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ASYMPTOTIC PROPERTIES OF A SINGULARLY PERTURBED
MARKOV CHAIN WITH INCLUSION OF TRANSIENT STATES

By G. Yin,1 Q. Zhang2 and G. Badowski3

Wayne State University, University of Georgia and Wayne State University

This work is concerned with aggregations in a singularly perturbed
Markov chain having a finite state space and fast and slow motions. The
state space of the underlying Markov chain can be decomposed into several
groups of recurrent states and a group of transient states. The asymptotic
properties are studied through sequences of unscaled and scaled occupation
measures. By treating the states within each recurrent class as a single
state, an aggregated process is defined and shown to be convergent to a
limit Markov chain. In addition, it is shown that a sequence of suitably
rescaled occupation measures converges to a switching diffusion process
weakly.

1. Introduction. This paper is concerned with asymptotic properties of
singularly perturbed Markov chains having fast and slow components. By con-
sidering Markov chains with finite state spaces, we obtain weak convergence
results for Markov chains with state space consisting of both recurrent and
transient states.

Recent advances in manufacturing systems (see [13–16] and the references
therein) lead to renewed interests to the understanding of singularly per-
turbed systems. In the aforementioned references, to design and to control
systems with stochastic capacity and random demands, models using Markov
chains are used frequently. To reflect the reality of different classes of states
involved, one often introduces a small parameter and models the systems un-
der consideration as a singularly perturbed Markov chain. To illustrate, we
give two examples.

Example 1.1. Consider a two-machine flow shop with machines subject
to breakdown and repair. Model the production capacity of the machines
as a finite-state Markov chain. When the machine is up, it can produce
parts with production rate u�t�; when the machine is under repair, nothing
can be produced. For simplicity, suppose each of the machines is either in
operating condition (denoted by 1) or under repair (denoted by 0). Then the
capacity of the flowshop α�·� is a four-state Markov chain with state space
��1�1�� �0�1�� �1�0�� �0�0��. Suppose the first machine breaks down much
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more often than that of the second one. For small ε > 0, let α�·� = αε�·� be
generated by

Qε�t� = 1
ε
Q̃�t� + Q̂�t��(1)

with Q̃�·� and Q̂�·� given by

Q̃�t�=


−λ1�t� λ1�t� 0 0
µ1�t� −µ1�t� 0 0
0 0 −λ1�t� λ1�t�
0 0 µ1�t� −µ1�t�

 �

Q̂�t�=


−λ2�t� 0 λ2�t� 0

0 −λ2�t� 0 λ2�t�
µ2�t� 0 −µ2�t� 0
0 µ2�t� 0 −µ2�t�

 �
where λi�·� and µi�·� are the repair and breakdown rates, respectively. The
matrices Q̃�t� and Q̂�t� are themselves generators of Markov chains. Denote
the production rates of the two machines by ui�·� and assume that they are
upper bounded by the machine capacities. The objective is then to choose
the control within an admissible class so as to minimize an expected cost
E
∫ T
0 G�x�t�� u�t�� αε�t��dt, where x�t� denotes the inventory level and G�·� is

an appropriate function. This seemingly not so complex problem turns out to
be very difficult; an analytical solution is virtually impossible to obtain. Thus
one seeks approximate solutions that are asymptotically or nearly optimal.

Example 1.2. Let αε�t� be a singularly perturbed Markov chain with
a finite state space � and a generator Qε�t� given by (1) with Q̃�t� =
diag�Q̃1� � � � � Q̃l�t�� such that each Q̃�t� is a weakly irreducible generator
(see Yin and Zhang [17], Chapter 2, for a definition). Consider a stochastic
dynamical system with the state xε�t� ∈ R

n, and control u�t� ∈ � ⊂ R
n1 . Let

f�·� ·� ·�� R
n × R

n1 ×� 
→ R
n� G�·� ·� ·�� R

n × R
n1 ×� 
→ R. Consider the

problem

minimize Jε�u�·�� = E
∫ T
0
G�xε�t�� u�t�� αε�t��dt�

subject to
dxε�t�
dt

= f�xε�t�� u�t�� αε�t��� xε�0� = x�

Let �si1� � � � � simi
�, i = 1� � � � � l, denote the states of αε�·� corresponding to

Q̃i�t�. Suppose that m̃�·� is a relaxed control representation for u�·�. Then the
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cost function and system equation can be written as

Jε�m̃ε� = E
(

l∑
i=1

mi∑
j=1

∫ T
0

∫
G�xε�t�� υ� sij�m̃ε

t �υ�dt
)
�

xε�t� = x+
l∑
i=1

mi∑
j=1

∫ t
0

∫
f�xε�s�� υ� sij�m̃ε

s�dυ�I�αε�s�=sij�ds�

It can be shown (see [17], Chapter 9) there is an associated limit problem:

minimize J�m� = E
l∑
i=1

mi∑
j=1

∫ T
0

∫
G�x�t�� υ� sij�m̃t�dυ�νij�t�I�ᾱ�t�=i� dt�

subject to x�t� = x+
l∑
i=1

mi∑
j=1

∫ t
0

∫
f�x�s�� υ� sij�m̃s�dυ�νij�s�I�ᾱ�s�=i�ds�

where �νi1�t�� � � � � νimi
�t�� is the quasistationary distribution (the definition is

given in what follows) corresponding to Q̃i�t�. In the limit problem, the dy-
namics and the cost are averaged out w.r.t. the quasistationary measures of
αε�·�. One can then proceed to use the limit to design a nearly optimal control
of the original problem.

The preceding examples show that, crucial to many important applications,
we need to have a thorough understanding of the structure and asymptotic
properties of the underlying Markov chains. Khasminskii, Yin and Zhang [8]
use matched asymptotic expansion to establish the convergence of a sequence
of the probability distribution vectors. Singularly perturbed Markov chains
with recurrent states, naturally divisible into a number of classes are then
treated in [9]. This line of research has been continued in [18, 19] with em-
phasis on asymptotic normality and structural properties. We have further
derived asymptotic expansions for Markov chains with the inclusion of tran-
sient states and absorbing states and asymptotic distributions for Markov
chains having recurrent states in [17].

