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DISPERSION RATES UNDER FINITE MODE
KOLMOGOROV FLOWS

BY MIKE CRANSTON1 AND MICHAEL SCHEUTZOW

University of Rochester and Technische Universität Berlin

We consider the growth rate of a collection of passive tracers moving in
the plane under the influence of a random, fluctuating, velocity field. The
velocity field we consider is a finite mode approximation to Kolmogorov
velocity fields, which are commonly used as models for turbulent diffusion.
We show that the diameter of the body of passive tracers grows linearly in
time under the influence of these velocity fields.

1. Introduction. In this article we consider the growth rate of a body of
passive tracers moving under a random velocity field. The topic of passive tracer
movement is important in statistical fluid mechanics. It is usual to model, among
others, diffusion of a pollutant in the atmosphere or on the ocean’s surface, salinity
in oceans and diffusion in porous media. The problem we consider is finding
the proper growth rate in time of the most remote tracer among a continuum of
passive tracers which were originally confined to a bounded region. The study
of a finite number of tracers has been carried out by numerical simulation [cf.
Carmona, Grishin and Molchanov (1996)]. It was also studied for isotropic flows
in Zirbel and Çinlar (1996). Conversely, satellites are used in tracking drifters
(buoys) realized on the ocean surface. Our work is influenced by recent results
of the authors with David Steinsaltz concerning this problem when the tracers
are moving under . In Cranston, Scheutzow and Steinsaltz (2000), we considered
stochastic flows on Rd which solved

φ(t, x)= x +
∫ t

0
F
(
ds,φ(s, x)

)
,

where F is a field of semimartingales, (F =M+A, M a martingale, A a bounded
variation process) with bounded and regular characteristics. These assumptions
imply that the one point motion t �→ φ(t, x), x fixed, is roughly like a Brownian
motion with bounded drift. The result of Cranston, Scheutzow and Steinsaltz
(2000) is that there is a positive constant C so that for any bounded set S,

lim sup
t→∞

1

t
sup
x∈S

‖φ(t, x)‖ ≤ C a.s.
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We also gave an example of a flow satisfying the assumptions on F and a compact
subset S for which there exists a c > 0 such that

lim inf
t→∞

1

t
sup
x∈S

‖φ(t, x)‖ ≥ c a.s.

In Cranston, Scheutzow and Steinsaltz (1999) we considered this problem under
isotropic Brownian flows with a strictly positive top Lyapunov exponent and for
more general martingale flows in Scheutzow and Steinsaltz (2001).

Isotropic Brownian flows are solutions of

φ(t, x)= x +
∫ t

0
W
(
ds,φ(s, x)

)
,

where {W(·, x) :x ∈ Rd} is a field of Brownian motions on Rd whose correlation
tensor

s ∧ tbij (x − y)≡E[Wi(s, x)Wj(t, y)]
satisfies U∗b(Uz)U = b(z) for every orthogonal matrix U . In this case the one-
point motion t �→ φ(t, x), x fixed, is a multiple (independent of x) of Brownian
motion on Rd . Thus, the passive tracer at φ(t, x) at time t will ultimately be no
more than a constant times

√
2t log log t from the origin at time t . Whereas the

combined results of Cranston, Scheutzow and Steinsaltz (1999, 2000) are that if
φ is an isotropic Brownian flow with a strictly positive top Lyapunov exponent
in dimension d ≥ 2, then there are positive constants c and C such that for each
compact and connected set S ∈ Rd with at least two points,

c≤ inf
u∈Sd−1

sup
x∈S

lim inf
t→∞

1

t
〈φ(t, x), u〉 ≤ lim sup

t→∞
1

t
sup
x∈S

‖φ(t,0, x)‖ ≤ C a.s.

That is, from a continuum of passive tracers under this flow, there will be tracers
going to infinity in the direction u ∈ Sd−1 at a linear rate in time for every
direction u. One of the results in Scheutzow and Steinsaltz (2001) is that this
property still holds on a set of strictly positive probability for isotropic Brownian
flows with a negative top Lyapunov exponent.

Rather than martingale flows we now consider solutions of the random
ordinary differential equation φ(t, s, x) = x + ∫ t

s v(r,φ(r, s, x) dr , t > s, where
{v(t, x) : t ≥ 0, x ∈ R2} is an often used approximation to a Gaussian, isotropic,
divergence free, time homogenous Markovian vector field process on R2. This
approximation is called a finite mode velocity field. It is Gaussian, volume
preserving and symmetric, but not isotropic. Homogenization results [Carmona
and Xu (1997), Fannjiang and Komorowski (1999) and — under slightly different
conditions — Kesten and Papanicolaou (1979)] have that ε(φ(·/ε2,0, x)− x) is
convergent in law to a multiple of Brownian motion. Thus, one-point motions
t �→ φ(t,0, x) will not wander further than a constant times

√
2t log log t from

their starting points for sufficiently large t .
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However, when taking the supremum over some continuum set of starting points
we find a phenomenon similar to the case of isotropic Brownian flows. Namely,
1
t

supx∈S〈φ(t,0, x), u〉 will have a positive lim inf almost surely for each u ∈ S1.
This result has been conjectured by Carmona and Sinai [Carmona and Cerou
(1999)]. We resolve this for approximations to the velocity fields which have a
finite number of modes above. This will be made precise in the next section.

2. Kolmogorov velocity fields. We deal with a finite mode approximation
to a common mathematical model for the velocity field of the ocean surface.
Let {v(t, x) : t ≥ 0, x ∈ R2} be a divergence free, random velocity field on R2.
The divergence free property plays a role analogous to the positivity of the top
Lyapunov exponent in our previous work. This assumption guarantees that the
image of a set of positive volume will not contract to a point. Thus we will be able
at any time to select two points in the image of a set of positive measure, moving
under the flow, which are separated by some fixed positive distance. Such points
will be sufficiently uncorrelated to give the result. We work in dimension two for
simplicity. This is the most physically relevant case and our results should carry
over to higher dimensions without much trouble.

Since we shall be primarily interested in the two-dimensional case, there
exists a real stream function � such that v(t, x) = curl�(t, x). Referring to the
development in Molchanov (1996), in the case when {v(t, x) : t ≥ 0, x ∈ R2} is
isotropic, Gaussian, Markov in time, with sufficiently nice correlations, then �
has a representation

�(t, x)=
∫

R

∫
R2

exp{i〈k, x〉 + iωt}Z(dk, dω),(1)

where Z is a C-valued, Gaussian measure with correlations E[Z(k+ dk,ω+ dw)
Z(k′ + dk,ω′ + dω)] = δk,k′δω,ω′E(k,ω)dkdω, for some function E(k,ω).

