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THE PROFILE OF BINARY SEARCH TREES

By Brigitte Chauvin, Michael Drmota and Jean Jabbour-Hattab

Université de Versailles, TU Wien and Université de Versailles

We characterize the limiting behavior of the number of nodes in level
k of binary search trees Tn in the central region 1�2 log n ≤ k ≤ 2�8 log n.
Especially we show that the width �Vn (the maximal number of internal
nodes at the same level) satisfies �Vn ∼ �n/√4π log n� as n → ∞ a.s.

1. Introduction. A binary search tree is a binary tree in which each
(internal) node is associated to a key, where the keys are drawn from some
totally ordered set, say �1�2� � � � � n	. The first key is associated to the root.
The next key is put to the left child of the root if it is smaller than the key of
the root, and it is put to the right child of the root if it is larger than the key
of the root. In this way we proceed further by inserting key by key. So starting
from a permutation of �1�2� � � � � n	 we get a binary tree with n (internal)
nodes such that the keys of the left subtree of any given node x are smaller
than the key of x, and the keys of the right subtree are larger than the key
of x.

Binary search trees are widely used to store (totally ordered) data, and
many parameters have been discussed in the literature. (The monograph of
Mahmoud [8] gives a very good overview of the state of the art.) Usually it is
assumed that every permutation of �1�2� � � � � n	 is equally likely, and hence
any parameter of binary search trees may be considered as a random variable.

An alternative way of looking at it is as a Markov chain of binary trees
�Tn�n≥0 describing the evolution of a binary search tree. Tn has n internal
nodes and n+1 external nodes; especially T0 has no internal nodes; that is, it
consists of exactly one external node, which is the root, andT1 has one internal
node, which is the root and two external nodes. Now T2 is generated from T1
by replacing one of the two external nodes by an additional internal one (with
two external nodes as left and right children) with equal probability 1/2. In
that way we proceed further. Tn+1 is generated from Tn by replacing one of the
n+1 external nodes by an additional internal one (and two external nodes as
left and right children) with equal probability 1/�n+ 1�. It is an easy exercise
to show that for any fixed n the probabilty distribution of Tn of this Markov
chain �Tn�n≥0 is exactly the same as the probability distribution induced by
equally likely permutations of �1�2� � � � � n	 as above. However, in what follows
we are mainly concerned with the Markov chain model.
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It is clear that every parameter Y = YT on binary trees T (e.g., the height,
the total path length, etc.) induces a sequence �Y�n��n∈� of random variables,
where Y�n� = YTn

.
In this paper we want to consider and denote the number of external nodes

Uk at level k, the number of internal nodesVk at level k, and the total number
of nodes Zk = Uk +Vk at this level.

Theorem 1. We have a.s.,

Uk�n�
n/

√
4π log n

= exp
(
−�k− 2 log n�2

4 log n

)
+ �

(
1√
log n

)
�

Vk�n�
n/

√
4 log n

= exp
(
−�k− 2 log n�2

4 log n

)
+ �

(
1√
log n

)
and

Zk�n�
n/

√
π log n

= exp
(
−�k− 2 log n�2

4 log n

)
+ �

(
1√
log n

)

as n → ∞, where the error term � �1/√log n� is uniform for all k ≥ 0.

From this theorem we directly obtain a result for the width.

Corollary 1. Let �U�n� = max
k≥0

Uk�n�, �V�n� = max
k≥0

Vk�n� and �Z�n� =
max
k≥0

Zk�n�. Then we have a.s.,
�U�n�

n/
√
4π log n

= 1+ �

(
1√
log n

)
�

�V�n�
n/

√
4π log n

= 1+ �

(
1√
log n

)
and

�Z�n�
n/

√
π log n

= 1+ �

(
1√
log n

)
as n → ∞.

It should be noted (see (3) and [3]) that in the range k ∈ ��2−√
2+ ε� log n�

�2+√
2− ε� log n� we have (uniformly)

EUk�n� ∼
nαn�k�1−log�αn�k/2��−1

√
2πk

= n√
4π log n

exp
(
−�k− 2 log n�2

4 log n

)

+�

(
n

log n

)(1)

and
�EUk�n��2
EUk�n�2

∼ 4αn�k − 2− α2
n�k

α2
n�k

��2αn�k − 1�
��αn�k�2

�(2)
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where αn�k = k/ log n. Similar estimates are true for EVk�n� and EZk�n�:

EVk�n� ∼
EUk�n�
αn�k − 1

and EZk�n� ∼
αn�kEUk�n�
αn�k − 1

as n → ∞ if k ∈ ��1+ ε� log n� �2+√
2− ε� log n�

In view of (1) we can reformulate Theorem 1 [for Uk�n�] in a way that
Uk�n�
EUk�n�

∼ 1 a.s.

if k = 2 log n + o�√log n� as n → ∞. This concentration property is sup-
ported by the fact that in this range �EUk�n��2 ∼ EUk�n�2. Since �EUk�n��2
/EUk�n�2 �→ 1 if αn�k = k/ log n → α �= 2 we cannot expect a concentra-
tion property of this kind for α �= 2. Nevertheless Theorem 1 and (2) suggest
that the ratio Uk�n�/EUk�n� should behave nicely. In fact, we can prove the
following theorem.

