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We consider a single class, acyclic network of GrGr1 queues. We
impose some mild assumptions on the service and external arrival pro-
cesses and we characterize the large deviations behavior of all the pro-
cesses resulting from various operations in the network. For the network
model that we are considering, these operations are passing-through-a-

Žsingle-server-queue the process resulting from this operation being the
.departure process , superposition of independent processes and determin-

istic splitting of a process into a number of processes. We also characterize
the large deviations behavior of the waiting time and the queue length
observed by a typical customer in a single server queue. We prove that the
assumptions imposed on the external arrival processes are preserved by
these operations, and we show how to apply inductively these results to
obtain the large deviations behavior of the waiting time and the queue
length in all the queues of the network. Our results indicate how these
large deviations occur, by concretely characterizing the most likely path
that leads to them.

1. Introduction. Consider a single class, acyclic network of GrGr1
queues. Customers arrive at the network in a number of independent streams
and are treated uniformly by the network. Different streams may share a

Ž .queue and the first-come]first-serve FCFS policy is implemented. A con-
stant fraction p of customers departing a queue i is routed to queue j and ai j
fraction p leaves the network. The aim of this paper is to derive largei0
deviations results for the waiting time and the queue length observed by an
arbitrary customer at different queues of the network.

The main application area that motivates the study of such systems is the
design and the operation of high speed, packet-switched communication
networks. These networks will accommodate various types of traffic, namely,
digitized voice, encoded video and data. The interesting problem arising is
how to estimate and prevent congestion, which may cause long delays and
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packet losses. It is desirable to operate the network in a regime where packet
loss probabilities are very small, for example, on the order of 10y9. Moreover,
large delays should also have a correspondingly small probability. Thus, the
need for understanding the large deviations behavior of such a network
arises. In this paper, we consider single class networks, which from the
application point of view means that we are dealing only with one type of
traffic in the network. For this reason, the FCFS assumption can be made
without loss of generality.

The problem of estimating tail probabilities of rare events in a single
queue has received extensive attention in the literature and has been ap-
proached by two main methodologies. The first one is to use large deviations

w xtheory, as we do in this paper. This approach is used in 18 to estimate the
tail probability of the queue length in a GrGr1 queue. In that paper, a
discrete time model was used in contrast to the continuous time model that

w xwe use in this paper. Similar results are obtained in 11 . The second
approach is to use spectral decomposition techniques. This second approach is

w xused in 20 to estimate the tail probability of the queue length in a queue
with a deterministic server and Markov modulated arrival process. Results

w x w x w xfor the single queue case were first obtained in 24 , 26 , 22 and later in
w x w x w x27 , 32 and 23 . In all of these papers, the large deviations results obtained
are used to derive appropriate admission control schemes for networks.

The extension of these ideas to networks appears to be a rather challeng-
ing problem. Researchers have been able to obtain some bounds on the tail

Ž wprobabilities for delays and queue lengths in various networks models see 7,
x.12, 13, 33 , but it is not clear whether these bounds are tight. Recently, large

deviations results for two queues in tandem, with renewal arrivals and
w x w xexponential servers, were reported in 21 . In 16 , a very interesting ap-

proach is used to obtain results for networks with deterministic servers. The
departure process from a single GrDr1 queue is characterized in the large
deviations regime, using a discrete time model, in an attempt to treat the

w xwhole network inductively. The main focus of 16 is to apply the large
deviations results obtained to resource management for networks. A large

w xdeviations upper bound for the departure process appears also in 9 . It is
important to point out that the departure process is a very difficult process

Ž w x.for which to obtain exact results see, e. g., 4 . However, we should note that
it is not very clear to us how the large deviations result for the departure

w xprocess in 16 can be applied inductively. The crux of the matter
w x w xis that 16 uses a technical result from 14 in order to obtain the large

deviations behavior of the departure process. The latter result holds under
certain technical assumptions on the arrival process. Since the departure
process from a queue is the arrival process in another downstream queue in
the network, one would need at this point to verify that the same technical

w xassumptions hold for the departure process. This is not done in 16 and
appears to be rather difficult.

In the present paper, we consider a continuous time model and we extend
w xthe work in 16 to a network of GrGr1 queues. The objective is to obtain the
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large deviations behavior of waiting times and queue lengths in all the nodes
of the network. To this end, we initially seek to characterize the large
deviations behavior of the aggregate arrival process in each node. Our results
are self-contained in the sense that we do not need the technical results of
w x14 . Instead, we impose certain assumptions on the external arrival pro-
cesses and we characterize the large deviations behavior of all the processes
resulting from various operations in the network. For the network model that

Žwe are considering, these operations are passing-through-a-queue the pro-
.cess resulting from this operation being the departure process , superposition

of independent processes and deterministic splitting of a process into a
number of processes. We prove that the assumptions imposed on the external
arrival processes are preserved by these operations, and thus we are able to
apply these results inductively to obtain large deviations results for the
aggregate arrival process in each node. As a by-product of our analysis we
also obtain large deviations results for the internal traffic in the network. For
a single queue, in isolation, we characterize the large deviations behavior of
the waiting time incurred by a typical customer and, by using ideas from

Ž w x.distributional laws see 5, 3 , the large deviations behavior of the queue
length observed by a typical customer. Finally, we compose the large devia-
tions behavior of the aggregate arrival process in each node of the network
with the results for a single queue to obtain the large deviations behavior of
the waiting time and queue length in each node.

Our approach provides particular insight on how these large deviations
occur, by concretely characterizing the most likely path that leads to them.
Characterizations of most likely paths were obtained for the single queue

w x w x w xcase in 2 , 1 and 14 . After the submission of the present paper the work in
w x w x w x8 and 10 was brought to our attention. In 8 the author independently
obtained the large deviations behavior for a network model of GrDr1 queues

w xsimilar to ours, when the external arrival processes are bounded. In 10 the
authors obtain the large deviations behavior of the departure process of a
GrGr1 queue, in isolation.

It is interesting to note that in order to obtain the large deviations
behavior of the superposition operation we prove a general result that

Ž .connects the stationary distribution i.e., as it is seen at a random time and
Ž .the Palm distribution i.e., as it is seen by a typical customer of a point

process in the large deviations regime. This result could be of independent
interest.

Regarding the structure of the paper, we start in Section 2 by reviewing
some results from the theory of large deviations that we use in the sequel. In
Section 3 we present the network model that we are considering and estab-
lish our notation. In Section 4 we treat the single queue case. This section is
comprised of two subsections. In Section 4.1 we review the existing result for
the large deviations behavior of the waiting time and we completely charac-
terize the most likely path along which the waiting time takes large values.
In Section 4.2, using an idea from distributional laws, we obtain the tail
probability of the queue length. In Section 5 we derive the large deviations
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behavior of the departure process from a GrGr1 queue. Particular attention
is given to the way that such a deviation occurs. In Section 5.1, some special
cases are studied. Namely, we apply the result for the departure process of a
GrGr1 queue to a GrDr1 queue and an MrMr1 queue. For the latter case,
Burke’s theorem is verified in the large deviations regime. In Sections 6 and 7
we study the large deviations behavior of the processes resulting from the
following operations: superposition of independent processes and determinis-
tic splitting of a process into a number of processes, respectively. In Section
6.1 we prove a result that connects the Palm and the stationary distribution
of a point process in the large deviations regime. This result is used in the
rest of Section 6 to derive the large deviations behavior of the superposition
process. In Section 8, we treat, as an example, a network consisting of two
queues in tandem. We characterize the way that the waiting time in the
second queue reaches large values and we include some numerical results.
Finally, in Section 9 we provide some concluding remarks and discuss some
open problems.

2. Preliminaries. In this section we review some basic results from
large deviations theory that will be used in the sequel.

Ž w x w x.We first state that Gartner]Ellis theorem see 6 and 15 , which estab-¨
Ž .lishes a large deviations principle LDP for random variables. It is a general-

ization of Cramer’s theorem, which applies to independent and identically´
Ž .distributed iid random variables.

� 4Consider a sequence S , S , . . . of random variables with values in R and1 2
define

1
uSnw x1 L u J log E e .Ž . Ž .n n

For the applications that we have in mind, S is a partial sum process.n
Namely, S s Ýn X , where X , i G 1, are identically distributed, possiblyn is1 i i
dependent random variables.

ASSUMPTION A.

Ž .i The limit

1
uSnw x2 L u J lim L u s lim log E eŽ . Ž . Ž .n nnª` nª`

Ž .exists for all u , where "` are allowed both as elements of the sequence L un
and as limit points.

Ž . � < Ž . 4 Ž .ii The origin is in the interior of the domain D J u L u - ` of L u .L

Ž . Ž .iii L u is differentiable in the interior of D and the derivative tends toL

infinity as u approaches the boundary of D .L

Ž . Ž . Ž . Ž .iv L u is lower semicontinuous, that is, lim inf L u G L u , foru ª u nn

all u .
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Ž .THEOREM 2.1 Gartner]Ellis . Under Assumption A, the following in-¨
equalities hold.

Upper bound: For every closed set F,

1 Sn
3 lim sup log P g F F y inf L* a .Ž . Ž .

n n agFnª`

Lower bound: For every open set G,

1 Sn
4 lim inf log P g G G y inf L* a ,Ž . Ž .

n nnª` agG

where
5 L* a J sup u a y L u .Ž . Ž . Ž .Ž .

u

� 4 Ž .We say that S satisfies a LDP with good rate function L* ? . The termn
� < Ž . 4‘‘good’’ refers to the fact that the level sets a L* a F k are compact for all

Ž w x .k - `, which is a consequence of Assumption A see 15 for a proof .
Ž . Ž . ŽIt is important to note that L ? and L* ? are convex duals Legendre

. Ž .transforms of each other . Namely, along with 5 , it also holds that

6 L u s sup u a y L* a .Ž . Ž . Ž .Ž .
a

The Gartner]Ellis theorem intuitively asserts that for large enough n and¨
for small « ) 0,

P S g na y n« , na q n« ; exp ynL* a .Ž . Ž .Ž .n

However, in this paper, we are mostly estimating tail probabilities of the
w x w xform P S F na or P S G na . We therefore define large deviations raten n

functions associated with such tail probabilities.
Consider the case where S s Ýn X , the random variables X , i G 1,n is1 i i

w x Ž w x.being identically distributed, and let m s E X . It is easily shown see 151
Ž .that L* m s 0. Let us now define

L* a , if a ) m ,Ž .q7 L* a JŽ . Ž . ½ 0, if a F m ,
and

L* a , if a - m ,Ž .y8 L* a JŽ . Ž . ½ 0, if a G m.
qŽ . yŽ .Notice that L* a is nondecreasing and L* a is a nonincreasing function

of a, respectively. The convex duals of these functions are

L u , if u G 0,Ž .q9 L u JŽ . Ž . ½ q`, if u - 0,

and

L u , if u F 0,Ž .y10 L u JŽ . Ž . ½ q`, if u ) 0,
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yŽ . Ž yŽ .. qŽ .respectively. In particular, L* a s sup u a y L u and L* a su

Ž qŽ ..sup u a y L u .u

Using the Gartner]Ellis theorem it can be shown that for all « , « ) 0¨ 1 2
there exists n such that for all n G n ,0 0

y w x y11 exp yn L* a q « F P S F na F exp yn L* a y « ,Ž . Ž . Ž .Ž . Ž .Ž . Ž .2 n 1

and
q w x q12 exp yn L* a q « F P S G na F exp yn L* a y « .Ž . Ž . Ž .Ž . Ž .Ž . Ž .2 n 1

Ž .More specifically, the lower bound in 11 can be obtained by noting that
w x w xP S F na G P S - na , and using the lower bound of the Gartner]Ellis¨n n

Ž .theorem for the open set y`, a . The upper bound can be obtained by an
argument similar to the one we use in the proof of Lemma 4.2. A similar

Ž .argument can be used for 12 .