By a finite mode model we mean an approximation to the stream function at (1)
of the form

�(t, x)= ∑
k∈K

exp{i〈k, x〉}e(k)ξt(k)(2)

with K ⊂ R2\{0} a finite set and where e(k) are complex constants and the
processes {ξt (k) : t ≥ 0} are independent complex-valued Ornstein–Uhlenbeck
processes for k ∈ K . Thus, using the fact that v(t, x) = curl�(t, x), in the finite
mode case K = {k1, . . . , kN } we have

v1(t, x)=
N∑
i=1

ki,2
[
ai(t) sin〈ki, x〉 − bi(t) cos〈ki, x〉],

v2(t, x)=
N∑
i=1

ki,1
[−ai(t) sin〈ki, x〉 + bi(t) cos〈ki, x〉].

(3)
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The processes {ai(t) : t ≥ 0}, {bi(t) : t ≥ 0}, i = 1, . . . ,N are independent real-
valued Ornstein–Uhlenbeck processes. Thus, there are independentN -dimensional
Brownian motions V = (V1, . . . , VN) and W = (W1, . . . ,WN) such that

dai(t)= −αiai(t)dt + σidVi(t),

dbi(t)= −αibi(t)dt + σidWi(t), i = 1, . . . ,N
(4)

with σi > 0 and αi > 0 for i = 1, . . . ,N . Unless we make an explicit assumption
to the contrary we will assume that the process (a, b) is started at time 0 with
its invariant probability measure. We define a filtration by Ft = σ {(a(s), b(s)),
0 ≤ s ≤ t} for t ≥ 0.

Given {v(t, x) : t ≥ 0, x ∈ R2} satisfying (3) and (4), we define a flow by

φ(t, s, x)= x +
∫ t

s
v
(
u,φ(u, s, x)

)
du, t ≥ s.(5)

Then φ(t, s, x) is the position of a passive tracer at time t if the tracer was at x
at time s. One can expect a substantially different dispersive behavior depending
on the dimension of the span of the set K [cf. Carmona, Grishin and Molchanov
(1996)]. We start with the nondegenerate case spanK = R2 below and treat the
easier shear-flow case dim(spanK) = 1 in Section 4. In the following a random
compact subset S will be called measurable if the map ω �→ S(ω) is measurable
with respect to the Borel σ -algebra generated by the Hausdorff distance on the set
of nonempty compact subsets of R2.

THEOREM. Suppose v satisfies (3) and (4) and φ is defined by (5). Assume
spanK = R2. Then there are positive constants c∗,C∗ such that for any compact
and connected F0-measurable set S ⊂ R2 with vol(S) > 0 a.s.,

c∗ ≤ inf
u∈S1

lim inf
t→∞

1

t
sup
x∈S

〈φ(t,0, x), u〉 ≤ lim sup
t→∞

1

t
sup
x∈S

‖φ(t,0, x)‖ ≤ C∗ a.s.

The theorem obviously implies the following corollary, which provides a
positive answer to the conjecture of Carmona and Sinai stated at the end of the
first section for finite mode Kolmogorov flows.

COROLLARY. Under the assumptions of the theorem we have

2c∗ ≤ lim inf
t→∞

1

t
diam

(
φ(t,0, S)

)≤ lim inf
t→∞

1

t
diam

(
φ(t,0, S)

)≤ 2C∗ a.s.

3. Proof of the theorem. We start with the upper bound which is very easy
to establish. Let κ :=∑N

j=1 ‖kj‖. Using (3) and (5),

sup
x∈S

‖φ(t,0, x)‖ ≤ sup
x∈S

‖x‖ + κ

∫ t

0

N∑
j=1

(|aj (s)| + |bj (s)|)ds.
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Thus

lim inf
t→∞

1

t
sup
x∈S

‖φ(t,0, x)‖ ≤ κ lim sup
t→∞

1

t

∫ t

0

N∑
j=1

(|aj (s)| + |bj (s)|)ds

= 2κ

π1/2

N∑
j=1

σj

α
1/2
j

=:C∗ a.s.

by Birkhoff’s ergodic theorem. This proves the upper bound.
The middle inequality in the theorem is an obvious consequence of the Cauchy–

Schwarz inequality, so it remains to prove the lower bound. Throughout we
will call a function g of k1, . . . , kN (and possibly additional variables) rotation-
invariant if g(k1, . . . , kN) = g(Rk1, . . . ,RkN) for every R ∈ SO(2). Below
we will show that there exists some strictly positive rotation-invariant c∗ =
c∗(k1, . . . , kN ,α1, . . . , αN,σ1, . . . , σN) such that

c∗ ≤ lim inf
t→∞

1

t
sup
x∈S

〈φ(t,0, x), e1〉 a.s.,(6)

where e1 denotes the first coordinate direction. Since c∗ is rotation-invariant, it
follows that for every u ∈ S1,

c∗ ≤ lim inf
t→∞

1

t
sup
x∈S

〈φ(t,0, x), u〉 a.s.(7)

In order to show that the exceptional set can be chosen independently of u, let
S∗ ⊂ S1 be countable and dense and N a null set such that (7) (without the
qualification a.s.) holds for all u ∈ S∗ and lim supt→∞ 1

t
supx∈S ‖φ(t,0, x)‖ ≤ C∗

whenever ω /∈ N . Fix u ∈ S1, ε > 0 and u∗ ∈ S∗ such that ‖u− u∗‖ ≤ ε. Then for
ω /∈ N we have

sup
x∈S

〈φ(t,0, x), u〉 ≥ sup
x∈S

〈φ(t,0, x), u∗〉 − ε sup
x∈S

‖φ(t,0, x)‖.

Dividing by t , taking lim inf and letting ε go to 0, (7) and therefore the lower bound
in the theorem follow.

