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MIXED PERCOLATION AS A BRIDGE BETWEEN
SITE AND BOND PERCOLATION

By Lincoln Chayes1 and Roberto H. Schonmann2

University of California, Los Angeles

By using mixed percolation as a bridge between site and bond
percolation, we derive a new inequality between the critical points of these
processes that is optimal in a certain sense. We also extend a result on
the crossover exponent of bond-diluted Potts models to site-diluted Potts
models. Some new results about the critical line in mixed percolation are
also proved.

1. Introduction. Bond and site percolation are similar processes in
various respects, and it is easy to overlook their differences and miss the
fact that their comparison may sometimes be interesting and challenging.
The issues addressed in this paper include a nontrivial relationship between
the critical points of these two processes and a nontrivial extension to the site
percolation setting of a result on diluted Potts models that was only available
in the bond percolation setting. For these purposes, we study mixed site–bond
percolation, which can be seen as a smooth bridge between site and bond per-
colation. As a by-product of our approach, we also derive some new results on
the critical line in mixed percolation.

1.1. Comparison between critical points. We consider site or bond percola-
tion on an infinite, locally finite, connected graph G = �V�E�. Here V is the
set of vertices (sites) andE is the set of edges (bonds). The degree of a vertex is
the number of edges incident to it. If the degree of each site is bounded above
by a common finite constant, the graph G is said to be of bounded degree.
Write Aut�G� for the group of graph automorphisms of G, that is, the class of
one-to-one transformations of V onto itself that preserve the graph structure.
A graph G = �V�E� is called transitive if for any x�y ∈ V there exists a graph
automorphism of G that maps x to y. In other words, G is transitive if Aut�G�
acts transitively on V, that is, it produces a single orbit. Intuitively, a graph
is transitive if all its vertices play exactly the same role. A graph G = �V�E�
is called quasitransitive if Aut�G� acting on V produces a finite number of
orbits. Intuitively, a graph is quasitransitive if it has a finite number of types
of vertices and vertices of the same type play exactly the same role.
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In the site percolation model, each site is kept independently of the others
with probability s, while the other sites are removed along with all the bonds
incident to them. We denote by πS�s� the probability that the remaining graph
contains some infinite component (i.e., the probability that percolation occurs).
In the bond percolation model, each bond is kept independently of the others
with probability b, while the other bonds are removed. We denote by B�b� the
probability that the remaining graph contains some infinite component (i.e.,
the probability that percolation occurs). The critical points are defined by

sc = inf�s ∈ �0�1� � πS�s� > 0	 = inf�s ∈ �0�1� � πS�s� = 1	�
bc = inf�b ∈ �0�1� � B�b� > 0	 = inf�b ∈ �0�1� � B�b� = 1	�

where the second equality in each definition is a consequence of Kolmogorov’s
0–1 law.
The inequality

bc ≤ sc�(1)

which saturates for trees, is owing to [14]. In particular, if sc < 1, then bc < 1.
In contrast, there are locally finite graphs (of unbounded degree) for which
bc < 1, while sc = 1. For this, see [12]. For graphs of bounded degree, the
following inequality, from [11], shows that this cannot happen:

sc ≤ 1− �1− bc�D−1�(2)

where D is the maximal degree of the graph. [Relationships that are weaker
than (2), but sufficient to show that for bounded degree graphs, bc < 1 implies
sc < 1, can be obtained from [17] and [18], Remark 6.2; see also [12].]
In [11], the authors implicitly asked if (2) is optimal or not. Theorem 1.1

shows that this is not the case when bc is close to 1 and provides an inequality
that is optimal “up to the value of a constant prefactor.” Recall that �x� denotes
the integer part of x.

Theorem 1.1. For each integer D ≥ 3, the following statements hold.

(a) For any infinite connected graph of maximal degree D,

sc ≤ 1−
1

22
D/2�+1
�1− bc�
D/2��

(b) There are infinite connected quasitransitive graphs of maximal degree
D for which bc < 1 and

sc ≥ 1− 2
D/2�+1�1− bc�
D/2��
examples of such graphs can be chosen with bc arbitrarily close to 1.

Note that an infinite graph of maximal degree at most 2 has bc = sc = 1,
so the assumption that D ≥ 3 is harmless. The optimal aspect of Theorem
1.1 is the identification of the exponent 
D/2�, which is the same in parts (a)
and (b). The value of the constant that multiplies �1−bc�
D/2� in parts (a) and
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(b) can be slightly improved using our techniques with somewhat more work.
However, because these techniques do not seem to be sufficient to identify
the optimal value of this constant, we satisfy ourselves with the preceding
statements.