3. The network model. In this section, we formally define the network
model for which we will derive the large deviations behavior. Moreover, we
establish the notation that we will be using and state a set of assumptions on
the arrival and service processes.

Ž .Consider a directed acyclic graph dag with J nodes. For reasons that will
soon become apparent, we assume that any two directed paths do not meet in
more than one node. Each node of the graph is equipped with an infinite
buffer and a single server. Customers enter the network in a number of
independent streams A1, A2, . . . , AJ. In particular, Ai is the stream of cus-
tomers that enter the network at node i. Customers are treated uniformly by
the network; that is, the network is assumed to be single class. Let Z denote
the set of integers. By A j, i g Z, we denote the interarrival time of the ithi

wcustomer in the jth stream the interval between the arrival epochs of the
Ž . x ji y 1 st and the ith customer . By B , i g Z, we denote the service time ofi
the ith customer in the jth node. We assume that for each arriving stream j

� j 4 jthe process A , i g Z , is stationary, and A , i g Z, are possibly dependenti i
random variables. Moreover, for each node j, the service times B j, i g Z, arei
iid random variables. We also assume that interarrival and service times at a
specific node are mutually independent and that service times at different
nodes are independent.

Independent streams may share a queue and the FCFS policy is imple-
mented. A fraction p , p , . . . of customers departing node i, which isi j i j1 2

connected to nodes j , j , . . . , are routed to these nodes, respectively, and a1 2
fraction p leaves the network. The exact way that the routing is performedi0
is not of importance in the large deviations regime. Roughly, out of every
1rp customers leaving node i, the routing mechanism sends one to node j.i j
Figure 1 depicts an example of the class of networks considered. Such a
network is intended to model packet-switched communication networks.

We denote by W 1, W 2, . . . , W J and L1, L2, . . . , LJ the steady-state waiting
times and queue lengths incurred by a typical customer at nodes 1, 2, . . . , J of

j Ž j .the network, respectively. For each node j, W resp. L denotes the waitingn n
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FIG. 1. A network example.

Ž .time incurred resp. queue length observed by the nth customer. We assume
�Ž j j . 4 Žthat the process W , L ; n g Z, j s 1, . . . , J is stationary. The existencen n

.and stationarity of this process contains an implicit stability assumption.
In this paper, we derive large deviations results for the steady-state

waiting times W 1, W 2, . . . , W J, and the corresponding queue lengths
1 2 J ŽL , L , . . . , L , incurred at nodes 1, 2, . . . , J of the network, respectively as

.these random variables are seen by a typical customer . Our strategy is first
to obtain large deviations results for the steady-state waiting time and the
corresponding queue length in a single GrGr1 queue. Then it suffices to
derive a LDP for the partial sum of the aggregate arrival process in each
queue of the network and apply the result for the single queue case. It is
important to note that by the definition of the network all the streams
sharing the same queue are independent. Therefore, from the model descrip-
tion, it is apparent that it suffices to obtain LDP’s for the processes resulting
from the following operations:

Ž1. Passing-through-a-queue the process resulting from this operation being
.the departure process .

2. Superposition of independent streams.
3. Deterministic splitting of a stream to a number of streams.
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� 4 � 4Let A , i g Z be an arbitrary external arrival process and B , i g Z bei i
an arbitrary service process. Hereafter, we will be using the notation S X Ji, j

j � 4Ý X ; i F j for the partial sums of the random sequence X ; i g Z alongks i k i
with the convention S X J 0; i ) j.i, j

ASSUMPTION B.

Ž . � A 4i The sequence of partial sums S ; n G 1 satisfies1, n

1
UyA13 lim log P S F na s yL a ,Ž . Ž .1, n Annª`

where

Alim 1rn log E exp uS , if u F 0,Ž . Ž .y nª` 1, n14 L u JŽ . Ž .A ½ q`, if u ) 0,

and

15 LUy a J sup u a y Ly u .Ž . Ž . Ž .Ž .A A
u

Ž .The limit in the upper branch of 14 exists for all u , where "` are allowed
� Aboth as elements of the sequence and as limit points. We will say that S ;1, n

4 UyŽ .n G 1 satisfies a one-sided LDP. Moreover, we assume that L a is aA
strictly convex function of a in the intersection of the interior of its domain

Ž w x.and the interval y`, E A , and that A has moments of all orders, that is,1 1
w p xE A - ` for all p G 0.1
Ž . � B 4ii The sequence of partial sums S ; n G 1 satisfies the requirements1, n

of the Gartner]Ellis theorem with limiting log-moment generating function¨
1

B16 L u J lim log E exp uSŽ . Ž . Ž .B 1, nnnª`

and large deviations rate function

17 LU a J sup u a y L u .Ž . Ž . Ž .Ž .B B
u

U Ž .Moreover, we assume that L a is a strictly convex function of a in theB
interior of its domain and that B has moments of all orders, that is,1

w p xE B - ` for all p G 0.1

ASSUMPTION C.

Ž .i For every « , « , a ) 0, there exists M such that, for all n G M ,1 2 A A

Uy A18 exp yn L a q « F P S y ia F « n , i s 1, . . . , n .Ž . Ž .Ž .Ž .A 2 1, i 1

Ž .ii For every « , « , a ) 0, there exists M such that, for all n G M ,1 2 B B

exp yn LUy a q «Ž .Ž .Ž .B 2

BF P S y j y i q 1 a F « n , 1 F i F j F nŽ .i , j 1

19Ž .
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and

exp yn LUq a q «Ž .Ž .Ž .B 2

BF P S y j y i q 1 a G y« n , 1 F i F j F n .Ž .i , j 1

20Ž .

We consider external arrival and service processes that satisfy Assump-
tions B and C. We will show that these assumptions are satisfied by the
processes resulting from the three operations mentioned above. In this way,
our approach provides a calculus of acyclic networks since we will be able to
determine the large deviations behavior of each individual queue inductively.

Assumption B provides a LDP for the arrival and service processes. Based
on these LDP’s we will derive LDP’s for all the processes of interest in the
network. Note that only the tail probability of the external arrival processes
corresponding to ‘‘many arrivals’’ is characterized by Assumption B. We will
prove that in order to estimate probabilities of large waiting times and long
delays, as we do in this paper, only such a tail probability of the aggregate
arrival process in each queue of the network is needed. The strict convexity
assumption on the large deviations rate functions of interest is needed to
avoid some technical issues that have to do with the differentiability of the
corresponding limiting log-moment generating functions.

Assumption C is needed in order to derive a LDP for the departure process
of a GrGr1 queue. It intuitively asserts that besides the LDP for the partial
sum random variable S , we also have a LDP for the partial sum process1, n
� 4 � 4S , i s 1, . . . , n for the arrivals and S , 1 F i F j F n for the service1, i i, j

Ž . Ž .times. In other words, 18 and 19 guarantee that, with high probability, the
partial sum process follows a path that never overshoots the straight line of
slope a, in order to reach an improbable level S F na. A similar interpreta-1, n

Ž .tion can be given to 20 . Mild mixing conditions on the arrival and service
processes suffice to guarantee Assumption C. A thorough treatment is given

w xin 14 . In the Appendix we provide some conditions under which Assumption
w x w xC is satisfied, based on the results of 14 . In 8 a uniform bounding condition

is given under which the above assumption is true. We should note here that
we do not need the full power of the sample path large deviations results in
w x w x14 and 8 to establish our results. We only need Assumptions B and C,
which, as we will show, are preserved by the internal traffic in the network.

Assumptions B and C are satisfied by processes that are used to model
external arrival and services in communications networks, such as renewal
processes, stationary processes with mild mixing conditions, as well as
Markov-modulated processes with some uniformity assumptions on the sta-

Ž w x .tionary distribution see 14 , Section 4 .

4. Large deviations of a GrrrrrGrrrrr1 queue. In this section, we establish a
LDP for the Palm distributions of the steady-state waiting time and queue

Ž .length i.e., as these random variables are seen by a typical customer , in a
GrGr1 queue with stationary arrivals and service times.
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� 4The setting is the same as in Section 3. We denote by A , i g Z thei
stationary aggregate arrival process to the queue and we assume that it

Ž . � 4satisfies Assumption B i . We also denote by B , i g Z the stationary servicei
Ž .process and we assume that it satisfies Assumption B ii . For this section, the

independence assumption for the service times can be relaxed. For stability
w x w x Ž .purposes, we further assume E A ) E B , where A resp. B denotes a

Ž .typical interarrival resp. service time.

4.1. Large deviations of the waiting time. Let us first characterize the
steady-state waiting time, W, incurred by a typical customer. By W wen

w x w xdenote the waiting time of the nth customer. The condition E A ) E B is
Žnecessary for the existence and the uniqueness of a stationary process see

w x.31 . For sufficiency, ergodicity is also needed. From the Lindley equation,
the waiting time of the 0th customer, at steady-state, is given by

qw x w xW s W q B y A J max W q B y A , 00 y1 y1 0 y1 y1 0

B As max S y S , 0 .yiy1, y1 yi , 0
iG0

21Ž .

The intuitive meaning of this relation is the following: for a particular sample
path, if i* is the optimum i, then the customer with label yi* y 1 is the one
who initializes the busy period in which the 0th customer is served.

The next theorem establishes a LDP for W . This result is not new. The0
w xproof is almost identical with the proof in 19 , Theorem 3.1, where a discrete

time model is used and is therefore omitted. A similar argument is also given
w xin 7 . An upper bound on the tail probability of the steady-state waiting time,

w xfor renewal arrival and service processes, was first obtained by Kingman 28 .

THEOREM 4.1. The tail of the Palm distribution of the steady-state waiting
time, W, in a FCFS GrGr1 queue with arrivals and service times satisfying
Assumption B is characterized by

1
w x22 lim log P W G U s u *,Ž .

UUª`

where u * - 0 is the smallest root of the equation

23 Ly u q L yu s 0.Ž . Ž . Ž .A B

REMARKS. Intuitively, Theorem 4.1 asserts that for large enough U, we
can state

w x u *UP W G U ; e where u * - 0 is such that
24Ž .