It remains to prove (6) for some rotation-invariant c∗ > 0.
Given ε > 0, we define a sequence of almost surely finite stopping times

{τn(ε)}n≥1. Sometimes we will suppress the dependence on ε by writing τn instead
of τn(ε). Set

τ0 = 0

and put for n≥ 1,

τn = inf

{
t ≥ τn−1 + 1 :

N∑
i=1

(
a2
i (t)+ b2

i (t)
)≤ ε2

}
.(8)
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For β > 0 we define

λ(ε)= sup
n≥1

ess sup
ω

sup
Y∈Fτn

∣∣E[φ1(τn+1, τn, Y )− Y1|Fτn
]∣∣,(9)

γ (ε,β)= inf
n≥1

ess inf
ω

inf
Y,Z∈Fτn‖Y−Z‖=β

E
[(
φ1(τn+1, τn, Y )− φ1(τn+1, τn,Z)

)+∣∣Fτn].(10)

The idea of the proof is that at the times τn the first component of φ has a
martingale-like property in the sense that λ(ε) is small when ε is small. In fact,
in Proposition 1 we show that limε→0 λ(ε) = 0. On the other hand, we will in
Proposition 2 show γ (ε,β) is bounded from zero as ε tends to zero. Thus, if
Y1 = Y1 ∨Z1,

E
(
φ1(τn+1, τn, Y )∨ φ1(τn+1, τn,Z)

∣∣Fτn)
=E

(
φ1(τn+1, τn, Y )+ (φ1(τn+1, τn,Z)− φ1(τn+1, τn, Y )

)+∣∣Fτn)
≥ Y1 ∨Z1 + γ (ε,β)− λ(ε),

(11)

so the maximum on the left-hand side exhibits a substantial submartingale property
when ε is small enough. This permits a competition-selection procedure which
delivers the desired result. This technique was used in Cranston, Scheutzow and
Steinsaltz (1999) and Scheutzow and Steinsaltz (2000).

In order to show limε→0 λ(ε)= 0 we will use a coupling which we now outline.
Noting that

φ1(t,0, x)= x1 +
∫ t

0
v1
(
u,φ(u,0, x)

)
du,(12)

we write the field v from the point of view of an observer at φ(t,0, z) (which is
the usual approach to prove homogenization). Define this as

D(t, x)= v
(
t, φ(t,0, z)+ x

)
.(13)

Then,

D1(t, x)=
N∑
i=1

ki,2
[
ai(t) sin〈ki, x + φ(t,0, z)〉 − bi(t) cos〈ki, x + φ(t,0, z)〉],

D2(t, x)=
N∑
i=1

ki,1
[−ai(t) sin〈ki, x + φ(t,0, z)〉 + bi(t) cos〈ki, x + φ(t,0, z)〉].

Using the angle addition formulas for sin and cos gives

D1(t, x)=
N∑
i=1

ki,2
(
Ai (t) sin〈ki, x〉 + Bi(t) cos〈ki, x〉),

D2(t, x)=
N∑
i=1

ki,1
(−Ai (t) sin〈ki, x〉 − Bi(t) cos〈ki, x〉),

(14)
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where

Ai (t)= ai(t) cos〈ki, φ(t,0, z)〉 + bi(t) sin〈ki, φ(t,0, z)〉,(15)

Bi (t)= ai(t) sin〈ki, φ(t,0, z)〉 − bi(t) cos〈ki, φ(t,0, z)〉.
From (4) and (15) it follows that the sdes for Ai and Bi are

dAi(t)= −αiAi (t) dt − Bi (t)
〈
ki, v

(
t, φ(t,0, z)

)〉
dt

+σi[cos〈ki, φ(t,0, z)〉dVi(t)+ sin〈ki, φ(t,0, z)〉dWi(t)
]
,(16)

dBi(t)= −αiBi (t) dt + Ai (t)
〈
ki, v

(
t, φ(t,0, z)

)〉
dt

+σi[sin〈ki, φ(t,0, z)〉dVi(t)− cos〈ki, φ(t,0, z)〉dWi(t)
]
.

The first thing to notice about (16) is that the quadratic variations are given by

dAi(t) dAj (t)= σiσjδij dt,

dAi(t) dBj (t)= 0,(17)

dBi(t) dBj (t)= σiσjδij dt.

The second important observation on (16) is that using (3) one gets

〈
ki, v

(
t, φ(t,0, z)

)〉= N∑
j=1

(ki,1kj,2 − ki,2kj,1)Bj (t).

Thus, for U = (U1, . . . ,UN), Ũ = (Ũ1, . . . , ŨN) independent Brownian motions
on RN ,

dAi(t)= −αiAi(t) dt −
(
Bi(t)

N∑
j=1

(ki,1kj,2 − ki,2kj,1)Bj (t)

)
dt + σi dUi(t),

dBi(t)= −αiBi(t) dt +
(
Ai(t)

N∑
j=1

(ki,1kj,2 − ki,2kj,1)Bj (t)

)
dt + σi dŨi(t).

(18)

Now assuming z= 0,

φ̇1(t,0,0)=D1(t,0)=
N∑
i=1

ki,2Bi (t)≡ C(t).(19)

(15) implies Ai(t)
2 + Bi (t)

2 = ai(t)
2 + bi(t)

2 for every i and hence, denoting
ξ(t)= (A(t),B(t)), we have

‖ξ(t)‖2 =
N∑
i=1

(
Ai (t)

2 + Bi (t)
2)= N∑

i=1

(
ai(t)

2 + bi(t)
2),(20)
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so τn coincides with

inf
{
t ≥ τn−1 + 1 :‖ξ(t)‖ ≤ ε

}
.

Returning to λ, in terms of the above, by the strong Markov property,

λ(ε)= sup
‖x‖≤ε

sup
y∈R2

∣∣E[φ1(τ1,0, y)− y1|ξ(0)= x
]∣∣

= sup
‖x‖≤ε

∣∣E[φ1(τ1,0,0)|ξ(0)= x
]∣∣,(21)

using translation invariance. For later reference we define the function λ̃(ε) =
λ̃(ε, α1, . . . , αN,σ1, . . . , σN, k1, . . . , kN ) by

λ̃(ε) := sup
R∈SO(2)

sup
0<δ≤ε

sup
‖x‖≤ε

∣∣E[φ1
(
τ1(δ),0,0

)|ξ(0)= x
]∣∣≥ λ(ε),(22)

where the first sup means that we take the supremum over all R ∈ SO(2) of the
flow with k1, . . . , kN replaced by Rk1, . . . ,RkN (but with the same αi ’s and σi’s).
By symmetry,

E
[
φ1(τ1,0,0)|ξ(0)= 0

]= 0.(23)

So we need to show this will not change much if ξ(0) is changed just a little. Since
we have (19) we can do this by coupling two copies ξ, ξ ′ with ξ(0)= 0, ξ ′(0)= x

and ‖x‖ ≤ ε, where ξ = (A,B), ξ ′ = (A′,B ′) are solutions of (18).
We can rewrite (18) as

dξt = −Aξtdt + c(ξt )dt +8 dBt,

ξ0 = 0
(24)

with

B = (U, Ũ) a 2N -dimensional Brownian motion,

A = diag(α1, . . . , αN ,α1, . . . , αN),

8 = diag(σ1, . . . , σN,σ1, . . . , σN),

ci(x1, . . . , x2N)= −
N∑
j=1

(ki,1kj,2 − ki,2kj,1)xi+Nxj+N, 1 ≤ i ≤N,

ci(x1, . . . , x2N)=
N∑
j=1

(ki−N,1kj,2 − ki−N,2kj,1)xi−Nxj+N, N + 1 ≤ i ≤ 2N.