This work shows our continuing effort in studying asymptotic properties
of singularly perturbed Markov chains. Our main goal in this paper is to
treat Markov chains with both recurrent states and transient states, where
the recurrent states belong to several weakly irreducible classes. We treat
nonstationary (or nonhomogeneous) Markov chains. Such a consideration is
especially important when we are dealing with those control and optimiza-
tion problems arising in queueing systems, system reliability and production
planning, in which the generators of the underlying Markov chains are often
“action” (or control) dependent. The essence of our approach is aggregation and
the main focus is on unscaled and scaled occupation measures. The results to
be presented include an estimate on the mean square error of a sequence of
the centered occupation measures, weak convergence of an aggregated process
and weak convergence of a normalized sequence of occupation measures to a
switching diffusion process. We use martingale formulation and perturbed test
function methods to derive the desired asymptotic properties.
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The rest of the paper is arranged as follows. Precise problem formulation
is given in Section 2. Section 3 proceeds with the study of unscaled occupa-
tion measures and derives a mean square estimate on a sequence of centered
occupation measure. Section 4 deals with weak convergence of aggregated
Markov chains and Section 5 further exploits the limit behavior of a sequence
of normalized occupation measures. Finally, we close this paper with addi-
tional remarks in Section 6.

Suppose that α�·� is a continuous-time Markov chain. In this paper, all
we need is the following modified definitions (see [17], Chapter 2). Let � =
�1� � � � �m�. For i� j ∈� , denoteQ�t� = �qij�t��, for t ≥ 0. For any real-valued
function f on � and i ∈� , write

Q�t�f�·��i� = ∑
j∈�

qij�t�f�j� =
∑
j �=i
qij�t��f�j� − f�i���

The matrix Q�t�, t ≥ 0, is a generator of α�·� if qij�t� is continuous for all
i� j ∈ � and t ≥ 0, qij�t� ≥ 0 for j �= i and qii�t� = −∑

j �=i qij�t�, t ≥ 0, and
for all bounded real-valued functions f defined on �

f�α�t�� −
∫ t
0
Q�ς�f�·��α�ς��dς(2)

is a martingale. A generator Q�t� is said to be weakly irreducible if, for each
fixed t ≥ 0, the system of equations

ν�t�Q�t� = 0�
m∑
i=1
νi�t� = 1

(3)

has a unique solution ν�t� = �ν1�t�� � � � � νm�t�� and ν�t� ≥ 0. (Here and here-
after, for a vector v, v ≥ 0 means that each of its components vi ≥ 0.) The
nonnegative solution of (3) is termed a quasistationary distribution. For more
general approach to nonstationary Markov chains, we refer the reader to Davis
[1].

Let α�t�, t ≥ 0, be a Markov chain generated by Q�t�. Then it is well known
that the probability distribution vector

p�t� = �P�α�t� = 1�� � � � �P�α�t� =m�� ∈ R
1×m

satisfies the forward equation

ṗ�t� = p�t�Q�t�� p�0� = p0(4)

such that p0 = �p0� 1� � � � � p0� m� satisfying p0� i ≥ 0 for all i = 1� � � � �m and
p0� =∑m

i=1p0� i = 1, where � = �1� � � � �1�′ ∈ R
m×1.

2. Problem formulation. We arrange this section in three parts. The
first part presents the formulation, the second part gives some preliminaries
and the third part concentrates on aggregation of the underlying processes.
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2.1. Formulation. Let ε > 0 be a small parameter. For some T > 0 and all
t ∈ �0� T�, let αε�t� be a Markov chain generated by (1), where Q̃�t�/ε governs
the rapidly changing part and Q̂�t� describes the slowly changing components.
Assume

Q̃�t� =



Q̃1�t�
� � �

Q̃l�t�
Q̃1
∗�t� · · · Q̃l∗�t� Q̃∗�t�


(5)

such that, for each t ∈ �0� T� and each k = 1� � � � � l, Q̃k�t� is a generator with
dimension mk ×mk, Q̃∗�t� is an m∗ ×m∗ matrix, Q̃k∗ �t� ∈ R

m∗×mk and

m1 +m2 + · · · +ml +m∗ =m�
The state space of the underlying Markov chain is given by

� =�1 ∪ · · · ∪�l ∪�∗

where �k = �sk1� � � � � skmk
� are recurrent classes that are weakly irreducible

and �∗ = �s∗1� � � � � s∗m∗� includes the transient states. In what follows, for a
vector y ∈ R

1×m, we often use a partitioned form y = �y1� � � � � yl� y∗�, where
yi ∈ R

1×mi for each i = 1� � � � � l and i = ∗.
Our formulation is inspired by the work of Phillips and Kokotovic [14] and

Delebecque and Quadrat [2]; see also the recent work of Pan and Başar [13],
in which the authors treated time-invariant Q̃ matrix of a similar form.

In the literature, many people have studied singular perturbed systems.
Notably, Khasminskii [7] considered two-time-scale singularly perturbed dif-
fusions of the form

dxε�t� = A1�xε�t�� yε�t��dt+ σ1�xε�t�� yε�t��dw1�t��

dyε�t� = 1
ε
A2�xε�t�� yε�t��dt+

1√
ε
σ2�xε�t�� yε�t��dw2�t��

for independent Brownian motions w1 and w2. In [6], Chapter 6, Friedlin and
Wentzell considered the singularly perturbed dynamic system

dxε�t� = b�xε�t��dt+ εdwt
and the associated Markov chains with state space being the equivalent
classes generated by the unperturbed (ε = 0) dynamic system. Ethier and
Kurtz [4], Chapter 12, and Kushner [12] treated systems of the form

ẋε�t� = f
(
xε�t�� y

(
t

ε2

))
+ 1
ε
g

(
xε�t�� y

(
t

ε2

))
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and the like. The driving noise y�·� is known as a wideband noise; see [12] for
various applications of controlled dynamic systems. The problems considered
in this paper bare the spirit of singular perturbation, but are very different
from the aforementioned references.

2.2. Conditions and preliminaries. We assume the following conditions.

(A1) For all t ∈ �0� T� and k = 1� � � � � l, Q̃k�t� are weakly irreducible, and
Q̃∗�t� is Hurwitz (i.e., all of its eigenvalues have negative real parts).

(A2) The matrix Q̃�·� is differentiable on �0� T� and its derivative is Lips-
chitz. Moreover, Q̂�·� is Lipschitz continuous on �0� T�.

Use the partition

Q̂�t� =
(
Q̂11�t� Q̂12�t�
Q̂21�t� Q̂22�t�

)
�

where Q̂11�t� ∈ R
�m−m∗�×�m−m∗�, Q̂12�t� ∈ R

�m−m∗�×m∗� Q̂21�t� ∈ R
m∗×�m−m∗� and

Q̂22�t� ∈ R
m∗×m∗� and write

Q∗�t� = diag�ν1�t�� � � � � νl�t��
(
Q̂11�t��̃+ Q̂12�t��am1

�t�� � � � � aml
�t��

)
�

Q�t� = diag�Q∗�t��0m∗×m∗��
(6)

where

�̃ = diag��m1
� � � � ��ml

�� �mj
= �1� � � � �1�′ ∈ R

mj×1

and

ami
�t� = −Q̃−1

∗ �t�Q̃i∗�t��mi
for i = 1� � � � � l�(7)

In what follows, if ami
�t� is time independent, we will simply write it as ami

.
It will be shown that Q∗�t� is a generator of a Markov chain corresponding to
the “limit” of the aggregated process.

