tionary distribution (see [14], Section 4).

4. Large deviations of a G /G /1 queue. In this section, we establish a
LDP for the Palm distributions of the steady-state waiting time and queue
length (i.e., as these random variables are seen by a typical customer), in a
G /G /1 queue with stationary arrivals and service times.
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The setting is the same as in Section 3. We denote by {A,, i € Z} the
stationary aggregate arrival process to the queue and we assume that it
satisfies Assumption B(i). We also denote by {B;, i € Z} the stationary service
process and we assume that it satisfies Assumption B(ii). For this section, the
independence assumption for the service times can be relaxed. For stability
purposes, we further assume E[ A] > E[B], where A (resp. B) denotes a
typical interarrival (resp. service) time.

4.1. Large deviations of the waiting time. Let us first characterize the
steady-state waiting time, W, incurred by a typical customer. By W, we
denote the waiting time of the nth customer. The condition E[ A] > E[B] is
necessary for the existence and the uniqueness of a stationary process (see
[31]). For sufficiency, ergodicity is also needed. From the Lindley equation,
the waiting time of the Oth customer, at steady-state, is given by

W,=[W_ ,+B ,—A,] 2max[W_, +B , —A4,,0]

21
(1) —1,71_Séi,0>0]'

= max [S§ ;
1>0

The intuitive meaning of this relation is the following: for a particular sample

path, if i* is the optimum i, then the customer with label —i* — 1 is the one

who initializes the busy period in which the Oth customer is served.

The next theorem establishes a LDP for W,. This result is not new. The
proof is almost identical with the proof in [19], Theorem 3.1, where a discrete
time model is used and is therefore omitted. A similar argument is also given
in [7]. An upper bound on the tail probability of the steady-state waiting time,
for renewal arrival and service processes, was first obtained by Kingman [28].

THEOREM 4.1. The tail of the Palm distribution of the steady-state waiting
time, W, in a FCFS G/G/1 queue with arrivals and service times satisfying
Assumption B is characterized by

1
22 lim —logP[W > U] = 0*
(22) lim —logP[W = U] = 6%,
where 6* < 0 is the smallest root of the equation
(23) Ay(6) + Ag(—0) =0.

REMARKS. Intuitively, Theorem 4.1 asserts that for large enough U, we
can state

P[W=>U] ~e?Y where #* < 0is such that
A (6%) + Ag(—6%) = 0.

Note that 6* exists as an extended real number since E[ A] > E[ B] and the
functions A;(-), Az(-) are convex. This is proven under the conditions of
Assumption B in [15], Lemma 2.3.9. Figure 2 depicts the function A;(6) +
Ag(—0) and the root 6% If A;(6) + Az(—6) <0 for all 6 <0, we use the
convention 6* = . In Figure 2 we make use of the differentiability of

(24)
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AZ(6) + Ap(-6)

F1G. 2. The root of A;(6) + Ag(—6) = 0.

A5 (), Az(+), which is guaranteed by the strict convexity assumption that we
have imposed on A% (-) and A%(-) (see Assumption B). More specifically,
convex duality arguments (see [29], Theorem 26.3) guarantee that the convex
dual of a strictly convex function is differentiable in the interior of its domain.
Regarding A;(0), we are only interested in its differentiability for 6 < 0,
which can be established using the strict convexity of A% (a) for a < E[ A,].
(As we have defined A,(6), it has only a left derivative at zero, which is
positive and equal to E[ A] — E[B].)

It is instructive to characterize the most likely “path” along which the
large deviation of the waiting time occurs. Such a characterization can also
provide an alternative proof of Theorem 4.1. Let a > 0 and x,, x, € R", such
that x, — x; = a. Using (21), we have

P[W, > (i + 1)a] = P[SE,_; ., -S4, = (i + 1)a]
(25) > P[Séi,o < (L + l)xl]P[Séi,l,,l > (l + 1)x2]

> exp(—(i + 1)[ A% (x) + A% (xy) + &]),

where the last inequality makes use of Assumption B and holds for any £ > 0
and for large i. Setting U = (i + 1)a, we obtain

1

(26) P[W,>U] = exp{—Uinf — inf  [A% (%) + A% (x,)] - Us}.

a>0 @ xo—x1=a

Let a* > 0 be a solution to the above optimization problem. Thus, for large U,
and by taking ¢ — 0 in (26), we obtain

infx2fx1:a*[ >I:47(‘/’(:1) + A*BJr(x2)] }
a* ’

(27) P(W,>U] > exp{—U
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cust. (—i* — 1) arrives cust. 0 arrives

S4.. o; rate ;lI

SB. ) _1;rate 51;
cust. (—1) arrives cust. (—1) departs

Fi1c. 3. The optimal path for large deviations in the waiting time.

The tightness of this bound can be proven by obtaining a matching (i.e., with
the same exponent) upper bound; the proof is omitted.

Let i* be defined by the equation i* + 1 = U/a*. Let also x* and x§ solve
the optimization problem in (27). Consider a scenario where customers
—i*,..., —1,0 arrive at an empirical arrival rate of 1/x¥ and customers
(=i* = 1),..., —1 are served with an empirical service rate of 1/x%. Such a
scenario, which is depicted in Figure 3, has probability comparable to the
right-hand side of (27) and is therefore a most likely way for the large
deviation of the waiting time to occur.

4.2. Large deviations of the queue length. In this section, we present a
LDP for the steady-state queue length in a G/G/1 queue, as seen by a
typical customer (Palm distribution). To accomplish this, we use the main
argument used in deriving distributional laws; that is, a probabilistic relation
between the waiting time and the queue length. A detailed discussion of
distributional laws and their applications can be found in [5] and [3]. It is
important to note that distributional laws have been proved there only for
renewal arrival and service processes. However in the large deviations set-
ting, we are able to relax the renewal assumption and state a result that
holds even for correlated arrival and service processes.

Let us now characterize the steady-state queue length L seen by a typical
customer (not including herself) upon arrival (this is sometimes denoted by
L~ in the literature). The goal is to estimate P[L > n]. Let us denote by L,
the queue length observed by the nth customer. As in Section 3, we assume
that the process {(L,,W,); n € Z} is stationary. The main idea, in order to
establish a relation between the waiting time and the queue length, is to look
backwards in time from the arrival epoch of the nth customer. Figure 4
depicts the situation. We denote with T, T,,... the arrival epochs of cus-
tomers 0,1,..., respectively. Recall that W, and B, denote the waiting and
the service time of the nth customer, respectively.
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SA

1,n

To T1 T2 Tn -1 Tn t

Fi1c. 4. The system at time T,,.

The main observation is the following: in order for the queue length right
before T, to be at least n, the Oth customer should be in the system at that
time. Namely,

(28) P[L, >n] =P[W, + B, > S{,]

and by using (21) we obtain

P[L,>n] = P[max[Sf’i_l o —S4 ., -S4 n] > O]
i>0 ’ ’ ’

(29)

=P|:maX[S§i,10_Séi n] ZO].
i>—1 ’ ?

The next theorem establishes a LDP for L,. We will need a technical lemma
which we prove next. (This lemma is also used in the next section.)

LEMMA 4.2. Under Assumption B, and for 6 <0, satisfying A,(6) +
Ag(=6) <0, it holds that

1
(30) limsup zlogE[exp(—G max,. _;[SZ,_ - Sfi’n])] <A, (0).

n— o

Proor. We have

E[exp(—@ max; . ,I[Slfi,lyo -S4, ])]

< Y Elexp(—6S% _, ,)|E[exp(6S4, )]

i>-1

From (16) it can be seen that for any £ > 0 there exists j > 0 such that for all
i > j it holds that

(31) E[exp(—08%,_, )] < exp((i +2)(As(—0) + ¢)).
Also from (14), we have that for § < 0 and for any ¢ > 0 there exists N such
that, forall n > Nand all i > —1,

(32) E[exp(0S4; ,)| <exp((n +i+ 1)(A;(0) + £)).