Open Problem 1. How would Theorem 1.1 be modified if we restricted
ourselves to the class of transitive graphs of degree D?

1.2. Crossover exponent for diluted Potts models. We suppose that the
reader is familiar with the basic notions and terminology on the statistical
mechanics of lattice systems. For an introduction to this subject, consult, for
example, [7]. The q-state Potts model on a locally finite (not necessarily infinite
or connected) graph G = �V�E� is defined by associating to each site x ∈ V a
random variable (spin) σ�x� that takes values 1�2� � � � � q. To each configura-
tion σ ∈ �1�2� � � � � q	V, an energy is formally associated by the expression

HJ�σ� = −J
∑

�x�y	∈E
δσ�x�� σ�y��

where J ≥ 0 is a parameter and δa� b = 1 if a = b� δa� b = 0 if a �= b. There is a
critical value Jc (possibly 0 or∞) such that if J < Jc, the model has a unique
Gibbs distribution, but if J > Jc, the model has more than one Gibbs distribu-
tion. (IfG is not connected, a Gibbs distribution on it is obtained by associating
an independent Gibbs distribution to each connected component, so that the
value of Jc is then the infimum of those of its connected components.) For
an introduction to the Potts model and the associated random-cluster models,
see, for example, [8]. It is of relevance to recall that the case q = 2 corresponds
to the Ising model.
Given an infinite, locally finite, connected graph G = �V�E�, we can con-

sider the bond-diluted and the site-diluted q-state Potts models on this graph.
In each case, we study the q-state Potts model on the random graph result-
ing from performing bond or site percolation on G. (Note that this resulting
graph is, in general, not connected, but as observed in the last paragraph,
this is not an important issue.) The study of statistical mechanics models on
diluted graphs is a chapter in the study of systems in random environment,
a very central area of research in physics and in mathematical physics. For
some of the background on the subject, consult [1] and [13] and references
therein.
We can show, using Kolmogorov’s 0–1 law and Theorem 7.33 of [7] or

Theorem 3.1 of [4], that for each graph the critical value JBc �b� [resp. JSc �s�] for
the q-state Potts model on the corresponding bond-diluted (resp. site-diluted)
graph is well defined and not random.
In [1], the following theorem was proved [see display (9) and (10) in that

paper].

Theorem 1.2. For each infinite, locally finite, connected graph G that has
0 < bc < 1 and for each q, there exist constants 0 < AB1 ≤ AB2 < ∞ such that
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for the bond-diluted q-state Potts model on G.

AB1 �b− bc� ≤ exp�−JBc �b�� ≤ AB2 �b− bc�

for b > bc. Given δ > 0, we can take AB1 = �1 − δ�/�qbc� and AB2 = 1/bc,
provided that we restrict ourselves to values of b close enough to bc.

In particular, the crossover exponent �B, defined by the relationship

exp�−JBc �b�� ∼ �b− bc��
B

in the logarithmic sense, as b↘ bc�

takes the value �B = 1.
The methods in [1] are based on the relationship the Potts model and the

randomcluster model (a certain dependent bond percolation model) and on
comparisons between the random-cluster model and independent bond perco-
lation. The method does not extend to site-diluted Potts models, because the
random-cluster model is not immediately comparable to independent perco-
lation. Using the techniques from the current paper, we can fill this gap and
prove the following theorem.

Theorem 1.3. For each infinite connected graph of bounded degree G that
has bc < 1 and for each q, there exist constants 0 < AS1 ≤ AS2 <∞ that depend
only on q and D, such that for the site-diluted q-state Potts models on G,

AS1 �s− sc� ≤ exp�−JSc �s�� ≤ AS2 �s− sc�

for s > sc. Given δ > 0, we can take AS1 = �1 − δ�/�qsc� and AS2 = �1 + δ�2D/
�sc�1− sc�D−2�, where D is the maximal degree of G, provided that we restrict
ourselves to values of s close enough to sc.