We now specify a choice of another 2N -dimensional Brownian motion B ′
which will be used to create a copy ξ ′ coupled to the original ξ , satisfying

dξ ′
t = −Aξ ′

t dt + c(ξ ′
t )dt +8dB ′

t ,

ξ ′
0 = x,

(25)
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where x ∈ R2N has ‖x‖ ≤ ε.
Assuming for the moment that we have B ′ and therefore also ξ ′, define the

coupling time

T = inf
{
t > 0 : ξt = ξ ′

t

}
(26)

and set ξ ′
t = ξt for t ≥ T . This is done by taking B ′

T+t − B ′
T = BT+t − BT for

t ≥ 0. Our coupling is a coupling by reflection introduced in Lindvall and Rogers
(1986). Clearly (the law of) T depends on x but we will suppress this dependence.
Define

ηt = ξt − ξ ′
t ,

ut = 8−1ηt

‖8−1ηt‖ ,

Ht = I − 2utu
T
t ,

βt = −Aηt + c(ξt )− c(ξ ′
t )

(27)

and

dB ′
t =Ht dBt .(28)

Note (28) and (25) allow the creation of the 2N -dimensional Brownian motion B ′
t

as the process ξ ′
t evolves which is then fed back into (25) to create more of ξ ′

t . In
the following we will assume that (ξt , ξ ′

t ), t ≥ 0 is the coordinate process on the
space >=C([0,∞),R4N) and θ is the time shift defined by θt (ω)(s)= ω(t + s)

for s, t ≥ 0.
For the purpose of estimating P (T ≥ t|(ξ0, ξ

′
0)= (0, x)) we will need to couple

ξ and ξ ′ with a different Brownian motion than at (28) if either gets too large
before the coupling time T . To make this precise, put

α = min
1≤i≤N αi,

K = max
1≤i,j≤N

(|ki,2kj,1 − ki,1kj,2| ∨ 1
)(29)

and then set

S = inf
{
t > 0 :

√
‖ξt‖2 + ‖ξ ′

t ‖2 ≥ α

4NK

}
.(30)

On the set {T > t ≥ S} take B ′ so that B ′
S+t − B ′

S is a 2N -dimensional Brownian
motion independent of BS+t − BS and define ξ ′

t as in (25) with this new B ′, that
is,

ξ ′
t = ξ ′

S −
∫ t

S
Aξ ′

u du+
∫ t

S
c(ξ ′

u) du+8(B ′
t −B ′

S).
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Then define

R = inf
{
t > S :

√
‖ξt‖2 + ‖ξ ′

t ‖2 = α

c0NK

}
,(31)

where c0 > 4 is a constant to be named later. On {T > t ≥ R} revert to the
B ′ at (28) until S1 ≡ S ◦θR + R when we switch back to B ′ with increments
independent of B provided T has not occurred yet. This B ′ is used in (25) until
R1 = R ◦θS1 + S1, when once again dB ′

t is given by (28) (provided R1 + t < T )
until S2 = S ◦θR1 + R1, and so on. We remark that T can only occur in the time
intervals when B ′ is given by (28). With this coupling in place we are now able to
prove the following.

PROPOSITION 1.

lim
ε→0

λ̃(ε)= 0.

PROOF. Assume 0< ε ≤ 1. From (19) and (22),

λ̃(ε)= sup
R∈SO(2)

sup
0<δ≤ε

sup
‖x‖≤ε

∣∣∣∣E
[∫ τ1(δ)

0
C(s) ds

∣∣∣ξ(0)= x

]∣∣∣∣.
Adopt the notation ξ(s, x) and C(s, x) to denote the initial conditions ξ(0, x)= x

and C(0, x) = x ∈ R2N. Take {(ξ(s, x), ξ(s,0) : s ≥ 0} to be the coupled pair
outlined above.

Then, using (23),

λ̃(ε)= sup
R

sup
0<δ≤ε

sup
‖x‖≤ε

∣∣∣∣E
[∫ τ1(δ)

0
[C(s, x)− C(s,0)]ds

]∣∣∣∣
= sup

R

sup
0<δ≤ε

sup
‖x‖≤ε

∣∣∣∣E
[∫ T∧τ1(δ)

0
[C(s, x)− C(s,0)]ds

]∣∣∣∣
≤ sup

R

sup
‖x‖≤ε

(
E

[∫ T

0
|C(s, x)|ds

]
+E

[∫ T

0
|C(s,0)|ds

])
.

(32)

Also, by Cauchy–Schwarz,

E

[∫ T

0
|C(s, x)|ds

]
≤
∫ ∞

0

√
P (T ≥ s)

√
E[C(s, x)2]ds.(33)

By (4), (19) and (20), supR∈SO(2) E[C(s, x)2] ≤ c for all s ≥ 0 and all ‖x‖ ≤ 1 for
some positive constant c.

Thus, by (32) and (33),

λ̃(ε)≤ 2
√
c

∫ ∞
0

sup
‖x‖≤ε

√
P (T ≥ s) ds.(34)

Using the dominated convergence theorem, the proof of Proposition 1 will be
complete once we have proved the lemma. �
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LEMMA 1. There are positive constants C and δ depending on α,K,N and
σ = max1≤i≤N σi , such that for ‖x‖ ≤ 1 and

T = inf
{
s > 0 : ξ(s, x)= ξ(s,0)

}
,

P (T ≥ t)≤
(
C
√‖x‖(eδt − 1)−1/2

)
∧ 1.