Ly u * q L yu * s 0.Ž . Ž .A B

w x w xNote that u * exists as an extended real number since E A ) E B and the
yŽ . Ž .functions L ? , L ? are convex. This is proven under the conditions ofA B

w x yŽ .Assumption B in 15 , Lemma 2.3.9. Figure 2 depicts the function L u qA
Ž . yŽ . Ž .L yu and the root u *. If L u q L yu - 0 for all u - 0, we use theB A B

convention u * s `. In Figure 2 we make use of the differentiability of
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yŽ . Ž .FIG. 2. The root of L u q L yu s 0.A B

yŽ . Ž .L ? , L ? , which is guaranteed by the strict convexity assumption that weA B
UyŽ . U Ž . Ž .have imposed on L ? and L ? see Assumption B . More specifically,A B

Ž w x .convex duality arguments see 29 , Theorem 26.3 guarantee that the convex
dual of a strictly convex function is differentiable in the interior of its domain.

yŽ .Regarding L u , we are only interested in its differentiability for u - 0,A
UyŽ . w xwhich can be established using the strict convexity of L a for a - E A .A 1

Ž yŽ .As we have defined L u , it has only a left derivative at zero, which isA
w x w x .positive and equal to E A y E B .

It is instructive to characterize the most likely ‘‘path’’ along which the
large deviation of the waiting time occurs. Such a characterization can also
provide an alternative proof of Theorem 4.1. Let a ) 0 and x , x g Rq, such1 2

Ž .that x y x s a. Using 21 , we have2 1

B AP W G i q 1 a G P S y S G i q 1 aŽ . Ž .0 yiy1, y1 yi , 0

A BG P S F i q 1 x P S G i q 1 xŽ . Ž .yi , 0 1 yiy1, y1 225Ž .
Uy UqG exp y i q 1 L x q L x q « ,Ž . Ž . Ž .Ž .A 1 B 2

where the last inequality makes use of Assumption B and holds for any « ) 0
Ž .and for large i. Setting U s i q 1 a, we obtain

1
Uy Uqw x26 P W G U G exp yU inf inf L x q L x y U« .Ž . Ž . Ž .0 A 1 B 2½ 5a x yx saa)0 2 1

Let a* ) 0 be a solution to the above optimization problem. Thus, for large U,
Ž .and by taking « ª 0 in 26 , we obtain

Uy Uqinf L x q L xŽ . Ž .x yx sa* A 1 B 22 1w x27 P W G U G exp yU .Ž . 0 ½ 5a*
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FIG. 3. The optimal path for large deviations in the waiting time.

ŽThe tightness of this bound can be proven by obtaining a matching i.e., with
.the same exponent upper bound; the proof is omitted.

Let i* be defined by the equation i* q 1 s Ura*. Let also xU and xU solve1 2
Ž .the optimization problem in 27 . Consider a scenario where customers

yi*, . . . , y1, 0 arrive at an empirical arrival rate of 1rxU and customers1
Ž . Uyi* y 1 , . . . , y1 are served with an empirical service rate of 1rx . Such a2
scenario, which is depicted in Figure 3, has probability comparable to the

Ž .right-hand side of 27 and is therefore a most likely way for the large
deviation of the waiting time to occur.

4.2. Large deviations of the queue length. In this section, we present a
LDP for the steady-state queue length in a GrGr1 queue, as seen by a

Ž .typical customer Palm distribution . To accomplish this, we use the main
argument used in deriving distributional laws; that is, a probabilistic relation
between the waiting time and the queue length. A detailed discussion of

w x w xdistributional laws and their applications can be found in 5 and 3 . It is
important to note that distributional laws have been proved there only for
renewal arrival and service processes. However in the large deviations set-
ting, we are able to relax the renewal assumption and state a result that
holds even for correlated arrival and service processes.

Let us now characterize the steady-state queue length L seen by a typical
Ž . Žcustomer not including herself upon arrival this is sometimes denoted by

y . w xL in the literature . The goal is to estimate P L G n . Let us denote by Ln
the queue length observed by the nth customer. As in Section 3, we assume

�Ž . 4that the process L , W ; n g Z is stationary. The main idea, in order ton n
establish a relation between the waiting time and the queue length, is to look
backwards in time from the arrival epoch of the nth customer. Figure 4
depicts the situation. We denote with T , T , . . . the arrival epochs of cus-0 1
tomers 0, 1, . . . , respectively. Recall that W and B denote the waiting andn n
the service time of the nth customer, respectively.
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FIG. 4. The system at time T .n

The main observation is the following: in order for the queue length right
before T to be at least n, the 0th customer should be in the system at thatn
time. Namely,

Aw x28 P L G n s P W q B G SŽ . n 0 0 1, n

Ž .and by using 21 we obtain

B A Aw xP L G n s P max S y S , yS G 0n yiy1, 0 yi , n yi , n
iG0

B As P max S y S G 0 .yiy1, 0 yi , n
iGy1

29Ž .

The next theorem establishes a LDP for L . We will need a technical lemman
Ž .which we prove next. This lemma is also used in the next section.

yŽ .LEMMA 4.2. Under Assumption B, and for u - 0, satisfying L u qA
Ž .L yu - 0, it holds thatB

1
B A y30 lim sup log E exp yu max S y S F L u .Ž . Ž .Ž .iGy1 yiy1, 0 yi , n Annª`

PROOF. We have

B AE exp yu max S y SŽ .iGy1 yiy1, 0 yi , n

B AF E exp yuS E exp uS .Ž . Ž .Ý yiy1, 0 yi , n
iGy1

Ž .From 16 it can be seen that for any « ) 0 there exists j ) 0 such that for all
i ) j it holds that

B31 E exp yuS F exp i q 2 L yu q « .Ž . Ž . Ž .Ž .Ž .Ž .yiy1, 0 B

Ž .Also from 14 , we have that for u - 0 and for any « ) 0 there exists N such
that, for all n ) N and all i G y1,

A y32 E exp uS F exp n q i q 1 L u q « .Ž . Ž . Ž .Ž .Ž .Ž .yi , n A

yŽ . Ž .Fix now some u - 0 satisfying L u q L yu - 0 and some « ) 0 suchA B
yŽ . Ž .that L u q L yu q 2« - 0. Note that the existence of such a u isA B

w x w x Ž .guaranteed by the condition E A ) E B see Figure 2 . We then have that,
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for all n ) N,

B AE exp yu max S y Syiy1, 0 yi , nž /
iGy1

j
B AF E exp yuS E exp uSŽ . Ž .Ý yiy1, 0 yi , n

isy1

B Aq E exp yuS E exp uSŽ . Ž .Ý yiy1, 0 yi , n
i)j

F exp n Ly u q «Ž .Ž .Ž .A33Ž .
j

B y= E exp yuS exp i q 1 L u q «Ž . Ž .Ž .Ž .Ž .Ý yiy1, 0 A
isy1

q exp n Ly u q « exp 2L yu q Ly u q 3«Ž . Ž . Ž .Ž . Ž .Ž . ÝA B A
i)j

=exp i L yu q Ly u q 2«Ž . Ž .Ž .Ž .B A

F K u , j, « exp n Ly u q « ,Ž . Ž .Ž .Ž .A

Ž .where K u , j, « is some constant depending on u , j and « but not on n. To
see that, notice that in the last inequality above we use the fact that the first
sum is finite and the infinite geometric series in the second sum converges to

Ž .a constant independent of n. From 33 we obtain

1
B A y34 lim sup log E exp yu max S y S F L u q « .Ž . Ž .yiy1, 0 yi , n Až /n iGy1nª`

Since this is true for all small enough « ) 0, the result follows. I

THEOREM 4.3. The tail of the Palm distribution of the steady-state queue
length, L, in a FCFS GrGr1 queue with arrivals and service times satisfying
Assumption B is characterized by

1
yw x35 lim log P L G n s L u * ,Ž . Ž .Annª`

where u * - 0 is the smallest root of the equation

36 Ly u q L yu s 0.Ž . Ž . Ž .A B

PROOF. Due to stationarity, it suffices to characterize the tail distribution
of L . For an upper bound, definen

B A37 G J max S y S .Ž . n yiy1, 0 yi , n
iGy1

Ž .Using the Markov inequality and 29 , we obtain

w x w x w yu G n xP L G n s P G G 0 F E en n
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for u - 0. Taking the limit as n ª `, using Lemma 4.2, and optimizing over u
to get the best bound, we obtain

1
y yw x38 lim sup log P L G n F inf L u s L u * ,Ž . Ž . Ž .n A Ayn � < Ž . Ž . 4u L u qL yu -0nª` A B

where the last equality is justified by Figure 2.
Ž .For a lower bound, set i s d n for d G 0 d n is assumed integer , and notice

that

w x w xP L G n s P G G 0ny1 n

B AG sup P S y S G 0 .yd ny1, 0 yd n , n
dG0

The limiting log-moment generating function of S B y S A isyd ny1, 0 yd n, n

1
B A ylim log E exp yu S y S s dL yu q 1 q d L uŽ . Ž . Ž .Ž .Ž .yd ny1, 0 yd n , n B Annª`

and by using Assumption B, we obtain

1
y yw xlim inf log P L G n G sup y sup yd L u q L yu y L uŽ . Ž . Ž .Ž .n A B Až /nnª` dG0 u

y ys sup inf d L u q L yu q L uŽ . Ž . Ž .Ž .A B A
udG039Ž .

ys inf L uŽ .Ay� < Ž . Ž . 4u L u qL yu -0A B

s Ly u * ,Ž .A

yŽ .where the second equality follows by dualizing the constraint L u qA
Ž . Ž . Ž . Ž .L yu - 0. The lower bound in 39 along with 38 proves 35 . IB

REMARK. Intuitively, Theorem 4.3 asserts that for large enough n, we can
state

w x yP L G n ; exp nL u *Ž .Ž .A40Ž . ywhere u * - 0 such that L u * q L yu * s 0.Ž . Ž .A B

5. The departure process of a G rrrrr GI rrrrr 1 queue. In this section we
obtain a LDP for the process resulting from the passing-through-a-queue
operation of our network model. That is, we establish a LDP for the steady-
state departure process of a GrGIr1 queue, as seen by a typical departing
customer. We denote by D , i g Z, the interdeparture time of the ith cus-i

w Ž .tomer the interval between the departure epochs of the i y 1 st and the
x �ith customer . As in Section 3, we assume that the interarrival process A ,i

4i g Z is stationary and A are possibly dependent random variables. Thei
Ž .service times B are independent and identically distributed iid randomi

variables. The arrival and service processes are also assumed to satisfy
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Assumptions B and C. As explained in Section 3, we will prove that the
departure process satisfies Assumptions B and C when the arrival and
service processes do.