Theorem 2. There exists a random analytic function M�z� for �z − 1� <
�√2�−1 with M�1� = 1 such that for any given ε > 0 we have a.s.,

Uk�n�
EUk�n�

−M

(
k

2 log n

)
→ 0�

Vk�n�
EVk�n�

−M

(
k

2 log n

)
→ 0

and
Zk�n�
EZk�n�

−M

(
k

2 log n

)
→ 0

as n → ∞, uniformly for all k with 1�2 log n ≤ k ≤ 2�8 log n.

Remark. Please note that in all three cases of Theorem 2 the random
analytic function M�z� is in fact the same; for example, we have a.s.,

Uk�n�
EUk�n�

− Vk�n�
EVk�n�

→ 0�

The reason is that the second and third relation follow from the first one in
view of Lemma 1 and the fact that M�z� is analytic.

It is very likely that the constants 1�2 and 2�8 can be replaced by 2−√
2+ε

(resp. 1+ε) and 2+√
2−ε; compare with Theorem 4. There are only technical

reasons that we cannot do more.
However, for k < �2−√

2− ε� log n and for k > �2+√
2+ ε� log n we have

(see [3])
�EUk�n��2
EUk�n�2

= � �n−δ�

(for some δ > 0) which indicates that Theorem 2 need not hold in a range
larger than 2−√

2 < k/ log n < 2+√
2.
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The paper is organized in the following way. In Section 2 we collect some
basic facts. In Section 3 convergence properties and estimates for a martingale
are provided, which will be the essential tools for the proofs of Theorems 1
and 2. In Section 4 the proof of Theorem 1 is presented. In fact, a more precise
version (Theorem 5) is provided indicating that there is an asymptotic series
expansion for Uk�n�. Finally, the proof of Theorem 2 is given in Section 5.

2. Preliminaries. Let us start with relations between Uk�Vk and Zk.

Lemma 1. The following relations hold:

(i) Zk+1 = 2Vk.
(ii) Zk+1 −Zk = Vk −Uk.
(iii) Zk = ∑

j≥k 2
k−jUj

The proof is obvious by induction.
The main tool for the proofs of Theorems 1 and 2 is the random power series

(polynomial),

Wn�z� =
∑
k≥0

Uk�n�zk�

The first observation is the following one; see [5].

Lemma 2. The expected value of Wn�z� is given by

EWn�z� =
n−1∏
j=0

j+ 2z
j+ 1

= �−1�n
(−2z

n

)
�

From this representation we can read off an explicit representation for

EUk�n� =
2k

n!
sn�k�

where sn�k are the (absolute) Stirling number of the first kind, in other words
the number of permutations σ of n elements such that the canonical cyclic rep-
resentation of σ has exactly k cycles. (It seems that this explicit formula was
first observed by Lynch [7] compare also with [8].) By well-known asymptotics
for Stirling numbers (see [9]) we derive [for k = � �log n�]

EUk�n� ∼
2k�log n�k
k!n��αn�k�

∼ nαn�k�1−log�αn�k/2��−1
√
2πk

�(3)

where αn�k = k/ log n, as above. (In [3] an alternate approach is provided and
it is shown how one can derive asymptotic expansions for second moments
EUk�n�2, too.)
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Lemma 3. For any compact set C in the complex plane � we have

EWn�z� =
n2z−1

��2z� + � �n2�z−2�(4)

uniformly for z ∈ C as n → ∞.

Proof. By Lemma 2, EWn�z� is just a binomial coefficient �−1�n(−2z
n

)
. So

it is clear that for any fixed z we have (4); compare with [4]. In order to
show uniformity we repeat (more or less) the proof of this asymptotic formula
presented in [4].

For convenience set α = 2z. Then EWn�z� is exactly the nth coefficient of
the binomial series �1− x�−α, respectively,

EWn�z� =
1

2πi

∫
c
�1− x�−αx−n−1 dx�

where c is a closed curve in the unit circle with winding number 1 around 0.
Note that x = 1 is a singularity of the analytic function f�x� = �1− x�−α and
that there is an analytic continuation of f�x� to � \ �x ∈ �� x ≥ 0	. So we can
replace the contour of integration c by c̃ = c1 ∪ c2 ∪ c3 ∪ c4, where

c1 =
{
x = 1− i+√

n− t

n
� 0 ≤ t ≤ √

n

}
�

c2 =
{
x = 1+ i+ t

n
� 0 ≤ t ≤ √

n

}
�

c3 =
{
x = 1− 1

n
e−it� − π

2
≤ t ≤ π

2

}
�

c4 =
{
�x� =

∣∣∣∣1+ n− 1
2 + i

n

∣∣∣∣� �arg x� ≥ arg
(
1+ n−1/2 + i

n

)}
�

The easiest part is to estimate the integral over c4∣∣∣∣ 1
2πi

∫
c4

�1− x�−αx−n−1 dx
∣∣∣∣ ≤ �1+ n− 1

2 �−nmax
(
n�1/2��α� �2+ n−1/2�−�α

)
e2π�α��

On the remaining part c1 ∪ c2 ∪ c3 we use the substitution x = 1+ t/n, where
t varies on a corresponding curve γ1 ∪ γ2 ∪ γ3. Furthermore we approximate
x−n−1 by e−t�1+ � �t2/n��. Now the integral over c1 ∪ c2 ∪ c3 is given by

