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NORMALITY OF TREE-GROWING SEARCH STRATEGIES

By Russell Lyons1 and Kevin Zumbrun2

Indiana University

We study the class of tree-growing search strategies introduced by
Lent and Mahmoud, searches for which data are stored in a deterministic
sequence of tree structures (e.g., linear search in forward order). Specif-
ically, we study the conditions under which the number of comparisons
needed to sort a sequence of randomly ordered numbers is asymptotically
normal. Our main result is a sufficient condition for normality in terms of
the growth rate of tree height alone; this condition is easily computed and
is satisfied by all standard deterministic search strategies. We also give
some examples of normal search strategies with surprisingly small vari-
ance, in particular, much smaller than is possible for the class of consistent
strategies that are the focus of the work by Lent and Mahmoud.

1. Introduction. The problem we consider arises from the study of com-
puter search–sort algorithms. A question of theoretical interest is the number
of comparisons Cn needed to sort the first n elements of a linear stream of
data consisting of random real numbers. The expectation and variance of Cn
give a partial description; if it can be shown that Cn is asymptotically normal,
then these two parameters (together, perhaps, with the rate of convergence)
provide a good description of the asymptotic behavior of Cn.

For a class of algorithms they called “tree-growing,” Lent and Mahmoud
[2] showed that this question reduces to a combinatorial problem involving
sequences of trees and identified a subclass of “consistent,” or “self-similar,”
tree-growing search strategies that do have asymptotically normal behavior.
Here, we study this problem without the simplifying assumption of consis-
tency. We give a general and easy-to-compute condition sufficient for asymp-
totic normality that covers perhaps all practical deterministic search strate-
gies. In particular, we recover the results of [2] as special cases and resolve
certain issues they left open. In the process, we show that the behavior of
consistent searches is quite special among general tree-growing searches.

We first describe the reduction to the combinatorial problem. In the follow-
ing, trees are assumed to be extended (or full) binary, which means that when
the tree is oriented so that edges lead away from a distinguished vertex called
the root, each node has either two or no edges leading out of it. The nodes
to which these edges lead are called the left and right children of the parent
node from which they emanate. The leaves, that is, those nodes with no edges
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leading out, are called external nodes; the others are internal nodes. It is well
known and easily verified by induction that the number of external nodes is
one more than the number of internal nodes. Contrary to the usual convention
in computer science (in the U.S.), we refer to our trees as growing upwards
from the root. The level of a node denotes its distance from the root and the
height of a tree denotes its maximal (external) node level. Thus, the level of
the root is 0.

A (tree-growing) search strategy is specified by a deterministic sequence of
trees �Tn� with the properties that Tn has n external nodes and is obtained
from Tn−1 by converting one external node to an internal node and a pair of
external nodes. At each stage in the sorting process, we assume that the n−1
data elements already sorted have been stored in the internal nodes of Tn
in the unique configuration for which the data value of each left child is less
than the value of its parent, and the data value of each right child is greater
than the value of its parent. When the nth datum arrives, its rank relative
to the first n− 1 data elements can then be found by starting at the root and
moving always to the left or right child according as this datum is less than or
greater than the value at the current location. When one reaches an external
node (where no datum is stored), the new datum is temporarily stored there,
recording its precise rank among the first n data elements. Unless the external
node where the nth datum is stored happens to be the one converted to an
internal node in Tn+1, the data is then reconfigured into the next prescribed
structure Tn+1, and the process is continued. For example, linear search in
forward order stores the data in linear order, no matter in what order they
arrive. See Figure 1 for another example and [2] or Section 2 for analysis of
other examples.

Fig. 1. The left tree is T5 with real data stored at the nodes for reference and the shaded node is
where the fifth datum, 3.4, will be temporarily stored. The right tree is T6. Squares are used for
external nodes.
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We emphasize the distinction between the deterministic search tree strate-
gies studied here and the more widely studied class of random search tree
strategies, described, for example, in [3]. For a given n, a random search strat-
egy allows for data storage in any of a family of usually “balanced” (hence effi-
cient) tree structures. This is accomplished most of the time simply by placing
the newest datum in an external node of Tn−1; occasionally, the tree must be
rebalanced to stay within the class of admissible data structures. By contrast,
the deterministic strategies prescribe ahead of time only one possible tree
structure for each value of n, which is not necessarily well balanced. Indeed,
the concept of tree-growing search strategy was introduced in [2] precisely to
study the situation in which the data structure is dictated by considerations
other than maximum efficiency, such as ease in progamming or the nature of
the storage device (the example is given in [2] of a linear tape drive). Further
discussion of applications and motivation for the problem considered may be
found in [2].

Besides possible imbalance, (deterministic) tree-growing searches incur the
penalty that the data may need to be completely reconfigured for each n in-
stead of merely rebalanced, at a cost of O�n� pointer changes. Depending on
the application, that is, the relative cost of data movement and comparison
operations, this may dominate the cost of the search; on the other hand, the
cost of comparisons is typically greater than that of data movement, by sev-
eral orders of magnitude in some cases. Following [2], we ignore the cost of
reconfiguration and analyze only the number of data comparisons. This can
be interpreted as restriction to the high comparison-cost regime and large but
not infinite n.