We denote by S D J Ýn D , the partial sum of the departure process. The1, n is1 i
objective of this section is to prove a LDP for S D . The interdeparture times1, n
can be expressed as follows:

41 D s B q I ,Ž . i i i

where B denotes the service time of the ith customer and I the idling periodi i
Žof the system that ended with the arrival of the ith customer I s 0 if thei

.ith customer finds the system busy upon arrival . By using the Lindley
equation, one can obtain an expression for I and after some algebra derivei
an expression for S D in terms of the partial sums for the arrival and the1, n
service process. Using such an expression, one can prove a LDP for S D . In1, n
this paper we follow a more intuitive approach. We derive an upper bound

w D xand a matching lower bound on P S F na based on sample path argu-1, n
ments. To that effect, we explicitly characterize the most likely path leading
to the large deviation of the departure process. The next proposition estab-
lishes an upper bound for the tail probability of S D .1, n

Ž .PROPOSITION 5.1 Upper bound . Under Assumption B, the partial sum
S D of the departure process of a GrGIr1 queue under FCFS satisfies1, n

1
UyD42 lim sup log P S F na F yL a ,Ž . Ž .1, n Dnnª`

where

43 LUy a J LUy a q LUy aŽ . Ž . Ž . Ž .D B G

and
Uy y44 L a J sup u a y L u .Ž . Ž . Ž .G A

y� < Ž . Ž . 4u L u qL yu -0A B

PROOF. Since D G B for all i we obtaini i

45 S D G S B .Ž . 1, n 1, n

Ž .Consider some j F 1 and let j y 1 be the customer who initializes the busy
period in which the 0th customer is served. Let t be the time that the
Ž . Ž .j y 1 st customer arrived, t9 the time that the j y 1 st customer departed,
and t0 the time that the nth customer departed. Figure 5 depicts the
situation. Note that

46 B q S D G S A .Ž . jy1 j , n j , n

Ž .Since the system is busy from the arrival of the j y 1 st customer until the
departure of customer 0, we have

47 S D s S B .Ž . j , 0 j , 0
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w D xFIG. 5. Deriving an upper bound on P S F na . Here, it is assumed that customer j y 1 finds1, n
an empty queue.

Ž . Ž .Therefore, from 47 and 46 we have

48 S D s S D y S D G S A y B y S B s S A y S B .Ž . 1, n j , n j , 0 j , n jy1 j , 0 j , n jy1, 0

Ž . Ž .Now, from 45 and 48 we obtain
D B A BP S F na F P S F na, ' j F 1 s.t. S y S F na1, n 1, n j , n jy1, 0

B A Bs P S F na P min S y S F na ,1, n j , n jy1, 0
jF1

49Ž .

since the service times B are assumed to be independent and independent ofi
w A B x w B A xthe arrival process. Since min S y S s ymax S y S ,jF1 j, n jy1, 0 jF1 jy1, 0 j, n

we use Lemma 4.2 to obtain

1
A B y50 lim sup log E exp u min S y S F L u ,Ž . Ž .j , n jy1, 0 Až /n jF1nª`

yŽ . Ž .for u - 0, satisfying L u q L yu - 0.A B
Using Markov’s inequality, we obtain

1
A B ylim sup log P min S y S F na F L u y u a.Ž .j , n jy1, 0 An jF1nª`

Optimizing over u to obtain the tightest bound, we finally find

1
A Blim sup log P min S y S F naj , n jy1, 0n jF1nª`

yF y sup u a y L u .Ž .A
y� < Ž . Ž . 4u L u qL yu -0A B

51Ž .

Moreover, from Assumption B we can assert that

1
UyB52 lim sup log P S F na F yL a .Ž . Ž .1, n Bnnª`

Ž . Ž . Ž . Ž .Combining 52 and 51 along with 49 , we obtain 42 . I
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Obtaining a lower bound on the tail probability of S D is much more1, n
involved. Assumption B, which provides a LDP for the partial sums S A , S B

1, n 1, n
of the interarrival and service times, is not sufficient. Assumption C,

� A 4which provides a LDP for the partial sum processes S , j s 1, . . . , n and1, j
� B 4S , 1 F i F j F n , is required. In the next proposition we derive a loweri, j
bound on the tail probability of S D and we prove that the departure process1, n
� D 4 Ž .S , i s 1, . . . , n satisfies Assumption C i .1, i

Ž .PROPOSITION 5.2 Lower bound . Under Assumptions B and C, the partial
sum S D of the departure process of a GrGIr1 queue under FCFS satisfies1, n

1
UyD53 lim inf log P S F na G yL a .Ž . Ž .1, n Dnnª`

� D 4 Ž .Moreover, the departure process S , i s 1, . . . , n satisfies Assumption C i .1, i

PROOF. Fix « , « ) 0, z G 0 and y , y G 0 such that y y y s a and1 2 1 2 1 2
Ž .y r 1 q z G a. Consider the set of all sample paths that satisfy1

54 S B F k q 1 y j a q « n , 1 F j F k F n ,Ž . Ž .j , k 1

y1A55 S F z n q k y 1 q « n , k s 1, . . . , nŽ . Ž .yz n , k 11 q z

and

56 S B G ny y « n.Ž . yz ny1, 0 2 1

We state the following lemma, the proof of which is deferred until the end of
the current proof.

Ž . Ž . Ž .LEMMA 5.3. For any sample path that satisfies 54 , 55 and 56 , we have

57 S D F ka q 4« n , k s 1, . . . , n.Ž . 1, k 1

Therefore,
DP S F ka q 4« n , k s 1, . . . , n1, k 1

BG P S F k q 1 y j a q « n , 1 F j F k F nŽ .j , k 1

A= sup sup P S F z n q k y 1 y r 1 q zŽ . Ž .Ž .yz n , k 1
y yy sa� < Ž . 4zG0 y r 1qz Ga 1 21

q« n , k s 1, . . . , n1

B= P S G ny y « nyz ny1, 0 2 158Ž .

G sup sup exp yn LUy a q « 9Ž .Ž .B½
y yy sa� < Ž . 4zG0 y r 1qz Ga 1 21

y1Uyyn L 1 q z q « 0Ž .A ž /1 q z

y y «2 1Uqyn L z q « - ,B 5ž /z
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where the last inequality holds for large n and is obtained by applying
Assumption C to the arrival and service processes. We can now choose
appropriate « 9, « 0 and « - such that, for sufficiently large n and given « , we2
have

DP S F ka q 4« n , k s 1, . . . , n1, k 1

y1Uy UyG sup sup exp yn L a q L 1 q zŽ . Ž .B A½ ž /1 q zy yy sa� < Ž . 4zG0 y r 1qz Ga 1 21
59Ž .

y2UqqL z q « .B 2 5ž /z

Ž .We now argue that the constraint y r 1 q z G a can be removed from the1
˜Ž .optimization in 59 . Consider a choice of y s y , y s y and z s z such˜ ˜1 1 2 2

˜Ž .that y y y s a and y r 1 q z - a. Let us now consider a feasible solution˜ ˜ ˜1 2 1
of the above optimization problem with z s 0, y s a, y s 0, and cost which1 2

Ž w UyŽ . UyŽ .x. Ž .is approximately exp yn L a q L a omitting the « terms . Now noteB A
˜ UyŽ . Ž .that since y r 1 q z - a and L ? nonincreasing, we have˜1 A

Uy Uyexp yn L a q L aŽ . Ž .� 4B A

y y˜ ˜1 2Uy Uy Uq˜ ˜G exp yn L a q L 1 q z q L z .Ž . Ž .B A B½ 5ž / ž /˜ ˜1 q z z

Ž .This shows that there exist choices of y , y and z satisfying y r 1 q z G a1 2 1
Ž .that have a better exponent. Hence, the constraint y r 1 q z G a can1

indeed be removed.
UyŽ . Ž .We now use convex analysis to prove that L a as defined in 44 isG

equal to
y y1 2Uy Uqy sup sup y 1 q z L y zL ,Ž . A B½ 5ž / ž /1 q z zy yy sazG0 1 2

Ž . Ž .thus proving that the lower bound in 59 taking « ª 0 matches the up-2
yŽ .per bound obtained in Proposition 5.1. Dualizing the constraint L u qA

Ž . w yŽ . Ž . yŽ .L yu - 0 we obtain note that L u q L yu - 0 if and only if L uB A B A
qŽ . xq L yu - 0B

Uy yy L a s y sup u a y L uŽ . Ž .G A
y� < Ž . Ž . 4u L u qL yu -0A B

ys inf yu a q L uŽ .Ay� < Ž . Ž . 4u L u qL yu -0A B

y qs sup y sup u a y 1 q z L u y zL yuŽ . Ž . Ž .½ 5A B
zG0 u60Ž .

y y1 2Uy Uqs sup y inf 1 q z L q zLŽ . A B½ 5ž / ž /1 q z zy yy sa1 2zG0

y y1 2Uy Uqs sup sup y 1 q z L y zL .Ž . A Bž / ž /1 q z zy yy sazG0 1 2
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To see that, note that for convex functions f , f , f and for a scalar c G 0, it1 2
Ž . Ž . Ž . Ž . Ž . w U Ž U .U Uholds that cf * x* s cf * x*rc , and f q f * x* s inf f x q1 2 x qx sx* 1 11 2U Ž U .x Ž w x .f x see 29 , Theorem 16.1, Theorem 16.4 .2 2

Ž .In summary, we have verified that Assumption C i holds for the departure
process; that is,

UyD61 P S F ia q 4« n , i s 1, . . . , n G exp yn L a q « .Ž . Ž .Ž .Ž .1, i 1 D 2

w D xBy taking « , « ª 0 and since P S F na is clearly larger than the1 2 1, n
Ž . Ž .probability in 61 , 53 is verified for the same region. I

Ž . Ž .PROOF OF LEMMA 5.3. Note that for k s 1, . . . , n from 55 and 56 we
obtain

y1AS F z n q k y 1 q « nŽ .yz n , k 11 q z

F ny y « n q k y 1 a q 2« nŽ . Ž .Ž .2 1 1
62Ž .

F k y 1 a q 2« n q S B ,Ž . 1 yz ny1, 0

where the second inequality holds because the two sides are equal at k s
Ž . Ž .n q 1 and because y r 1 q z G a. The third inequality is justified by 541

Ž .and 56 .
Let t be the arrival time of customer yz n y 1. Then customer k arrives at

time t q S A . We distinguish two cases. In case 1, customer k finds anyz n, k
empty system upon arrival. Then it departs at time t9 where

63 t9 s t q S A q B F ka q 3« n q t q S B ,Ž . yz n , k k 1 yz ny1, 0

Ž . Ž .by using 54 and 62 . Let t0 the departure time of the 0th customer. Clearly,
B Ž .t0 G t q S , which along with 63 implies that t9 y t0 F ka q 3« n Fyz ny1, 0 1

ka q 4« n. However, according to their definition, t9 y t0 s S D .1 1, k
In case 2, customer k finds a busy system upon arrival, in which case

D s B . Then, if this is also true for all i s 1, . . . , k y 1, we have S D sk k 1, k
B w xS F ka q « n F ka q 4« n. If not, let i g 1, . . . , k y 1 be the latest cus-1, k 1 1

Ž .tomer that finds the system empty i.e., the one with maximum index . To
bound S D , we use the argument of case 1. Thus,1, i

S D s S D q S D s S D q S B F ia q 3« n q k y i a q « nŽ .1, k 1, i iq1, k 1, i iq1, k 1 1

s ka q 4« n ,1

Ž .where we have used 54 in the last inequality. I

The proof of the above theorem indicates a most likely path along which
D Žthe large deviation of S occurs in the sense that its probability is compa-1, n

w D x. U Urable to P S F na . Let z *, y and y be a solution of the optimization1, n 1 2
Ž . Dproblem in 59 . The large deviation in S occurs by the following:1, n

Ž . U1. Maintaining an empirical arrival rate of at least 1 q z * ry from the1
arrival of customer yz *n y 1, until the departure of the nth customer,
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and an empirical service rate of at most z UryU from the arrival of2
customer yz *n y 1, until the departure of the 0th customer.