In particular, the crossover exponent �S, defined by the relationship

exp�−JSc �s�� ∼ �s− sc��
S

in the logarithmic sense, as s↘ sc�

takes the value �S = 1.
As far as we can tell, the comparisons between independent bond and site

percolation available in the literature (see [17], [18], Remark 6.2, and [11]),
when combined with the arguments from [1], allow us to prove only a weaker
result, which would only imply that if �S exists, then it is positive and finite.
Results of this type are contained in [5] and [6].
Regarding the motivation behind the study of systems in a random environ-

ment, it seems natural to consider site-diluted Potts models as more interesting
than bond-diluted models, because site dilution corresponds to the presence
of impurities in a crystal. We stress also that although Theorem 1.3 is stated
in the context of fairly arbitrary graphs, as far as we know, it is a new result
even in the special case of cubic lattices.
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1.3. Mixed percolation. In the mixed percolation model, each bond is kept
independently of anything else with probability b and each site is kept inde-
pendently of anything else with probability s; the bonds and sites that are
not kept as well as the bonds incident to these sites are removed. We denote
by πBS�b� s� the probability that the remaining graph contains some infinite
component (i.e., the probability that percolation occurs). It is natural to define,
for 0 ≤ b ≤ 1,

sc�b� = sup�s ∈ �0�1� � πBS�b� s� = 0	�

Theorem 1.4. For any infinite connected graph of bounded degree that has
bc < 1, the function sc�·� has the following properties:

(a) There exist 0 < C1 ≤ C2 <∞, which depend only on the maximal degree
of the graph, such that for any b′� b′′ ∈ �bc�1�,

C1�b′ − b′′� ≤ �sc�b′� − sc�b′′�� ≤ C2�b′ − b′′��
(b) sc�bc� = 1.

In particular, Theorem 1.4 implies that sc�·� is a Lipschitz continuous func-
tion on [0,1], which is identically 1 on �0� bc� and strictly decreasing on �bc�1�.
It is also natural to define

bc�s� = inf�b ∈ �0�1� � πBS�b� s� > 0	 = inf�b ∈ �0�1� � πBS�b� s� = 1	�
Theorem 1.4 can be rephrased in terms of the function bc�·�. Note also that
from this theorem, we obtain that the function sc�·� restricted to the domain
�bc�1� is the inverse of the function bc�·� restricted to the domain �sc�1�. More-
over, the boundary between the percolative and the nonpercolative regions in
the plane �b� s� is precisely the curve

��b� sc�b�� � bc ≤ b ≤ 1	 = ��bc� �s�� s� � sc ≤ s ≤ 1	�
An important piece of information contained in Theorem 1.4 refers to the

edges of this curve. It implies that for bc ≤ b ≤ 1,
C1�b− bc� ≤ 1− sc�b� ≤ C2�b− bc�(3)

and

C1�1− b� ≤ sc�b� − sc ≤ C2�1− b��(4)

In particular, the critical exponents defined by

1− sc�b� ∼ �bc − b��
′
in the logarithmic sense, as b↘ bc

and

sc�b� − sc ∼ �1− b��
′′
in the logarithmic sense, as b↗ 1�

take the value �′ = �′′ = 1. The relationships in (4) allow us to prove
Theorem 1.3.
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Open Problem 2. How smooth is the function sc�·� with domain restricted
to �bc�1�? It is not hard to find graphs that are not quasitransitive for which
this function is not differentiable at some points and also has inflection points.
However, it is not clear whether such behaviour could happen on a quasitran-
sitive graph. In particular, it is natural to conjecture (based on simulations
and exact results for homogeneous trees) that in the case of the cubic lattice
�d, d ≥ 2, this function is analytic and convex.
In Section 2 we derive a differential inequality that is used in Section 3 to

derive estimates on the function sc�·�, and so provide the proof of Theorem 1.4.
In Section 4, these estimates on sc�·� are used to prove part (a) of Theorem
1.1; the example that proves part (b) of this theorem also is presented there.
Finally, in Section 5 the proof of Theorem 1.3, based on (4) is presented.