Now, let Xn be the number of comparisons needed to enter the nth data
element, that is, the level of the external node of Tn at which this datum is
temporarily stored (before reconfiguration). Thus, the total number of compar-
isons made in sorting the first n data is the partial sum Cn x=

∑n
i=1Xi. If the

data form a stream of i.i.d. continuously distributed numbers, then the rank
of the nth datum among the first n is uniformly distributed among the inte-
gers 1; : : : ; n, and is independent of the relative ranks of previous elements.
Thus, the level Xn of the nth datum is the level of a uniformly chosen external
node of Tn, and, because �Tn� are deterministic, the random variables Xn are
independent for different n.

This reduces our problem to a purely combinatorial question: let �Tn� be
a sequence of trees, ordered as described above. Define independent random
variables Xn to be the levels of uniformly chosen external nodes of Tn, and
denote their partial sums as Cn x=

∑n
i=1Xi. Is Cn asymptotically normal in

the sense that �Cn−E�Cn��/
√

Var�Cn� converges in distribution to the standard
normal?

Hereafter, we restrict our discussion to this combinatorial problem, refer-
ring the reader to [2] for further background. We note, however, that if we
replace external nodes at level k by balls in an urn numbered k, we obtain
an amusing formulation of the problem that involves no trees: suppose that
there are urns numbered by the nonnegative integers. We begin with one ball
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in urn number 0. There is some deterministic scheme described by a func-
tion f�n� that at each time n ≥ 1, takes a ball from urn number f�n� and
replaces it with two balls in urn number f�n� + 1. Let Xn be the urn number
of a randomly (that is, independently and uniformly) chosen ball at time n
and Cn x=

∑n
i=1Xi. Which functions f lead to asymptotically normal behavior

of Cn?

Notation. Let hn be the height of Tn and µn be the mean of Xn, that is,
the mean level of the external nodes of Tn. Define the tree variance σ2

n to be
the variance of Xn and the procedural variance s2

n to be the variance of Cn, or

s2
n =

n∑
i=1

σ2
i :

We also define the growth function n�h� x= max�ny hn = h� and its first
difference, the growth rate m�h� x= card �ny hn = h�. (In [2], these were
denoted Uh and mh, respectively.) We shall write f�n� = ��g�n�� or f�n� �
g�n� to mean that �f�n�/g�n�� is bounded below by a positive number and
f�n� = O�g�n�� or f�n� � g�n� to mean that �f�n�/g�n�� is bounded above.
We shall write f�n� � g�n� to mean that f�n�/g�n� is bounded above and
below by two positive numbers. All logarithms are to the base 2. For any
real number x, we denote by �x� and �x� the consecutive integers satisfying
�x� ≤ x < �x�.

A necessary and sufficient condition for asymptotic normality of a general
sum of independent random variables is given by the Lindeberg–Feller theo-
rem:

Proposition 1.1 (Lindeberg–Feller theorem). Let Xn �n ≥ 1� be indepen-
dent random variables with finite second moments. Let σ2

n x= Var �Xn� and

s2
n x=

n∑
i=1

σ2
i :

For ε > 0, set

s̃2
n; ε x=

n∑
i=1

E
[(
Xi −E�Xi�

)2y
∣∣Xi −E�Xi�

∣∣ > εsn
]
:

Assume that limn→∞ sn = ∞ and limn→∞ σn/sn = 0. Then
∑n
i=1�Xi−E�Xi��/sn

converges in distribution to the standard normal if and only if ∀ ε >
0 limn→∞ s̃n; ε/sn = 0.

See, for example, [1], Section XV.6. In the context of tree-growing searches,
it is easy to see that the conditions limn→∞ sn = ∞ and limn→∞ σn/sn = 0
always hold. In this context, Lent and Mahmoud [2] noted the following suf-
ficient condition for normality, repeated here with their proof. We have added
a bound on the rate of convergence, defined to be the supremum of the dif-
ference between the cumulative distribution function of

∑n
i=1�Xi −E�Xi��/sn

and that of the standard normal.
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Corollary 1.2. The condition

hn = o�sn�(1.1)

implies asymptotic normality of the search strategy �Tn�. Furthermore, the rate
of convergence is bounded by 6hn/sn.

Proof. The interval �0; hn� includes the levels of all the external nodes
and hence their mean. Therefore, given ε > 0, when hn < εsn, there are
no nodes whose level differs from µn by more than εsn, whence for such n,
the corresponding s̃n; ε = 0. The bound on the rate of convergence follows
from Esséen’s theorem ([1], Section XVI.5) since the third moment of any
random variable is bounded by the product of its supremum times its second
moment. 2

The above corollary states that a search is normal provided that its proce-
dural variance grows sufficiently fast relative to its height. It is basic to the
analysis of [2] and to ours as well. However, note that it can only be applied
after one first estimates sn, which may be a nontrivial task.