—i,n

Fix now some 60 < 0 satisfying A,(6) + Az(—60) <0 and some & > 0 such
that A;(0) + Ag(—6) + 26 < 0. Note that the existence of such a 0 is
guaranteed by the condition E[ A] > E[ B] (see Figure 2). We then have that,
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for all n > N,

E[exp(— fmax [S?, |, — Séi,n])]

i>-1

< é E[exp(—0S%, ;| ,)|E[exp(6S4; ,)]

+ Z-E[exp(—OSi,LO)]E[exp(GSﬁ‘i,n)]
(33)  =exp(n(Aa(0) +¢))

J

X Z E[eXp(_OS§i—1,0)]eXp((i + 1)(A;\(0) + ‘9))
i=-1

+exp(n(A;(0) + ¢)) 2 exp(2A5(—0) + A (0) + 3¢)

i>j
Xexp(i(Apg(—0) + A (0) +2¢))
<K(9,j,e)exp(n(Ax(0) + ¢)),
where K(0, j, &) is some constant depending on 6, j and & but not on n. To
see that, notice that in the last inequality above we use the fact that the first

sum is finite and the infinite geometric series in the second sum converges to
a constant independent of n. From (33) we obtain

1
(34) limsup —logE[exp( — 6 max [Sfi_l o — S4, n])] <AL(0) + &.
now I i>—-1 ’ ’
Since this is true for all small enough & > 0, the result follows. O
THEOREM 4.3. The tail of the Palm distribution of the steady-state queue

length, L, in a FCFS G/G /1 queue with arrivals and service times satisfying
Assumption B is characterized by

1
(35) lim —logP[L > n] = A (6%),
n—->x N
where 0* < 0 is the smallest root of the equation

(36) AZ(0) + Ag(—8) = 0.

ProoOF. Due to stationarity, it suffices to characterize the tail distribution
of L,. For an upper bound, define

(37) G, & max [SE,_, , -S4, .].

Tz
Using the Markov inequality and (29), we obtain
P[L,>n] =P[G, = 0] <E[e %]
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for 6 < 0. Taking the limit as n — o, using Lemma 4.2, and optimizing over 6
to get the best bound, we obtain

1
(38) limsup —logP[L, > n] < inf [AL(0)] = A, (0%),
now N {0IAZ(0)+Ag(—6)<0}

where the last equality is justified by Figure 2.
For a lower bound, set i = 6n for § > 0 (6n is assumed integer), and notice
that

P[L, ,>n]=P[G,>0]
> SupP[Sljan,l’O_SA >O].

—én,n =
6>0
The limiting log-moment generating function of S%;, | ; — S84, | is
1

lim —logE[exp(—60(S%;, 1.0 = S%...))| = 8As(—0) + (1 + 8)A;(0)

n—w N ’ ’
and by using Assumption B, we obtain

1
liminf —logP[ L, > n] > sup(— sup[—8(AL(0) + Ag(—0)) — A,;(e)])
n== I 520 0

(39 sup inf[5(AZ(6) + Ag(=6)) + Ax(6)]

= inf AL(0
{a\Ag(0)+AB(70)<0}[ A( )]

= A4(0%),

where the second equality follows by dualizing the constraint A;(6) +
Ag(—0) < 0. The lower bound in (39) along with (38) proves (35). O

REMARK. Intuitively, Theorem 4.3 asserts that for large enough n, we can
state

40 P[L > n] ~ exp(nAy(6%))
(40) where 6* < 0 such that A, (6*) + Ag(—6*) = 0.

5. The departure process of a G / GI /1 queue. In this section we
obtain a LDP for the process resulting from the passing-through-a-queue
operation of our network model. That is, we establish a LDP for the steady-
state departure process of a G/GI/1 queue, as seen by a typical departing
customer. We denote by D;, i € Z, the interdeparture time of the ith cus-
tomer [the interval between the departure epochs of the (i — 1)st and the
ith customer]. As in Section 3, we assume that the interarrival process {A,,
i € 7} is stationary and A; are possibly dependent random variables. The
service times B, are independent and identically distributed (iid) random
variables. The arrival and service processes are also assumed to satisfy
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Assumptions B and C. As explained in Section 3, we will prove that the
departure process satisfies Assumptions B and C when the arrival and
service processes do.

We denote by Sf , = X" | D,, the partial sum of the departure process. The
objective of this section is to prove a LDP for an. The interdeparture times
can be expressed as follows:

(41) D,=B; +1,

where B, denotes the service time of the ith customer and I; the idling period
of the system that ended with the arrival of the ith customer (I; = 0 if the
ith customer finds the system busy upon arrival). By using the Lindley
equation, one can obtain an expression for I, and after some algebra derive
an expression for Sf , in terms of the partial sums for the arrival and the
service process. Using such an expression, one can prove a LDP for Sf ae In
this paper we follow a more intuitive approach. We derive an upper bound
and a matching lower bound on P[Sf . < nal based on sample path argu-
ments. To that effect, we explicitly characterize the most likely path leading
to the large deviation of the departure process. The next proposition estab-
lishes an upper bound for the tail probability of an.

ProprosITION 5.1 (Upper bound). Under Assumption B, the partial sum
Sf . Of the departure process of a G/GI /1 queue under FCFS satisfies

1
(42) lim sup ;logP[an < na] < =A% (a),
where
(43) Ap (@) 2 Xy (a) + A (a)
and
(44) NM(a) 2 s [6a—As(6)].

{0IA5(0)+Ap(—0)<0}

Proor. Since D, > B, for all i we obtain

(45) SP. > SB .

1,n =

Consider some j < 1 and let (j — 1) be the customer who initializes the busy
period in which the Oth customer is served. Let ¢ be the time that the
(j — 1)st customer arrived, ¢’ the time that the (j — 1)st customer departed,
and t” the time that the nth customer departed. Figure 5 depicts the
situation. Note that

(46) B, ,+87, >8",.

Since the system is busy from the arrival of the (j — 1)st customer until the
departure of customer 0, we have

(47) SJ?O = SJ‘I?O‘
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cust. (j — 1) arrives cust. n arrives

cust. (j — 1) departs cust. n departs

Fic. 5. Deriving an upper bound on P[Sf" < na). Here, it is assumed that customer j — 1 finds
an empty queue.

Therefore, from (47) and (46) we have
(48) 8P, =87, =828/, —B; .1 =87 =8/, =S/,
Now, from (45) and (48) we obtain

P[SP, <na] < P[Sﬁn <na,3j<1st.S3 -SP,, < na]
(49)

=P[Sf, <na]P min[SA - SJB—I,O] < nal,

j<1 b0 -

since the service times B, are assumed to be independent and independent of

: : : A B _ B A
the arrival process. Since min;_,[S;", — S;>; ] = —max;_4[S",, - S/,],
we use Lemma 4.2 to obtain

1
(50) lim sup ;logE[exp(Gmin[S»An - jBl,O])} <AL(0),

Jj=<1 A

n— o

for 6 < 0, satisfying A;(6) + Agz(—0) < 0.
Using Markov’s inequality, we obtain

1
lim sup —log P
n

n—ow

: A B
mm[SJ-,n - Sj,l’o] < na

< <A4(6) — fa.
Jj=<1

Optimizing over 6 to obtain the tightest bound, we finally find

1
lim sup —logP[min[SJAn -SSP, 0] < na
I S ’
(51) "
< - sup [6a — AL(6)].
{0IA4(0)+ Ap(—6)<0}

Moreover, from Assumption B we can assert that

1
(52) lim sup ;logP[Sﬁn < na] < =A% (a).