1
2πi

∫
c1∪c2∪c3

�1− x�−αx−n−1 dx

= nα−1

2πi

∫
γ1∪γ2∪γ3

�−t�−αe−t dt+ nα−2

2πi

∫
γ1∪γ2∪γ3

�−t�−αe−t · � �t2�dt

= nα−1I1 + nα−2I2�
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Now I1 approximates 1/��α� (by Hankel’s integral representation) in the fol-
lowing way:

I1 =
1

��α� + �

( ∫ ∞
√
n
e2π�α��1+ t2�−�1/2��αe−t dt

)

= 1
��α� + �

(
e2π�α��1+ n2�−�1/2��αe−

√
n

)
�

Finally, I2 can be estimated by

I2 �
∫ ∞

0
e2π�α��1+ t2�1−1/2�α dt+ � �1��

Thus, for any compact set C in � we have

EWn�z� =
nα−1

��α� + � �nα−2�

uniformly for z = α/2 ∈ K as n → ∞. ✷

3. Study of a martingale.

3.1. Definition and main result. It was shown in [5] that the ratio

Mn�z� =
Wn�z�
EWn�z�

is a martingale with respect to the natural filtration ��n� associated to the
sequence of trees �Tn�n≥0 (described in the introduction). Hence, for positive
values of z, the martingale converges to an almost sure limit M�z�. It was
proved to be bounded in Lp for z ∈ (

1 − 1/
√
2�1 + 1/

√
2
)
and the limit was

shown to be positive in this case. But no convergence result was established
for complex values and no uniformity has been proved for the convergence
over z ∈ (

1 − 1/
√
2�1 + 1/

√
2
)
. Now our main result concerning Mn�z� reads

as follows.

Proposition 1. For any compact set C ⊆ �z ∈ � � �z − 1� < 1/
√
2	 the

martingale Mn�z� converges a.s. uniformly to its limit M�z� (which is again
an analytic function).

We note that M�z� is exactly the random analytic function appearing in
Theorem 2. We also note that Mn�1� = 1. So there is no probability at z = 1.

In the next subsection (see Corollary 2) we will determine exactly the com-
plex set � = B��1�1/

√
2� = �z ∈ � � �z−1� < 1/

√
2	 of L2-convergence for this

martingale and prove the regularity of the covariance function of its limit.
That will permit us to prove uniform convergence ofMn�z� over the compact

subsets of � (in Section 3.3). The proof will follow the same path as Joffe,
Le Cam and Neveu in [6].
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3.2. L2-study. We start by establishing an explicit formula for the covari-
ance function of �Wn�z1��Wn�z2�� which is valid for all z1� z2 ∈ � and which
will be useful for Section 4, too.

Lemma 4. For all z1� z2 ∈ �,

E�Wn+1�z1�Wn+1�z2�� =
n∑

j=0

(
β̃j�z1� z2�

n∏
k=j+1

α̃k�z1� z2�
)
+

n∏
j=0

α̃j�z1� z2��

where

α̃k�z1� z2� = 1+ 2�z1 + z2 − 1�
k+ 1

(5)

and

β̃k�z1� z2� = �2z1 − 1��2z2 − 1�E
(
Wk�z1z2�

)
k+ 1

�(6)

Proof. Denote by �̃n the covariance function of Wn,

�̃n�z1� z2� = E�Wn�z1�Wn�z2���

We establish a linear recursion for �̃n�z1� z2�. First, we recall
Wn+1�z� = Wn�z� + �2z− 1�zkn�

Thus,

�̃n+1�z1� z2� = E
[
E
[(

Wn�z1� + z
kn

1 �2z1 − 1�
)

×
(
Wn�z2� + z

kn

2 �2z2 − 1�
)
��n

]]
�

(7)

so that

�̃n+1�z1� z2� = E
[ +∞∑

k=0

Uk�n�
n+ 1

(
Wn�z1�Wn�z2� +Wn�z1�zk

2�2z2 − 1�

+Wn�z2�zk
1�2z1 − 1� + �z1z2�k�2z1 − 1��2z2 − 1�)]�

(8)

Hence

�̃n+1�z1� z2� = E
[
Wn�z1�Wn�z2� +Wn�z1�

�2z2 − 1�Wn�z2�
�n+ 1�

+Wn�z2�
�2z1 − 1�Wn�z1�

�n+ 1�

+�2z1 − 1��2z2 − 1�Wn�z1z2�
n+ 1

]
�

(9)
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which yields

�̃n+1�z1� z2� = α̃n�z1� z2�̃�n�z1� z2� + β̃n�z1� z2�(10)

for α̃ and β̃ defined by (5) and (6).
Now, the explicit formula for �̃n follows from (10) (and �̃0�z1� z2� = 1�. ✷

With the help of Lemma 4 we can establish regularity of the covariance
function of M over �2.

Corollary 2. �Mn�z��n∈� is bounded in L2 if and only if �z− 1� < 1/
√
2.

Hence, there exists a random variable M�z� ∈ L2 such that Mn�z� −→
n→∞ M�z�

almost surely and in L2 for z ∈ � = B��1�1/
√
2�. Furthermore,

��z1� z2� �= E�M�z1�M�z2��
is holomorphic over �2 ⊆ �2.