Remark. The requirement on Q̃∗�t� in (A1) implies that the correspond-
ing states are transient. The Hurwitzian property also has the following in-
teresting implication: For each t ∈ �0� T�, and each i = 1� � � � � l, ami

�t� =
�ami�1�t�� � � � � ami�m∗�t��′ ∈ R

m∗×1. Then

ami�j
�t� ≥ 0 and

l∑
i=1
ami�j

�t� = 1(8)

for each j = 1� � � � �m∗� That is, for each t ∈ �0� T� and each j = 1� � � � � l,
�am1�j

�t�� � � � � aml�j
�t�� can be considered as a probability row vector.
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To see this, note that, for each t ∈ �0� T�,∫ ∞
0

exp�Q̃∗�t�s�ds = −Q̃−1
∗ �t��

which has nonnegative components (see [17], page 147). From the definition
it follows that ami

�t� ≥ 0. Furthermore,

l∑
i=1
ami

�t� = −Q̃−1
∗ �t�

l∑
i=1
Q̃i∗�t��mi

=
(
− Q̃−1

∗ �t�
)(
− Q̃∗�t�

)
�m∗ = �m∗ �

Thus (8) follows.

Denote the transition probability of αε�·� by Pε�t� t0�, that is, Pε�t� t0� =
�P�αε�t� = j�αε�t0� = i��. The following results concern the asymptotic expan-
sion of the probability distribution and the associated transition probabilities.
The proof of the first statement is in [17], Section 6.4, and the proof of the
second statement is a slight modification of the first. We thus omit the proofs.

Proposition 2.1. Assume conditions (A1) and (A2) are satisfied. Then the
following assertions hold:

A. For the probability distribution vector

pε�t� = (
θ�t�diag�ν1�t�� � � � � νl�t���0m∗

)+O �ε+ exp�−κ0t/ε�� �
where 0m∗ ∈ R

1×m∗ and θ�t� = �θ1�t�� � � � � θl�t�� ∈ R
1×l satisfying

dθ�t�
dt

= θ�t�Q∗�t�� θi�0� = pε�i�0��mi
− pε�∗�0�Q̃−1

∗ �0�Q̃i∗�0��mi

and pε�0� = �pε�1�0�� � � � � pε�l�0�� pε�∗�0�� with pε�i�0� ∈ R
1×mi and pε�∗�0� ∈

R
1×m∗ .
B. We have, for t ≥ t0 ≥ 0,

Pε�t� t0� = P0�t� t0� +O �ε+ exp�−κ0�t− t0�/ε��� �(9)

for some κ0 > 0, where

P0�t� t0� =



�m1
ν1�t�θ11�t� t0� · · · �m1

νl�t�θ1l�t� t0� 0m∗

���

�ml
ν1�t�θl1�t� t0� · · · �ml

νl�t�θll�t� t0� 0m∗

ν1�t�θ∗11�t� t0� · · · νl�t�θ∗1l�t� t0� 0m∗

���

ν1�t�θ∗m∗1
�t� t0� · · · νl�t�θ∗m∗l

�t� t0� 0m∗



�
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and -�t� t0� satisfies the differential equation
∂-�t� t0�
∂t

= -�t� t0�Q∗�t��(10)

with
(
θij�t0� t0�

) = I ∈ R
l×l and �θ∗ij�t0� t0�� = �am1

�t0�� � � � � aml
�t0�� ∈ R

m∗×l.

2.3. Aggregation. Looking at the form of the generator (5), naturally, we
can aggregate the states in �i (for i = 1� � � � � l) as one state. This aggregation
leads to the definition of an aggregated process αε�·� with αε�t� = i if αε�t� ∈
�i together with appropriate definition for αε�·� on�∗. Much of the rest of the
paper is concerned with this aggregated process. Then we study further the
properties of a scaled sequence of the occupation measures. Accompanying the
results of asymptotic expansion, for each j = 1� � � � �mi, we define a sequence
of centered occupation measures by

Oεij�t� =


∫ t
0

(
I�αε�s�=sij� − νij�s�I�αε�s�∈�i�

)
ds� for i = 1� � � � � l,∫ t

0
I�αε�s�=s∗j� ds� for i = ∗,

(11)

where IA is the indicator of the set A, and νij�t� denotes the jth component of
the quasistationary distribution of νi�t�. For notational convenience, here and
hereafter “∗” is treated as an index corresponding to those transient states,
which we purposely choose to be distinct from the indices of the recurrent
states. Note that by Proposition 2.1, the probability distribution corresponding
to the states in �∗ goes to 0 as ε → 0. To give motivation of the use of the
aggregated process, we present an example below.

Example 2.1. Let αε�·� denote a Markov chain generated by a time-
independent generator Qε = Q̃/ε + Q̂ such that Q̃ has the structure as in
(5) and Q̂ is another generator. Consider a class of hybrid linear quadratic
Gaussian (LQG) systems consisting of a set of diffusions coupled by αε�·�:

dx�t� = �A�αε�t��x�t� +B�αε�t��u�t��dt+ σ dw�t��

x�s� = x� for s ≤ t ≤ T�
(12)

where x�t� ∈ R
n1 is the state; u�t� ∈ R

n2 is the control; A�i� ∈ R
n1×n1 and

B�i� ∈ R
n1×n2 are well defined and have finite values for i ∈� ; and w�·� is a

standard Brownian motion. Our objective is to find the optimal control u�·� so
that the expected quadratic cost function

J�s� x� α� u�·��

= E
{ ∫ T

s
�x′�t�M�αε�t��x�t� + u′�t�N�αε�t��u�t��dt+ x′�T�Dx�T�

}(13)



SINGULARLY PERTURBED MARKOV CHAIN 557

is minimized, where E is the expectation given αε�s� = α and x�s� = x,M�i�,
i = 1� � � � �m, are symmetric nonnegative definite matrices, and N�i�, i =
1� � � � �m, and D are symmetric positive definite matrices.