2. Maintaining an empirical service rate of at least 1ra from the departure of
the 0th customer until the departure of the nth customer.

Figure 6 illustrates the situation.
Combining Propositions 5.1 and 5.2, we obtain the following theorem.

THEOREM 5.4. Under Assumptions B and C, the partial sum S D of the1, n
departure process of a GrGIr1 queue under FCFS satisfies

1
UyD64 lim log P S F na s yL a ,Ž . Ž .1, n Dnnª`

where
LUy a s LUy a q LUy aŽ . Ž . Ž .D B G

and
Uy yL a s sup u a y L u .Ž . Ž .G A

y� < Ž . Ž . 4u L u qL yu -0A B

Throughout this section we have assumed that the service times B are iid.i
A close examination of the proofs of Propositions 5.1 and 5.2 suggests that a
weaker condition is sufficient for our purposes. Namely, we only need the
random variables S B and S B to be approximately independent for everyj, 0 1, n

w Ž B . Ž B .xj F 0, as n ª `. A mixing condition of the type E exp uS exp uS sj, 0 1, n
w Ž B . w Ž B .x Ž Ž ..E exp u S E exp u S exp n« n for every j F 0 and u , wherej, 0 1, n

Ž .lim « n s 0, is sufficient.nª`

FIG. 6. A most likely path for large deviations of S D .1, n
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UyŽ .An alternative expression for L ? which is a consequence of the definingD
Ž .equation 43 is

LUy a s LUy a q LUy aŽ . Ž . Ž .D B G

LUy a q LUy a , if a G LyX u * ,Ž . Ž . Ž .B A As XUy y y½ L a q u *a y L u * , if a - L u * ,Ž . Ž . Ž .B A A

65Ž .

yXŽ .where u * is defined in the statement of Theorem 4.1 and L x denotes theA
yŽ .derivative of L ? evaluated at x. To see that, consult Figure 2 and noticeA

Ž .that the first branch of 65 corresponds to the region of a where the
yŽ . Ž .constraint L u q L yu - 0 is not tight and the second branch to theA B

region of a where this constraint is tight.
We now argue that the passing-through-a-queue operation preserves As-

Ž .sumption B. Proposition 5.2 establishes that it preserves Assumption C i .
Notice first that we have proved a one-sided LDP for the departure process
with large deviations rate function expressed as a function of the large
deviations rate function of the arrival and service processes. Using Varadhan’s
integral lemma, the limiting log-moment generating function can be obtained

Ž w xas the convex dual of the large deviations rate function. See 15 , Section 4.3.
Ž .That is, we let f x s u x and use a one-sided version of Varadhan’s lemma,

Ž .where the left side of L u , that is, for u - 0, can be obtained as the convex
Ž . .dual of L* a , for a less than the mean.

Ž .Moreover, by 41 we have

D F B q A ,i i i

which implies that D has moments of all orders since B and A do. Finally,i i i
UyŽ .we establish that L ? is strictly convex in the intersection of the interior ofD

Ž w x.its domain and the interval y`, E D . To this end we will use the expres-1
Ž . w x w xsion in 65 . By a stability argument E D s E A , thus the function in thei i

Ž . Ž yXŽ . w x.upper branch of 65 is strictly convex in the interval L u * , E D due toA 1
UyŽ . yXŽ . X Ž .the strict convexity of L ? . Let now u be such that L u s L u .A 1 A 1 B 1

Ž .Notice that see Figure 2

yX yX X w xL u * F L u s L u F E B ,Ž . Ž . Ž .A A 1 B 1 1

Ž . w xwhich implies that in the lower branch of 65 we have a - E B . Hence, the1
UyŽ . w xstrict convexity of L a for a - E B suffices to guarantee the convexity ofB 1

Ž .the function in the lower branch of 65 .
To obtain the limiting log-moment generating function for the partial sum

UyŽ . Ž .of the departure process, we take the convex dual of L ? in 65 . Using theD
w xduality correspondences proved in 29 , Section 16, we obtain the following

corollary.
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COROLLARY 5.5. Under Assumptions B and C we have

¡ y y ˆinf L u q L u , if u G u ,� 4Ž . Ž .u qu su B 1 A 21 2y ~66 L u sŽ . Ž .D y y¢ ˆL u y u * q L u * , if u - u ,Ž . Ž .B A

where
d

Uy Uy Xˆ y67 u J L a q L a .Ž . Ž . Ž . Ž .asL u *B A Ada

It is instructive to determine the fluctuations of the queue length that lead
to a large deviation in the departure process. Let z * solve the optimization

Ž .problem in 59 . Let t be the arrival time of customer yz *n y 1. The 0th
customer arrives at t q S A and departs no earlier than t q S B .yz *n, 0 yz *ny1, 0
Thus, for the waiting time of customer 0 holds

B A B A ˜68 W G t q S y t y S s S y S J W .Ž . 0 yz *ny1, 0 yz *n , 0 yz *ny1, 0 yz *n , 0 0

A close examination of the proofs of Propositions 5.1 and 5.2 suggests that
UyŽ .L ? is the large deviations rate function of the processG

A B A ˜69 S y S , k s 1, . . . , n ' S y W , k s 1, . . . , n .Ž . � 4� 4yz *n , k yz *ny1, 0 1, k 0

Ž .From the above discussion and 65 , we conclude that, depending on the
value of a, we can distinguish two cases for the large deviation in the
departure process to occur.

yXŽ . UyŽ . UyŽ . Ž .1. a G L u * : in this region, L a s L a and from 69 it is clear thatA G A
the most likely way for the large deviation in the departure process to

Ž .occur is the 0th customer to incur O 1 waiting time, which implies that it
Ž .finds a queue length of O 1 upon arrival.

yXŽ . UyŽ . yŽ . Ž .2. a - L u * : in this region, L a s u *a y L u * and from 69 it isA G A
clear that the most likely way for the large deviation in the departure

Žprocess to occur is the 0th customer to incur a large waiting time recall
from Theorem 4.1 that the large deviations rate function for the waiting

.time is linear with slope u * .

Hence, also taking into account Figure 6, we can infer for the queue length
the cases depicted in Figure 7. In region 2 and in contrast with region 1, the
queue builds up to lead to a large deviation in the departure process.

5.1. Special cases. In this section we apply Theorem 5.4 to two special
cases. Namely, we study the departure process, in the large deviations
regime, of an MrMr1 queue and a GrDr1 queue.

The departure process of a GrDr1 queue. We assume, as in Section 5,
� 4that the interarrival times process A , i g Z is stationary and A arei i

possibly dependent random variables. The service times B are iid randomi
variables and equal to c w.p.1. Interarrival and service times are assumed
independent.
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Ž .FIG. 7. Two cases for the queue length: In Region 1, the 0th customer finds an O 1 queue upon
Ž .arrival and until the nth customer departs the queue stays at an O 1 level. In Region 2, the

Ž .queue first builds up see also the arrival and service rates in Figure 6 and then it is depleted,
resulting in the large deviation in the departure process.

Ž .It is straightforward that L u s cu . Therefore a simple calculation yieldsB

q`, if a - c,Uy70 L a sŽ . Ž .B ½ 0, if a G c.
Moreover,

Uy y yˆ ˆ71 L a s sup u a y L u s u a y L u ,Ž . Ž . Ž . Ž .G A A
y� < Ž . 4u L u ycu-0A

ˆ UyŽ .where u is the optimizing u . Note that by taking a G c, we have L a sG
UyŽ . Ž . Ž .L a see Figure 8 . Therefore, using 43 ,A

q`, if a - c,Uy72 L a sŽ . Ž . UyD ½ L a , if a G c.Ž .A

w xThis is exactly the result obtained in 16 for a discrete time model. Taking
the convex dual of the above we obtain

y y <73 L u s inf L u q d * u c, ` ,Ž . Ž . Ž . Ž . .D A 1 2
usu qu1 2

Ž < w .. w .where d * u c, ` is the support function of the set c, ` and is defined as2

`, if u ) 0,< <w wd * u c, ` J sup u x x g c, ` s� 4. .Ž . ½ cu , if u F 0.

The departure process of an MrMr1 queue. We assume that the arrival
process is Poisson with rate l and the service times are iid, distributed
according to an exponential distribution with parameter m.



LARGE DEVIATIONS IN NETWORKS OF GrGr1 QUEUES 1051

yX ˆŽ .FIG. 8. Notice that at u * we have L u * F c. Thus, when a G c, the optimizer u satisfiesA
ˆ Uy UyŽ . Ž .0 G u G u *, which implies L a s L a .G A

It is straightforward to calculate

l m
74 L u s log , L u s log ,Ž . Ž . Ž .A B ž /ž /l y u m y u

Ž .where L u denotes the log-moment generating function of the arrivalA
process. Now, notice that

l m
L u q L yu s 0 m s 1 m u s 0,Ž . Ž .A B l y u m q u75Ž .

u s l y m ,

which implies that u * s l y m, where u * is defined in the statement of
Theorem 4.1. Moreover, notice that

l y u * l 1
X

L u * s s .Ž .A 2l ml y u *Ž .

Ž .Thus, using 65 , we obtain for a G 1rm,

76 LUy a s LUy a q LUy a s LUy a ,Ž . Ž . Ž . Ž . Ž .D B A A

UyŽ . Ž .since by definition L a s 0 for a G 1rm. Using the second branch of 65 ,B
we obtain for a - 1rm,

77 LUy a s LUy a q a l y m y log lrm .Ž . Ž . Ž . Ž . Ž .D B

But
Uy yL a s sup u a y L u s am y 1 y log am ,Ž . Ž . Ž .B B

u
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Ž .since, by differentiating, the optimal u is found equal to am y 1 ra. Thus,
Ž .from 77 , for a - 1rm,

78 LUy a s al y 1 y log al s LUy a .Ž . Ž . Ž . Ž .D A

Ž . Ž .Summarizing 76 and 78 , we finally obtain

79 LUy a s LUy a .Ž . Ž . Ž .D A

This result is in accordance with Burke’s output theorem, which states that
Ž w x.the departure process of an MrMr1 queue is Poisson with rate l see 25 .

6. Superposition of independent streams. In this section we treat
the superposition operation of our network model. In particular, we derive a
LDP for the process resulting from the superposition of independent arrival
streams and we show that the superposition preserves Assumptions B and
Ž .C i . However, as will become clear in the sequel, in order to derive this LDP

we need a result that connects, in the large deviations regime, the Palm
Ž .distribution of the arrival process i.e., as it is seen by a random customer

with its stationary distribution as seen at a random time. This result is
presented in Section 6.1 and could be of independent interest.

1 Ž 2 .Consider two independent arrival streams. By A resp. A , i g Z, wei i
Ž .denote the interarrival time of the ith customer in stream 1 resp. 2 . We

� 1 2 4assume that the processes A , A , i g Z are stationary and mutually inde-i i
pendent. However, the interarrival times in each stream may be dependent.