Proof. By (5) we have

n∏
k=j+1

α̃k�z1� z2� =
(
n

j

)2�z1+z2−1� (
1+ �

(
1
j

))

and consequently (by Lemma 3),

�̃n�z1� z2� = �2z1 − 1��2z2 − 1�
n∑

j=0

EWj�z1z2�
j+ 1

n−1∏
j=k+1

α̃k�z1� z2� +
n∏

j=0
α̃k�z1� z2�

�
n∑

j=0
j2��z1z2�−2

(
n

j

)2��z1+z2−1�
+ n2��z1+z2−1�

� n2��z1+z2−1�
n∑

j=0
j−2��z1+z2−z1z2��

where the notation A � B means that there is a constant c > 0 such that
A ≤ cB. Thus,

�n�z1� z2� �= E
(
Mn+1�z1�Mn+1�z2�

)
= E

(
Wn+1�z1�Wn+1�z2�

)
EWn+1�z1� ·EWn+1�z2�

�
n∑

j=0
j−2��z1+z2−z1z2��

Obviously, we have the same lower bound. Hence, �Mn�z��n∈� is bounded in
L2 if and only if 4�z− 2�z�2 > 1, respectively, if and only if z ∈ �.

Now, if 4�z1 − 2�z1�2 > 1 and 4�z2 − 2�z2�2 > 1, then we also have 2��z1 +
z2 − z1z2� > 1. Thus, �n�z1� z2� → ��z1� z2� uniformly over the compact sets
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of �2. Since, for any n, �n is holomorphic over �� \ 1
2�

−�2, we conclude that �
is holomorphic over �2. ✷

3.3. Proof of Proposition 1. The holomorphy of � proved in the previous
section will give us (with help of the Kolmogorov criterion) continuity of M�z�
over any parametered arc γ ⊆ �. However, Kolmogorov’s criterion is not suf-
ficient to establish directly continuity of M as a complex function.

Proposition 2. Set I′ �= �1 − √
2/2�1 + √

2/2�. Then �M�t��t∈I′ has a
continuous modification M̃ such that, for any compact interval C ⊆ I′,

E
(
sup
t∈C

�M̃�t��2
)

< +∞�

More generally, if γ� � → � is continuously differentiable, then there is a

modification M̃γ of �Mn�γ�t���t∈� such that, for any compact set C of �,

E
(
sup
t∈C

�M̃γ�t��2
)

< +∞�

Proof. Observe that, asMn�z� is a real rational fraction,Mn�z� = Mn�z�.
Thus for all z1� z2 ∈ �,

E
(�M�z1� −M�z2��2

) = ��z1�
−
z1� + ��z2�

−
z2� − 2����z1�

−
z2���(11)

Let C be a compact set of �; since � is holomorphic, a local expansion of � up
to order 2 yields

��z1�
−
z1� + ��z2�

−
z2� − 2����z1�

−
z2�� ≤ K�z1 − z2�2(12)

for some constant K > 0 and for all z1� z2 ∈ C. Hence, by (11) and (12),

E
(
�M�z1� −M�z2��2

)
≤ K�z1 − z2�2(13)

for all z1� z2 ∈ C. Hence by Kolmogorov’s criterion (cf. [11], page 25), a contin-
uous modification M̃ exists and

E
[(

sup
s�t∈C

�M̃t − M̃s�
�t− s�α

)2]
< +∞

for all α ∈ �0� 1
2�. Consequently, for all compact sets C ⊆ �1− 1/

√
2�1+ 1/

√
2�,

we have

E
(
sup
t∈C

�M̃�t��2
)

< +∞�

Now let γ� � → � be continuously differentiable. We can do the same as
before with the martingales �Mn�γ�t��t∈� for Mn�γ�t� = Mn�γ�t��. Equation
(13) becomes

E��Mγ�t1� −Mγ�t2��2� ≤ K�γ�t1� − γ�t2��2 ≤ K′�t1 − t2�2
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for some constant K′ > 0 depending on the compact interval C ⊆ � under
consideration. Thus, �Mγ�t��t∈� has a continuous modification M̃γ such that

E�supt∈C �M̃γ�t��2� < +∞ for all compact set C ⊆ �. ✷

Now uniform convergence of �Mn� follows from a theorem of vectorial mar-
tingales. (We proceed as in [6].)

Theorem 3. For any compact set C ⊆ �1− 1/
√
2�1+ 1/

√
2�, we have a.s.,

Mn → M uniformly over C

and

E
(
sup
t∈C

�Mn�t� −M�t��2
)
−→
n→∞0�

More generally, let γ� � → � be continuously differentiable and setMn�γ�t� �=
Mn�γ�t�� and Mγ�t� = M�γ�t��. Then the same result holds for �Mn�γ�.

Proof. Let �a� b� ⊆ �1 − 1/
√
2�1 + 1/

√
2�. The modification M̃ of the

previous proposition is a random variable taking its values in the separa-
ble Banach space E = � ��a� b����. Let 	 be the Borelian σ-field of E and
�∞ = σ��n� n ≥ 1�, M̃ is 	 ��∞-measurable and is in L2

E = L2�,�E�.
We will show that E�M̃��n� can be identified as Mn��a�b� if Mn��a�b� is under-

stood as a random variable taking its values in E.
Observe that

φt� � ��a� b���� → ��

X �→ X�t�
isacontinuous linear formover� ��a� b����,henceE�φt�M̃���n� = φt�E�M̃��n��
almost surely. Saying that M̃ is a modification of M means that for all t ∈
�a� b�, φt�M̃� = M�t� (a.s.). Hence it follows that Mn�t� = E�M̃��n��t� a.s., so
that Mn = E�M̃��n� a.s.