By means of an optimal control approach ([5], Chapter 5), using the solution
of the Riccati equation,

K̇ε�s� i� = −Kε�s� i�A�i� −A′�i�Kε�s� i� −M�i�

+Kε�s� i�B�i�N−1�i�B′�i�Kε�s� i� −QεKε�s� ·��i��
(14)

with Kε�T� i� = D, the optimal control uε�∗ can be written as

uε�∗�s� i� x� = −N−1�i�B′�i�Kε�s� i�x�(15)

Using the classical approach, to find the optimal control, one has to solve
the Riccati equations. However, in many problems in manufacturing, such
solutions are very difficult to obtain due to the large dimensionality. Therefore,
one has to resort to approximation schemes.

It is shown in [20] that, as ε→ 0,Kε�s� skj� →K�s� k� for k = 1� � � � � l� j =
1� � � � �mk,Kε�s� s∗j� →K∗�s� j� for j = 1� � � � �m∗, uniformly on �0� T�, where

K∗�s� j� = am1�j
K�s�1� + · · · + aml�j

K�s� l��
and K�s� k� is the unique solution of

K̇�s� k� = −K�s� k�A�k� −A′�k�K�s� k� −M�k�

+K�s� k�BN−1B′�k�K�s� k� −Q∗ K�s� ·��k��
(16)

with K�T�k� = D for k = 1� � � � � l. In the above, A�M and BN−1B′ denote
the averages w.r.t. the corresponding quasistationary distributions.

Note that the dimension of the limit Riccati equation is much smaller than
that of the original one so the complexity is much reduced. Replacing Kε by
K in (15), we obtain a limit control u�s� α� x�. The asymptotic results of this
paper yields that such a control is nearly optimal, that is,

lim
ε→0

�Jε�s� α� x� u�·�� − vε�s� α� x�� = 0�

3. Occupation measures. This section is devoted to the study of a se-
quence of occupation measures. The main result is a mean square estimate
that is stated in the following theorem.

Theorem 3.1. Assume (A1) and (A2). Then for each j = 1� � � � �mi,

E�Oεij�t��2 =
{
O�ε�� for i = 1� � � � � l,

O�ε2�� for i = ∗,
(17)

uniformly in t ∈ �0� T�.
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Remark. It is worthwhile to note the order of the estimates in (17). Al-
though E�Oεij�s��2 goes to zero for all i� j, it diminishes an order of magnitude
faster for the states in the transient class. This property will be used when
evaluating the limit covariance of a sequence of scaled occupation measures.

Proof. For i = 1� � � � � l, j = 1� � � � �mi and s� r ∈ �0� T�, define

5ε1�ij�s� r� = P
(
αε�s� = sij� αε�r� = sij

)− νij�s�P(αε�s� ∈�i� α
ε�r� = sij

)
�

5ε2�ij�s� r� = νij�r�νij�s�P
(
αε�s� ∈�i� α

ε�r� ∈�i

)
−νij�r�P

(
αε�s� = sij� αε�r� ∈�i

)
�

Then for i = 1� � � � � l,

E�Oεij�t��2 =
∫ t
0

∫ t
0

(
5ε1�ij�s� r� +5ε2�ij�s� r�

)
drds

=
∫ t
0

∫ s
0
�5ε1�ij�s� r� +5ε2�ij�s� r��drds

+
∫ t
0

∫ r
0

(
5ε1�ij�s� r� +5ε2�ij�s� r�

)
dsdr�

(18)

By using the form of 5ε1�ij�·� and 5ε2�ij�·�, it is easily seen that

E�Oεij�t��2 = 2
∫ t
0

∫ s
0

(
5ε1�ij�s� r� +5ε2�ij�s� r�

)
drds�

By virtue of the asymptotic expansion (see Proposition 2.1),

P
(
αε�s� = sij

∣∣αε�r� = sij) = νij�s�θii�s� r� +O(ε+ exp�−κ0�s− r�/ε�
)

(19)

and

P
(
αε�s� ∈�i

∣∣αε�r� = sij)
=

mi∑
k=1
νik�s�θii�s� r� +O

(
ε+ exp�−κ0�s− r�/ε�

)
= θii�s� r� +O

(
ε+ exp�−κ0�s− r�/ε�

)
�

(20)

Using Proposition 2.1 together with (19) and (20),

5ε1�ij�s� r� = O
(
ε+ exp�−κ0�s− r�/ε�

)
and similarly

5ε2�ij�s� r� = O
(
ε+ exp�−κ0�s− r�/ε�

)
�

Moreover the estimates hold uniformly in t ∈ �0� T�.
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Using the asymptotic expansion for the transient states,

E

(∫ t
0
I�αε�s�=s∗j� ds

)2

= 2
∫ t
0

∫ s
0
P
(
αε�s� = s∗j� αε�r� = s∗j

)
drds

=
∫ t
0

∫ s
0
O�ε+ exp�−κ0�s− r�/ε��O�ε+ exp�−κ0r/ε��drds

=
∫ t
0

∫ s
0
O�ε2 + ε exp�−κ0r/ε� + ε exp�−κ0�s− r�� + exp�−κ0s/ε��drds

= O
(
ε2 +

∫ t
0
s exp�−κ0s/ε�ds

)
= O�ε2��

uniformly in t ∈ �0� T�, where we used the estimate

s exp�−κ0s/ε� ≤Kε exp�−κ0s/�2ε��
withK = supu∈�0� ∞� ue−κ0u/2 <∞. The desired order estimate then follows. ✷

4. Weak convergence of aggregate process. This section is devoted to
the weak convergence of the process αε�·�. To proceed, we modify the assump-
tion on the transient part in the generator Q̃�t� as follows.

(A3) Assume Q̃i∗�t� = Q̃i∗ and Q̃∗�t� = Q̃∗; that is, they are independent
of t.

Owing to (A3), ami
�t� = ami

. Let ξ be a random variable uniformly dis-
tributed on �0� 1� that is independent of αε�·�. For each j = 1� � � � �m∗, define
an integer-valued random variable ξj by

ξj = I�0≤ξ≤am1�j
� + 2I�am1�j

<ξ≤am1�j
+am2�j

� + · · · + lI�am1�j
+···+aml−1�j<ξ≤1��

Now define the aggregated process αε�·� by

αε�t� =
{
i� if αε�t� ∈�i�

ξj� if αε�t� = s∗j�
(21)

Note that the state space of αε�t� is� = �1� � � � � l� and that αε�·� ∈ D�0� T�.
In addition,

P�αε�t� = i�αε�t� = s∗j� = ami�j
�(22)

The aggregated process αε�·� is non-Markovian in general; we show that the
limit process α�·� is a Markov chain, however. To do so, we first prove that if
there is a weak convergence, the weak limit must be the solution of an appro-
priate martingale problem; we then demonstrate that the weak convergence
indeed takes place.
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Lemma 4.1. Under (A1)–(A3), if αε�·� converges to α�·� weakly, then the
weak limit α�·� is a solution of the martingale problem with generator Q∗�·�,
that is,

f�α�t�� −
∫ t
0
Q∗�s�f�α�s��ds

is a martingale for each bounded and Borel-measurable real-valued function
f�·�.