2. Differential inequality. In this section we consider mixed percola-
tion on an infinite connected graph G of bounded degree. A chain is a finite
sequence of distinct sites, x0� � � � � xn, such that for i = 0� � � � � n − 1, xi and
xi+1 are joined by an edge. These edges are called the edges of the chain. The
length of such a chain is n, and its end points are x0 and xn. The distance
between two sites is the minimal length of the chains that have these sites
as end points. An arbitrary site of the graph is chosen as its root and denoted
by r. The ball of radius n centered at the root, denoted V�n�, is the set of sites
within distance n of the root. We also set Ṽ�n� = V�n�\�r	.
Clusters are the connected components of the graph obtained from G after

sites and bonds have been deleted in the percolation process. We denote by
θBS�b� s� the probability that for mixed percolation with parameters �b� s� on
G, the root belongs to an infinite cluster. It is well known and easy to see that
πBS�b� s� = 1 iff θBS�b� s� > 0 and that, in particular, this last statement is
independent of the choice of the root of G.
As usual, bonds and sites that are kept in the percolation process are said

to be occupied and those that are removed are said to be vacant.
A chain is said to be internally occupied if all its sites, except possibly for

its end points, and all its edges are occupied. Two sites are said to be almost
connected if there is an internally occupied chain that has these sites as end
points. We denote by An the event that the root is almost connected to a
site that is at distance n + 1 from the root. Set θ̃BSn �b� s� = P�An� . Denote,
as usual, by θBSn �b� s� the probability that An happens and the root also is
occupied. Then it is clear that

lim
n→∞ sθ̃

BS
n �b� s� = lim

n→∞ θ
BS
n �b� s� = θBSn �b� s��

in particular,

πBS�b� s� = 1 iff θ̃BS�b� s� = lim
n→∞ θ̃

BS
n �b� s� > 0�(5)
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Proposition 2.1. For any infinity connected graph of degree bounded above
by D <∞, the differential inequality

∂θ̃BSn �b� s�
∂s

≤ C̃�b� s� θ̃
BS
n �b� s�
∂b

(6)

holds, where C̃�b� s� can be chosen as 2
D/2�/�s�1 − b�
D/2�−1� or as 2D/
�s�1− s�D−2�.

Under the same assumptions, we can also prove a differential inequality of
the form

∂θBSn �b� s�
∂s

≤ C�b� s�∂θ
BS
n �b� s�
∂b

�(7)

However, the corresponding estimate on C�b� s� turns out to be not good
enough to prove Theorem 1.1(a) (it is good enough, though, to prove
Theorems 1.4 and 1.3).
Note that two alternative expressions for C̃�b� s� appear in Proposition 2.1.

The first alternative is important in the proof of Theorem 1.1(a) (the power of
1 − b that appears in this expression is of major relevance then); the second
is important in the proof of Theorem 1.3 (because it does not blow up as b
approaches 1). Both expressions are needed to prove Theorem 1.4 [because
they allow us to bound C̃�b� s� above, uniformly on a domain that excludes a
neighborhood of the point �b� s� = �1�1� and a neighborhood of the line s = 0].
Under the same assumptions of Proposition 2.1, we can also prove the com-

plementary differential inequalities

∂θ̃BSn �b� s�
∂b

≤ D
b

∂θ̃BSn �b� s�
∂s

(8)

and

∂θBSn �b� s�
∂b

≤ D
b

∂θBSn �b� s�
∂s

�(9)

All the applications that we would have for them are, nevertheless, better
accomplished by using (1).
Differential inequalities in the spirit of (6), (7), (8) and (9) have appeared in

[19], [2], [3] and [10]. They have been used to prove strict inequalities between
critical points, equalities between critical exponents obtained by approaching
a critical point from different directions and Lipschitz continuity of critical
lines. The main applications in this paper are, nevertheless, of a different
nature. In particular, as far as we know, in previous uses of such inequalities,
estimates on the values of the constants that played the role of our C̃�b� s�
were not a crucial issue.

Proof of Proposition 2.1. Recall the notation introduced in the begin-
ning of this section. We also use the notation Ex to denote the set of edges
incident to the vertex x and use Vx to denote the set of vertices that share an
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edge with x. Also let E�n� be the set of edges that have at least one end point
in the ball V�n�. To prove the proposition, we have to consider only mixed per-
colation on the finite graph Gn = �V�n��E�n��. A realization of this process is
a function ω� V�n� ∪E�n� → �0�1	, where the 0’s associated to vacant bonds
and sites, and the 1’s are associated to occupied bonds and sites.
Given a site x ∈ Ṽ�n�, let δxAn be the event that x is pivotal for An, that

is, the event that if x is occupied, then An happens, but if x is vacant, then
An does not happen. Given a bond e ∈ E�n�, the event δeAn that e is defined
in an analogous way.
Russo’s formula (see, e.g., [9]), states that