We can now apply the theorem of vectorial martingales (cf. [10], Proposition
V-2-6, page 104), which yields

Mn = E
(
M̃��n

)
→ E�M̃��∞	 a.s. and in L2

E�

Since M̃ is �∞-measurable we get

sup
t∈�a�b�

�Mn�t� − M̃�t��−→
n→∞0 a.s.(14)

and

E
(

sup
t∈�a�b�

�Mn�t� − M̃�t��2
)
−→
n→∞0�(15)
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Hence, the first part of the theorem is proved since (14) implies that, almost
surely, M�t� exists for all t ∈ �a� b� and is equal to M̃�t�.

By the previous proposition we can proceed for �Mn�γ� along the same lines
as for �Mn�. This completes the proof of Theorem 3. ✷

Now, since Mn is holomorphic, for all n and any ρ < 1/
√
2, the uniform

convergence of Mn over the arc γ�t� = 1+ ρeit implies (via Cauchy’s formula)
uniform convergence of Mn and all its derivatives over compact subsets of
� = B��1� ρ�. Thus, we can state the following strong corollary of the previous
theorem:

Corollary 3. Mn�z� and all its derivatives converge uniformly over all the
compact sets of �.

3.4. An almost sure central limit theorem. We now show that Proposition 1
already implies a global version of Theorem 2, also indicating that the range
1�2 log n ≤ k ≤ 2�8 log n is surely not natural.

Theorem 4. For every α ∈ �2−√
2�2+√

2� we have a.s.,

1

EWn

(
α
2

) ∑
k≤α log n+x

√
α log n

Uk�n�
(α
2

)k
→ M

(
α
2

)
√
2π

∫ x

−∞
e−t2/2 dt�

uniformly for x ∈ � as n → ∞.

Proof. Recall that Wn�z� =
(
EWn�z�

)
Mn�z� and notice that we have uni-

formly for t real, t = o��log n�−1/2�,

EWn

(α
2
eit

)
∼ EWn

(α
2

)
eα log n

(
it−t2/2

)

and, since M�α/2� is positive,

Mn

(α
2
eit

)
= Mn

(α
2

)
+ o��log n�−�1/2�� ∼ M

(α
2

)
(16)

as n → ∞. Thus we can apply Levy’s theorem and directly obtain the wanted
result. ✷

3.5. More estimates forWn�z�. In order to prove Theorems 1 and 2, which
are local versions of Theorem 4 it is not sufficient to know the behavior of
Mn�z� near the real axis, that is, (16). We need more precise information about
the limiting behavior of Mn�z� for 1− 1/

√
2 < �z� < 1+ 1/

√
2, respectively, of

Wn�z�. The next proposition provides a.s. estimates for �z� = 1 which will be
needed for the proof of Theorem 1.



PROFILE OF BST 1053

Proposition 3. For any K > 0 there exists δ > 0 such that a.s.,

sup
�z�=1��z−1�≥1/√2−δ

�Wn�z�� = �

(
n

�log n�K
)

as n → ∞.

The proof of Theorem 2 requires more precise estimates.

Proposition 4. For any K > 0 there exists δ > 0 such that a.s.,

Wn�z� = �

(
n2�z�−1

�log n�K
)

uniformly for z ∈ � with 0�6 ≤ �z� ≤ 1�4, �z− 1� ≥ 1/
√
2− δ as n → ∞.

Corollary 4. For any K > 0 and ε > 0 we have a.s. that there exists n0
such that for all n ≥ n0,

�Wn�z�� ≤
EWn��z��
�log n�K

for all z ∈ � with 0�6 ≤ �z� ≤ 1�4 and �log n�−1/2+ε ≤ �arg z� ≤ π as n → ∞.

Proof. By Proposition 4 this estimate is true for z ∈ � with 0�6 ≤ �z� ≤ 1�4
and �z−1� ≥ 1/

√
2−δ. Moreover, for z ∈ � with �z−1� ≤ 1/

√
2−δ we know that

Mn�z� is a.s. bounded. Furthermore, it follows from Lemma 3 that, uniformly
in n and t for �log n�ε/√log n ≤ �t� ≤ π,

�EWn�z0eit�� ≤ EWn�z0�e−ct2 log n

for some constant c > 0 (depending continuously on z0). A combination of
these two estimates proves the corollary. ✷

Of course, Proposition 3 is contained in Proposition 4. However, we decided
to state (and prove) them separately since the proof of Proposition 3 is much
easier to follow. The proof of Proposition 4 does not contain new ideas but it
is more involved.

We start with an estimate for E�Wn�z��2.