Combining (52) and (51) along with (49), we obtain (42). O
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Obtaining a lower bound on the tail probability of Sf , is much more
involved. Assumption B, which provides a LDP for the partial sums S fn, S f "
of the interarrival and service times, is not sufficient. Assumption C,
which provides a LDP for the partial sum processes {Sf »J=1,...,n} and
{Sf pl<i<j< n}, is required. In the next proposition we derive a lower
bound on the tail probability of Sf , and we prove that the departure process
{SP;, i =1,..., n} satisfies Assumption C(i).

ProprosITION 5.2 (Lower bound). Under Assumptions B and C, the partial
sum Sf . Of the departure process of a G/GI/1 queue under FCFS satisfies

1
(53) liminf —logP[S?, < na| = — A% (a).
n-ox N !
Moreover, the departure process {Sf » 1 =1,..., n} satisfies Assumption CQ).

Proor. Fix e,,6,>0, { >0 and y,,y, = 0 such that y;, —y, =a and
y1/(1 + ¢) > a. Consider the set of all sample paths that satisfy

(54) SE,<(k+1-j)a+en, 1<j<k<n,
Y1
(55) ngn,ks(§n+k—1)1+§+aln, k=1,...,n
and
(56) SE, . 10=ny, — &n.

We state the following lemma, the proof of which is deferred until the end of
the current proof.

LEMmMA 5.3.  For any sample path that satisfies (54), (565) and (56), we have
(57) SP, <ka + 4en, k=1,...,n.
Therefore,
P[ka <ka +4en, k= 1,...,n]
>P[SP, < (k+1-j)a+en,1<j<k<n]

X sup sup P[ngn,ks(§n+k—1)(y1/(1+§))
{{=0ly;/Q1+{)=a} y1—y2=a
+en, k= 1,...,n]

(58) X P[S§{n,1’0 D nyo — 81n]

> sup sup exp{—n(A’*jg(a) +&')
{{=0ly;/(Q1+{)=a} y1—y2=a

—n[m;—( - g)(1 F)+ e

—n[A"};(y2 ; 81)§+ o

)
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where the last inequality holds for large n and is obtained by applying
Assumption C to the arrival and service processes. We can now choose
appropriate ¢’, ¢” and &” such that, for sufficiently large n and given ¢,, we
have

P[Sf?k <ka +4en, k= 1,...,n]

> sup sup exp{—n[A*B_(a) + A’ix_( : ! g)(l +¢)

(59) (£>0ly /(L4 )= a) ¥1—yz=a

NE
+ A% (?2)§+ &y

|

We now argue that the constraint y,/(1 + {) > a can be removed from the
optimization in (59). Consider a choice of y, =3j,, y, =39, and { = { such
that $, — y, = a and y,/(1 + {) < a. Let us now consider a feasible solution
of the above optimization problem with { = 0, y, = a, y, = 0, and cost which
is approximately exp(—n[ A% (a) + A% (@)D (omitting the & terms). Now note
that since 7,/(1 + {) < a and A% (-) nonincreasing, we have

exp{—n[ = (a) + A"j[(a)]}
> exp{ -
This shows that there exist choices of y,, y, and ¢ satisfying y,/(1 + {) > a
that have a better exponent. Hence, the constraint y,/(1 + ¢)>a can
indeed be removed.
We now use convex analysis to prove that A% (a) as defined in (44) is
equal to

Y1
1+¢

B (@) + Ay

o 1)

[ I [ Y2
“sup s (o[ ) - o (—)}

(=0 ylyz—a{ 1+¢ ¢
thus proving that the lower bound in (59) (taking &, — 0) matches the up-
per bound obtained in Proposition 5.1. Dualizing the constraint A;(6) +
Ag(—6) < 0 we obtain [note that A;(0) + Az(—6) < 0 if and only if AZ(6)
+ A3(—6) < 0]

- A% (a) = — sup [6a — AL(6)]
{0IA5(0)+Ap(—6)<0}
B {HIA;(G):I/i(—eko)[_aa * AZ(B)]
= —sup[6a — (1+ {)A5(0) — LAL(—0
(©0) sup{— sup[0a — (1+ £)AZ(0) = A (~0)]
= sup{— inf |(1+ g)A*( ) + gA**(yz)}}
>0 Y17 Yz2=a { §

= sup sup [—(1 + {)Aﬂi\(

(=20 y1—yo=a

-2
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To see that, note that for convex functions f, f;, f, and for a scalar ¢ > 0, it
holds that (¢f)*(x*) = cf*(x*/c), and (f; + f)*(x*) = inf, ., o Lf7(2) +
fF(x3)] (see [29], Theorem 16.1, Theorem 16.4).

In summary, we have verified that Assumption C(@) holds for the departure
process; that is,

(61) P[SP, <ia+4en,i=1,...,n] = exp(—n(A%y (a) + &)).

By taking &;,&, > 0 and since P[S?, < na] is clearly larger than the

1,n =

probability in (61), (53) is verified for the same region. O

Proor oF LEMMA 5.3. Note that for 2 =1,...,n from (565) and (56) we
obtain

Y1
Sé{n’k < ({n + k- 1)m + &n

(62) < (ny, — &n) + ((k — 1)a + 2&n)

<(k-1a+2en+88, ,,,

where the second inequality holds because the two sides are equal at k& =
n + 1 and because y,/(1 + {) > a. The third inequality is justified by (54)
and (56).

Let ¢ be the arrival time of customer —¢n — 1. Then customer % arrives at
time ¢ + S é{n,k' We distinguish two cases. In case 1, customer % finds an
empty system upon arrival. Then it departs at time ¢’ where

(63) t'=t+84,,+B,<ka+3en+t+8%, |,

by using (54) and (62). Let #” the departure time of the Oth customer. Clearly,
t” >t+ 8%, |, which along with (63) implies that ¢’ — ¢" < ka + 3&;n <
ka + 4&,n. However, according to their definition, ¢ — " = S7,.

In case 2, customer %k finds a busy system upon arrival, in which case
D, = B,. Then, if this is also true for all i =1,...,k — 1, we have ka =
S, <ka+ en <ka+ 4en. If not, let i €[1,...,k — 1] be the latest cus-
tomer that finds the system empty (i.e., the one with maximum index). To
bound Sf ;» we use the argument of case 1. Thus,

SPy =80, +8P ., =8P, +8P,,<ia+3en+ (k—i)a+en
= ka + 4&¢n,

where we have used (54) in the last inequality. O

The proof of the above theorem indicates a most likely path along which
the large deviation of an occurs (in the sense that its probability is compa-
rable to P[S, < nal). Let {*, y} and y§ be a solution of the optimization
problem in (59). The large deviation in ST, occurs by the following:

1. Maintaining an empirical arrival rate of at least (1 + ¢*)/y¥ from the
arrival of customer —(*n — 1, until the departure of the nth customer,
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and an empirical service rate of at most (*/y% from the arrival of
customer —¢*n — 1, until the departure of the Oth customer.

2. Maintaining an empirical service rate of at least 1/a from the departure of
the Oth customer until the departure of the nth customer.

Figure 6 illustrates the situation.
Combining Propositions 5.1 and 5.2, we obtain the following theorem.