∂θ̃BSn �b� s�
∂s

= ∑
x∈Ṽ�n�

P�δxAn��
∂θ̃BSn �b� s�

∂b
= ∑
e∈E�n�

P�δeAn��

The proof is, therefore, concluded once we argue that for each x ∈ Ṽ�n�,

sP�δxAn� ≤
(

2
1− b

)
D/2�−1 ∑
e∈Ex

P�δeAn��(10)

sP�δxAn� ≤
2D−1

�1− s�D−2
∑
e∈Ex

P�δeAn�(11)

and use the fact that each bond in E�n� obviously contains at most two end
points in Ṽ�n�.
To prove (10), first note that sP�δxAn� = P�Ax�n�, where Ax�n is the event

that the site x is occupied and that δxAn holds. We introduce a transformation
FBx � Ax�n→

⋃
e∈Ex δeAn, with the following properties:

(i) P�FBx ��ω�� ≥ �1− b�
D/2�−1P�ω�.
(ii) Each element of

⋃
e∈Ex δeAn is the image of at most 2


D/2�−1 elements
of Ax�n.

The existence of such a transformation clearly implies (10). To produce FBx ,
we suppose the bonds in Ex to be ordered in some arbitrary fashion and we
proceed as follows.
Given ω ∈ Ax�n, let Einx�ω be the set of bonds in Exthat in the configuration

ω, have the following property: Their end point distinct from x is either the
root or else it is a site that is occupied and connected to the root by an inter-
nally occupied chain that does not pass through x. LetEoutx�ω be the set of bonds
inEx that, in the configuration ω, have the following property: Their end point
distinct from x is either a site at distance n+1 from the root or else it is a site
that is occupied and connected to a site at distance n+ 1 from the root by an
internally occupied chain that does not pass through x. Whereas ω ∈ δxAn,
we have Einx�ω �= �, Eoutx�ω �= � and Einx�ω ∩ Eoutx�ω = �. If �Einx�ω� ≤ �Eoutx�ω�,
set Ex�ω = Einx�ω; otherwise, set Ex�ω = Eoutx�ω. Whereas �Ex� ≤ D, obviously
�Ex�ω� ≤ 
D/2�. Define FBx �ω� as the configuration obtained from ω by vacat-
ing the first �Ex�ω� − 1 bonds of Ex�ω. In the configuration FBx �ω�, the last
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bond in Ex�ω is pivotal for An, so that FBx indeed maps Ax�n to
⋃
e∈Ex δeAn. It

is clear that also (i) holds. To see that (ii) holds, we can argue as follows. The
transformation FBx can only modify the configuration at bonds incident to x.
Therefore, by looking at FBx �ω� restricted to the other bonds and sites in E�n�
and Ṽ�n�, we can find what the set Ex�ω is. If FBx �ω′� = FBx �ω′′�, ω′ and ω′′
can only differ at the bonds in Ex�ω′ = Ex�ω′′ , with the exception of the last
such bond. Because the cardinality of this set where they can differ is at most

D/2� − 1, this proves (ii).
To prove (11), we proceed in a similar fashion. We introduce a transforma-

tion FSx � Ax�n→
⋃
e∈Ex δeAn, with the following properties:

(i) P�FSx �ω�� ≥ �1− s�D−2P�ω�.
(ii) Each element of

⋃
e∈Ex δeAn is the image of at most 2

D−1 elements
of Ax�n.

The existence of such a transformation clearly implies (11). To produce FSx ,
we suppose the sites in Vx to be ordered in some arbitrary fashion, except
for the fact that if the root is contained in Vx, it will be the last site in
the order. Given ω ∈ Ax�n, let Vinx�ω be the set of sites in Vx that in the
configuration ω, have the following property. The site is either the root or else
it is occupied, the bond that it shares with x is occupied and it is connected to
the root by an internally occupied chain that does not pass through x. Whereas
ω ∈ δxAn, we have Vinx�ω �= �. Let �Voutx�ω be the set of sites in Vx that, in the
configuration ω, are connected to a site at distance n+ 1 from the root by an
internally occupied chain that does not pass through x. Set �Vinx�ω = Vx\�Voutx�ω.
Note that because ω ∈ Ax�n, we have �Voutx�ω �= �, Vinx�ω ⊂ �Vinx�ω and hence
�Vinx�ω� ≤ ��Vinx�ω� ≤ D−1. Define FSx �ω� as the configuration obtained from ω by
vacating the first �Vinx�ω�−1 site of Vinx�ω. Note that in the configuration FSx �ω�,
the bond in Ex, which has as x end points and the last site in Vinx�ω, is pivotal
for An, so that FSx indeed maps Ax�n to