The class of consistent tree-growing searches is defined in [2] as follows.

Definition. For a given tree T, let TL and TR denote the descendant
subtrees of the left and right children of the root of T, respectively, and let
�T� denote the number of external nodes in T. A tree-growing search strategy
�Tn� is consistent if TLn is isomorphic to T�TLn � and TRn is isomorphic to T�TRn �
for all n.

The main result of [2] is the following.

Proposition 1.3. Let �Tn� be a consistent strategy satisfying

lim
n→∞
�TLn �/n exists:(1.2)

Then �Tn� satisfies (1.1), whence is normal.

Lent and Mahmoud implicitly conjectured, and proved in special cases, that
the technical condition (1.2) is unnecessary. In addition, they noted that most
“reasonable” tree-growing searches are normal, even if not consistent; for ex-
ample, they showed by separate arguments that alternating linear and some
types of Fibonacci search are normal, despite not being consistent. They con-
jectured, in particular, that every tree-growing Fibonaccian search is asymp-
totically normal.

Here, we derive a condition for normality analogous to (1.1) but involving
only the growth function n�h�, generally an easily computed function. Define

D�h� x= log4 n�h� +
h∑
k=1

k3 log
n�k�

n�k− 1� :

Our main result is the following.
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Proposition 1.4. s2
n ≥ 2−63D�hn − 1� ≥ 2−63∑hn−1

k=1 k3m�k�/n�k�.

Remark. In Proposition 1.4, hn−1 can be replaced by hn when n = n�hn�.

An immediate consequence is the following theorem.

Theorem 1.5. The condition

D�h�/h2 →∞(1.3)

as h → ∞ implies (1.1) and hence asymptotic normality. The rate of conver-
gence to normality is bounded by 235hn/

√
D�hn − 1�.

Of course, a better lower bound for sn leads to a better upper bound on
the rate of convergence, as would a better upper bound on the maximum of
�Xi −E�Xi��. We shall ignore rates of convergence in the sequel.

Call a strategy monotone if �m�k�� is nondecreasing.

Corollary 1.6. Monotone tree-growing search strategies are asymptoti-
cally normal. More generally, searches satisfying the regularity condition

lim
k→∞

k
n�k� − n��λk��

n�k� = ∞(1.4)

for some λ ∈ �0;1� are asymptotically normal.

Proof. Both claims follow from Theorem 1.5 and the second inequality of
Proposition 1.4. For the first claim, we substitute km�k� for n�k� using the
relation n�k� ≤ km�k�. For the second claim, we use

h∑
k=1

k3m�k�
n�k� ≥

�λh�3
n�h�

∑
λh<k≤h

m�k� = �λh�3n�h� − n��λh��
n�h� :

[Alternatively, one can show that monotonicity implies (1.4).] 2

Remark. In [2], it was proved that all consistent strategies are mono-
tone. Thus, monotonicity generalizes the notion of consistency, and we recover
Proposition 1.3 from Corollary 1.6 without using the technical hypothesis (1.2).
In fact, virtually all strategies discussed in [2] are monotone, hence normal. In
particular, every Fibonacci search is asymptotically normal. This verifies the
conjectures of [2]. At the end of [2], the authors remark that they can prove
normality when three certain conditions, unrelated to consistency, are satis-
fied. One of these conditions is that n�k�/m�k� = O�k1+δ� for some δ ∈ �0; 1�.
By virtue of Theorem 1.5 and Proposition 1.4, we see that this condition alone
suffices for normality.

If the quotient in (1.4) is assumed merely to be bounded below, then nor-
mality may not hold (see Example 5.2). On the other hand, in such a case,
(1.1) is then a necessary and sufficient condition for normality; a second use
of Proposition 1.4 will be to show the following.



118 R. LYONS AND K. ZUMBRUN

Proposition 1.7. For strategies satisfying

h
n�h� − n��λh��

n�h� = ��1�(1.5)

for some λ ∈ �0;1�, condition (1.1) is equivalent to normality.

In Section 5, we show that, although (1.3) is not equivalent to normality in
the usual sense, it is equivalent in the sense that if (1.3) is violated, then the
growth rate m�h� is consistent with a nonnormal strategy �Tn�. We must be
content with this weaker statement since the growth rate is usually far from
a complete specification of a search strategy; in fact, a given growth rate may
be arise from both normal and nonnormal strategies (cf. Example 5.2).

In the final section, we show that (1.1) is not equivalent to normality in the
general case. Indeed, we demonstrate the rather counterintuitive fact that
there exist normal tree-growing search strategies with sn = O�hλn� and sn =
O�nλ/6� with λ > 0 as small as desired. This is quite different from the case of
consistent search strategies, for which sn = ��n1/2� [2] [and so sn = ��h1/2

n �],
and such possibilities must be taken into account in our analysis in Sections 3
and 4.

2. Three examples. We begin with some simple examples, both to moti-
vate the analysis that follows and to emphasize the distinction between con-
sistent and general tree-growing searches.

The most basic example is linear search, which is trivially analyzed.