Proof. For any bounded and Borel-measurable real-valued function f�·�,
define

f�α� =
l∑
k=1
f�k�I�α∈�k� +

l∑
k=1
f�k�amk�j

I�α=s∗j�

=


f�i�� if α ∈�i� if i = 1� � � � � l�
l∑
k=1
f�k�amk�j

� if α = s∗j�

(23)

where amk
is given by (7).

From the definition it follows immediately that Q̃�t�f�·��α� = 0� SinceQε�·�
is a generator of αε�·�,

f�αε�t�� −
∫ t
0
Qε�s�f�αε�s��ds

is a martingale. We further have∫ t
0
Qε�s�f�αε�s��ds =

∫ t
0
Q̂�s�f�αε�s��ds

=
∫ t
0

l∑
i=1

mi∑
j=1
I�αε�s�=sij�Q̂�s�f�·��sij�ds

+
∫ t
0

m∗∑
j=1
I�αε�s�=s∗j�Q̂�s�f�·��s∗j�ds

(24)
=
∫ t
0

l∑
i=1

mi∑
j=1

(
I�αε�s�=sij� − νij�s�I�αε�s�∈�i�

)
Q̂�s�f�·��sij�ds

+
∫ t
0

l∑
i=1

mi∑
j=1
νij�s�I�αε�s�∈�i�Q̂�s�f�·��sij�ds

+
∫ t
0

m∗∑
j=1
I�αε�s�=s∗j�Q̂�s�f�·��s∗j�ds�

By virtue of Theorem 3.1, the first term on the third equality sign in (24)
goes to 0 in mean square. Similarly, the last term in (24) also goes to 0. We
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then concentrate on the fifth line of (24). Recall the definition of Q∗�s� in (6).
Note that

l∑
i=1

mi∑
j=1
νij�s�I�αε�s�∈�i�Q̂�s�f�·��sij� =

l∑
i=1
I�αε�s�∈�i�Q∗�s�f�·��i��

As a result,

sup
t∈�0� T�

E

∣∣∣∣∫ t0 Q̂�s�f�·��αε�s�� −
∫ t
0
Q∗�s�f�·��αε�s��ds

∣∣∣∣→ 0�(25)

as ε→ 0.
We next show that

lim
ε→0

sup
s∈�0� T�

E
∣∣∣f�αε�s�� − f�αε�s��∣∣∣ = 0�(26)

Since, for αε�s� �∈�∗, f�αε�s�� = f�αε�s�� and, for αε�s� ∈�∗,

�f�αε�s�� − f�αε�s��� ≤K
for some K > 0 by the boundedness of f�·�, we have

E�f�αε�s�� − f�αε�s��� = E�f�αε�s�� − f�αε�s���I�αε�s��∈�∗�

+E�f�αε�s�� − f�αε�s���I�αε�s�∈�∗�

≤KP �αε�s� ∈�∗�

= O�ε+ exp�−κ0s/ε�� → 0 as ε→ 0�

Recall that

f�αε�t�� −
∫ t
0
Q̂�u�f�αε�u�� du

is a martingale. By virtue of the definition of αε�·� and the martingale property
mentioned above for any bounded and measurable function h�·�, for any 0 ≤
t ≤ t+ s and for arbitrary k and ti ≤ t for i = 1� � � � � k,

lim
ε→0

Eh�αε�ti�� i ≤ k�
(
f�αε�t+ s� − f�αε�t��

−
∫ t+s
t

Q̂�u�f�αε�u�� du
)
= 0�

(27)

Owing to (25), (26) and the convergence of αε�·� to α�·�, (27) can be rewritten
in terms of the limit process. That is,

Eh�α�ti�� i ≤ k�
(
f�α�t+ s� − f�α�t�� −

∫ t+s
t

Q∗�u�f�α�u�� du
)
= 0�

This establishes the lemma. ✷
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Theorem 4.2. Under conditions (A1)–(A3), αε�·� converges weakly to α�·�,
a Markov chain generated by Q∗�·�.

Proof. Let f be a function defined on �1� � � � � l�, and let

ψε�t� s� α� = E�f�αε�t+ s�� − f�αε�t���αε�t� = α��
for t� s ≥ 0 and α ∈� . To complete the proof, we use the following lemma.

Lemma 4.3. Under the conditions of the theorem,

�ψε�t� s� α�� ≤K�s+ ε+ e−κ0s/ε��(28)

for some positive constants K and κ0.
Suppose the lemma holds for the moment. Then as ε→ 0,∣∣∣∣ 1√

ε

∫ √ε
0
ψε�t� s� αε�t��ds

∣∣∣∣ ≤ K√
ε

∫ √ε
0
�s+ ε+ e−κ0s/ε�ds = O�√ε� → 0

and ∣∣∣∣ 1√
ε
ψε�t�√ε� αε�t��

∣∣∣∣ ≤ K√
ε

(√
ε+ ε+ e−κ0/

√
ε
)
≤ C <∞�

It follows that

lim
ε→0

E sup
0≤t≤T

∣∣∣∣ 1√
ε

∫ √ε
0
ψε�t� s� αε�t��ds

∣∣∣∣ = 0�

sup
ε
E

(∫ T
0

(
1√
ε
ψε�t�√ε� αε�t��

)2

dt

)1/2

<∞�

By virtue of Corollary 4.8.6 in Ethier and Kurtz [4], αε�·� converges to α�·�
weakly. Then Lemma 4.1 implies that the weak limit α�·� is a Markov chain
generated by Q∗�·�.