⋃
e∈Ex δeAn. It is also again clear that

(i) holds. To see that (ii) holds, we can argue as follows. The transformation
FSx can modify only the configuration at sites in Vx. Therefore, by looking
at FSx �ω� restricted to the other bonds and sites in E�n� and Ṽ�n�, we can
identify the set �Vinx�ω. If FSx �ω′� = FSx �ω′′�, ω′ and ω′′ can differ only at the
sites in �Vinx�ω′ = �Vinx�ω′′ . Whereas the cardinality of this set where they can
differ is at most D− 1, this proves (ii). ✷

3. Proof of Theorem 1.4. Let

�G = ��b� s� ∈ �0�1�2 � πBS�b� s� = 1	 = ��b� s� ∈ �0�1�2 � θBS�b� s� > 0	

be the percolative phase of the mixed percolation model on a graph G.

Proposition 3.1. Suppose that G is an infinite connected graph of degree
bounded above by D < ∞. Suppose also that for some constants C > 0,
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0 ≤ b1 < b2 ≤ 1, 0 ≤ s1 < s2 ≤ 1, the inequality
∂θ̃BSn �b� s�

∂s
≤ C∂θ̃

BS
n �b� s�
∂b

(12)

holds for arbitrary n and arbitrary �b� s� ∈ �b1� b2� × �s1� s2�.
(i) If �b� s� ∈ ��b1� b2�× �s1� s2��∩�G, then for all x ≥ 0 such that �b+x� s−

x/C� ∈ �b1� b2� × �s1� s2� we have �b+ x� s− x/C� ∈ �G.
(ii) If �b� s� ∈ ��b1� b2� × �s1� s2�� ∩ ��G�c, then for all x ≥ 0 such that �b −

x� s+ x/C� ∈ �b1� b2� × �s1� s2� we have �b− x� s+ x/C� ∈ ��G�c.

Proof. From (12), we have, under the conditions in (i),

θ̃BSn �b� s� ≤ θ̃BSn �b+ x� s− x/C��
Therefore, claim (i) follows from (5).
The proof of (ii) is analogous. ✷

In combination with Proposition 2.1, Proposition 3.1 provides estimates on
the behavior of the function sc�·�. To obtain estimates in the opposite direction,
we can use the complementary inequalities (8) or (9). For our purposes, we can
do better, though, using (1). This is done in the next proposition, in which we
recall results and arguments from [15].

Proposition 3.2. Suppose that G is an infinite, locally finite, connected
graph.

(i) If �b� s� ∈ �G, then for all 0 < α ≤ 1 such that �bα� s/α� ∈ �0�1�2 we have
�bα� s/α� ∈ �G.
(ii) If �b� s� ∈ ��G�c, then for all 0 < α ≤ 1 such that �b/α� sα� ∈ �0�1�2 we

have �b/α� sα� ∈ ��G�c.

Proof. To prove (i), consider the random graph G′ obtained by performing
mixed percolation on G with parameters �b� s/α�. By performing site percola-
tion on G′ with parameter α (independently of the process that randomly
originated G′), we obtain a random graph G′′ that has the law of a ran-
dom graph obtained from performing mixed percolation with parameters �b� s�
on G. Because we suppose that �b� s� ∈ �G, we must have that G′′ contains
a.s. some infinite component. This means that G′ supports site percolation at
parameter α. From (1), if follows that G′ also supports bond percolation at
parameter α. In other words, the random graph G′′′ obtained by performing
bond percolation on G′ with parameter α (independently of the process that
randomly originated G′) contains a.s. some infinite component. However, G′′′

has the law of a random graph obtained from performing mixed percolation
with parameters �bα� s/α� on G. This proves (i).
The claim in (ii) follows from that in (i). ✷

Proof of Theorem 1.4. This theorem is immediate from Propositions 2.1,
3.1 and 3.2. ✷
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4. Proof of Theorem 1.1.