Lemma 5. For every δ > 0 we uniformly have for z with �z−1� ≤ 1/
√
2−δ,

E�Wn�z��2 = � �n4�z−2�
and for z with 1/

√
2− δ ≤ �z− 1� ≤ 1/

√
2,

E�Wn�z��2 = � �n4�z−2 log n�
as n → ∞. Furthermore, let C be a compact set in the complex plane such that
�z− 1� ≥ 1/

√
2 for all z ∈ C. Then

E�Wn�z��2 = � �n2�z�2−1 log n�
as n → ∞, uniformly for z ∈ C.
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Proof. We recall that

E�Mn�z��2 � n4�z−2
n∑

j=1
j−�4�z−2�z�2��

Furthermore we have 4�z − 2�z�2 > 1 for �z − 1� < 1/
√
2 and 4�z − 2�z�2 < 1

for �z− 1� > 1/
√
2. Thus, for �z− 1� ≤ 1/

√
2− δ, there exists δ′ > 0 such that

E�Wn�z��2 � n4�z−2
n∑

j=1
j−1−δ′ � n4�z−2

and for 1/
√
2− δ ≤ �z− 1� ≤ 1/

√
2,

E�Wn�z��2 � n4�z−2
n∑

j=1
j−1 � n4�z−2 log n

which proves the first part of the lemma.
Finally, for z with �z− 1� > 1/

√
2 we obtain

E�Wn�z��2 � n4�z−2 �n+ 1�1−4�z+2�z�2 − 1
1− 4�z+ 2�z�2

� n2�z�2−1 1− e−�1−4�z+2�z�2� log�n+1�

1− 4�z+ 2�z�2

� n2�z�2−1 log n�

This completes the proof of the lemma. ✷

We will also use an a.s. estimate for the derivative of Wn�z�.

Lemma 6. We have for all z �= 0,

�W′
n�z�� ≤ W′

n��z�� � �z�−1n2�z�−1 log n a�s�

Proof. Obviously, we have �W′
n�z�� ≤ W′

n��z��. Furthermore, it is known
that Hn ∼ c log n a.s., where c = 4�31107 � � � is the solution greater than 2
of c log�2e/c� = 1. Hence, a.s. there exists n0 such that for n ≥ n0 we have
Uk�n� = 0 if k > �c + 1� log n. This directly implies that a.s. we have for
sufficiently large n,

W′
n��z�� =

∑
k≥0

kUn�k��z�k−1 ≤ �c+ 1� log n
∑
k≥0

Un�k��z�k−1

= �c+ 1� log n
Wn��z��

�z� �

This proves the lemma. ✷
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We now directly enter the proof of Proposition 3. First, Lemma 5 provides
that for every ε > 0 there exists δ > 0 such that for �z� = 1 and �z − 1� ≥
1/

√
2− δ,

P
{�Wn�z�� ≥ n/�log n�K} ≤ E�Wn�z��2

�n/�log n�K�2 � �log n�2K+1

n1−ε
�

Now set zn�j �= eitn�j , where

tn�j =
(
arccos

3
4
− δ

)
+

(
2π − 2arccos

3
4
+ 2δ

)
j

�log n�K+1

and j = 1�2� � � � � ��logN�K+1�. Thus we obtain

P
{
�Wn�zn�j�� ≥ n/�log n�K for some j

}
� �log n�3K+2

n1−ε
�

Now observe that (for sufficiently small ε > 0) the series

∑
n≥0

�log�n2��3K+2

n2�1−ε�

converges. Hence, the Borel–Cantelli–lemma implies that a.s.,

sup
j

�Wn2�zn2�j�� ≤
n2

�log�n2��K

for all but finitely many n ≥ 0. Of course, by Lemma 6 we can interpolate
between zn2�j. Suppose that for some z with �z� = 1 we have tn2�j < arg z <
tn2�j+1. Then we (uniformly) have

Wn2�z� = Wn2�zn2�j� + � �W′
n2�1��log�n2��−K−1�

≤ n2

�log�n2��K + � �n2�log�n2��1−K−1�

� n2

�log�n2��K �

So, in any case this implies that a.s.,

sup
�z�=1��z−1�≥1/√2−δ

�Wn2�z�� ≤ n2

�log�n2��K

for all but finitely many n ≥ 0. Finally we can use the relation Wn+1�z� −
Wn�z� = �2z− 1�zkn to observe that

Wn2+k�z� = Wn2�z� + � �k� for 1 ≤ k ≤ �2n+ 1�.
Thus, we get

Wn2+k�z� �
n2

�log�n2��K + � �n� � n2 + k

�log�n2 + k��K
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uniformly for 1 ≤ k ≤ �2n+ 1�, which shows that we also have a.s.,

sup
�z�=1��z−1�≥1/√2−δ

�Wn�z�� �
n

�log n�K

for all but finitely many n ≥ 0. ✷

As mentioned above the proof of Proposition 4 runs along the same lines as
that of Proposition 3. By Lemma 5 we have for 0�6 ≤ �z� ≤ 1�4 and �z − 1� ≥
1/

√
2− δ (for some sufficiently small δ > 0),

P
{
�Wn�z�� ≥ n2�z�−1/�log n�K

}
≤ E�Wn�z��2

�n2�z�−1/�log n�K�2 � �log n�2K+1

n4�z�−2�z�2−1−0�001 �

First, let us consider the range R1 �= �z ∈ �� �z−1� ≥ 1/
√
2−δ�1 ≤ �z� ≤ 1�4	.