It remains to prove Lemma 4.3. For α = sij and i �= ∗, we have

ψε�t� s� α� = E[f�αε�t+ s�� − f�i��αε�t� = sij]
=

l∑
k=1
E
[�f�k� − f�i��I�αε�t+s�∈�k��αε�t� = sij

]
+

m∗∑
j1=1

E
[�f�ξj1� − f�i��I�αε�t+s�=s∗j1��αε�t� = sij]�

= ∑
k �=i
�f�k� − f�i��P(αε�t+ s� ∈�k�αε�t� = sij

)+O�ε+ e−κ0s/ε��
because ∣∣E[�f�ξj1� − f�i��I�αε�t+s�=s∗j1��αε�t� = sij]∣∣

≤KP(αε�t+ s� = s∗j1 �αε�t� = sij) = O�ε+ e−κ0s/ε��
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Moreover,

∑
k �=i
�f�k� − f�i��P(αε�t+ s� ∈�k�αε�t� = sij

)
≤K∑

k �=i
P
(
αε�t+ s� ∈�k�αε�t� = sij

)
=

mk∑
j1=1

P
(
αε�t+ s� = skj1 �αε�t� = sij

)
= θik�t+ s� t� +O�ε+ e−κ0s/ε�

(
with k �= i)

= O�s� +O�ε+ e−κ0s/ε� = O�s+ ε+ e−κ0s/ε��

because -�t� t0� = �θij�t� t0�� is the solution to (10) with initial data -�t0� t0� =
I ∈ R

l×l.
If α = s∗j ∈�∗, then we have

ψε�t� s� α� = E[f�αε�t+ s�� − f�ξj��αε�t� = s∗j]
=

l∑
k=1
f�k�P(αε�t+ s� ∈�k�αε�t� = s∗j

)
−

l∑
k=1
f�k�amk�j

+O�ε+ e−κ0s/ε�

=
l∑
k=1
f�k�θ∗jk�t+ s� t� −

l∑
k=1
f�k�amk�j

+O�ε+ e−κ0s/ε�

=
l∑
k=1
f�k��amk�j

+O�s�� −
l∑
k=1
f�k�amk�j

+O�ε+ e−κ0s/ε�

= O�s+ ε+ e−κ0s/ε��

Thus, (28) follows. This completes the proof. ✷

Remark. When Q̃i∗�t�, for i = 1� � � � � l, and Q̃∗�t� are time dependent, de-
fine the aggregated process αε�·� in the same way. If the underlying process
belongs to the space D�0� T�, all the results obtained so far carry over.

Note that, in the limit, the transient states become isolated states because
the corresponding generator Q�t� defined in (6) is diagonal with the last block
being zero. Therefore the transient states are “asymptotically” not important
provided that the initial state is nontransient.

The proof of Theorem 4.2 is based on the results in [4]. A perturbed test
function method may also be used to establish the desired results.
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5. Asymptotic normality. This section is devoted to the asymptotic
properties of a sequence of scaled occupation measures. One natural question
to ask is how fast is the convergence taking place for the occupation measures
and what is the appropriate scaling.

For t ≥ 0 and α ∈� , let βij�t� be bounded Borel-measurable deterministic
functions, and let

Wij�t�α�=

(
I�α=sij� − νij�t�I�α∈�i�

)
βij�t�� for i= 1� � � � � l, j= 1� � � � �mi,

I�α=s∗j�βij�t�� for i=∗, j= 1� � � � �m∗.
(29)

Consider the normalized occupation measure

nε�t� = (
nε11�t�� � � � � nε1m1

�t�� � � � � nε∗1�t�� � � � � nε∗m∗�t�
)
�

where

nεij�t� =
1√
ε

∫ t
0
Wij�s� αε�s��ds�

Let � ε
t = σ�αε�s�� 0 ≤ s ≤ t� denote the filtration generated by αε�·�.

Lemma 5.1. Assume (A1) and (A2). Then, for all 0 ≤ s ≤ t ≤ T, the follow-
ing assertions hold:

(a) sups≤t≤T E��nε�t� − nε�s���� ε
s � = O�

√
ε�;

(b) E��nε�t� − nε�s��2�� ε
s � = O�t− s�.

Proof. For fixed i� j,

E��nεij�t� − nεij�s���� ε
s � =

1√
ε

∫ t
s
E�Wij�r� αε�r���� ε

s �dr

Then, by the Markov property, for 0 ≤ s ≤ r, i = 1� � � � � l and j = 1� � � � �mi,

E
[
Wij�r� αε�r���� ε

s

] = E[Wij�r� αε�r���αε�s�
]
�(30)

Consider E�Wij�r� αε�r���αε�s� = α�. If α = s∗j ∈�∗, then we have

E
[(
I�αε�r�=sij� − νij�r�I�αε�r�∈�i�

)�αε�s� = s∗j1]
= νij�r�θ∗j1i�r� s� − νij�r�θ∗j1i�r� s� +O

(
ε+ exp�−κ0�r− s�/ε�

)
= O(ε+ exp�−κ0�r− s�/ε�

)
�

If α �∈ �∗, then using the argument of [17], Section 7.4, the third line above
is of the order O�ε+ exp�−κ0�r− s�/ε��. Thus,

E
[
Wij�r� αε�r���αε�s�

] = O(ε+ exp�−κ0�r− s�/ε�
)�

so is E�Wij�r� αε�r���� ε
s �.
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Now, for i = ∗ and j = 1� � � � �m∗, using the Markovian property, we have

E
[
W∗j�r� αε�r���� ε

s

]
βij�r� = E

[
I�αε�r�=s∗j��� ε

s

]
βij�r�

= E[I�αε�r�=s∗j��αε�s�]βij�r�
= P(αε�r� = s∗j�αε�s�)βij�r�
= O(ε+ exp�−κ0�r− s�/ε�

)
�

Note that

1√
ε

∫ t
s
O
(
ε+ exp

(−κ0�r− s�
ε

)
dr = O�√ε��

Thus (a) follows.
To verify (b), fix i� j and define

ηε�t� = E
[( ∫ t

s
Wij�r� αε�r��dr

)2∣∣∣� ε
s

]
�

Then, by definition of nεij�·�,

E
[�nεij�t� − nεij�s��2�� ε

s

] = ηε�t�
ε
�

Denote, for i = 1� � � � � l and j = 1� � � � �mi,

5ε1�ij�t� r� = I�αε�r�=sij�I�αε�t�=sij� − νij�t�I�αε�r�=sij�I�αε�t�∈�i��

5ε2�ij�t� r� = −νij�r�I�αε�r�∈�i�I�αε�t�=sij� + νij�r�νij�t�I�αε�r�∈�i�I�αε�t�∈�i�

and for i = ∗ and j = 1� � � � �m∗,

5ε1�ij�t� r� = I�αε�r�=s∗j�I�αε�t�=s∗j��

5ε2�ij�t� r� = 0�

Then

dηε�t�
dt

= 2
∫ t
s
E
[(
5ε1�ij�t� r� +5ε2�ij�t� r�

)�� ε
s

]
βij�r�βij�t�dr

and

E�5ε1�ij�t� r��� ε
s � = E�5ε1�ij�t� r��αε�s���

By considering E�5ε1�ij�t� r��αε�s� = α� with α ∈ �∗ and α �∈ �∗, respectively,
we can show

E�5ε1�ij�t� r��αε�s�� = O�ε+ exp�−κ0�t− r�/ε���
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Similarly

E�5ε2�ij�t� r��� ε
s � = O

(
ε+ exp�−κ0�t− r�/ε�

)
�

As a consequence,

dηε�t�
dt

= O�ε� and ηε�s� = 0�

Integrating both sides over �s� t� yields
ηε�t�
ε

= O�t− s��

This completes the proof of the lemma. ✷

Lemma 5.2. Assume (A1)–(A3). Then ��nε�·�� αε�·��� is tight inDm+1�0� T�.