Proof of part (a) of Theorem 1.1. We suppose, with no loss, that bc < 1.
We apply Proposition 3.1 with b1 = bc, b2 = �bc + 1�/2� s1 = 1/2� s2 = 1 and

C = 2
D/2�

s1�1− b2�
D/2�−1
= 22
D/2�

�1− bc�
D/2�−1
�

Note that this choice of C is possible thanks to Proposition 2.1.
Given ε > 0, set b = bc + ε and s = 1. If ε is small enough, then �b� s� ∈

��b1� b2� × �s1� s2�� ∩ �G and x = �1/2��1 − bc� − ε > 0. Whereas x ≤ 1 and
C ≥ 2, we also have �b+x� s−x/C� ∈ �b1� b2�× �s1� s2�. Proposition 3.1(i) gives
now �b+ x� s− x/C� ∈ �G. This can be rewritten as(

1+ bc
2

�1− �1− bc�

D/2�

22
D/2�+1
+ ε

C

)
∈ �G�

Because ε > 0 can be taken arbitrarily small, we obtain

sc

(
1+ bc
2

)
≤ 1− �1− bc�


D/2�

22
D/2�+1
�

The proof is, therefore, complete, because sc = sc�1� ≤ sc��1+ bc�/2�. ✷

Proof of part (b) of Theorem 1.1. To construct our example, we first
need to introduce various types of finite graphs to be used as our building
blocks. Each one of these finite graphs has exactly two vertices, which are
called its exterior vertices; the other vertices are called interior vertices.
A K bridge is a finite graph with K+ 2 vertices, where two of the vertices

are and the others are called interior vertices. The set of edges is defined
by declaring that each one of the two exterior vertices is connected by edges
to each one of the interior vertices. Note that the graph has 2K edges, that
the two exterior vertices play the same role and have degree K, and that K
interior vertices play the same role and have degree 2.
Suppose that K1 ≤ K2. A �K1�K2� double bridge is a graph obtained by

identifying one of the exterior vertices of a K1 bridge with one of the exterior
vertices of aK2 bridge. The interior vertices of the two original graphs, as well
as the vertex resulting from the identification just described, are considered
to be interior vertices of the new graph, whereas the other two vertices are
considered to be exterior vertices of the new graph. Note that the vertex that
results from the identification has degree K1+K2, the other interior vertices
have degree 2, one of the exterior vertices has degree K1 (it will be called the
first exterior vertex of the graph) and the other exterior vertex has degree K2
(it will be called the second exterior vertex of the graph). (If K1 = K2, then
the two exterior vertices play the same role and the choices of first and second
are arbitrary.)
An l chain of �K1�K2� double bridges is a graph obtained as follows. Start

with a sequence of l disjoint �K1�K2� double bridges. Now, for i = 1� � � � � l− 1,
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identify the second exterior vertex of the ith graph in the sequence with the
first exterior vertex of the �i+1�th graph in the sequence. The interior vertices
of the l original graphs, as well as the vertices resulting from the identifica-
tions just described, are considered to be interior vertices of the new graph,
whereas the other two vertices (the first exterior vertex of the first graph and
the second exterior vertex of the last graph) are considered to be exterior ver-
tices of the new graph. The first exterior vertex of the first graph is called the
first exterior vertex of the new graph, and the second exterior vertex of the
last graph is called the second exterior vertex of the new graph. Note that
the degrees of the exterior vertices areK1 andK2, whereas the degrees of the
interior vertices are 2 and K1 +K2.
A decorated l chain of �K1�K2� double bridges is a graph obtained from

an l chain of �K1�K2� double bridges by adding two new vertices, v− and v+,
the first of which is joined by an edge to the first exterior vertex of the l chain
of �K1�K2� double bridges, and the second of which is joined by an edge to the
second exterior vertex of the l chain of �K1�K2� double bridges. The vertices
v− and v+ are the only exterior vertices of the new graph, and are called,
respectively, its first exterior vertex and second exterior vertex. Note that the
degree of the exterior vertices is 1, whereas the degrees of the interior vertices
are K1 + 1�K2 + 1, 2 and K1 +K2.
We are ready now to introduce an infinite graph that will serve as our

example. Its maximal degree is D and for it to satisfy the desired relationship
between sc and bc, a certain parameter l has to be taken large enough. For the
moment, recall that �x� is the smallest integer that is not smaller than x. Note
that 
D/2� + "D/2# = D. Let T2 denote the binary tree, that is, the tree in
which each vertex has degree 3. Our graph is denoted byT2�D� l and is obtained
by replacing each edge of T2 with a decorated l chain of (
D/2�� "D/2#� double
bridges, in the sense that the exterior vertices of the decorated l chains play
the role of the vertices of T2. To assure that the graph T2�D� l is quasitransi-
tive, the orientation of the decorated l chains of (
D/2�� "D/2#� double bridges
is relevant, and a proper choice corresponds to identifying the second exte-
rior vertex of each such decorated l chain with the first exterior vertices of
two other such decorated l chains. Note that, indeed, the maximal degree
of T2�D� l is D.
Before we proceed, recall that we know from branching theory that the