THEOREM 5.4. Under Assumptions B and C, the partial sum Sf . Of the
departure process of a G/GI /1 queue under FCFS satisfies

1
(64) lim —logP[S?, < na] = - A% (a),

n—o° N
where
Ap (a) = Ay (a) + A} (a)
and
N(@)= s [6a-Ax(8)].
{0IAL(0)+ A g(—0)<0}

Throughout this section we have assumed that the service times B, are iid.
A close examination of the proofs of Propositions 5.1 and 5.2 suggests that a
weaker condition is sufficient for our purposes. Namely, we only need the
random variables S }?O and an to be approximately independent for every
J <0, as n — . A mixing condition of the type E[exp(6S7,)exp(6S{,)] =
E[exp(6S 7 E[exp(6S{ )lexp(ne(n)) for every j <0 and 6, where
lim e(n) = 0, is sufficient.

n— oo

- = = - arrival rate

service rate

rate
L e
a
) S B
v
Y2
g 4 4
cust. —(*n — 1 arrives cust. 0 departs cust. n departs

F1G. 6. A most likely path for large deviations of Sf -
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An alternative expression for A% (-) which is a consequence of the defining
equation (43) is

Np (a) = Ay (@) + At (a)

(65) Ny (a) + Ay (a), ifa>A,(6%)),
T\ Ay (@) + 0%a — AZ(6%), ifa < Ay(6%),

where 6* is defined in the statement of Theorem 4.1 and A}'(x) denotes the
derivative of A;(-) evaluated at x. To see that, consult Figure 2 and notice
that the first branch of (65) corresponds to the region of a where the
constraint A;(6) + Az(—0) < 0 is not tight and the second branch to the
region of a where this constraint is tight.

We now argue that the passing-through-a-queue operation preserves As-
sumption B. Proposition 5.2 establishes that it preserves Assumption C(@).
Notice first that we have proved a one-sided LDP for the departure process
with large deviations rate function expressed as a function of the large
deviations rate function of the arrival and service processes. Using Varadhan’s
integral lemma, the limiting log-moment generating function can be obtained
as the convex dual of the large deviations rate function. (See [15], Section 4.3.
That is, we let ¢(x) = 0x and use a one-sided version of Varadhan’s lemma,
where the left side of A(8), that is, for 8 < 0, can be obtained as the convex
dual of A*(a), for a less than the mean.)

Moreover, by (41) we have

D, <B;,+A,

which implies that D; has moments of all orders since B; and A; do. Finally,
we establish that A% () is strictly convex in the intersection of the interior of
its domain and the interval (—oo, E[ D,]). To this end we will use the expres-
sion in (65). By a stability argument E[ D,] = E[ A,], thus the function in the
upper branch of (65) is strictly convex in the interval (A'(6%), E[ D;] due to
the strict convexity of A% (). Let now 6; be such that A}'(6;) = Agz(6,).
Notice that (see Figure 2)

AL (0%) < AL'(6,) = Ap(6,) <E[B,],

which implies that in the lower branch of (65) we have a < E[ B,]. Hence, the
strict convexity of A*; (a) for a < E[ B,] suffices to guarantee the convexity of
the function in the lower branch of (65).

To obtain the limiting log-moment generating function for the partial sum
of the departure process, we take the convex dual of A%, () in (65). Using the
duality correspondences proved in [29], Section 16, we obtain the following
corollary.
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COROLLARY 5.5. Under Assumptions B and C we have

inf91+92:9{A1_3(91) +AL(0y)), 0= 0,

66 AG(0) = R
(66) »(6) A5(6—6%) + A5 (6%), ifo<é,
where

H A d 5 — % —
(67) 02 [Ny (@) + 85 (@)]uc s

It is instructive to determine the fluctuations of the queue length that lead
to a large deviation in the departure process. Let {* solve the optimization
problem in (59). Let ¢ be the arrival time of customer —¢*n — 1. The Oth
customer arrives at ¢ + ng*n’o and departs no earlier than ¢ + S%,., | .
Thus, for the waiting time of customer 0 holds

(68) Wo=t+SE . 1 o—t—84., =88 10—S%02W,.
A close examination of the proofs of Propositions 5.1 and 5.2 suggests that
A% (+) is the large deviations rate function of the process

(69) {S% s =88 10, k=1,...,n)={S{, - W,,k=1,...,n}.

From the above discussion and (65), we conclude that, depending on the
value of a, we can distinguish two cases for the large deviation in the
departure process to occur.

1. a = A,'(6%): in this region, A% (a) = A% (a) and from (69) it is clear that
the most likely way for the large deviation in the departure process to
occur is the Oth customer to incur O(1) waiting time, which implies that it
finds a queue length of O(1) upon arrival.

2. a < AJ'(0*): in this region, A% (a) = 6*a — A;(6*) and from (69) it is
clear that the most likely way for the large deviation in the departure
process to occur is the Oth customer to incur a large waiting time (recall
from Theorem 4.1 that the large deviations rate function for the waiting
time is linear with slope 6%).

Hence, also taking into account Figure 6, we can infer for the queue length
the cases depicted in Figure 7. In region 2 and in contrast with region 1, the
queue builds up to lead to a large deviation in the departure process.

5.1. Special cases. In this section we apply Theorem 5.4 to two special
cases. Namely, we study the departure process, in the large deviations
regime, of an M /M /1 queue and a G/D /1 queue.

The departure process of a G/D/1 queue. We assume, as in Section 5,
that the interarrival times process {A;, i € Z} is stationary and A; are
possibly dependent random variables. The service times B, are iid random
variables and equal to ¢ w.p.1. Interarrival and service times are assumed
independent.
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Region 1: a > A;'(e‘) Region 2: a < A;'(e')
queue length queue length
w
a b s N 4 4
cust. 0 departs cust. n departs cust. 0 departs  cust. n departs

cust. 0 arrives cust. —C*n — 1 arrives

FiG. 7. Two cases for the queue length: In Region 1, the Oth customer finds an O(1) queue upon
arrival and until the nth customer departs the queue stays at an O(1) level. In Region 2, the
queue first builds up (see also the arrival and service rates in Figure 6) and then it is depleted,
resulting in the large deviation in the departure process.

It is straightforward that A z(6) = c6. Therefore a simple calculation yields

. _ |+, ifa<ec,
(70) 5 (@) {0, if a > c.
Moreover,
(71) N (a) = sup [0a — A, (0)] = 6a — A;(6),

(81A3(8)—cH<0)
where 6 is the optimizing 6. Note that by taking a > ¢, we have Ny (@) =
A% (a) (see Figure 8). Therefore, using (43),

_ + oo, ifa <ec,
(72) Ny (a) = {Aa(a), ifa>c.

This is exactly the result obtained in [16] for a discrete time model. Taking
the convex dual of the above we obtain

(73) Ap(0) = in{gz[/\Z(el) +8%(0,1[c, )],

where §%(0,| [¢,»)) is the support function of the set [c, ) and is defined as
o, if6>0,
8*(01[c,»)) £ sup{0x|x €[c,»)} ={00, ;fesO.

The departure process of an M/M /1 queue. We assume that the arrival
process is Poisson with rate A and the service times are iid, distributed
according to an exponential distribution with parameter wu.



LARGE DEVIATIONS IN NETWORKS OF G/G/1 QUEUES 1051

AB(8) = cf
AZ(0) —cf

\

Fic. 8. Notice that at 0% we have A;'(6%) < c. Thus, when a > ¢, the optimizer 0 satisfies
0 > 0 > 0%, which implies N} (a) = A% (a).