We now use � ��log n�2K+2� points zn�j covering R1 with maximal distance
�log n�−K−1. Observe that for z ∈ R1 the series

∑
n≥1

�log�n3/2��2K+1

�n3/2�4�z�−2�z�2−1−0�001

converges uniformly. Hence, by the Borel–Cantelli–lemma we have a.s.,

sup
j

�W�n3/2��z�n3/2��j�� ≤
�n3/2�2�z�−1
�log�n3/2��K

for all but finitely many n. By Lemma 6 we interpolate between z�n3/2��j and
obtain the same bound uniformly for all z ∈ R1. Finally, we have to observe
that a.s., uniformly for n3/2 ≤ k ≤ �n+ 1�3/2,

�Wk�z� −W�n3/2��z�� �
�n3/2�2�z�−1
�log�n3/2��K �(17)

Since

Wn+k�z� −Wn�z� = �2z− 1�
n+k−1∑
l=n

zkl

we have to estimate zkl . We know that a.s. Hn ≤ 4�3111 log n (for sufficiently
large n), compare with Devroye [2] or Biggins [1]. Hence it follows that a.s.,

max
n3/2≤l≤�n+1�3/2

kl ≤ 4�312 · log�n3/2��

So we only have to check that

�2z− 1�
(
��n+ 1�3/2� − �n3/2�

)
�z�4�312 log�n3/2� � �n3/2�2�z�−1

�log�n3/2��K �
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Alternatively, it suffices to show that there exists η > 0 such that

1
2 + 3

2 · 4�312 log �z� ≤ 3
2�2�z� − 1� − η

for 1 ≤ �z� ≤ 1�4. A short inspection shows that this is true, for example, for
η = 0�02. Hence, (17) follows, which completes the proof for z ∈ R1.

For z ∈ R2 �= �z ∈ �� �z−1� ≥ 1/
√
2−δ�0�6 ≤ �z� ≤ 1	 we have to do almost

the same. Again we use the subsequence �n3/2� to apply the Borel–Cantelli
lemma. In order to estimate zkl we use the fact that a.s. kn ≥ 0�373 log n (see
[1]) and finally have to check that there exists η > 0 such that

1
2 + 3

2 · 0�373 · log �z� ≤ 3
2�2�z� − 1� − η

for 0�6 ≤ �z� ≤ 1, which is again true. ✷

4. Proof of Theorem 1. The idea of the proof is to use a.s. expansions
of Wn�eit� in order to obtain a.s. expansions for the Uk�n� via saddle point
approximations.

In fact, we can be much more precise. We can prove an a.s. asymptotic series
expansion for Uk�n�/�n + 1� in terms of 1/

√
2 log n, in which the coefficients

depend on the derivatives Mn�z� at z = 1. In order to demonstrate how full
asymptotic series expansions can be obtained we present a complete proof for
the following extended version of Theorem 1 [for Uk�n�]. It will then be clear
how to proceed further.

Theorem 5. We have a.s.,

Uk�n�
n/

√
4π log n

= e−
�k−2 log n�2

4 log n

(
1− k− 2 log n

4 log n
+ �k− 2 log n�3

24�log n�2

+ k− 2 log n

2 log n
M′

n�1�
)
+ �

(
1

log n

)

as n → ∞, in which the error term � �1/ log n� is uniform for all k ≥ 0.

Proof. First, we use Cauchy’s formula in order to extract Uk�n� from
Wn�z�:

Uk�n� =
1
2π

∫ π

−π
Wn�eit�e−kit dt�

Then we split the integral into two parts,

I1 �=
1
2π

∫
�t�≤arccos 3

4−δ
Wn�eit�e−kit dt�

I2 �=
1
2π

∫
arccos 3

4−δ≤t≤π
Wn�eit�e−kit dt�
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With the help of Proposition 3 we can easily estimate I2 from above. A.s. we
have

�I2� ≤
1
2π

∫
arccos 3

4−δ≤t≤π
�Wn�eit��dt

� n

�log n�K �

For �t� ≤ arccos 3
4 − δ, Mn�eit� is uniformly bounded a.s. Hence, we have by

Lemma 3,

�Wn�eit�� � ne2�cos t−1� log n � ne−c′t2 log n

for some constant c′ > 0. Now fix some (sufficiently small) η > 0. Then we
have

1
2π

∫
�log n�−�1−η�/2≤�t�≤arccos 3

4−δ
�Wn�eit��dt � n

∫ ∞

�log n��1−η�/2
e−c′t2 log n dt

� ne−c′�log n�η �

So it remains so consider the integral

I′
1 �=

1
2π

∫
�t�≤�log n�−�1−η�/2

Wn�eit�e−kit dt�

For �t� ≤ �log n�−�1−η�/2 we have by Lemma 3 a.s. and uniformly in k,

Wn�eit�e−kit = �n+ 1�eit�2 log n−k�−t2 log n

×
(
1+ itM′

n�1� − i
t3

3
log n+ � �t2 + t4 log n�

)
�

Since

∫ ∞

−∞
e−t2 log n�t2 + t4 log n�dt � �log n�−3/2

and ∫
�t�≥�log n�−�1−η�/2

e−t2 log n�1+ t+ t3 log n� � e−�log n�η

it follows that

I′
1

n+ 1
= 1

2π

∫ ∞

−∞
eit�2 log n−k�−t2 log n

(
1+ itM′

n�1� − i
t3

3
log n

)
dt+ � ��log n�− 3

2 ��
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Set γn�k = �k− 2 log n�/√2 log n. Then

