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Abstract The solution of the Langevin equation driven by a Lévy process noise

has been well studied, under the name of Ornstein-Uhlenbeck type process. It is

a stationary Markov process. When the noise is fractional Brownian motion, the

covariance of the stationary solution process has been studied by the first author with

different coauthors. In the present paper, we consider the Langevin equation driven by

a linear fractional stable motion noise, which is a selfsimilar process with long-range

dependence but does not have finite variance, and we investigate the dependence

structure of the solution process.
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1. Introduction

In this paper, we consider a stochastic process {X(t), t ∈ R}, which is a stationary

solution of the Langevin equation

X(t) = X(0)− λ

∫ t

0

X(u)du+N(t)(1.1)

with a stationary increment noise process {N(t), t ∈ R}, where λ > 0. When such

a stationary solution uniquely exists, we call {X(t)} an Ornstein-Uhlenbeck process

driven by a noise process {N(t)}. When {N(t)} is Brownian motion, {X(t)} is so-

called (classical) Ornstein-Uhlenbeck process, which is a Gaussian Markov process.

We say that {N(t)} is Lévy process if it has independent and stationary incre-

ments, is stochastically continuous and N(0) = 0 a.s. When {N(t)} is a stable Lévy

process, {X(t)} is called the stable Ornstein-Uhlenbeck process, which was already

studied in [5] and more deeply in [1]. It is also a Markov process. When {N(t)} is a

general Lévy process, the stationary solution {X(t)} is called an Ornstein-Uhlenbeck

type process, and its distributional properties were also well studied. (See [12] Section

17.)

Our concern here is what will happen if the noise process has dependent incre-

ments. In Gaussian case, the solution process {X(t)} of (1.1) with fractional Brownian

motion as {N(t)} is studied in [3]. In this paper, we take a (non-Gaussian) linear

fractional stable motion as a noise process, and investigate the dependence property

of the stationary process {X(t)}.

2. Ornstein-Uhlenbeck processes driven by stationary increment

noise processes

We first define Ornstein-Uhlenbeck processes driven by stationary increment noise

processes. We follow an idea in [13].

LetD[a, b] be a set of all functions φ : [a, b]→ R such that they are left continuous

and have right limits. Let f ∈ <m([a, b]) be a set of all functions f : [a, b] → R such

that the Riemann integral
∫ b

a
φ(t)f(t)dt exists for any φ ∈ D[a, b].

Proposition 2.1. ([13]) Let {N(t), t ∈ R} be a stationary increment measurable

process with N(0) = 0 a.s. and λ > 0. If {N(t)} satisfies conditions:

(1) {N(t)} ∈ <m([0, 1]),

(2) E
[

log+
∣

∣

∣

∫ 1

0
etN(t)dt

∣

∣

∣

]

<∞
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and

(3) E
[

log+ |N(1)|
]

<∞,

then

X(t) = N(t)− λ

∫ t

−∞

e−λ(t−u)N(u)du, t ∈ R,(2.1)

is a stationary process well-defined in the sense of convergence in probability and the

unique solution of the Langevin equation (1.1) with a noise process {N(t)}.

Remark 2.2. In their proof of Proposition 2.1 in [13], they show that

limn→∞

∫ t

−n
eλuN(u)du exists a.s., but it is not clear that limn→∞

∫ t

−n−h
eλuN(u)du

has the same value for all h > 0, which is needed for the stationarity of {X(t)}.

However, we can show that

lim
n→∞

∫ −n

−n−h

eλuN(u)du = 0 in probability

under our assumptions as follows, and this is enough for our purpose. Actually we

have
∫ n

−n−h

eλuN(u)du = e−λn
∫ 0

−h

eλvN(v − n)dv

= e−λn
∫ 0

−h

eλv(N(v − n)−N(−n))dv + e−λnN(−n)

∫ 0

−h

eλvdv

=: I1(n) + I2(n).

By the stationary increment property of {N(v)},

I1(n)
d
= e−λn

∫ 0

−h

eλvN(v)dv,

which converges to 0 a.s. as n → ∞, where
d
= denotes equality in distribution, and

thus I1(n)→ 0 in probability. For I2(n), it is shown in [13] that
∑∞

n=1 e
−n|N(−n)| <

∞ a.s. and thus I2(n)→∞ a.s. as n→∞.

Remark 2.3. In their paper [13], they do not explicitly mention the uniqueness of the

solution, but it is easily seen as follows. Suppose X1(t) and X2(t) are two solutions

of (1.1) with X1(0) = X2(0). Then

X1(t)−X2(t) = −λ

∫ t

0

(X1(u)−X2(u))du.

We thus have

X1(t)−X2(t) =
(−λ)n

(n− 1)!

∫ t

0

(t− u)n−1(X1(u)−X2(u))du
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for n = 1, 2, .... Since ((n − 1)!)−1(−λ)n(t − u)n−1 → 0 uniformly in u ∈ [0, t] as

n→∞, we get X1(t) = X2(t).

3. stable processes and linear fractional stable motions

Throughout this paper, {Zα(x), x ∈ R} denotes a symmetric α-stable Lévy pro-

cess with E[eiθZα(1)] = e−|θ|
α

, θ ∈ R. Linear fractional stable motions are defined as

follows.