Ž .We impose Assumptions B and C i on the arrival process of each stream. We
denote by A1, 2, i g Z, the interarrival times of the process resulting from thei
superposition. It should be noted that in order to derive the LDP for the
superposition, Assumption C is not used.

The next theorem establishes a LDP for the partial sum S A1, 2
of the1, n

aggregate process, resulting from the superposition of streams 1 and 2.

THEOREM 6.1. Under Assumption B, the partial sum S A1, 2
of the aggregate1, n

process, resulting from the superposition of the independent processes A1, A2,i i
i g Z, satisfies

1 1, 2 U UyA
1 2lim log P S F na s y inf d L ard q d L ardŽ . Ž .1, n 1 A 1 2 A 2nnª` d qd s11 280Ž . d , d G01 2

Uy
1, 2J yL a .Ž .A

PROOF. Consult Figure 9. Consider the partial sum S A1, 2
and let H1, n 1

Ž .resp. H denote the event that the first customer of the aggregate process2
Ž .originates from stream 1 resp. 2 . We first obtain an upper bound on
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FIG. 9. Superposition of two independent streams.

w A1, 2
< xP S F na H . Notice that1, n 1

n
1, 2 1 2A A A<81 P S F na H F P S F na P S F na .Ž . Ý1, n 1 1, k R 1, nyk

ks1

w xHere, P ? denotes the probability distribution seen by a random customer
Ž . w xPalm distribution and P ? denotes the probability distribution seen at aR
random time. Due to the independence of the two arrival streams, an arrival
originating from stream 1 constitutes a random incidence in the arrival
process of stream 2, and therefore we are interested in the probability
distribution seen at a random time for events concerning stream 2.

In Section 6.1 it is shown that

1 12 2 UyA A
282 lim log P S F na s lim log P S F na s yL a .Ž . Ž .R 1, n 1, n An nnª` nª`

Ž . w x Ž .Therefore, from 81 , letting k s nd , d g 0, 1 nd is assumed integer and
taking large n, we obtain

1, 2 1 2A A AP S F na N H F P S F na P S F naÝ1, n 1 1, nd R 1, nŽ1yd .
w xdg 0, 1

1 2A AF n sup P S F na P S F na ,1, nd R 1, nŽ1yd .
w xdg 0, 1

which implies

1 1, 2A <lim sup log P S F na H1, n 1nnª`

Uy Uy
1 2F y inf dL ard q 1 y d L ar 1 y dŽ . Ž . Ž .Ž .A A

w xdg 0, 1
83Ž .

Uy Uy
1 2s y inf d L ard q d L ard .Ž . Ž .1 A 1 2 A

d qd s11 2
d , d G01 2
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To obtain a lower bound notice that
1, 2 1 2A A A<P S F na H G sup P S F na P S F na1, n 1 1, nd R 1, nŽ1yd .

w xdg 0, 1

which implies

1 1, 2A <lim inf log P S F na H1, n 1nnª`

Uy Uy
1 2G y inf dL ard q 1 y d L ar 1 y dŽ . Ž . Ž .Ž .A A

w xdg 0, 184Ž .
Uy Uy

1 2s y inf d L ard q d L ard .Ž . Ž .1 A 1 2 A 2
d qd s11 2
d , d G01 2

Ž . Ž .Finally, observe that because of symmetry, 83 and 84 also hold for
w A1, 2

< xP S F na H . This along with the fact that1, n 2

1, 2 1, 2 1, 2A A Aw x w xP S F na s P S F na ¬ H P H q P S F na ¬ H P H1, n 1, n 1 1 1, n 2 2

proves the theorem. I

U U Ž .REMARK. Let d , d be a solution to the optimization problem in 80 . It1 2
can be seen that a most likely path to have a large deviation in the aggregate
process is to maintain an empirical arrival rate of d Ura in stream 1 and a1
rate of d Ura in stream 2. Then, since d U q d U s 1, the empirical rate of the2 1 2
aggregate process is 1ra.

Using induction on the number of streams superimposed, we generalize
Theorem 6.1 to obtain the following corollary.

COROLLARY 6.2. Under Assumption B, the partial sum S A1, . . . , m
of the1, n

aggregate process, resulting from the superposition of the m independent
processes A1, . . . , Am, i g Z, satisfiesi i

m1 1, . . . , m UyA
klim log P S F na s y inf d L ardŽ .Ý1, n k A knnª` d q ??? qd s11 m ks185Ž . d , . . . , d G01 m

J yLU
1, . . . , m a .Ž .A

Using convex duality, by Varadhan’s integral lemma, one can obtain the
y Ž . A1, . . . , m

1, . . . , mlimiting log-moment generating function L ? of S as the convexA 1, n
Uy Ž .1, . . . , mdual of its large deviations rate function L ? . The latter function isA

w xconvex by 29 , Theorem 5.8.
We now proceed into proving that the aggregate process, resulting from

the superposition of independent streams which satisfy Assumptions B and
Ž .C i also satisfies the same assumptions. We have proved a one-sided LDP for

the superposition with large deviations rate function expressed in terms of
the large deviations rate functions of the superimposed processes. Using
Varadhan’s integral lemma, the limiting log-moment generating function can
be obtained as the convex dual of the large deviations rate function. In
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addition, the superposition process has moments of all orders since

A1, 2 F A1 and A1, 2 F A2 .i i i i

Uy Ž .1, 2Finally, we show that L a is strictly convex in the intersection of theA
Ž w 1, 2 x.interior of its domain and the interval y`, E A . To this end, first notei

Ž .that for a strictly convex function f ? , and as long as ard / brd 9, we have

86 d f ard q d 9 f brd 9 ) d q d 9 f a q b r d q d 9 .Ž . Ž . Ž . Ž . Ž . Ž .Ž .
Uy Ž .1, 2Consider now the definition of L a , which we rewrite asA

Uy Uy Uy
1, 2 1 2L a s inf dL ard q 1 y d L ar 1 y d .Ž . Ž . Ž . Ž .Ž .A A A

w xdg 0, 1

Ž .Let d resp. d 9 be the minimizer in the optimization problem corresponding
Uy Ž . w Uy Ž .x1, 2 1, 2to L a resp. L b . We then haveA A

1 1
Uy Uy

1, 2 1, 2L a q L bŽ . Ž .A A2 2
d a 1 y d a d 9 b

Uy Uy Uy
1 2 1s L q L q LA A Až / ž / ž /2 d 2 1 y d 2 d 9

1 y d 9 b
Uy

2q LA ž /2 1 y d 9

d q d 9 a q b 2 y d y d 9 a q b
Uy Uy

1 2G L q LA Až / ž /2 d q d 9 2 2 y d y d 9

a q b r2 a q b r2Ž . Ž .
Uy Uy

1 2s zL q 1 y z LŽ .A Až / ž /z 1 y z

a q b r2 a q b r2Ž . Ž .
Uy Uy

1 2G inf zL q 1 y z LŽ .A Až / ž /z 1 y zw xzg 0, 1

a q b
Uy

1, 2s L .A ž /2

Ž .The first inequality above is due to 86 and is strict unless ard s brd 9 and
Ž . Ž .ar 1 y d s br 1 y d 9 , which implies that d s d 9 and a s b. Thus, as long

Uy Ž .1, 2as a / b, we have established the strict convexity of L ? .A
Theorem 6.3 establishes that the process resulting from the superposition

Ž .satisfies Assumption C i .

THEOREM 6.3. Assume that the m independent processes A1, . . . , Am, i g Z,i i
Ž .satisfy Assumption C i . The aggregate process resulting from their superposi-

Ž .tion also satisfies Assumption C i .

PROOF. It suffices to prove the result for m s 2 since by using induction
we can prove it for any m. We need to prove that for every « , « , a ) 0, there1 2
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exists M such that for all n G M ,S S

1, 2Uy A
1, 287 exp yn L a q « F P S y ja F « n , j s 1, . . . , n .Ž . Ž .Ž .Ž .A 2 1, j 1

Following the steps of the proof of Theorem 6.1, we consider the scenario that
a fraction d of customers of the aggregate process originates from the A1

process. Again, H denotes the event that customer 1 of the aggregate process1
originates from the A1 process. We have

1, 2A <P S y ja F « n , j s 1, . . . , n H1, j 1 1

1AG sup P S y ja F « n , j s 1, . . . , n1, jd 1
w xdg 0, 1

88Ž .
2A=P S y ja F « n , j s 1, . . . , n .R 1, jŽ1yd . 1

Ž . 1Using Assumption C i for the A stream, we obtain for large enough n,
1 UyA

189 P S y ja F « n , j s 1, . . . , n G exp ynd L ard q « 9 .Ž . Ž .Ž .Ž .1, jd 1 A

Ž .In Section 6.1 Lemma 6.6 , it is shown that for large enough n,
2AP S y ja F « n , j s 1, . . . , nR 1, jŽ1yd . 1

90Ž .
G exp yn 1 y d LU

2
y ar 1 y d q « 0 .Ž . Ž .Ž .Ž .Ž .A

Ž .To obtain 87 it suffices to choose appropriate « 9 and « 0 such that for large
enough n and given « ,2

Uy Uy
1 2exp yn inf d L ard q « 9 q 1 y d L ar 1 y d q « 0Ž . Ž . Ž .Ž .Ž . Ž .A Až /w xdg 0, 1

G exp yn LU
1, 2

y a q « . IŽ .Ž .Ž .A 2

6.1. Connection between Palm and stationary distributions in the large
deviations regime. In this subsection we show that the stationary and the
Palm distribution of the same point process have the same large deviations
behavior.

Consider a stationary arrival process satisfying Assumption B with the
interarrivals A , i g Z. We havei

1
UyA91 lim log P S F na s yL a .Ž . Ž .1, n Annª`

w xAs explained in the proof of Theorem 6.1, P ? denotes the probability
w Ž .xdistribution seen by a random customer customer 1 in the case of 91 .

Ž .Consider now a random time say t s 0 and assume that customer 0 is the
first customer to arrive after t s 0. Let U, V denote the duration and the age,

w xrespectively, of A . The situation is depicted in Figure 10. By P ? we denote0 R
the probability distribution seen at the random time t s 0 and we are

A w xinterested in obtaining a LDP for S under P ? . The next theorem estab-1, n R
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FIG. 10. The arrival process seen at a random time.

lishes the result. Moreover, we are also interested in obtaining a LDP result
� A 4 w xfor the partial sum process S , j s 1, . . . , n under P ? when Assumption1, j R

Ž .C i is satisfied. The latter result is obtained in Lemma 6.6.

THEOREM 6.4. Under Assumption B we have

1
UyA92 lim log P S F na s yL a .Ž . Ž .R 1, n Annª`

w x w xPROOF. Let E ? denote the expectation with respect to P ? . We use aR R
w x w x Ž w x.standard procedure to relate E ? to E ? see 31 . Consider an arbitraryR

Ž . A Žw x .function f ? of S . It can be shown 31 , Chapter 7 that1, n

A AE f S N V s v , U s u s E f S N A s u .Ž . Ž .R 1, n 1, n 0

w xThus following the steps in 31 , Chapter 7,

` u1
A A <E f S s E f S A s u dv dF uŽ .Ž . Ž .H HR 1, n 1, n 0 A0w xE A us0 vs01

A0 As E f S dvŽ .H 1, n
vs0

93Ž .