critical value for bond percolation on T2 is 1/2. This allows us to write for
T2�D� l,

b2c

(
1− (

1− b2c
)
D/2�)l(1− (

1− b2c
)
D/2�)l

= 1
2 = s2+2lc

(
1− �1− sc�
D/2�

)l(
1− �1− sc�
D/2�

)l
�

(13)

Note, in particular, that

lim
l→∞

bc = 1�(14)
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because otherwise the 1.h.s. of (13) would become smaller than 1/2 for some
large values of l.
Whereas 
D/2� ≤ "D/2# and 0 < sc ≤ 1, we can extract two inequalities

from (13):

b2c

(
1− �1− b2c�
D/2�

)2l
≤ 1

2 ≤ s2lc �(15)

From the first inequality in (15) and from (14), we can conclude that for large l,

1− �1− b2c�
D/2� ≤
(

1√
2bc

)1/l
≤ �bc�1/l�(16)

From (15) and (16), we obtain now

sc ≥ �bc�1/l
(
1− �1− b2c�
D/2�

)
≥

(
1− �1− b2c�
D/2�

)2
≥ 1− 2�1− b2c�
D/2� = 1− 2�1+ bc�
D/2��1− bc�
D/2�

≥ 1− 2
D/2�+1�1− bc�
D/2�� ✷

Remark. We chose the binary tree in the preceding construction for con-
venience. This provided us with the particularly simple expression (13), on
which the rest of the derivation was built. However, there is great flexibility
in the choice of the underlying graph. For instance, if we use the hexagonal
lattice instead, we produce a graph that is not only quasitransitive, but is
also a periodic graph in the sense of [16]. The left-hand side of (13) is now
equal to the critical point for bond percolation on the hexagonal lattice. The
right-hand side of (13) can be bounded above and below by numbers that are
in the interval (0,1) and that are, respectively, upper and lower bounds for
the critical point of an arbitrary one-dependent bond percolation process on
the hexagonal lattice (such bounds are standard Peierls estimates). This is
sufficient to follow the steps in the foregoing proof, with minor modifications,
and to derive also in this case the inequality between bc and sc claimed in
Theorem 1.1(b), when l is large. (The hexagonal lattice has degree 3, which is
important in case D = 3 to assure that the final graph has degree 3 as well.
If D ≥ 4, we can also use the Euclidean square lattice �2 as reference graph
in the construction.)

5. Proof of Theorem 1.3. In this section, the notation includes an extra
subscript to indicate the graph to which it refers. In [1], the following result
was proved via relationships between Potts and random-cluster models and
comparisons of them with independent bond percolation models. For an arbi-
trary infinite, locally finite graph H,

bc�H ≤ 1− exp�−Jc�H� ≤
qbc�H

1+ �q− 1�bc�H
�(17)
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Given an infinite connected graph G of bounded degree, let Gs be the ran-
dom graph obtained from G by performing site percolation with parameter s
on it. Then, a.s.,

JSc�G�s� = JSc�Gs� bc�G�s� = bc�Gs �(18)

From (17) with H = Gs and (18), we obtain

bc�G�s� ≤ 1− exp�−Jsc�G�s�� ≤
qbc�G�s�

1+ �q− 1�bc�G�s�
�(19)

For the purpose of comparing this last display with (4), we rewrite (4) in terms
of bc�G�s� [recall that bc�G�s� and sc�G�b� are inverse functions for bc ≤ b ≤
1� sc ≤ s ≤ 1]:

1− 1
C1
�s− sc�G� ≤ bc�G�s� ≤ 1−

1
C2
�s− sc�G��(20)

From (19) and (20), we obtain the desired inequalities:

1
qC2

�s− sc�G� ≤ exp�−JSc�G�s�� ≤
1
C1
�s− sc�G��

The values of the constants AS1 = 1/�qC2� and AS2 = 1/C1 that appear in the
statement of the theorem are obtained from bounds on C1 and C2 in (4) that
derive from Propositions 2.1, 3.1(ii) and 3.2(i). ✷
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