PROOF. Fix x ∈ R2N such that 0 ≤ ‖x‖ ≤ 1. Using the notation of (27), Itô’s
formula gives

d(‖ηt‖)= 2
〈
ηt

‖ηt‖ ,8utu
T
t dBt

〉
+
〈
ηt

‖ηt‖ , βt
〉
dt, 0 ≤ t ≤ S ∧ T .(35)

Notice that (
2
〈
ηt

‖ηt‖ ,8utu
T
t dBt

〉)2

= 4
‖ηt‖2

‖8−1ηt‖2
dt.(36)

Recalling the definition of S in (30) and c in (24) observe that
∥∥c(ξ(t,0))− c

(
ξ(t, x)

)∥∥≤ α

2

∥∥ξ(t,0)− ξ(t, x)
∥∥, 0 ≤ t ≤ S.(37)

Consequently, if we define dMt = 2〈 ηt
‖ηt‖ 〉,8utuTt dBt〉 and ρt by

dρt = dMt − α

2
ρt dt,

ρ0 = ‖η0‖ = ‖x‖
(38)

by an elementary comparison theorem [see Ikeda and Watanabe (1981)],

ρt ≥ ‖ηt‖ for 0 ≤ t ≤ S ∧ T a.s.(39)

The solution of (38) is given by

ρt = exp
(
−α

2
t

)(
‖x‖ +

∫ t

0
exp
(
α

2
s

)
dMs

)
.(40)

Writing σ0(ρ)= inf{t > 0 :ρt = 0} observe that σ0(ρ)≥ T on {T ≤ S} and so

P (T ≥ t, T ≤ S)≤ P
(
σ0(ρ)≥ t

)
≤ P

(
‖x‖ +

∫ r

0
exp

(
α

2
u

)
dMu ≥ 0, ∀ r ≤ t

)
,

= P

(
−
∫ r

0
exp
(
α

2
u

)
dMu ≤ ‖x‖; ∀ r ≤ t

)

≤ P

(
br ≤ ‖x‖; ∀ r ≤ 4σ 2

α
(eαt − 1)

)
,

(41)
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where b is the one-dimensional Brownian motion

br =
∫ τr

0
eαu/2 dMu

with

τr = inf

{
t : 4

∫ t

0
eαu

‖ηu‖2

‖8−1ηu‖2
du= r

}
.

Therefore,

P (T ≥ t, T ≤ S)≤
∫ ‖x‖√α

2σ
√

exp(αt)−1

0

2√
2π

exp
(
−y

2

2

)
dy(42)

≤ ‖x‖√α√
2πσ

√
exp(αt)− 1

.

Next we estimate P (T ≥ t, T > S). First,

P (T ≥ t, T > S)≤√P (T ≥ t)
√
P (T > S).(43)

By the arguments in Cranston [(1991), Theorem 1, inequality (0.2)],

P (T > S)≤ C(α,σ )

2NK
‖x‖.(44)

To handle P (T ≥ t), recalling the stopping times R and S of (30) and (31) we
create a sequence of stopping times γn by

γ0 = 0,

γ2n+1 = S ◦θγ2n + γ2n,

γ2n = R ◦θγ2n−1 + γ2n−1.

(45)

Henceforth we adopt the notation P (·|(z,w)) to denote the initial condition of the
diffusions ξ and ξ ′ from (24) and (25). Now the existence of a δ > 0 for c0 large
enough, depending on C(α,σ ) in (44) such that

inf√
‖z‖2+‖w‖2= α

c0KN

P
(
T ≤ S|(z,w))= δ(46)

follows from Cranston [(1991), Theorem 1, inequality (0.2)].
From (20) and the definition of the stopping times R and S it follows easily that

there exist positive numbers A and ε0 such that

P (γ2n+2 − γ2n ≥ s|Fγ2n)≤Ae−ε0s(47)

for all n≥ 0 and s ≥ 0. From (46) we get for n≥ 1,

P (T ≤ γ2n+1|Fγ2n)≥ δ on {T > γ2n}.(48)
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Hence for any λ > 0, n ∈ N and 0< ε < ε0 we get

P (T ≥ λn)≤ P (γ2n+2 ≥ λn)+ P (T ≥ λn,γ2n+2 < λn)

≤ Eeεγ2n+2e−ελn + P (T > γ2n+2)

≤ e−ελn
(
Aε0

ε0 − ε

)n+1

+ (1 − δ)n.

(49)

Choosing λ sufficiently large, it follows that there exist a, c > 0 such that

P (T ≥ t)= P
(
T ≥ t|(0, x))≤ ae−ct .(50)

Combining (42), (43), (44) and (50) we have

P
(
T ≥ t|(0, x))≤ P

(
T ≥ t, T ≤ S|(0, x))+ P

(
T ≥ t, T > S|(0, x))

≤ ‖x‖√α√
2πσ

(
exp(αt)− 1

)−1/2 +
√
C(α,σ )

2NK
· ‖x‖√ae−ct ,

which proves Lemma 1 and also completes the proof of Proposition 1. �

We now turn our attention to proving γ̃ (ε, β) := infR∈SO(2) γ (ε,β) remains
bounded from 0 as ε tends to 0. For this purpose define, given ε > 0, x, y ∈ R2,

A(ε, x, y)= {
w :‖ξ(1)‖ ≤ ε,φ1(1,0, x)≥ φ1(1,0, y)+ 5

}
.(51)

Further we define

κ∗ = max
{‖k‖ :k ∈ K

}
.

Then we have the following.

LEMMA 2. Given any 0 < β < π
2κ∗ there is an ε0 > 0, such that for any

0 < ε < ε0, there is a rotation-invariant ρ = ρ(ε,β,α1, . . . , αN ,σ1, . . . , σN, k1,

. . . , kN ) > 0 such that

Pξ0

(
A(ε, x, y)

)≥ ρ

holds for any x, y ∈ R2 with ‖x − y‖ = β and whenever ‖ξ0‖ ≤ ε.

PROOF. For a vector r = (r1, r2) ∈ R2 we write r⊥ = (r2,−r1). Since
spanK = R2, there exists i0 and j0 such that 〈ki0, k⊥j0

〉 "= 0. Relabelling if
necessary we can assume that i0 = 1 and j0 = 2.

Observe that for any u ∈ S1 we have

|〈k1, k
⊥
2 〉| = ∣∣〈k1, u〉〈k⊥2 , u〉 + 〈k1, u

⊥〉〈k⊥2 , u⊥〉∣∣
≤ (‖k1‖ + ‖k2‖) (|〈k1, u〉| ∨ |〈k2, u〉|)
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and hence

|〈k1, u〉| ∨ |〈k2, u〉| ≥ |〈k1, k
⊥
2 〉|

‖k1‖ + ‖k2‖ =:D> 0.(52)

Exchanging k1 and k2 if necessary we can assume that |〈k2, e2〉| ≥ D. Now let
x, y ∈ R2 satisfy ‖x − y‖ = β . Without loss of generality we will assume that
y = 0.