Example 2.1. If m�k� = 1 for all k, then s2
n � n3 = �hn + 1�3.

Note that such trees arise from various implementations of linear search,
including linear search in forward, reverse, or alternating order through the
data. Different implementations give trees that differ only in the assignment
of left and right to the internal children.

Another basic example is the usual binary search.

Example 2.2. If m�k� = 2k, then s2
n � n � 2hn .

Both these strategies are consistent (more precisely, admit consistent re-
alizations) and fill in the trees from bottom to top, also called breadth first.
(Recall that our trees grow upwards.) It is tempting to believe that filling
in breadth first minimizes sn, given a desired terminal tree Tn. In fact, one
might conjecture that the greedy algorithm (which always converts the node
of Tn that adds the least variance) is optimal. However, these conjectures are
far from correct. Indeed, an important example for us is an unusual way to
grow complete binary trees that gives much less variance than the standard
breadth-first fill-in.
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Fig. 2. An intermediate stage in filling in a tree.

Example 2.3. Given n = 2h, for i ≤ n, form Ti from Ti−1 by converting to
an internal node the leftmost external node at level at most h (see Figure 2).
Then s2

n = O�log4 n� = O�h4�.

As opposed to the usual breadth-first method, this left-to-right, or depth-
first, method does not work simultaneously for all h. However, it can be essen-
tially repeated for a sequence of heights whose differences increase to infinity.
Thus, one can arrange that

lim inf
n→∞

s2
n/ log4 n <∞:

(However, the corresponding inequality

lim sup
n→∞

s2
n/ log4 n <∞

cannot hold, as shown by the proof of Lemma 3.2.)

Proof. Induction shows that for each i ≤ n, the tree Ti has at most one
right external node at each level < h and has at most one left external node
altogether, except for those external nodes at level h. Therefore, σ2

i is bounded
above by the mean squared distance of the external nodes from level h, which
is O�h3/i�. Summing over i gives the result. 2

Example 2.2 played an important role in [2]; it shows the sharpness of the
bound s2

n = ��n� among consistent searches. For us, Example 2.3 will play a
similarly important role. For instance, a key step in our analysis will be to
establish that s2

n = ��log4 n� for general tree-growing search strategies; in-
deed, our analysis in the next section is primarily motivated by this worst-case
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scenario. The difference between Examples 2.2 and 2.3 indicates the strong
distinction in behavior of consistent and general tree-growing searches.

3. Variance estimates. In this section, we determine lower bounds for
the variance s2

n in terms of the growth function n�h�. These all arise out of
the following dichotomy, which asserts that, in an approximate sense, a tree
Tn must either be full binary or else contain a linear search of full height hn.

Lemma 3.1. For any tree Tn, either n ≥ 2hn/16 or else Tn contains at least
�hn/16� external nodes with level in the interval ��l− 1�hn/3; lhn/3�, for each
l = 1;2;3, in which case

σ2
n ≥

h3
n

210n
:

Proof. The assertion follows trivially if hn < 16 or n ≥ 2hn/16. Suppose
instead that hn ≥ 16 and hn/ log n > 16, so n ≥ 16. In this case, we claim that
if 0 ≤ α ≤ hn − 3 log n, then there are more than �3/2� log n external nodes
with level in the interval �α; α + 3 log n�, for there is a path of more than
�3/2� log n internal nodes contained between levels α and α + 2 log n. From
each of these internal nodes, there branches a distinct subtree in the direction
transverse to the path. Now none of these subtrees can be complete for �log n�
levels from its root since it would then contain more than or equal to 2log n = n
external nodes, which is the total number of external nodes in T. Hence each
of these subtrees contains an external node of level less than or equal to log n
from its root, whence in the interval �α; α+3 log n�. Since there are more than
�3/2� log n such subtrees, the claim is established.

Among the n external nodes of Tn, there are thus at least

�3/2� log n
⌊
hn/3

3 log n

⌋
≥ �hn/16�

in each of the intervals �0; hn/3�, �hn/3;2hn/3�, �2hn/3; hn�, as claimed. Since
hn ≥ 16, we have �hn/16� ≥ hn/32. Thus, there exists a subset of the external
nodes containing at least hn/32 nodes from each of �0; hn/3� and �2hn/3; hn�.
This subset must have variance at least �hn/6�2, and thereforeTn has variance
σ2
n at least

(
hn
6

)2hn/16
n
≥ h3

n

210n
;

which completes the proof. 2

Lemma 3.2. s2
n ≥ 2−50 log4 n.