It is straightforward to calculate
A K
(74) An(0) = log| 25 ) ap(0) = Tog ),
A—0 w— 0

where A,(6) denotes the log-moment generating function of the arrival
process. Now, notice that

A
(75) AA(9)+AB(—0)=O Aad— =1 e 6=0,

0=XA—p,

which implies that 6* = A — u, where 6* is defined in the statement of
Theorem 4.1. Moreover, notice that

. A—0F A 1
Ny(6%) = A (/\_9*)2 =;'

Thus, using (65), we obtain for @ > 1/pu,
(76) Ap (a) = Ny (a) + Ay (a) = Ay (a),

since by definition A% (a) = 0 for a > 1/u. Using the second branch of (65),
we obtain for a < 1/pu,

(77) D (@) = A (a) +a(A — n) —log(A/w).
But
N (a) = sup[0a — A5(6)] = ap — 1 log(ap),



1052 D. BERTSIMAS, 1. C. PASCHALIDIS AND J. N. TSITSIKLIS

since, by differentiating, the optimal 6 is found equal to (au — 1)/a. Thus,
from (77), for a < 1/u,

(78) D (@) =aAr —1—log(ar) = A% (a).
Summarizing (76) and (78), we finally obtain
(79) Ap (a) = Ay (a).

This result is in accordance with Burke’s output theorem, which states that
the departure process of an M /M /1 queue is Poisson with rate A (see [25]).

6. Superposition of independent streams. In this section we treat
the superposition operation of our network model. In particular, we derive a
LDP for the process resulting from the superposition of independent arrival
streams and we show that the superposition preserves Assumptions B and
C(@). However, as will become clear in the sequel, in order to derive this LDP
we need a result that connects, in the large deviations regime, the Palm
distribution of the arrival process (i.e., as it is seen by a random customer)
with its stationary distribution as seen at a random time. This result is
presented in Section 6.1 and could be of independent interest.

Consider two independent arrival streams. By A} (resp. A?), i € Z, we
denote the interarrival time of the ith customer in stream 1 (resp. 2). We
assume that the processes { A}, A?, i € 7} are stationary and mutually inde-
pendent. However, the interarrival times in each stream may be dependent.
We impose Assumptions B and C(@) on the arrival process of each stream. We
denote by A2 i € Z, the interarrival times of the process resulting from the
superposition. It should be noted that in order to derive the LDP for the
superposition, Assumption C is not used.

The next theorem establishes a LDP for the partial sum Sfl,’lz of the
aggregate process, resulting from the superposition of streams 1 and 2.

THEOREM 6.1. Under Assumption B, the partial sum Sf}l,f of the aggregate

process, resulting from the superposition of the independent processes A}, A%,
i € Z, satisfies

1 1,2
lim —logP[S{)" <na| = — inf [8,N%u(a/8,) + 8,N%: (a/5,)]
(80) n—->o N 51+52=1
81,8,>0
2 —A”}j,z(a).

Proor. Consult Figure 9. Consider the partial sum Sfl,;z and let H,
(resp. H,) denote the event that the first customer of the aggregate process
originates from stream 1 (resp. 2). We first obtain an upper bound on
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Al
Sl,k

tbz

N

. .{n._
kS
Y
1

na

F1c. 9. Superposition of two independent streams.

P[Sfl,'l2 < nalH,]. Notice that

n
(81)  P[S{) <nalH,] < ¥ P[S{) < na|Pp[S{, , < nal.
k=1
Here, P[-] denotes the probability distribution seen by a random customer
(Palm distribution) and Pg[‘] denotes the probability distribution seen at a
random time. Due to the independence of the two arrival streams, an arrival
originating from stream 1 constitutes a random incidence in the arrival
process of stream 2, and therefore we are interested in the probability
distribution seen at a random time for events concerning stream 2.
In Section 6.1 it is shown that

1 2 1 2
(82) lim —logPR[Sf‘n < na] = lim —logP[Sf‘n < na] = — Ny (a).
n—o n ’ n—on ’

Therefore, from (81), letting £ = néd, 6 € [0, 1] (nd is assumed integer) and
taking large n, we obtain

P[S{ <nalH,| < ¥ P[S{,; <na|P[S{ 5 < nal
§€[0,1]

<n sup P[Sfflns < na]PR[Sf‘,zn(l_a) < na],
s<(0,1]

which implies

1 1,2
lim sup —logP[SA' < nalHl]
n

1,n =
(83) < - inf [N (a/8) + (1= 8) N (a/(1 - 5))]
= jgle[ﬁlf\ﬁ?(a/&) + 8,42 (a/d)].

81, 8>0
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To obtain a lower bound notice that

P[S{) <nalH,| = sup P[S{),,; <na|Py[S,, ;) < ndl
§€[0,1]

which implies

1 1
lim inf —log P S{"" < nal H, |
. :

o o _ x5 —
(84) = Selgf:l][‘s/\,a (a/8) + (1= 8)Np(a/(1 - 8))]
= — inf [8,A%i(a/8,) + 8,A%:(a/8,)].
81+ 8,=1
81,8,>0

Final};;, observe that because of symmetry, (83) and (84) also hold for
P[Sf » < nalH,]. This along with the fact that
P[S{) < na| = P[S{) < na|H,|P[H,] + P[S{) < na|H,|P[ H,]

1,n 1,n = 1,n =

proves the theorem. O

REMARK. Let 8f, 85 be a solution to the optimization problem in (80). It
can be seen that a most likely path to have a large deviation in the aggregate
process is to maintain an empirical arrival rate of 87/« in stream 1 and a
rate of 65 /a in stream 2. Then, since 8 + 65 = 1, the empirical rate of the
aggregate process is 1/a.

Using induction on the number of streams superimposed, we generalize
Theorem 6.1 to obtain the following corollary.

COROLLARY 6.2. Under Assumption B, the partial sum SlAln
aggregate process, resulting from the superposition of the m independent
processes A}, ..., A", i € Z, satisfies

i

1 1 m o
lim —logP[Sff,;”" < na] = - inf Y 8, N5 (a/8y,)
(85) " EN

1>
|
NG
E]
~~
Q
N

Using convex duality, by Varadhan’s integral lemma, one can obtain the
limiting log-moment generating function Aj1...»(-) of S{?I,'L'”'m as the convex
dual of its large deviations rate function A%...(-). The latter function is
convex by [29], Theorem 5.8.

We now proceed into proving that the aggregate process, resulting from
the superposition of independent streams which satisfy Assumptions B and
C() also satisfies the same assumptions. We have proved a one-sided LDP for
the superposition with large deviations rate function expressed in terms of
the large deviations rate functions of the superimposed processes. Using
Varadhan’s integral lemma, the limiting log-moment generating function can
be obtained as the convex dual of the large deviations rate function. In



LARGE DEVIATIONS IN NETWORKS OF G/G/1 QUEUES 1055

addition, the superposition process has moments of all orders since
Ab?2 <Al and Al}? < AZ

Finally, we show that A%i:(a) is strictly convex in the intersection of the
interior of its domain and the interval (—, E[ A}?]). To this end, first note
that for a strictly convex function f(:), and as long as a/8 # b/8’, we have

(86) 8f(a/8) +8'f(b/8") > (6+ 8" )f((a+b)/(5+05")).
Consider now the definition of A% :(a), which we rewrite as

Ais(a) = 6Einf [8A%1(a/8) + (1 — 8)A%:z(a/(1 - 8))].

’

Let 8 (resp. 8') be the minimizer in the optimization problem corresponding
to A%1:(a) [resp. A%1:(b)]. We then have

1 1

EA”ALZ(G) + 5/\312(1))

a 1_8/\*7 a ) o .- b
+ 2 + — NG| —

5) 2 4 (1 -5 2 4 (3'

1-29' b
+ N
2 1-20'

6+8" (a+b 2-6-58" a+b
“(55w) “lemam

I
|
>
=
—_——
I

\

2 o+ o' 2 2—-6—-20'
e[ (atb)/2 [((a+b)/2
= (N 7 + (1= {)Ay: T1-¢

) ((a+b)/2 ((a+b)/2

f Ny | ———— 1 - )N | ——————

Zz;el[%,l][g 4 { )+( 2 1-¢ ”
gy a+b
- Al,Z 2

The first inequality above is due to (86) and is strict unless a/8 = b/8’ and
a/(1 —8)=5b/(1— §'), which implies that 6 = 6’ and a = b. Thus, as long
as a # b, we have established the strict convexity of A% .(-).