Define

α̃1 :=




0, if |〈k1, x〉|<Dβ,
π − 2〈x, k2〉

〈k⊥1 , k2〉 sin〈k1, x〉 , otherwise,

α̃2 :=




(
12 + π

κ∗
)

sign(〈e1, k
⊥
2 〉 sin〈k2, x〉)

D sin(βD)
, if |〈k1, x〉|<Dβ,(

12 + π

κ∗ + 2κ∗ π

|〈k⊥1 , k2〉|
)

sign(〈e1, k
⊥
2 〉)

D
, otherwise,

α1(t) :=



8α̃1t, 0 ≤ t ≤ 1/4,
4α̃1(1 − 2t), 1/4 ≤ t ≤ 1/2,
0, 1/2 ≤ t ≤ 1,

and

α2(t) :=



0, 0 ≤ t ≤ 1/2,
4α̃2(2t − 1), 1/2 ≤ t ≤ 3/4,
8α̃2(1 − t), 3/4 ≤ t ≤ 1,

and let ϕ : [0,∞)→ R2 solve

ϕ̇(t)= k⊥1 α1(t) sin〈k1, ϕ(t)〉 + k⊥2 α2(t) sin〈k2, ϕ(t)〉,
ϕ(0)= x.

(53)

Observing that 〈k1, ϕ̇(t)〉 = 0 for 0 ≤ t < 1/2, we get

ϕ

(
1

2

)
=


x, if |〈k1, x〉|<Dβ,
x + 1

2
k⊥1
π − 2〈x, k2〉

〈k⊥1 , k2〉 , otherwise.
(54)

Observing that by (52) |〈k1, x〉| < Dβ implies |〈k2, x〉| ≥ Dβ , that |〈k2, x〉| ≤
κ∗β < π

2 , that 〈k2, ϕ(1/2)〉 = π/2 if |〈k1, x〉| ≥ Dβ and that 〈k2, ϕ̇(t)〉 = 0 for
1/2 ≤ t < 1 we get
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ϕ1(1)=




x1 + 〈e1, k
⊥
2 〉

2
sin〈k2, x〉α̃2

≥ −β + D

2
sin(Dβ)|α̃2|, if |〈k1, x〉|<Dβ,

x1 + 〈e1, k
⊥
1 〉

2

π − 2〈x, k2〉
〈k⊥1 , k2〉 + 〈e1, k

⊥
2 〉 α̃2

2

≥ −β − κ∗π
|〈k⊥1 , k2〉|

+ D

2
|α̃2|, otherwise.

In both cases we therefore get

ϕ1(1)≥ 6.

Define the functions αi(t) for i ≥ 3 and βi(t) for i ≥ 1 to be identically 0. Then
there exists a rotation-invariant c = c(β, k1, . . . , kN) (not depending on x) such
that

∫ 1

0

(
N∑
i=1

(α′
i (t)

2 + β ′
i (t)

2)

)
dt = 32

(
α̃2

1 + α̃2
2

)
≤ c.(55)

By (55) and Girsanov’s theorem, given any ε > 0 there is a rotation-invariant
ρ = ρ(ε,β,α1, . . . , αN ,σ1, . . . , σN, k1, . . . , kN) > 0 such that for any ‖ξ0‖ ≤ ε

we have

Pξ0

(
sup

0≤t≤1

(
1
2 (1 + t)

[
N∑
i=1

{(
ai(t)− αi(t)

)2

+ (bi(t)− βi(t)
)2}]1/2)

< ε

)
> ρ.

(56)

Select ε0 > 0 (independently of x) so that if ε < ε0 and

sup
0≤t≤1

(
1
2 (1 + t)

[
N∑
i=1

{(
ai(t)− αi(t)

)2 + (bi(t)− βi(t)
)2}]1/2)

< ε,(57)

then with φ as defined at (5),

sup
0≤t≤1

‖ϕ(1)− φ(t,0, x)‖< 1
2 and sup

0≤t≤1
‖φ(t,0,0)‖< 1

2 .(58)

With ε < ε0, (57) implies

φ1(1,0, x)≥ ϕ1(1)− 1
2 ≥ 6 − 1

2 − 1
2 + φ1(1,0,0)= 5 + φ1(1,0,0).(59)
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Thus for ε ≤ ε0,

A(ε, x, y)⊇
{

sup
0≤t≤1

(
1

2
(1 + t)

[
N∑
i=1

(
ai(t)− αi(t)

)2 + (bi(t)− βi(t)
)2]1/2)

< ε

}

and Lemma 2 is proved. �

PROPOSITION 2. Choose ε1 > 0 such that λ̃(ε1) ≤ 1. With β , ε0 and ρ as in
Lemma 2, for any 0< ε ≤ ε2 := ε0 ∧ ε1,

γ̃ (ε, β)= inf
R,‖ξ‖≤ε,‖x−y‖=β E

[(
φ1
(
τ1(ε),0, x

)− φ1
(
τ1(ε),0, y

))+∣∣ξ(0)= ξ
]

≥ 3ρ(ε2).

PROOF. Note that Proposition 1 guarantees the existence of such an ε1. Take
any 0< ε < ε2, ‖ξ‖ ≤ ε, ξ(0)= ξ and x, y ∈ R2 such that ‖x − y‖ = β . Then by
the definition of λ̃ at (22) on the set A(ε2, x, y),∣∣E[φ1

(
τ1(ε),0, x

)− φ1(1,0, x)|F1
]∣∣≤ λ̃(ε2)≤ 1,∣∣E[φ1

(
τ1(ε),0, y

)− φ1(1,0, y)|F1
]∣∣≤ λ̃(ε2)≤ 1.

(60)

Thus, on A(ε2, x, y),

E
[(
φ1
(
τ1(ε),0, x

)− φ1
(
τ1(ε),0, y

))+|F1

]
≥E

[
φ1
(
τ1(ε),0, x

)− φ1
(
τ1(ε),0, y

)|F1
]

≥E
[
φ1
(
τ1(ε),0, x

)− φ1
(
1,0, x)

)|F1
]

− E
[
φ1
(
τ1(ε),0, y

)− φ1
(
1,0, y

)∣∣F1
]+ 5

≥ 3 by (60).