Proof. It suffices to deal with the case that s2
n < 2−6 log4 n and n ≥ 2212

since for any n ≥ 2, we have s2
n ≥ 1/4. Note that then

log�n/2� ≥ 32 log�4 log4 n�:(3.1)

In particular, n ≥ 4 log4 n.
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Our first observation is that, for i ≥ 4 log4 n, more than 3/5 of all external
nodes of Ti must be at the same level. Otherwise, for the previous �i/5� steps,
there would be at most 4i/5 external nodes on any given level, in particular
at the median level. It follows that there would be two subsets, each of �i/10�
nodes, separated by at least one level. The union of these two subsets would
have variance at least �1/2�2. This would give a tree variance for each 4i/5 <
j ≤ i of

σ2
j ≥

(
1
2

)2 2�i/10�
j

≥ 1/40;

and therefore a procedural variance of at least

s2
i ≥ i/200 ≥ 2−6 log4 n;

which contradicts the original assumption.
It follows that all Ti such that i ≥ 4 log4 n must have more than 3/5 of

their nodes at a fixed level h∗, where h∗ is independent of i. In particular,
since n ≥ 4 log4 n, the tree Tn has at least n/2 nodes at level h∗, so that
2h∗ ≥ n/2 and therefore

h∗ ≥ log�n/2� ≥ �1/2� log n:(3.2)

Now, appealing to Lemma 3.1, we find that for all i between 4 log4 n and
2h∗/16, we have σ2

i ≥ h∗/210i. Summing over all such i, we get

s2
n ≥

2h∗/16∑

4 log4 n

h3
∗

�210i� ≥
h3
∗

210 log e

(
h∗
16
− log�4 log4 n�

)

≥ h3
∗

211

(
log�n/2�

16
− log�4 log4 n�

)
≥ h3

∗
211

log�n/2�
32

≥ 2−20 log4 n;

where the last three inequalities follow from (3.2), (3.1) and (3.2). 2

Lemma 3.3. s2
n ≥ 2−62∑hn−1

k=1 k3 log�n�k�/n�k− 1��.

Proof. By Lemma 3.2, we have s2
n ≥ 2−50 log4 n for all n. Set N to be the

largest integer less than or equal to n, such that hN/16 logN < 1 if there is
one, else N x= 0. Note that if 0 < N < n, then N = n�hN�. Therefore, when
0 < N < n, we have

s2
N ≥ 2−50 log4N ≥ 2−62h3

N logN = 2−62h3
N

hN∑
k=1

log
n�k�

n�k− 1� :
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Combining this with the result of Lemma 3.1, we have, in case N < n,

s2
n = s2

N +
n∑

i=N+1

σ2
i

≥ 2−62
hN∑
k=1

k3 log
n�k�

n�k− 1� + 2−61
hn∑

k=hN+1

k3
n�k�∑

i=n�k−1�
1/i

≥ 2−62
hn∑
k=1

k3 log
n�k�

n�k− 1� :

In case N = n, we have instead

s2
n ≥ 2−50 log4 n ≥ 2−62h3

n log n ≥ 2−62h3
n

hn−1∑
k=1

log
n�k�

n�k− 1�

≥ 2−62
hn−1∑
k=1

k3 log
n�k�

n�k− 1� :

These cases together yield the result. 2

4. Proofs of the main results. We now prove our main results.

Proof of Proposition 1.4. The first inequality follows immediately from
the estimates Lemma 3.2 and Lemma 3.3. The second inequality follows from

log
n�k�

n�k− 1� = log
(

1+ m�k�
n�k− 1�

)
≥ log

(
1+ m�k�

n�k�

)
≥m�k�/n�k�;

where the last inequality holds because 0 < m�k�/n�k� ≤ 1 (recall that loga-
rithms are to the base 2). 2

To prove Proposition 1.7, we first establish the following lemma.

Lemma 4.1. Let 0 < λ < 1 be fixed. Set σ̂2
n x= Var�Xny �Xn−µn� ≥ λhn/10�

and ŝ2
n x=

∑n
j=1 σ̂

2
j . If for some h, we have D�h� ≤ �27/625�λ4h3, then

ŝ2
n�h� ≥ 10−3λ3h3

(
n�h� − n��λh��

n�h�

)
:

Proof. We have

D�h� ≥
∑

0:6λh<k≤h
k3m�k�
n�k� ≥

�0:6λh�3
n�h�

∑
0:6λh<k≤h

m�k�

= �0:6λ�
3h3

n�h�
(
n�h� − n��0:6λh��

)
;
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so that
n�h� − n��0:6λh��

n�h� ≤ D�h�
�0:6λ�3h3

≤ 0:2λ:

Thus, for 0:6λh ≤ hj ≤ h, the mean µj satisfies

µj ≤ �0:6λh�
n��0:6λh��
n�h� + hn�h� − n��0:6λh��

n�h� ≤ 0:6λh+ 0:2λh = 0:8λh:

It follows that for λh ≤ hj ≤ h, there are at least hj − λh ≥ 0:1λh external
nodes of Tj at level greater than or equal to 0:9λh ≥ µj + 0:1λh. This gives a
tail tree variance of

σ̂2
j ≥ �0:1λh�2

0:1λh
j
≥ 10−3�λh�3

n�h� :