Theorem 6.3 establishes that the process resulting from the superposition
satisfies Assumption C(1).

THEOREM 6.3. Assume that the m independent processes Al,..., A", i € Z,
satisfy Assumption CQ1). The aggregate process resulting from their superposi-
tion also satisfies Assumption CQ).

Proor. It suffices to prove the result for m = 2 since by using induction
we can prove it for any m. We need to prove that for every ¢,, g5, @ > 0, there
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exists Mg such that for all n > My,
(87)  exp(—n(Aiz(a) + &) < P[Sﬁlj'2 —ja<éemn,j= 1,...,n].

Following the steps of the proof of Theorem 6.1, we consider the scenario that
a fraction & of customers of the aggregate process originates from the Al
process. Again, H, denotes the event that customer 1 of the aggregate process
originates from the A! process. We have

P[S{Q’T]YZ _']a = 81n7j = 15---, n|H1]

(88) > sup [P[Sf‘,lﬁ —ja<en,j= 1,...,n]
5<l0, 1]

XPy[ St s —Ja < en, j=1,...,n]|.
Using Assumption C(@) for the Al stream, we obtain for large enough n,
(89) P[S{"Ij(S —ja<en,j= 1,...,n] > exp(—nd(Nyi(a/8) + ¢')).
In Section 6.1 (Lemma 6.6), it is shown that for large enough n,
PR[S{“’ZJO_S) —ja<en,j= 1,...,n]
> exp(—n(1l— 8)(A%:(a/(1-8)) +&")).

To obtain (87) it suffices to choose appropriate £’ and &” such that for large
enough n and given ¢,,

(90)

exp(—naei[r(l)f,'I][S(A’ZT(a/S) )+ (1= 8)(X53 (a/(1-8)) + )]

> exp(—n(Nyz(a) + &,)). O

6.1. Connection between Palm and stationary distributions in the large
deviations regime. In this subsection we show that the stationary and the
Palm distribution of the same point process have the same large deviations
behavior.

Consider a stationary arrival process satisfying Assumption B with the
interarrivals A;, i € Z. We have

(91) lim %logP[Sﬁn < na] = — Ny (a).
n—

As explained in the proof of Theorem 6.1, P[-] denotes the probability
distribution seen by a random customer [customer 1 in the case of (91)].
Consider now a random time (say ¢ = 0) and assume that customer 0 is the
first customer to arrive after ¢ = 0. Let U, V denote the duration and the age,
respectively, of A,. The situation is depicted in Figure 10. By P[] we denote
the probability distribution seen at the random time ¢ =0 and we are
interested in obtaining a LDP for Sf}n under Pg[-]. The next theorem estab-
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t=0

U S,

Fi1G. 10. The arrival process seen at a random time.

lishes the result. Moreover, we are also interested in obtaining a LDP result
for the partial sum process {Sf ;»J=1,...,n} under Pg[-] when Assumption
C() is satisfied. The latter result is obtained in Lemma 6.6.

THEOREM 6.4. Under Assumption B we have

1
(92) lim —logP;[S#, < na] = =A% (a).

n—->» N

Proor. Let Eg[-] denote the expectation with respect to Py[-]. We use a
standard procedure to relate Eg[-] to E[-] (see [31]). Consider an arbitrary
function f(-) of an. It can be shown ([31], Chapter 7) that

Ex[f(S{,) 1 V=0v,U=u| =E[£(S{,) 14, =u].
Thus following the steps in [31], Chapter 7,

1 e
Ex[7(5¢,)] = mL=OfU=OE[f(S{fn) | Ay = u] dvdF, (u)
(93) _ 4o A
e st o]
= E[4,f(S{.)],

where we have assumed without loss of generality that E[ A;] = 1, and we
have used the notation F, (-) for the distribution function of A,.

To obtain an upper bound on ER[exp(Han)], we set f(-) =e? and use
Holder’s inequality. Namely,

Ep[exp(6S:,)] = E[ A, exp(6S{,)]
(94) = E[(AY?) exp((6/9)5¢,q)]
< E[A})/P]pE[exp((G/q)Sﬁn)]q, p+tq=1,
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which for 6 < 0 implies

1 logE| AY/? 0
lim sup —logER[exp(OSf‘)n)] < lim supM + qAZ(g)
(95) iy
=qA (|
q

since the first term of the right-hand side vanishes. Taking the limit now as
g — 1 in the above equation, we obtain for 6 < 0,

1
(96) lim sup ;logER[exp(HSﬁn)] < AL(0).

n— o

Therefore, using (96) and the Markov inequality, we obtain

1
(97) lim sup ;logPR[SA < na] < —Ay (a).

1,n =
n—w

To obtain now a lower bound on Pg[S{, < nal, set f(S{,) = 1{S{*, < na}
in (93), where 1{:} denotes the indicator function. We have

Py[S#, < na| = fqu[Sﬁn < nalA, = u] dF, (u)

1,n =
0

1 oo
— [ P[S{, <nalA, = u] dF, (u)

98
(98) il

v

1 N 1
?P S{,<na, Ay > 2zl

We need the following lemma, the proof of which is deferred until the end of
the current proof.

LEMMA 6.5. Under Assumption B and for every positive & and a, there

exists N, . such that for every n > N, , we have
1
(99) P|S{, <na, A, > —2} > exp(—n(Ay (a) + £)).
’ n

We now use Lemma 6.5 in (98) and take ¢ — 0 to obtain

1
liminf —log Pr[Sf, < na] = — A% (a). ]

1,n =
n—->» N

Proor oF LEMMA 6.5. Equation (91) implies that for every positive ¢’ and
a there exists N, ,. such that for every n > N _,,
exp(—n(A%y (a) + ¢')) < P[S{, < nal

100
(100) < exp(—n(Ny (a) — &')).
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Fix now a, ¢’ > 0, and let 6 = &’. We have

1
P[Sf"n <na, Ay = —}

(101)

2
1 nod 1 . .
=— Y P[SA,,,,<na, A;> —| (by stationarity)
né ;7 ’ n
1 [ A 1 ,
> %P die[1,nd]st. S, ,<na, A > 2 (union bound)
11 , 1
> %P-Sl,n(1+§) < na, 3 1 € [1, n8] S.t. At > ?
| nd né
= %P S{ na+s) < na, i§1Ai = 2
1 1 o
A A
> %P[Sl,n(hﬂi) < na] — 5P[Sl,n6 < ;

(because P[A N B] > P[ A] — P[B°])

! 1+ 8)| A% ‘ ! 1PSA °
Zﬁexp(—n( + )( A(m)—i_é‘))_ﬁ 1,nBS; s

where the last inequality holds for all n > N’ ;. ;) .. Note that we have
used the notation B¢ to denote the complement of B. We next show that for
n — « (keeping a, §, &' fixed) we can neglect the second term in the right-hand
side of (101). To see that, note that for all B positive there exists N, ,. such
that for all n > N, ., it holds

0
(102) P[S{‘fna < ;} <P[S{,; <ndp| <exp(—n(Ay (B) —&')).

By taking B, 6 and &’ small enough and n > N; .., we can achieve

a
103 A% —&' > (1+8)(AYy )+ ’).
(103) T8 o> (L ) (M () e
Here we are using the fact that for sufficiently small g,

Ny (B) > ANy (a/(1+9))

since A% (B8) is monotonically increasing as 8 | 0.