(61)

Consequently, from (61) follows that for any ε < ε2 on the set {‖ξ(0)‖ ≤ ε}, we
have

E
[(
φ1
(
τ1(ε),0, x

)− φ1
(
τ1(ε),0, y

))+|F0

]

≥E
[
E
[(
φ1
(
τ1(ε),0, x

)− φ1
(
τ1(ε),0, y

))+
1A(ε2,x,y)|F1

]
|F0

]
≥ 3ρ(ε2)

and the proposition is proved. �

PROOF OF THE THEOREM. Let us first fix β ∈ (0, π
2κ∗ ) and assume that

vol(S(ω))≥ πβ2 for all ω ∈>. Since the flow is incompressible,

diam
(
φ(t,0,S)

)≥ 2β for all t ≥ 0.
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Take {τn}n≥1 to be the stopping times defined at (8) where ε = ε(β) ∈ (0,1)
is taken so that γ̃ (ε, β) − λ̃(ε) > 0; which is possible by Propositions 1 and 2.
We now create a sequence {(xi, yi)}i≥1 of Fτi -measurable S × S-valued random
variables by a competition-selection procedure. Take x1, y1 ∈ S to be arbitrary
Fτ1 -measurable satisfying ‖φ(τ1,0, x1)− φ(τ1,0, y1)‖ = β . Since S is connected
and diam(φ(τ1,0,S))≥ 2β , such x1 and y1 exist.

Inductively define

xi =
{
xi−1, if φ1(τi,0, xi−1)≥ φ1(τi,0, yi−1),

yi−1, otherwise
(62)

and select yi to be an S-valued Fτi -measurable random variable such that

‖φ(τi,0, xi)− φ(τi,0, yi)‖ = β.(63)

Since diam(φ(t,0, S))≥ 2β , such a yi always exists.
We now claim that there is a c > 0 such that

lim inf
i→∞

φ1(τi,0, xi)

τi
≥ γ̃ (ε, β)− λ̃(ε)

c
> 0.(64)

To verify this, set Zi = φ1(τi,0, xi)− φ1(τi−1,0, xi−1) for i ≥ 2. Then each Zi
is Fτi–measurable and

E[Zi |Fτi−1] = E[φ1(τi,0, xi−1)∨ φ1(τi,0, yi−1)− φ1(τi−1,0, xi−1)|Fτi−1]
= E

[(
φ1(τi,0, yi−1)− φ1(τi,0, xi−1)

)+|Fτi−1

]
+E[φ1(τi,0, xi−1)− φ1(τi−1,0, xi−1)|Fτi−1]

≥ γ̃ (ε, β)− λ̃(ε)(65)

> 0 by choice of ε.

Since τi+1 − τi ≥ 1 and E[(τi+1 − τi)
2|Fτi ] ≤ k, almost surely for some k and

for all i, from the strong law of large numbers for martingales [Hall and Heyde
(1980), Theorem 2.18], it follows that

lim sup
i→∞

1

i

{
i−1∑
j=1

[
(τj+1 − τj )−

√
k
]}

≤ lim
i→∞

1

i

{
i−1∑
j=1

(τj+1 − τj −E[τj−1 − τj |Fτi ])
}

= 0 a.s.

(66)

Thus,

lim sup
i→∞

τi

i
≤ √

k a.s.(67)
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Again by Theorem 2.18 of Hall and Heyde (1980), and Lemma 3 (after this proof),

lim inf
i→∞

[
φ1(τi,0, xi)

i
− (γ̃ − λ̃)

]
= lim inf

i→∞

∑i
j=2(Zj − (γ̃ − λ̃))+ φ1(τ1,0, x1)

i
,

≥ 0 a.s.

whence

lim inf
i→∞

φ1(τi,0, xi)

τi
≥ 1√

k
lim inf
i→∞

φ1(τi,0, xi)

i
≥ γ̃ (ε, β)− λ̃(ε)√

k
a.s.(68)

Observe that

1 ≤ lim inf
i→∞

τi+1

τi

≤ lim sup
i→∞

τi+1

τi

= lim sup
i→∞

τi+1 − τi

τi
+ 1

≤ lim sup
i→∞

τi+1 − τi

i
+ 1,

where in the last line we have used τj − τj−1 ≥ 1 a.s. for all j . Applying the of
Borel–Cantelli lemma and the estimate

P (τi+1 − τi ≥ is)≤ E[(τi+1 − τi)
2]

s2i2
≤ k

s2i2

for s > 0 it follows that P (τi+1 − τi ≥ is i.o.)= 0. So we have

lim
i→∞

τi+1

τi
= 1 a.s.(69)

We can now combine this claim with Lemma 3 to prove

lim inf
t→∞ sup

x∈S

φ1(t,0, x)

t
≥ lim inf

i→∞ inf
τi≤t<τi+1

φ1(t,0, xi)

t

= lim inf
i→∞

{
inf

τi≤t<τi+1

φ1(t,0, xi)− φ1(τi,0, xi)

t

+ φ1(τi,0, xi)

t

}

≥ γ̃ (ε, β)− λ̃(ε)√
k

=: c∗(β) a.s. by (68) and (69).

Now take an arbitrary F0-measurable compact and connected set S with vol(S) > 0
almost surely. Then for any β as above define

S̃(ω) :=
{

S(ω), if vol
(
S(ω)

)≥ πβ2,

B̄(0, β), otherwise,
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where B̄(0, β) denotes the closed ball of radius β centered at 0. The consideration
above shows that

lim inf
t→∞ sup

x∈S̃

φ1(t,0, x)

t
≥ c∗(β)

and, letting β → 0, it follows that diam(φ(t,0,S))→ ∞ as t → ∞ almost surely.
Now we fix β∗ ∈ (0, π

2κ∗ ) and define c∗ = c∗(β∗). For ε3 > 0 there exists some
T such that

P

(
inf
t≥T diam

(
φ(t,0,S)

)≤ 2β∗
)
< ε3.

Starting the competition-selection procedure at time T with the set φ(T ,0,S) with
respect to β∗ and giving up as soon as the diameter of φ(t,0,S) falls below 2β∗
after time T , we see that

P

(
lim inf
t→∞ sup

x∈S

φ(t,0,S)

t
≥ c∗

)
≥ 1 − ε3.

Since ε3 > 0 was arbitrary, the probability is in fact 1. Observing that c∗ is rotation-
invariant we have shown (6) and therefore the theorem is proved. �

LEMMA 3. There is a F > 0 such that with xi as defined at (62),

sup
i≥1

E

[
sup

τi≤t<τi+1

∣∣φ1(t,0, xi)− φ1(τi,0, xi)
∣∣2]≤ F

and

sup
i≥1

EZ2
i ≤ F.