Summing σ̂2
j over those j with hj between λh and h, we obtain the desired

inequality. 2

Proof of Proposition 1.7. Assume that (1.5) holds for some λ. We need
only show (1.1) to be necessary. Suppose that (1.1) is violated; that is, there
is a constant C and a sequence �Hj� such that sn�Hj� ≤ CHj. By Proposition
1.4, we have D�Hj� ≤ 263s2

n�Hj� ≤ 263C2H2
j. For large enough j, it follows that

D�Hj� ≤ �27/625�λ4H3
j. Choose ε < λ/10. By Lemma 4.1, we have that the

tail variance s̃2
n�Hj�; ε in the Lindeberg–Feller theorem satisfies

s̃2
n�Hj�; ε ≥ ŝ

2
n�Hj� ≥ 10−3�λHj�3

(
n�Hj� − n��λHj��

n�Hj�

)
= ��H2

j� = �
(
s2
n�Hj�

)

and the strategy is therefore not asymptotically normal. 2

5. Sharpness of the growth rate condition. For strategies satisfying
the regularity condition (1.5), we have shown that (1.1) is a sharp condition for
normality. We now show that, with an appropriate interpretation, condition
(1.3) is also sharp.

Proposition 5.1. Let m�k� ≤ 2k satisfy the regularity condition (1.5). If
�m�k�� violates (1.3), then there exists a nonnormal strategy �Tn� with growth
rate �m�k��.

Proof. We shall show, more generally, that for any m�k� ≤ 2k violating
(1.3), there exists a strategy �Tn� with growth rate �m�k�� violating (1.1). In
the case that �m�k�� satisfies (1.5), Proposition 1.7 gives the nonnormality of
�Tn�.

If �m�k�� violates (1.3), then D�Hp� ≤ CH2
p for some constant C and some

sequence of heights Hp satisfying

log n�Hp� ≥ n�Hp−1�:(5.1)

Let �Tn� be the following depth-first strategy.
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For i of the form n�k�+1, convert the leftmost external node of Ti−1 at the
kth level to an internal node and two external nodes at level k+1. For all other
i, if p is such that n�Hp−1� < i ≤ n�Hp�, then convert the leftmost external
node of Ti−1 at level ≤ �log n�Hp��. That is, subject to the growth rate m�k�,
perform as nearly as possible the depth-first binary search of Example 2.3.

For this strategy, we claim that

s2
n�Hp� = O�D�Hp�� = O�H2

p�;

which violates (1.1).
For, at each step i ≤ n�Hp�, the external nodes ofTi are the union of at most

n�Hp−1� nodes at level less than or equal to �log n�Hp−1��, at most i nodes
at level �log n�Hp��, and (as in Example 2.3) at most two nodes at every other
level less than or equal to hi. Bounding variance by mean squared distance
from �log n�Hp��, we have therefore

σ2
i ≤ �log n�Hp��2

(
n�Hp−1�

i

)
+ h2

i

(
2hi
i

)
:

Summing over i, we obtain

s2
n�Hp� �

n�Hp�∑
i=1

log2 n�Hp�
n�Hp−1�
i+ h3

i /i

=
Hp∑
k=1

(
log2 n�Hp�n�Hp−1� + k3) ∑

n�k−1�<i≤n�k�
1/i

�
Hp∑
k=1

(
log2 n�Hp�n�Hp−1� + k3) log

n�k�
n�k− 1�

= log3 n�Hp�n�Hp−1� +
Hp∑
k=1

k3 log
n�k�

n�k− 1�
≤ D�Hp�;

where the final inequality follows from (5.1). This proves the claim and we are
done. 2

The following example shows that normality is not completely determined
by growth rate, even for strategies satisfying the regularity condition (1.5).
This explains the formulation of Proposition 5.1; at the same time, it shows
that there exist regular strategies that are nonnormal.

Example 5.2. There exists a sequence �m�k�� satisfying the regularity
condition (1.5), which is the growth rate of both normal and nonnormal search
strategies �Tn�.
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Proof. LetHp be the sequence of heights determined byH0 x= 0,H1 x= 25

and Hp x= 2Hp−1 for p > 1, so that

logHp =Hp−1:

Define

m�k� x=





2k−Hp−1; if Hp−1 < k ≤ 3Hp−1;
⌊(

Hp

k− 3Hp−1

)2⌋
; if 3Hp−1 < k ≤Hp;

and n�k� x=∑k
j=1m�j�.

Summing, we find that there is a constant C such that for all p and for
4Hp−1 < k ≤Hp,

H2
p/C ≤ n�k� ≤ CH2

p(5.2)

and

H2
p/�Ck2� ≤m�k� ≤ CH2

p/k
2;

so that

1/�Ck�2 ≤m�k�/n�k� ≤ �C/k�2:(5.3)

Moreover,

m�k�/n�k� = ��1/k2�(5.4)

holds for all k.
Relation (5.4) implies (1.5). For

h
n�h� − n��h/2��

n��h/2�� ≥ h
∑

h/2<k≤h
m�k�/n�k� � h

∑
h/2<k≤h

1/k2 = ��1�:

Let C′ be such that

h
n�h� − n��h/2��

n��h/2�� ≥ C′:

Then n�h�/n��h/2�� ≥ 1+C′/h, whence n��h/2��/n�h� ≤ 1−C′/�2h� for large
h, whence

h
n�h� − n��h/2��

n�h� ≥ C
′

2

for large h, which is (1.5).
At the same time, (5.2) and (5.3) imply that (1.3) fails. For (5.3) implies

log�n�k�/n�k− 1�� ≤ 2�C/k�2 for all 4Hp−1 < k ≤Hp, and thus

Hp∑
k=4Hp−1

k3 log
n�k�

n�k− 1� �
Hp∑

k=4Hp−1

k�H2
p:
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Fig. 3. The shape with a normal strategy.