Observe now that the value of 8 which satisfies (103) is a function of a, §
and &'. Therefore, using (102), there exists N, ; . suchthatforalln > N, ; ..

we have

QM)—7%PFMMSE]Z——Lfmtmﬂ+6wﬁ[hia)+d”.

n 2né
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Combining (104) and (101), we conclude that there exists Na’ 5, such that for
all n > N, 5 ., it holds

1 1 a
(105) P[Sf‘n <na, Ay = —} > ﬂexp(—n(l + 8)(/\1‘4( ) + s’)).
’ n

2
n
We now choose &’ such that (recall 6 = ¢’)
1
,exp(—n(l + s')(Aﬂ}( o ,) + s’)) > exp(—n(Ay (a) + £)),
£

2ne
for all n > N, ,. This can be done due to the lower semicontinuity of A% (-)
(see the argument in proof of Lemma 2.2.5 in [15]). O

LEMMA 6.6. Under Assumption B and C(i), we have that for every &, &5,
a > 0 there exists N, , . such that for alln > N,

(106) PR[SIAJ <ja+en,j= 1,...,n] > exp(—n(Ay (a) + &,)).

Proor. Following the proof of the lower bound in Theorem 6.4 [using the
argument used to derive (98) but applied to the sample path S;* ;<Jja+ &n,
j=1,...,n], we have

PR[Sﬁjsja—kaln,j: 1,...,n]

(107)

%

1 1
2FP[Sﬁjﬁja“‘Eln,J:1a--"naA() ?]

Now, as in the proof of Lemma 6.5, fixing a, ¢, &, > 0, we obtain

1
P[Sﬁjsja—kaln,j: 1,...,n, Ay = ?}
1 1

né
— YL PISt, i <jaten,j=1,...,n A >
né ;= ’

n

\

1
_8P[3 ke[1,n8]st.8{y, ,\, <Jja+ &n,
n :

“3
S
>
\%

) 1
]=1,... ?
(108)

%

1
_SP[Vk €[1,n8] S, 1k <Ja + &n,
" ,

1
j=1,...,n,3ke[1,nd]st. A, > —2}
n

%

1
_SP[Vk e[1,n8] S, jsr=<Jjaten,j= 1,...,n]
n .

1PSA °
- < — .
nd Lno = p
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Now notice that
P[Vk €[1,n8] S{ ) jih<ja+e&n,j= 1,...,n]
=P[VEke[1,n8] 88, - Sty <(j+k)a—ka+en,
j=1,...,n]

en
(109) ZP[Sfj+ks (j+k)a+ 1T,Vke [1,n8],7=1,...,n,

N en
Sl,k > ka — T,Vk S [1,716]]

A . 81"’ .
P|S{<(j+k)a+ T,Vke [1,nd8],j=1,...,n

%

exp(—n(1+ 8)(Ay (a) + ¢')),

where the last equality is obtained by choosing sufficiently small § such that
néa — e;n/2 < 0 which implies that P[ka >ka —en/2,V ke[l,nd]] =
1. The last inequality holds, due to Assumption C@), for all n > N, , ... Now,

as in Lemma 6.5, it can be shown that there exists N, ; .. such that for all
n >N/ ; ., it holds

1 o 1
(110) - %P[Sl,na < ;} > —%exp(—n(l + 6)(/\#:4‘_(61) + 8,)).

Combining (107), (108), (109) and (110), we conclude that there exists
N, such that forall n > N, , ; .,

a,ep,0,¢e’ a, €1,
Py[Si <ja +en,j=1,...,n]
(111)

2ngaexp(—n(l + 8)(Ny (a) + &)).

We now choose &' and if necessary 8 smaller than the one chosen above for
the purposes of (109), such that

!

1
mexp(—n(l + 8)(Ny (a) + &) = exp(—n(Ay (a) + &),

forn>N,, ..0O

7. Deterministic splitting of a stream. In this section we treat the
splitting operation of our network model. In particular, we derive a LDP for
the process resulting from the splitting of a stream to a number of streams
and we show that splitting preserves Assumptions B and C(@).

Consider a stream with stationary interarrival times A,, i € Z, which is
split to two substreams. In particular, a fraction p of arrivals of the “master”
stream is directed to substream 1 and a fraction 1 — p to substream 2.
Theorem 7.1 provides a LDP for stream 1. Since stream 1 is chosen arbitrar-
ily, by relabeling the streams one can obtain a LDP for stream 2. The more
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general case in which the master stream is split to more than two substreams
can be handled by successive splitting to two substreams. Let us denote by
Al, A%, i € 7, the interarrival times of substreams 1, 2, respectively. Here,
A%() and A ,(-) denote the large deviations rate function and the limiting
log-moment generating function of the master stream.

THEOREM 7.1. Under Assumption B, the partial sum Sf‘ln of substream 1
satisfies

1 ) 1
(112) lim —logP[Sﬁn < na] = - ;A";\_(ap).

n->» N

Proor. To have n arrivals in substream 1 we need n/p arrivals of the
master stream. Since we are interested in large values of n we will ignore
integrality issues (i.e., we have |n/p]/n — 1/p, as n — ). Thus,

P[Sﬁln < na] = P[Sf"n/p < na] < exp(—(n/p)(Ny (ap) — ¢)).

Similarly for the lower bound. O

We now argue that splitting preserves Assumptions B and C(). It is clear
that the process resulting from splitting satisfies Assumption B, since we
have proved a one-sided LDP for this process with large deviations rate
function expressed as a function of the large deviations rate function of the
master process. Moreover, the process A! has moments of all orders since A
has, and (1/p)A* (ap) is strictly convex in (-, E[ A,]/p) since A% (a) is in
the interval (—o,E[ A.]). The next theorem establishes that the process
resulting from splitting satisfies Assumption C(@).

THEOREM 7.2. Assume that the process {4A,;, i € 7}, satisfies Assumption B
and C(@). Then the Al process satisfies Assumption C(@).

PrOOF. The proof is very similar to the proof of Theorem 7.1:

P[St —ja<en,j=1,..,n]

v

P[S;,, —Jja<emn,j=1,..,n]
exp(—(n/p)(Ny (ap) + ¢)),

for n large enough and all &, £ > 0 by using Assumption C(@) for the master
process. O

%

8. An example: queues in tandem. In this section we apply the results
derived so far to obtain LDP’s for two G/GI /1 queues in tandem. Moreover,
we work out a numerical example in order to get a qualitative understanding
of the results. Large deviations results for tandem queues with renewal
arrivals and exponential servers have been reported in [21].

Consider two G/GI/1 queues in tandem. Let A;, i € Z, denote the inter-

arrival times in the first queue and B}, B2, i € Z, the service times in the

l
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first and second queue, respectively. These processes are mutually indepen-
dent, stationary and satisfy Assumptions B and C.

According to Corollary 5.5, the limiting log-moment generating function of
the departure process from the first queue is given by

inf_, _,{Az(x) + A (y)), if6>0,
(113) Ap(6) = cy—oiApi(x) + AL ()} i
Agi(6— 0%) + Ay(07%), ifg<a@,

where

~ . d _ _
02 %[N}y(a) + A5 (@)]azayop-

Applying Theorem 4.1, we obtain that the tail probability of the stationary
waiting time, W,, seen by a customer in the second queue, is characterized by

(114) P[W, > U] ~ exp(65U),

where U is large enough and 65 < 0 is the smallest root of the equation
Ap(0) + Age(—0) = 0. Since for 6 < 0 the equation Ap(0) + Ag:(—0) =0
has exactly the same roots as the equation A;(6) + Aj:(—6) = 0, it turns
out that 65 is the smallest root of the equation

inf {Agzi(x) +Ax(y)) + Ahe(—0)=0 ifo>4,

x+y=20
Api(6— 6%) + A (0%) + Aje(—60) =0 if6< 6.