1
2π

∫ ∞

−∞
eit�2 log n−k�−t2 log n

(
1+ itM′

n�1� − i
t3

3
log n

)
dt

= 1√
2π2 log n

e−
1
2γ

2
n�k

(
1− 3γn�k − γ3

n�k

6
√
2 log n

+ γn�k√
2 log n

M′
n�1�

)
�

Thus, we finally obtain the proposed result.
We now indicate how such (a.s.) uniform estimates for Uk�n� imply corre-

sponding estimates for Zk�n� and Vk�n�. Recall that by Lemma 1,

Zk�n� =
∑
j≥k

2k−jUj�n��

Our aim is to show that (uniformly for all k ≥ 0)

∑
j≥0

2−j

(
e−

�k+j−2 log n�2
4 log n + �

(
1√
log n

))
(18)

= 2e−
�k+j−2 log n�2

4 log n + �

(
1√
log n

)
�

Obviously, (18) implies the proposed relation (in Theorem 1) for Zk�n�. Since
Vk�n� = 1

2Zk+1�n� we get the corresponding relation (in Theorem 1) forVk�n�.
So let us prove (18). First of all, note that we just have to consider j with

j ≤ �log log n�/ log 2 since

∑
j≥�log log n�/ log 2

2−j = �

(
1

log n

)
�

Next, we can restrict ourselves to the range �k − 2 log n� ≤ √
2 log n log log n.

Namely, if �k− 2 log n� > √
2 log n log log n then

exp
(
−�k− 2 log n�2

4 log n

)
= �

(
1

log n

)
�

So suppose that j ≤ �log log n�/ log 2 and �k − 2 log n� ≤ √
2 log n log log n.

Then we have ∣∣∣∣exp
(
−�k+j−2logn�2

4logn

)
−exp

(
−�k−2logn�2

4logn

)∣∣∣∣
�e−

�k−2logn�2
4logn

(
j2

logn
+ j�k−2logn�

logn

)
�

Thus,

∑
j≤�log log n�/ log 2

2−j exp
(
−�k+ j− 2 log n�2

4 log n

)
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= exp
(
−�k− 2 log n�2

4 log n

) ∑
j≤�log log n�/ log 2

2−j

+ exp
(
−�k− 2 log n�2

4 log n

)
�

(
1

log n

∑
j≥0

j22−j + �k− 2 log n�
log n

∑
j≥0

j2−j

)

= 2 exp
(
−�k− 2 log n�2

4 log n

)
+ �

(
1

log n

)
�

Note that this error term � �1/ log n� is better than the error term � �1/√log n�
which is really needed. However, this is again an indication that asymptotic
series expansions for Zk�n� directly follow from corresponding expansions for
Uk�n�.

5. Proof of Theorem 2. The proof of Theorem 2 runs along similar lines
to the proof of Theorem 1. The only difference is that we now use a.s. expan-
sions for Wn�z0eit� (where z0 = k/�2 log n�). For small t we use

Mn�z0eit� = Mn�z0�eitM
′
n�z0�/Mn�z0�+� �t2�

and Wn�z0eit� = Mn�z0eit�EWn�z0eit� and for large t the estimate of Proposi-
tion 4 (resp. of its Corollary 4).

As above we have

Uk�n� =
z−k
0

2π

∫ π

−π
Wn�z0eit�e−kit dt�

First, for any (sufficiently small) η > 0 we have by Corollary 4,

�Wn�z0eit�� ≤
EWn�z0�
log n

a�s�

for 0�6 ≤ z0 ≤ 1�4 and �log n�−�1−η�/2 ≤ �t� ≤ π. Hence

∣∣∣∣z−k
0

2π

∫
�log n�−

1−η
2 ≤�t�≤π

Wn�z0eit�e−kit dt

∣∣∣∣ � EWn�z0�
zk
0 log n

�

Conversely, for t real with �t� ≤ �log n�−�1−η�/2 we have uniformly (by using
Lemma 3 and k = 2z0 log n),

Wn�z0eit�e−kit = Mn�z0eit�EWn�z0eit�e−kit

= Mn�z0�EWn�z0�e2z0 log n�eit−1�−kit�1+ � ��t�� + � �n−1��
= Mn�z0�EWn�z0�e−z0 log n t2�1+ � ��log n�−�1−3η�/2���
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This implies that a.s.,

Uk�n� =
z−k
0

2π

∫
�t�≤�log n�−�1−η�/2

Wn�z0eit�e−kit dt+ �

(
z−k
0

EWn�z0�
log n

)

= Mn�z0�z−k
0

√
2πkEWn�z0��1+ � ��log n�−�1−3η�/2���

By combining (1) and Lemma 3 we have

z−k
0

√
2πkEWn�z0� ∼ EUk�n�

uniformly for 0�6 ≤ z0 ≤ 1�4 as n → ∞. Finally by Proposition 1, Mn�z0� ∼
M�z0� again uniformly. Thus, Theorem 2 follows for Uk�n�.

Finally, we can use this representation for Uk�n� and Lemma 1 to derive
the corresponding results for Zk�n� and Vk�n�.
Addendum. Let us mention that, due to Alain Rouault’s help, the covari-

ance result for martingale Mn in Section 3.2 has been improved as follows:

lim
n

E
(
Mn+1�z1�Mn+1�z2�

)
= 2z1z2 + 1

2�z1 + z2� − 2z1z2 − 1
× ��2z1���2z2�

�
(
2�z1 + z2� − 1

) �
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