As E A f S ,Ž .0 1, n

w xwhere we have assumed without loss of generality that E A s 1, and we1
Ž .have used the notation F ? for the distribution function of A .A 00 w Ž A .x Ž . u ?To obtain an upper bound on E exp uS , we set f ? s e and useR 1, n

Holder’s inequality. Namely,¨

A AE exp uS s E A exp uSŽ . Ž .R 1, n 0 1, n

p1r p As E A exp urq S qŽ .Ž . Ž .0 1, n94Ž .
qp1r p AF E A E exp urq S , p q q s 1,Ž .Ž .0 1, n



D. BERTSIMAS, I. C. PASCHALIDIS AND J. N. TSITSIKLIS1058

which for u F 0 implies

1r p1 p log E A u0A ylim sup log E exp uS F lim sup q qLŽ .R 1, n A ž /n n qnª` nª`95Ž .
u

ys qL ,A ž /q

since the first term of the right-hand side vanishes. Taking the limit now as
q ª 1 in the above equation, we obtain for u F 0,

1
A y96 lim sup log E exp uS F L u .Ž . Ž .Ž .R 1, n Annª`

Ž .Therefore, using 96 and the Markov inequality, we obtain

1
UyA97 lim sup log P S F na F yL a .Ž . Ž .R 1, n Annª`

w A x Ž A . � A 4To obtain now a lower bound on P S F na , set f S s 1 S F naR 1, n 1, n 1, n
Ž . � 4in 93 , where 1 ? denotes the indicator function. We have

`
A A <P S F na s uP S F na A s u dF uŽ .HR 1, n 1, n 0 A0

0

`1
A <G P S F na A s u dF uŽ .H 1, n 0 A2 02n 1rn

98Ž .

1 1
As P S F na, A G .1, n 02 2n n

We need the following lemma, the proof of which is deferred until the end of
the current proof.

LEMMA 6.5. Under Assumption B and for every positive « and a, there
exists N such that for every n G N we havea, « a, «

1
UyA99 P S F na, A G G exp yn L a q « .Ž . Ž .Ž .Ž .1, n 0 A2n

Ž .We now use Lemma 6.5 in 98 and take « ª 0 to obtain

1
UyAlim inf log P S F na G yL a . IŽ .R 1, n Annª`

Ž .PROOF OF LEMMA 6.5. Equation 91 implies that for every positive « 9 and
a there exists N X such that for every n G N X ,a, « 9 a, « 9

Uy Aexp yn L a q « 9 F P S F naŽ .Ž .Ž .A 1, n
100Ž .

F exp yn LUy a y « 9 .Ž .Ž .Ž .A
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Fix now a, « 9 ) 0, and let d s « 9. We have

1
AP S F na, A G1, n 0 2n

nd1 1
As P S F na, A G by stationarityŽ .Ý iq1, iqn i 2nd nis1

1 1
Aw xG P ' i g 1, nd s.t. S F na, A G union boundŽ .iq1, iqn i 2nd n

1 1
A w xG P S F na, ' i g 1, nd s.t. A G1, nŽ1qd . i 2nd n

101Ž .

nd1 nd
AG P S F na, A GÝ1, nŽ1qd . i 2nd nis1

1 1 d
A AG P S F na y P S F1, nŽ1qd . 1, ndnd nd n

Cw x w x w xbecause P A l B G P A y P BŽ .
1 a 1 d

Uy AG exp yn 1 q d L q « 9 y P S F ,Ž . A 1, ndž /ž /ž /nd 1 q d nd n

where the last inequality holds for all n G N9 . Note that we havearŽ1qd ., « 9

used the notation BC to denote the complement of B. We next show that for
Ž .n ª ` keeping a, d , « 9 fixed we can neglect the second term in the right-hand
Ž .side of 101 . To see that, note that for all b positive there exists N suchb, « 9

that for all n G N , it holdsb, « 9

d
UyA A102 P S F F P S F ndb F exp yn L b y « 9 .Ž . Ž .Ž .Ž .1, nd 1, nd An

By taking b, d and « 9 small enough and n G N , we can achieveb, « 9

a
Uy Uy103 L b y « 9 ) 1 q d L q « 9 .Ž . Ž . Ž .A A ž /ž /1 q d

Here we are using the fact that for sufficiently small b,

LUy b ) LUy ar 1 q dŽ . Ž .Ž .A A

UyŽ .since L b is monotonically increasing as b x0.A
Ž .Observe now that the value of b which satisfies 103 is a function of a, d

Ž .and « 9. Therefore, using 102 , there exists N such that for all n G Na, d , « 9 a, d , « 9

we have

1 d 1 a
Uy104 y P S F G y exp yn 1 q d L q « 9 .Ž . Ž .1, nd A ž /ž /ž /nd n 2nd 1 q d
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ˆŽ . Ž .Combining 104 and 101 , we conclude that there exists N such that fora, d , « 9
ˆall n G N , it holdsa, d , « 9

1 1 a
UyA105 P S F na, A G G exp yn 1 q d L q « 9 .Ž . Ž .1, n 0 A2 ž /ž /ž /2nd 1 q dn

Ž .We now choose « 9 such that recall d s « 9

1 a
Uy Uyexp yn 1 q « 9 L q « 9 G exp yn L a q « ,Ž . Ž .Ž .Ž .A Až /ž /ž /2n« 9 1 q « 9

UyŽ .for all n G N . This can be done due to the lower semicontinuity of L ?a, « A
Ž w x.see the argument in proof of Lemma 2.2.5 in 15 . I

Ž .LEMMA 6.6. Under Assumption B and C i , we have that for every « , « ,1 2
a ) 0 there exists N such that for all n G N ,a, « , « a, « , «1 2 1 2

UyA106 P S F ja q « n , j s 1, . . . , n G exp yn L a q « .Ž . Ž .Ž .Ž .R 1, j 1 A 2

wPROOF. Following the proof of the lower bound in Theorem 6.4 using the
Ž . Aargument used to derive 98 but applied to the sample path S F ja q « n,1, j 1

xj s 1, . . . , n , we have
AP S F ja q « n , j s 1, . . . , nR 1, j 1

1 1
AG P S F ja q « n , j s 1, . . . , n , A G .1, j 1 02 2n n

107Ž .

Now, as in the proof of Lemma 6.5, fixing a, « , « ) 0, we obtain1 2

1
AP S F ja q « n , j s 1, . . . , n , A G1, j 1 0 2n

nd1 1
As P S F ja q « n , j s 1, . . . , n , A GÝ 1qk , jqk 1 k 2nd nks1

1
Aw xG P ' k g 1, nd s.t. S F ja q « n ,1qk , jqk 1nd

1
j s 1, . . . , n , A Gk 2n

108Ž .
1

Aw xG P ; k g 1, nd S F ja q « n ,1qk , jqk 1nd

1
w xj s 1, . . . , n , ' k g 1, nd s.t. A Gk 2n

1
Aw xG P ; k g 1, nd S F ja q « n , j s 1, . . . , n1qk , jqk 1nd

1 d
Ay P S F .1, ndnd n
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Now notice that
Aw xP ; k g 1, nd S F ja q « n , j s 1, . . . , n1qk , jqk 1

A Aw xs P ; k g 1, nd S y S F j q k a y ka q « n ,Ž .1, jqk 1, k 1

j s 1, . . . , n

« n1A w xG P S F j q k a q , ; k g 1, nd , j s 1, . . . , n ,Ž .1, jqk 2109Ž .
« n1A w xS G ka y , ; k g 1, nd1, k 2

« n1A w xs P S F j q k a q , ; k g 1, nd , j s 1, . . . , nŽ .1, jqk 2

G exp yn 1 q d LUy a q « 9 ,Ž . Ž .Ž .Ž .A

where the last equality is obtained by choosing sufficiently small d such that
w A w xxnda y « nr2 - 0 which implies that P S G ka y « nr2, ; k g 1, nd s1 1, k 1

Ž . X1. The last inequality holds, due to Assumption C i , for all n G N . Now,a, « , « 91

as in Lemma 6.5, it can be shown that there exists NY such that for alla, d , « 9

n G NY , it holdsa, d , « 9

1 d 1
Uy110 y P S F G y exp yn 1 q d L a q « 9 .Ž . Ž . Ž .Ž .Ž .1, nd And n 2nd

Ž . Ž . Ž . Ž .Combining 107 , 108 , 109 and 110 , we conclude that there exists
ˆ ˆN such that for all n G N ,a, « , d , « 9 a, « , d , « 91 1

AP S F ja q « n , j s 1, . . . , nR 1, j 1

1
UyG exp yn 1 q d L a q « 9 .Ž . Ž .Ž .Ž .A32n d

111Ž .

We now choose « 9 and if necessary d smaller than the one chosen above for
Ž .the purposes of 109 , such that

1
Uy Uyexp yn 1 q d L a q « 9 G exp yn L a q « ,Ž . Ž . Ž .Ž . Ž .Ž . Ž .A A 232n d

for n G N . Ia, « , «1 2

7. Deterministic splitting of a stream. In this section we treat the
splitting operation of our network model. In particular, we derive a LDP for
the process resulting from the splitting of a stream to a number of streams

Ž .and we show that splitting preserves Assumptions B and C i .
Consider a stream with stationary interarrival times A , i g Z, which isi

split to two substreams. In particular, a fraction p of arrivals of the ‘‘master ’’
stream is directed to substream 1 and a fraction 1 y p to substream 2.
Theorem 7.1 provides a LDP for stream 1. Since stream 1 is chosen arbitrar-
ily, by relabeling the streams one can obtain a LDP for stream 2. The more
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general case in which the master stream is split to more than two substreams
can be handled by successive splitting to two substreams. Let us denote by
A1, A2, i g Z, the interarrival times of substreams 1, 2, respectively. Here,i i

U Ž . Ž .L ? and L ? denote the large deviations rate function and the limitingA A
log-moment generating function of the master stream.

THEOREM 7.1. Under Assumption B, the partial sum S A1
of substream 11, n

satisfies

1 11 UyA112 lim log P S F na s y L ap .Ž . Ž .1, n An pnª`

PROOF. To have n arrivals in substream 1 we need nrp arrivals of the
master stream. Since we are interested in large values of n we will ignore

Ž ? @ .integrality issues i.e., we have nrp rn ª 1rp, as n ª ` . Thus,
1 UyA AP S F na s P S F na F exp y nrp L ap y « .Ž . Ž .Ž .Ž .1, n 1, n r p A

Similarly for the lower bound. I

Ž .We now argue that splitting preserves Assumptions B and C i . It is clear
that the process resulting from splitting satisfies Assumption B, since we
have proved a one-sided LDP for this process with large deviations rate
function expressed as a function of the large deviations rate function of the
master process. Moreover, the process A1 has moments of all orders since A

Ž . UyŽ . Ž w x . UyŽ .has, and 1rp L ap is strictly convex in y`, E A rp since L a is inA i A
Ž w x.the interval y`, E A . The next theorem establishes that the processi

Ž .resulting from splitting satisfies Assumption C i .