It is instructive to characterize a most likely path along which the LDP for
the waiting time occurs in the second queue. The remarks after the proof of
Theorem 4.1, suggest that a most likely path for the waiting time in the
second queue is characterized by

P[W¢ > (i + 1)a]
(115) ~ sup P[S? < (i+1)x|P[SE , ;= (i+1)x,],
Xo—X1=0 ' ’
where W denotes the waiting time of the Oth customer in the second queue
and i is large enough. Setting U = (i + 1)a, we obtain for large enough U,

1
(116) P[W¢=U| ~ exp{—Uinf — inf  [A% (%) + A@é(%)]}.
a>0 a x9—x1=a

Let (a*, x¥, x%) be an optimal solution of the optimization problem appearing
in (116). Equation (116) suggests that the waiting time in the second queue
builds up by maintaining an empirical rate of 1/x§ for the process D
(departure from first queue) and an empirical service rate (process B2) of
1/x%.

We use the remarks after Theorem 5.4 to characterize a most likely path
for the process D to maintain an empirical rate of 1/x*. Let i* be defined by
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the equation i* + 1 = U/a*. From (115), it can be seen that it suffices to
characterize a most likely path along which the event {S?,. ; < i* + 1)x%}}
occurs. As shown in Theorem 5.4, this most likely path is characterized by

P[S?. o < (i* + 1)af]

* _ w21 oAkt &
any ~ |t D s =1 o (7] - o 2]

—(i* + 1)A*B:(a)}.

Let (y%, y%,¢*) be the solution of the optimization problem appearing in
(117). We depict a most likely path in Figure 11.

We now proceed with a numerical example. We choose the arrival process
A to be a two-state Markov modulated deterministic process. More precisely,
we consider a two-state Markov chain with transition probability matrix

_[08 02
(118) P‘[os 0.7]’

and we let the interarrival times be equal to 1/A; = 1/5 w.p.1 when the
chain is at state 1, and equal to 1/A, = 1/10 w.p.1 when the chain is at state
2. The steady-state probability vector for this Markov chain is [7; 7,] =

— — service rate in second queue
= = = - arrival rate in first queue
service rate in first queue (arrival in second)

D S |

| T

T *®, LY

busy p.eriod of cust. (—i* —1)  cyst. (=i* — 1) departs from  cust. 0 departs from first
starts in first queue first queue (arrives at second) queue (arrives at second)

Fic. 11. A most likely path for the waiting time in the second queue.
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[0.6 0.4] and thus the mean interarrival is (1/A))m; + (1/Ay)7, = 0.16.
We chose a deterministic server for both queues 1 and 2 with service times
¢ = 0.13.

Theorem 3.1.2 in [15] calculates the limiting log-moment generating func-
tion for the arrival process as the largest eigenvalue of the matrix P, =
[p;je®/%

7], which in our case is
_10.8e%% 0.2e/1°
(119) P=105e5 0me0m]

We performed several calculations using the software package Matlab. For
the tail probability of the waiting time in the first queue we found that
0F = —9.47. We calculated the large deviations rate functions A% (a) and
A% (a) for the arrival process and the departure process from the first queue,
respectively. The results appear in Figure 12. To calculate A% (a) we used
(72). It can be seen that the first queue has a smoothing effect on the arrival
process. In other words, the departure process deviates from its mean
with smaller probability than the arrival process does. We also found that
Ap(6) + Age(—6) is strictly negative for all 6 < 0, so that, as can be seen
from the proof of Theorem 4.1, we have 0 = —«, which means that a large

35 T T T

\ +00

\ — Ap (@)

\ e AY ()

-0.5 y :
0 0.05 0.1 0.15 0.2 0.25

a

Fic. 12. A% (a) and A%y (a) for the numerical example.
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queue does not build up in the second queue. Finally, we found that the
departure process D, from the second queue has large deviations rate
function A%, (@) equal to A%, (a). This can also be seen analytically. Namely,
observe that in (71) we have AT (a) = A%, (@) which implies A%, (a) = A%, ().

9. Conclusions and open problems. We have considered a single class,
acyclic network of G/G/1 queues and characterized the large deviations
behavior of the waiting time and the queue length in all the queues of the
network. We accomplished that by obtaining the large deviations behavior of
all the processes resulting from various operations in the network, which for
the network model that we considered were passage-from-a-queue, superposi-
tion of independent processes and deterministic splitting of a process to a
number of processes. We concretely characterized the way that these large
deviations occur.

These results are to the best of our knowledge among the few that study
large deviations in a network. It is clear that more work is needed in this
area, especially in view of the important applications in high speed communi-
cation networks. It is an interesting open problem to derive similar results for
network models that have feedback and accommodate more than one type of
traffic. It would also be interesting to study, in the large deviations regime,
how different types of traffic interact and how to choose scheduling policies in
order to satisfy certain performance criteria. Work relevant to the latter
problem for the single queue case is reported in [30] and [17].

APPENDIX

Here we consider an arbitrary process {X;, i € Z} that satisfies Assump-
tion B and the following: for every ¢, &5, 6, @ > 0, there exists My such that
for all n > My,

exp(—n(A% (a) + &) < P[Sfj - (j—i+1a<éen,
(120)
l<i<j<nst (j—i+1)>dn].

Inequality (120) is implied by the results in [14], under some mild mixing
assumptions on the process {X;, i € Z}. We prove that the process {X;, i € Z}
satisfies Assumption C for the service times [see (19)], that is, for every
&1, €9, a > 0, there exists M% such that for all n > M%,

exp(—n(A% (a) + &;))

121
(121) <P[S¥,-(j-i+1la<en,l<i<j=<n].

Since Assumption C for the arrivals in (18) is a weaker version of the above,
it is also satisfied by the process {X;, i € Z}.
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Fix positive &, £, and a. We have
P[SY, - (j-i+1Da<en,1<i<j<n]
=P[S¥, - (j-i+Da<en l<i<j<nst (j—i+1)>én,
S¥,—(j—i+Da<en,1<i<j<nst (j—i+1)<dn]
(122)
>P[SY, - (j-i+Da<enl<i<j<nst(j—i+1)>an|
-Pl3i<je[lL,n]st.(j-i+1)<én
and ¥, - (j—i+ 1)a > &n],

where we have used the inequality P[A N B] > P[ A] — P[B¢]. Using the
union bound and the Gartner—Ellis theorem, we obtain that for all ¢; > 0
there exists N; such that for all n > N,

P[3i<je[l,n]st(j—i+1)<én
and S¥; - (j — i+ 1)a > &;n]
Y P[S¥ - (j-i+1az=en]

i<jell,n]

(123) (j—i+1D<én
Z P[Sfén > eln]

i<jell,nl]
(j—i+1D<on

&
<n? exp( —nS(A”};(Fl) - 33)).
Now for given &5 > 0, choose ¢; and & small enough in order for large n to
have

IA

IA

(124) n? exp(—nS(A"};(%) - 6‘3)) < %exp(—n(A*X_(a) + &h)).

This can be done since A% (B) - x as g — .
Also, by using (120), we have that there exists N” such that for all
n> N”,

P[SY, —(j—i+Da<en,l<i<j<nst(j—i+1)>dn|
> exp(—n(A%x (a) + &)).

Combining (125), (124) and (123) with (122), we obtain that there exists N
such that for all n > N,

(125)

P[SY, - (j—i+Das<enl<is<js<n]

(126)
> gexp(—n(ANy (a) + &5)).
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Finally, to obtain (121) it suffices to choose &, such that for large enough n,
sexp(—n(ANy (a) + &) > exp(—n(A% (a) + &,)). O
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