Also,

4Hp−1∑
k=Hp−1+1

k3 log
n�k�

n�k− 1� ≤
4Hp−1∑

k=Hp−1+1

k3 log 2�H4
p−1:

Therefore,

D�HP� � log4 n�HP� +
P∑
p=1

Hp∑
k=Hp−1+1

k3 log
n�k�

n�k− 1� �H2
P

by (5.2). Thus, (1.3) fails. It is easily checked thatm�k� ≤ 2k, whence by Propo-
sition 5.1, there is a nonnormal strategy with growth rate �m�k��, namely the
depth-first strategy described in the proof of the proposition.

On the other hand, �m�k�� is also consistent with the following breadth-first
strategy �Tn�: for n�Hp−1� < i < n�Hp−1�+H2

p, perform a breadth-first binary
search as in Example 2.2, filling a complete subtree of H2

p − 1 internal nodes;
this subtree starts with the root at the leftmost node of Tn�Hp−1� at level Hp−1

and has its external nodes at level 3Hp−1. Starting with i = n�Hp−1� +H2
p,

convert m�3Hp−1� nodes at level 3Hp−1, then convert m�3Hp−1 + 1� nodes
at level 3Hp−1 + 1, and so on until level Hp is reached. This can always be
accomplished, since there are 2m�k − 1� ≥ m�k� external nodes available at
level k. For later use, we note that in fact, except for Hp−1 ≤ k ≤ 3Hp−1, there
remain ��m�k�� external nodes of Ti at level k for all i ≥ n�k�.

We claim that this strategy satisfies s2
n/h

2
n = ��log log log hn�, whence is

normal. For any i, define p�i� to be the smallest integer such that hi ≤Hp�i�.
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The mean level of the external nodes of Ti is

µi ≤ 3Hp�i�−1 +

∑Hp�i�
k=3Hp�i�−1+1

(
Hp�i�

k− 3Hp�i�−1

)2

k

∑Hp�i�
k=3Hp�i�−1+1

(
Hp�i�

k− 3Hp�i�−1

)2

≤ 6Hp�i�−1 + logHp�i� = 7Hp�i�−1:

Thus, the tree variance is

σ2
i ≥

hi∑
k=9Hp�i�−1

�k− 7Hp�i�−1�2
m�k�
i
≥ 1

2i

hi∑
k=9Hp�i�−1

(
k− 7Hp�i�−1

k− 3Hp�i�−1

)2

H2
p�i�

= ��hi − 9Hp�i�−1�

since i ≤ n�Hp�i�� = O�H2
p�i�� by (5.2).

Summing over i, we find that

s2
n ≥

∑

�iy10Hp�n�−1≤hi≤hn�
σ2
i �

hn∑
k=10Hp�n�−1

km�k�

�
hn∑

k=10Hp�n�−1

k�Hp�n�/k�2 �H2
p�n� log

hn
10Hp�n�−1

≥ h2
n log

hn
10Hp�n�−1

:

This gives s2
n�Hp−1�/H

2
p−1 � log �Hp−1/10Hp−2� � logHp−1, whence for

n�Hp−1� ≤ n ≤ n�Hp−1�logHp−1�1/4�,

s2
n/h

2
n ≥ s2

n�Hp−1�/h
2
n � �logHp−1�1/2 � log log log hn:

In addition, for n�Hp−1�logHp−1�1/4� ≤ n ≤ n�Hp�, we have

s2
n/h

2
n � log

hn
10Hp−1

� log logHp−1 � log log log hn:

Putting these together, we get s2
n/h

2
n = ��log log log hn�, as claimed. 2

6. A small-variance normal search. We showed in Proposition 1.7 that,
for searches satisfying the regularity condition (1.5), normality is equivalent
to the condition (1.1) that variance grow faster than the square of the height.
We conclude now by giving an interesting example that shows that without
this regularity condition, normal searches may exhibit extremely small growth
of variance.
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Fig. 4. The shape for a small variance, with heights indicated.

Example 6.1. Given any λ ∈ �0;1�, there is a normal strategy with

lim inf
n→∞

sn/n
λ/6 = lim inf

n→∞
sn/h

λ
n = 0:(6.1)

Proof. Choose an integer r ∈ �3/λ + 1/2; 6/λ + 1�. Choose H0 to be a
power of 2 so large that Hλ/2

0 ≥ logH6r
0 . Define inductively Hj+1 x= Hr

j and
Nj x=H6

j. The strategy is the following hybrid of linear search and depth-first
binary search, that is, of Examples 2.1 and 2.3.