� 4THEOREM 7.2. Assume that the process A , i g Z , satisfies Assumption Bi
Ž . 1 Ž .and C i . Then the A process satisfies Assumption C i .

PROOF. The proof is very similar to the proof of Theorem 7.1:
1A AP S y ja F « n , j s 1, . . . , n G P S y ja F « n , j s 1, . . . , n1, j 1 1, jr p 1

G exp y nrp LUy ap q « ,Ž . Ž .Ž .Ž .A

Ž .for n large enough and all « , « ) 0 by using Assumption C i for the master1
process. I

8. An example: queues in tandem. In this section we apply the results
derived so far to obtain LDP’s for two GrGIr1 queues in tandem. Moreover,
we work out a numerical example in order to get a qualitative understanding
of the results. Large deviations results for tandem queues with renewal

w xarrivals and exponential servers have been reported in 21 .
Consider two GrGIr1 queues in tandem. Let A , i g Z, denote the inter-i

arrival times in the first queue and B1, B2, i g Z, the service times in thei i
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first and second queue, respectively. These processes are mutually indepen-
dent, stationary and satisfy Assumptions B and C.

According to Corollary 5.5, the limiting log-moment generating function of
the departure process from the first queue is given by

¡ y y ˆ1inf L x q L y , if u G u ,� 4Ž . Ž .xqysu B Ay ~113 L u sŽ . Ž .D y¢ ˆ1L u y u * q L u * , if u - u ,Ž . Ž .B A

where
d

Uy Uyˆ X U1u J L a q L a .Ž . Ž . Ž .asL uB A A 1da

Applying Theorem 4.1, we obtain that the tail probability of the stationary
waiting time, W , seen by a customer in the second queue, is characterized by2

w x U114 P W G U ; exp u U ,Ž . Ž .2 2

where U is large enough and u U - 0 is the smallest root of the equation2
Ž . Ž . Ž . Ž .2 2L u q L yu s 0. Since for u F 0 the equation L u q L yu s 0D B D B

yŽ . q Ž .2has exactly the same roots as the equation L u q L yu s 0, it turnsD B
out that u U is the smallest root of the equation2

y y q ˆ1 2inf L x q L y q L yu s 0 if u G u ,� 4Ž . Ž . Ž .B A B
xqysu

y q ˆ1 2L u y u * q L u * q L yu s 0 if u - u .Ž . Ž . Ž .B A B

It is instructive to characterize a most likely path along which the LDP for
the waiting time occurs in the second queue. The remarks after the proof of
Theorem 4.1, suggest that a most likely path for the waiting time in the
second queue is characterized by

2P W G i q 1 aŽ .0

2D B; sup P S F i q 1 x P S G i q 1 x ,Ž . Ž .yi , 0 1 yiy1, y1 2
x yx sa2 1

115Ž .

where W 2 denotes the waiting time of the 0th customer in the second queue0
Ž .and i is large enough. Setting U s i q 1 a, we obtain for large enough U,

1
Uy Uq2

2116 P W G U ; exp yU inf inf L x q L x .Ž . Ž . Ž .0 D 1 B 2½ 5a x yx saa)0 2 1

Ž U U .Let a*, x , x be an optimal solution of the optimization problem appearing1 2
Ž . Ž .in 116 . Equation 116 suggests that the waiting time in the second queue

builds up by maintaining an empirical rate of 1rxU for the process D1
Ž . Ž 2 .departure from first queue and an empirical service rate process B of
1rxU.2

We use the remarks after Theorem 5.4 to characterize a most likely path
for the process D to maintain an empirical rate of 1rxU. Let i* be defined by1
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Ž .the equation i* q 1 s Ura*. From 115 , it can be seen that it suffices to
� D Ž . U4characterize a most likely path along which the event S F i* q 1 xyi*, 0 1

occurs. As shown in Theorem 5.4, this most likely path is characterized by

UDP S F i* q 1 xŽ .yi* , 0 1

y y1 2Uy Uq
1; exp i* q 1 sup sup y 1 q z L y zLŽ . Ž . A B½ ž / ž /1 q z zy yy sazG0 1 2

117Ž .

y i* q 1 LU
1

y a .Ž . Ž .B 5
Ž U U .Let y , y , z * be the solution of the optimization problem appearing in1 2

Ž .117 . We depict a most likely path in Figure 11.
We now proceed with a numerical example. We choose the arrival process

A to be a two-state Markov modulated deterministic process. More precisely,
we consider a two-state Markov chain with transition probability matrix

0.8 0.2118 P s ,Ž . 0.3 0.7

and we let the interarrival times be equal to 1rl s 1r5 w.p.1 when the1
chain is at state 1, and equal to 1rl s 1r10 w.p.1 when the chain is at state2

w x2. The steady-state probability vector for this Markov chain is p p s1 2

FIG. 11. A most likely path for the waiting time in the second queue.
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w x Ž . Ž .0.6 0.4 and thus the mean interarrival is 1rl p q 1rl p s 0.16.1 1 2 2
We chose a deterministic server for both queues 1 and 2 with service times
c s 0.13.

w xTheorem 3.1.2 in 15 calculates the limiting log-moment generating func-
tion for the arrival process as the largest eigenvalue of the matrix P Ju

w u rl j xp e , which in our case isi j

u r5 u r100.8 e 0.2 e119 P s .Ž .
u r5 u r100.3 e 0.7 e

We performed several calculations using the software package Matlab. For
the tail probability of the waiting time in the first queue we found that

U UyŽ .u s y9.47. We calculated the large deviations rate functions L a and1 A
UyŽ .L a for the arrival process and the departure process from the first queue,D

UyŽ .respectively. The results appear in Figure 12. To calculate L a we usedD
Ž .72 . It can be seen that the first queue has a smoothing effect on the arrival
process. In other words, the departure process deviates from its mean
with smaller probability than the arrival process does. We also found that

Ž . Ž .2L u q L yu is strictly negative for all u - 0, so that, as can be seenD B
from the proof of Theorem 4.1, we have u U s y`, which means that a large2

Uy Ž . Uy Ž .FIG. 12. L a and L a for the numerical example.A D
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queue does not build up in the second queue. Finally, we found that the
departure process D from the second queue has large deviations rate2

U Ž . UyŽ .function L a equal to L a . This can also be seen analytically. Namely,D D2
Ž . UyŽ . UyŽ . UyŽ . UyŽ .observe that in 71 we have L a s L a which implies L a s L a .G D D D2

9. Conclusions and open problems. We have considered a single class,
acyclic network of GrGr1 queues and characterized the large deviations
behavior of the waiting time and the queue length in all the queues of the
network. We accomplished that by obtaining the large deviations behavior of
all the processes resulting from various operations in the network, which for
the network model that we considered were passage-from-a-queue, superposi-
tion of independent processes and deterministic splitting of a process to a
number of processes. We concretely characterized the way that these large
deviations occur.

These results are to the best of our knowledge among the few that study
large deviations in a network. It is clear that more work is needed in this
area, especially in view of the important applications in high speed communi-
cation networks. It is an interesting open problem to derive similar results for
network models that have feedback and accommodate more than one type of
traffic. It would also be interesting to study, in the large deviations regime,
how different types of traffic interact and how to choose scheduling policies in
order to satisfy certain performance criteria. Work relevant to the latter

w x w xproblem for the single queue case is reported in 30 and 17 .

APPENDIX

� 4Here we consider an arbitrary process X , i g Z that satisfies Assump-i
tion B and the following: for every « , « , d , a ) 0, there exists M such that1 2 X
for all n G M ,X

Uy Xexp yn L a q « F P S y j y i q 1 a F « n ,Ž . Ž .Ž .Ž .X 2 i , j 1

1 F i F j F n s.t. j y i q 1 ) d n .Ž .
120Ž .

Ž . w xInequality 120 is implied by the results in 14 , under some mild mixing
� 4 � 4assumptions on the process X , i g Z . We prove that the process X , i g Zi i

w Ž .xsatisfies Assumption C for the service times see 19 , that is, for every
« , « , a ) 0, there exists M X such that for all n G M X ,1 2 X X

exp yn LUy a q «Ž .Ž .Ž .X 2

XF P S y j y i q 1 a F « n , 1 F i F j F n .Ž .i , j 1

121Ž .

Ž .Since Assumption C for the arrivals in 18 is a weaker version of the above,
� 4it is also satisfied by the process X , i g Z .i
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Fix positive « , « and a. We have1 2

XP S y j y i q 1 a F « n , 1 F i F j F nŽ .i , j 1

Xs P S y j y i q 1 a F « n , 1 F i F j F n s.t. j y i q 1 ) d n ,Ž . Ž .i , j 1

XS y j y i q 1 a F « n , 1 F i F j F n s.t. j y i q 1 F d nŽ . Ž .i , j 1

XG P S y j y i q 1 a F « n , 1 F i F j F n s.t. j y i q 1 ) d nŽ . Ž .i , j 1

122Ž .

w xy P ' i F j g 1, n s.t. j y i q 1 F d nŽ .
Xand S y j y i q 1 a G « n ,Ž .i , j 1

w x w x w C xwhere we have used the inequality P A l B G P A y P B . Using the
union bound and the Gartner]Ellis theorem, we obtain that for all « ) 0¨ 3
there exists N such that for all n G N ,1 1

w xP ' i F j g 1, n s.t. j y i q 1 F d nŽ .
Xand S y j y i q 1 a G « nŽ .i , j 1

XF P S y j y i q 1 a G « nŽ .Ý i , j 1
w xiFjg 1, n

Ž .jyiq1 Fd n

XF P S G « nÝ 1, d n 1
w xiFjg 1, n

Ž .jyiq1 Fd n

123Ž .

«1Uq2F n exp ynd L y « .X 3ž /ž /ž /d

Now for given « X ) 0, choose « and d small enough in order for large n to2 3
have

« 11 XUq Uy2124 n exp ynd L y « F exp yn L a q « .Ž . Ž .Ž .Ž .X 3 X 2ž /ž /ž /d 2
UqŽ .This can be done since L b ª ` as b ª `.X

Ž .Also, by using 120 , we have that there exists N0 such that for all
n G N0,

XP S y j y i q 1 a F « n , 1 F i F j F n s.t. j y i q 1 ) d nŽ . Ž .i , j 1
125Ž .

XUyG exp yn L a q « .Ž .Ž .Ž .X 2

ˆŽ . Ž . Ž . Ž .Combining 125 , 124 and 123 with 122 , we obtain that there exists N
ˆsuch that for all n G N,

XP S y j y i q 1 a F « n , 1 F i F j F nŽ .i , j 1
126Ž .

1 Uy XG exp yn L a q « .Ž .Ž .Ž .X 22



D. BERTSIMAS, I. C. PASCHALIDIS AND J. N. TSITSIKLIS1068

Ž . XFinally, to obtain 121 it suffices to choose « such that for large enough n,2

1 Uy X Uyexp yn L a q « G exp yn L a q « . IŽ . Ž .Ž . Ž .Ž . Ž .X 2 X 22
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