Proof. Owing to Theorem 4.2, it suffices to prove the tightness of �nε�·��.
In view of Theorem 3.1, for each δ > 0 and each rational t ≥ 0, there exists a
Kt�δ ≥

√
KT/δ such that

inf
ε
P��nε�t�� ≤Kt�δ� ≥ inf

ε

(
1−E�nε�t��2/K2

t�δ

) ≥ 1−Kt/K2
t�δ ≥ 1− δ�

Using Lemma 5.1, for any i = 1� � � � � l� ∗ and j = 1� � � � �mj,

lim
@↓0

lim sup
ε↓0

sup
0≤s≤@

E
(
Eεt

[
nεij�t+ s� − nεij�t�

]2) = 0�

where Eεt denotes the conditional expectation w.r.t. the σ-algebra generated
by �nε�u�� 0 ≤ u ≤ t�. Thus by virtue of [10], Theorem 2.7 on page 10, the
desired result follows. ✷

In what follows, we often need to separateWε
ij�·� and a function of nε�·�. The

following lemma that is a generalization of Theorem 3.1 deals with this case.
The main idea is to divide the underlying interval into small subintervals so
that on each of the small subintervals the separation can be achieved. The
proof of the lemma is similar to that of [17], Lemma 7.14, and is thus omitted.

Lemma 5.3. Let ξ�t� x� be a real-valued function that is Lipschitz in �t� x� ∈
R
m+1. Then

sup
0≤ζ≤T

E

∣∣∣∣∫ ζ0 Wij�s� αε�s��ξ�s� nε�s��ds
∣∣∣∣2 → 0�

where Wij�t� α� was defined in (29).

To characterize the limit of �nε�·�� αε�·��, consider the martingale problem
associated with �nε�·�� αε�·��. Note that

dnε�t�
dt

= 1√
ε
W�t� αε�t�� and nε�0� = 0�
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where

W�t� α� = (
W11�t� α�� � � � �W1m1

�t� α�� � � � �W∗1�t� α�� � � � �W∗m∗�t� α�
)
�

Let Gε�t� denote the generator

Gε�t�f�t� x� α� = ∂

∂t
f�t� x� α� + 1√

ε
�W�t� α��∇xf�t� x� α�! +Qε�t�f�t� x� ·��α��

for all f�·� ·� α� ∈ C1, where �·� ·! denotes the usual inner product in a Euclidean
space and ∇x is the gradient with respect to x. It is well known (see [1]) that

f�t� nε�t�� αε�t�� −
∫ t
0
Gε�s�f�s� nε�s�� αε�s��ds(31)

is a martingale.
For any real-valued function f0�·� i� ∈ C2, with bounded second partial

derivatives, define

f�x� α� =
l∑
k=1
f0�x� k�I�α∈�k� +

l∑
k=1
amk�j

f0�x� k�I�α=s∗j�

=


f0�x� i�� if α ∈�i fori = � � � � l�
l∑
k=1
f0�x� k�amk�j�

if α = s∗j�

Consider the function

f�t� x� α� = f�x� α� + √εh�t� x� α��
where h�t� x� α� is to be specified later.

In view of the definition of f�x� α�, it is readily seen that Q̃�t�f�x� ·��α� = 0.
Using the function f�·� in (28) results in

f�nε�t�� αε�t�� + √εh�t� nε�t�� αε�t��

−
∫ t
0

{
1√
ε
�W�s� αε�s���∇xf�nε�s�� αε�s�� +

√
ε∇xh�s� nε�s�� αε�s��!

+√ε ∂
∂s
h�s� nε�s�� αε�s��

+ 1√
ε
Q̃�s�h�s� nε�s�� �·���αε�s��

+Q̂�s��f�nε�s�� �·�� + √εh�s� nε�s�� �·���αε�s��
}
ds

defining a martingale.
The methods of perturbation of generators (see Ethier and Kurtz [4], Section

1.7) and the perturbed test functions (see, e.g., Kushner [11], Chapter 5 and
the references therein) provide useful machinery to carry out the analysis. To
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apply their methods, we need to choose the function h�·� so that it cancels the
“bad” terms of the order 1/

√
ε:

Q̃�s�h�s� x� ·��α� = −�W�s� α��∇xf�x� α�!�

The matrix Q̃�t� has rank m− l. Therefore, as discussed in [17], page 194,
h�·� can be chosen to satisfy the following properties, assuming βij�·� to be
Lipschitz on �0� T�:
(1) h�t� x� α� is continuously differentiable in x;
(2) �∂/∂t�h�t� x� α� exists a.e. in �t� x� α�;
(3)

∣∣h�t� x� α�∣∣ � ∣∣∇xh�t� x� α�∣∣ and ��∂/∂t�h�t� x� α�� are bounded by K�1+ |x|��
Such an h�·� leads to

f�nε�t�� αε�t�� + √εh�t� nε�t�� αε�t��

−
∫ t
0

{
�W�s� αε�s���∇xh�s� nε�s�� αε�s��!

+√ε ∂
∂s
h�s� nε�s�� αε�s�� + Q̂�s�f�nε�s�� ·��αε�s��

+√εQ̂�s�h�s� nε�s�� ·��αε�s��
}
ds

being a martingale.
For each s� x� α, define

g�s� x� α� = �W�s� α��∇xh�s� x� α�!�
Using g�s� x� α� defined above, we obtain∫ t

0
�W�s� αε�s���∇xh�s� nε�s�� αε�s��!ds

=
∫ t
0
g�s� nε�s�� αε�s��ds

=
∫ t
0

l∑
i=1

mi∑
j=1
I�αε�s�=sij�g�s� nε�s�� sij�ds

+
∫ t
0

m∗∑
j=1
I�αε�s�=s∗j�g�s� nε�s�� s∗j�ds

=
∫ t
0

l∑
i=1

mi∑
j=1

(
I�αε�s�=sij� − νij�s�I�αε�s�∈�i�

)
g�s� nε�s�� sij�ds

+
∫ t
0

l∑
i=1

mi∑
j=1
I�αε�s�∈�i�ν

i
j�s�g�s� nε�s�� sij�ds

+
∫ t
0

m∗∑
j=1
I�αε=s∗j�g�s� nε�s�� s∗j�ds�
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In view of Lemma 5.3, the terms in the fifth and seventh lines above go to
zero in mean square uniformly in t ∈ �0� T�. Let

g�s� x� i� =
mi∑
j=1
νij�s�g�s� x� sij��(32)

It is an average with respect to the quasistationary distribution corresponding
to the states in �i.