For the first H0 steps, do a linear search: form Ti from Ti−1 by converting
the leftmost external node to an internal node. Thus, the height of Ti is i−1 in
this range. For the next N1 − logN1 − 1 steps, do a depth-first binary search:
convert the leftmost external node with level lying in the range

(
�Hλ/2

0 � − logN1; �Hλ/2
0 �

)

to an internal node. Note that the heights of these trees are all H0. Now con-
tinue with a linear search up to height H1 by always converting the leftmost
external node to an internal node. Then do a depth-first binary search that
fills in the levels

(
�Hλ/2

1 � − logN2; �Hλ/2
1 �

)
:

Continue in this fashion forever, alternating linear search up to height Hj

with binary search of Nj+1 nodes inserted at height approximately �Hj�λ/2.
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Recalling that n�h� x= max�ny hn = h�, define n′�h� x= min�ny hn = h�.
We shall first establish that

s2
n′�Hj� �H

�6+λ�/r
j logHj;(6.2)

whence the equations

Hλ
j = o�s2

n′�Hj��(6.3)

s2
n′�Hj� = o�H

2λ
j �(6.4)

follow by our choice of r. Using (6.3), we shall then establish that

s̃n; ε = o�1�:(6.5)

Equation (6.4) implies (6.1), while (6.5) implies asymptotic normality by Propo-
sition 1.1.

To prove the first claim, (6.2), note that during the steps of the �j + 1�st
depth-first binary search, the set of external nodes is approximately the union
of Hj nodes, one at each level; Nj nodes at level �Hλ/2

j−1�; and some nodes at
level �Hλ/2

j �. (Since logNl increases geometrically, we may neglect the nodes
from the previous binary searches for the purpose of estimating the variance.)
As in Example 2.3, an upper bound for the tree variance σ2

i is the mean
squared distance to level �Hλ/2

j �, which is

� �H3
j + �H

λ/2
j �2Nj�/i �H6+λ

j /i:(6.6)

After adding the first Nj nodes of the �j + 1�st depth-first binary search,
this is also an approximate lower bound, since the mean level is then at least
H
λ/2
j /2. Therefore, the total variance added during these steps is

�H6+λ
j

Nj+1∑
i=Nj

1/i �H6+λ
j logHj:

Similarly, the variance added during the steps of the linear search from height
Hj + 1 to height Hj+1 is

� �H3
j+1 +Hλ

jNj�
Nj+1+Hj+1∑
i=Nj+1

1/i � H3r−5r
j = o�1�:(6.7)

Hence,

s2
n′�Hj+1� � s2

n�Hj� �H
6+λ
j logHj � H

�6+λ�/r
j+1 logHj+1;

which establishes the first claim.
It remains to establish the second claim, (6.5). Fix ε > 0. Given n, there

is a unique j such that n′�Hj� ≤ n < n′�Hj+1�. By virtue of (6.3), for large
enough n, we have

εsn ≥ εsn′�Hj� > �H
λ/2
j �:



130 R. LYONS AND K. ZUMBRUN

This means that the only nodes that contribute to s̃n; ε are those at levels
greater than �Hλ/2

j �. That is, only nodes arising from the last one or two linear
searches contribute to s̃n; ε.

From (6.7), we see that variance added to s̃n; ε during linear steps is o�s2
n�.

We must show that variance added during binary steps is also o�s2
n�. We need

only consider the last binary search, at level Hλ/2
j . The variance arising from

early binary searches is zero, since at this stage there are no nodes at level
greater than Hλ/2

j .
Consider this final binary search. Fixing n, define

σ̃2
i; ε x= E

[(
Xi −E�Xi�

)2y
∣∣Xi −E�Xi�

∣∣ > εsn
]
;

so that s2
n; ε =

∑n
i=1 σ̃

2
i; ε. Because only linear nodes contribute, the variance

σ̃2
i; ε for step i is bounded, not by (6.6), but by H3

j/i. Since i ≥ Nj, the total
contribution from the first H3

j steps is thus �H6
j/Nj = 1 = o�s2

n�, as desired.
On subsequent binary steps, on the other hand, an asymptotic lower bound
for σ2

i is �Hλ/2
j �2H3

j/i. More generally, an asymptotic lower bound for σ2
i after

L steps of this binary search is Hλ
j min�L;Nj�/i. For L < Nj, the mean is

at most � Hλ/2
j /2, so we get variance of �Hλ/2

j /2�2 from each of L nodes. For
L > Nj, the mean is greater than or equal to �Hλ/2

j /2, so we get variance of
�Hλ/2

j /2�2 from each of the Nj nodes from the just previous binary search.
Since σ̃2

i; ε has asymptotic upper bound of H3
j/i, while σ2

i has asyptotic lower
bound of H3

jH
λ
j/i, we have σ̃2

i; ε = o�σ2
i � for these steps. Summing, we find

that their total contribution is also o�s2
n�, verifying (6.5) and completing the

proof. 2
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