PROOF. Since for τi ≤ t < τi+1,

φ1(t,0, xi)− φ1(τi,0, xi)=
∫ t

τi

v
(
s,0, φ(s,0, xi)

)
ds,

E

[
sup

τi≤t<τi+1

|φ1(t,0, xi)− φ1(τi,0, xi)|2
]

≤E

([∫ τi+1

τi

∥∥v(s,0, φ(s,0, xi))∥∥ds
]2)

≤ C E

((
N∑
j=1

∫ τi+1

τi

(|aj (s)| + |bj (s)|)ds
)2)
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≤ C

N∑
j=1

N∑
k=1

E

∫ ∞
0

∫ ∞
0

1[0,τi+1−τi)(s)1[0,τi+1−τi )(t)

×[|aj (s + τi)||ak(t + τi)| + 2|aj (s + τi)||bk(t + τi)|
+|bj (s + τi)||bk(t + τi)|]ds dt

≤ C

N∑
j=1

N∑
k=1

∫ ∞
0

∫ ∞
0

√
P (τi+1 − τi ≥ s ∨ t)

×
[√
E[a2

j (τi + s)a2
k (τi + t)] + 2

√
E[a2

j (τi + s)b2
k(τi + t)]

+
√
E[b2

j (τi + s)b2
k(τi + t)]

]

≤ C N2
∫ ∞

0

∫ ∞
0

√
P (τi+1 − τi ≥ s ∨ t) ds dt

= F <∞
for a new constant C (independent of s, t, i), since τi+1 − τi has moments of all
orders.

The proof that E[Z2
i ] ≤ F is almost the same. �

REMARK. The arguments at the end of the proof of the theorem show that it
is not necessary to assume that vol(S) > 0 almost surely. It is sufficient to require
that lim inft→∞ diam(φ(t,0,S)) > 0 almost surely. Since the flow preserves the
volume, this property certainly holds for sets with positive volume but one can
expect that it also holds for certain other sets. In fact we conjecture that, as in
the case of a nondegenerate isotropic Brownian flow, the theorem holds for any
compact and connected (F0-measurable) set S which contains more than one point
almost surely. In any case it is clear that for every such set almost surely either the
left inequality in the theorem holds or lim inft→∞ diam(φ(t,0,S))= 0.

4. Shear flows. As before we let K = {k1, . . . , kN } ⊆ R2\{0} be a finite set of
modes, but this time we assume that dim(spanK)= 1. The corresponding flow φ

is then called shear flow. We will see below that the rate of expansion of a bounded
set S under a shear flow is strictly sublinear. Without loss of generality we assume
that the second component of k is zero for every k ∈ K . Then the stream function
� is of the form

�(t, x)=
N∑
i=1

(
ai(t) cos(rix1)+ bi(t) sin(rix1)

)
,
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where ri denotes the first component of ki and x1 is the first component of x.
Hence by (3),

v1(t, x)= 0,

v2(t, x)=
N∑
i=1

ri
(−ai(t) sin(rix1)+ bi(t) cos(rix1)

)
,

that is,

φ1(t,0, x)= x1,

φ2(t,0, x)= x2 +
N∑
i=1

ri

(
− sin(rix1)

∫ t

0
ai(s) ds + cos(rix1)

∫ t

0
bi(s) ds

)
.

Since the integral from 0 to t of an Ornstein–Uhlenbeck process is almost surely
asymptotically bounded by a (deterministic) constant times (t log log t)1/2, the
same is true for supx∈S ‖φ(t,0, x)‖ when S is a (random) subset of R2 which
is almost surely bounded.

Acknowledgments. We thank Stanislav Molchanov and Tomasz Komorowski
for valuable discussions.

REFERENCES

BAXENDALE, P. and HARRIS, T. (1986). Isotropic stochastic flows. Ann. Probab. 14 1155–1179.
CARMONA, R. and CEROU, F. (1999). Transport by incompressible random velocity fields:

simulations and mathematical conjectures. In Stochastic Partial Differential Equations:
Six Perspectives (R. Carmona and B. Rozovskii, eds.) 153–181. Amer. Math. Soc.
Providence, RI.

CARMONA, R., GRISHIN, A. and MOLCHANOV, S. (1996). Massively parallel simulations of
motions in a Gaussian velocity field. In Stochastic Modelling in Statistical Oceanography
(R. Adler, P. Müller and B.L. Rozovskii, eds.) 47–68. Birkhäuser, Boston.

CARMONA, R. and XU, L. (1997). Homogenization for time-dependent 2d incompressible Gaussian
flows. Ann. Appl. Probab. 7 265–279.

CRANSTON, M. (1991). Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 110–124.
CRANSTON, M., SCHEUTZOW, M. and STEINSALTZ, D. (1999). Linear expansion of isotropic

Brownian flows. Elect. Comm. Probab. 4 91–101.
CRANSTON, M., SCHEUTZOW, M. and STEINSALTZ, D. (2000). Linear bounds for stochastic

dispersion. Ann. Probab. 28 1852–1869.
FANNJIANG, A. and KOMOROWSKI, T. (1999). Turbulent diffusion in Markovian flows. Ann. Appl.

Probab. 9 591–610.
HALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and its Application. Academic Press,

New York.
IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes.

North-Holland, Amsterdam.
KESTEN, H. and PAPANICOLAOU, G. (1979). A limit theorem for turbulent diffusion. Comm. Math.

Physics 65 97–128.
LE JAN, Y. (1985). On isotropic Brownian motions. Z. Wahrs. Verw. Gebiete 70 609–620.



532 M. CRANSTON AND M. SCHEUTZOW

LINDVALL, T. and ROGERS, L. C. G. (1986). Coupling of multidimensional diffusions by reflection.
Ann. Probab. 14 860–872.

MOLCHANOV, S. (1996). Topics in statistical oceanography. In Stochastic Modelling in Statistical
Oceanography (R. Adler, P. Müller and B. L. Rozovskii, eds.) 343–380. Birkhäuser,
Boston.

SCHEUTZOW, M. and STEINSALTZ,D. (2001). Chasing balls through martingale fields. Ann. Probab.
To appear.

ZIRBEL, C. and ÇINLAR, E. (1996). Dispersion of particle systems by Brownian flows. Adv. Appl.
Probab. 28 53–74.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ROCHESTER

ROCHESTER, NEW YORK 14627
E-MAIL: cran@math.rochester.edu

FACHBEREICH 3, MA 7-5
TECHNISCHE UNIV. BERLIN

STRASSE DES 17. JUNI 136
10623 BERLIN

GERMANY

E-MAIL: ms@math.tu-berlin.de