It follows that ∫ t
0

l∑
i=1

mi∑
j=1
I�αε�s�∈�i�ν

i
j�s�g�s� nε�s�� sij�ds

=
∫ t
0

l∑
i=1
I�αε�s�∈�i�g�s� nε�s�� i�ds

=
∫ t
0
g�s� nε�s�� αε�s��ds�

Therefore, as ε→ 0,

E

∣∣∣∣∫ t0 �W�s� αε�s���∇xh�s� nε�s�� αε�s��!ds−
∫ t
0
g�s� nε�s�� αε�s��ds

∣∣∣∣2 → 0

uniformly in t ∈ �0� T��

Furthermore, similarly to the proof of Lemma 4.1, it follows that as ε→ 0,

E

∣∣∣∣∫ t0 Q̂�s�f�nε�s�� ·��αε�s��ds−
∫ t
0
Q∗�s�f0�nε�s�� ·��αε�s��ds

∣∣∣∣→ 0

uniformly in t ∈ �0� T�� where Q∗�s� is given by (6).

Lemma 5.4. Assume (A1) and (A2). If �nε�·�� ᾱε�·�� converges weakly to
�n�·�� α�·��, then for f0�·� i� ∈ C2 with bounded second partial derivatives

f0�n�t�� α�t�� −
∫ t
0
�g�s� n�s�� α�s� +Q∗�s�f0�n�s�� ·��α�s���ds

is a martingale.

Proof. First, note that f�nε�t�� αε�t�� = f0�nε�t�� αε�t�� for αε�t� �∈ �∗,
and for αε�t� ∈� ∗, ∣∣∣f�nε�t�� αε�t�� − f0�nε�t�� αε�t��∣∣∣ ≤K
for some K > 0 by the boundedness of f0�·�� Therefore, by similar reasoning
as in the proof of Lemma 4.1, we can show that

lim
ε→0

sup
t∈�0� T�

E
∣∣∣f�nε�t�� αε�t�� − f0�nε�t�� αε�t��∣∣∣ = 0�
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and then the rest of the proof is the same as in the proof of [17], Lemma
7.17. ✷

Now, let us return to the function g�·�. For i = 1� � � � � l, as in [17] (7.52),
g�s� x� i� can be written as

g�s� x� i� = 1
2

mi∑
i1�i2=1

ai1i2�s� i� ∂2i�i1�i2f0�x� i��

for some continuous function ai1i2 . It follows that

g�s� x� s∗j� = 0�(33)

Here ai1i2�s� i� can be computed as in [17], page 203.

Lemma 5.5. Let �s denote the generator given by

�sf
0�x� i� = g�s� x� i� +Q∗�s�f�x� ·��i��

The martingale problem with generator �s has a unique solution.

Proof. The structure of Q�·� implies that Q�s�f�x� ·��s∗j� = 0 for any
bounded and measurable function f�·�. This and (33) then imply the transient
states have no contribution to the generator of the limit martingale problem.
As for i = 1� � � � � l� the uniqueness can be proved as in [17], Lemma 7.18. ✷

Similar to [17] Lemma 7.19, the first assertion in what follows can be es-
tablished, whereas the second assertion is a consequence of (32) and (33).

Lemma 5.6. The following assertions hold:

(a) for s ∈ �0� T� and i = 1� � � � � l, A�s� i� = �ai1i2�s� i�� is symmetric and
non-negative definite;

(b) A�s� s∗j� = 0 for j = 1� � � � �m∗.

Hence, we have shown that �nε�·�� αε�·�� converges weakly to �n�·�� α�·��,
where n�·� is a switching diffusion, whose covariance matrix has the following
form:

σ�s� i� = diag�0m1×m1
� � � � � σ0�s� i�� � � � �0ml×ml

�0m∗×m∗��(34)

where σ0�s� i� is an mi ×mi matrix such that

σ0�s� i�σ0�′�s� i� = 1
2A�s� i� for i = 1� � � � � l�

We summarize this in the following theorem.

Theorem 5.7. Assume (A1) and (A3), and suppose Q̃�·� is twice differ-
entiable with Lipschitz continuous second derivative. Moreover, Q̂�·� is dif-
ferentiable with Lipschitz continuous derivative. Let βij�·� �for i = 1� � � � � l,
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j = 1� � � � �mi� be a bounded and Lipschitz continuous deterministic function.
Then nε�·� converges weakly to a switching diffusion n�·�, where

n�t� =
∫ t
0
σ�s� α�s��dw�s�(35)

and w�·� is a standard m-dimensional Brownian motion.
Our result includes an arbitrary function β�·� for the reason of more gen-

erality. Such a function often arises in various applications in manufacturing
systems [15], Chapter 5. A simplest case is βij�t� = 1 for all i and all j.

One of the conditions used in this paper is the smoothness of the generator.
When this condition is missing, although it is possible to obtain convergence of
P�αε�t� = sij�, one cannot expect to be able to obtain the asymptotic expansion.
The asymptotic expansion, however, is crucial in calculating the covariance of
the limit switching diffusion.

6. Concluding remark. This paper concentrates on the aggregation as-
pect of a singularly perturbed Markov chain with inclusion of transient states.
The results obtained will be of help in treating control and optimization prob-
lems involving such a Markov chain so that the complexity of the models
can be reduced. Further study can be carried out in deriving exponential-type
upper bounds for the scaled sequence of occupation measures.

Condition (A3) can be much relaxed and time-varying functions can be
dealt with. Assume (A3) with the following modifications: For each k, Q̃k�t� =
B�t�Q̃k∗�c, Q̃∗�t� = B�t�Q̃∗�c, where B�t� ∈ IRm∗×m∗ and Q̃k∗�c ∈ IRm∗×mk and

Q̃∗�c ∈ IRm∗×m∗ are time-independent matrices. It is readily seen that B�t� is
invertible for each t ∈ �0�T� and for each k, amk

�t� remains to be a time-
independent vector amk

. Using exactly the same arguments, Lemmas 4.1, 4.3,
5.2 and Theorems 4.2 and 5.7 continue to hold.
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