Definition 3.1. Let 0 < α ≤ 2, 0 < H < 1, a, b ∈ R, |a| + |b| > 0. {∆H,α(t), t ∈ R}
is linear fractional stable motion, if

∆H,α(t) =

∫ ∞

−∞

(

a
[

(t− x)
H−1/α
+ − (−x)

H−1/α
+

]

+b
[

(t− x)
H−1/α
− − (−x)

H−1/α
−

]

)

dZα(x),

where u+ = max{u, 0}, u− = max{−u, 0} and 0s = 0 even for s ≤ 0. When α = 2,

it is fractional Brownian motion.

The following are some known facts on linear fractional stable motions, (see [6]

and [7]).

Proposition 3.2. Linear fractional stable motions are symmetric α-stable selfsimilar

processes with stationary increments.

Proposition 3.3. Let 0 < α < 2.

(1) If H > 1/α, {∆H,α(t)} has a continuous version.

(2) If H = 1/α, {∆H,α(t)} is an α-stable Lévy process. Hence, almost all sample

paths are right continuous and have left limits.

(3) If H < 1/α, all sample paths of {∆H,α(t)} are nowhere bounded.

Since {∆H,α(t)} is an α-stable Lévy process when H = 1/α, the problem was

studied in [1]. When H < 1/α, the dependence structure of {∆H,α(t)} itself is studied

in [2]. We can consider the Langevin equation (1.1) with a noise {∆H,α(t)}, H < 1/α.

However, we cannot expect the existence of the solution of (1.1) with a noise whose

sample paths are nowhere bounded. For, if such a solution exists, then it should has

an expression like (2.1), where the noise process should be integrable in some sense,

but it cannot be expected. Therefore, in the rest of this paper, we always assume

that 1/α < H < 1, α < 2, which necessarily leads us to the case 1 < α < 2.
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For later use, we mention here two propositions on stable integrals.

Proposition 3.4. ([11]) Let 0 < α < 2, S ⊂ R and let f(x) be a measurable function

on S. If
∫

S
|f(x)|αdx <∞, then the stable integral

∫

S
f(x)dZα(x) is well defined, and

E

[

exp

{

iθ

∫

S

f(x)dZα(x)

}]

= exp

{

−|θ|α
∫

S

|f(x)|αdx

}

, θ ∈ R.

Combining Theorems 11.3.2 and 11.4.1 in [11], we get the following.

Proposition 3.5. Let 0 < α < 2, T, S ⊂ R and let f(u, x) be a measurable function

on T × S. If
∫

T

∣

∣

∣

∣

∫

S

f(u, x)dZα(x)

∣

∣

∣

∣

du <∞ a.s.,(3.1)

then
∫

T

(
∫

S

f(u, x)dZα(x)

)

du =

∫

S

(
∫

T

f(u, x)du

)

dZα(x) a.s.

A necessary and sufficient condition for the validity of (3.1) when 1 < α < 2 is

∫

T

(
∫

S

|f(u, x)|αdx

)1/α

du <∞.(3.2)

When a stochastic process {X(t), t ∈ R} is stationary Gaussian, we can describe

its dependence property by its covariance function E[X(t)X(0)]. However, in the

non-Gaussian stable case, we cannot use the covariance function. Instead, we use the

following. For a stationary process {X(t)}, let

r(t) := r(θ1, θ2; t)(3.3)

:= E
[

exp{i(θ1X(t) + θ2X(0))}
]

−E
[

exp{iθ1X(t)}
]

E
[

exp{iθ2X(0)}
]

, θ1, θ2 ∈ R,

and

I(t) := I(θ1, θ2; t)

:= − logE
[

exp{i(θ1X(t) + θ2X(0))}
]

+ logE
[

exp{iθ1X(t)}
]

+ logE
[

exp{iθ2X(0)}
]

, θ1, θ2 ∈ R.

The following relationship between r(t) and I(t) is valid:

r(θ1, θ2; t) = K(θ1, θ2; t)
(

e−I(θ1,θ2;t) − 1
)

,
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where

K(θ1, θ2; t) = E
[

exp{iθ1X(t)}
]

E
[

exp{iθ2X(0)}
]

= E
[

exp{iθ1X(0)}
]

E
[

exp{iθ2X(0)}
]

=: K(θ1, θ2) =: K,

say. Further, if I(t)→ 0 as t→∞, then r(t) ∼ −KI(t) as t→∞, namely, r(t) and

I(t) is asymptotically equal. If {X(t)} is Gaussian, −I(1,−1; t) coincides with the

covariance function and thus r(t) is comparable to it. (For the details about these

notions, see [11].)

The quantity r(t) was used in [2], where the authors studied the dependence struc-

ture of linear fractional stable motions. The quantity r(t) is also found in [8], where

a necessary and sufficient condition for the mixing property of stationary infinitely

divisible processes was proved in terms of r(t) implicitly. (See also [9].) Therefore, it

is reasonable to use r(t), or equivalently, I(t) in measuring the dependence property

of our stationary process {X(t)}.

We want to say that a symmetric α-stable stationary process {X(t)} has long-

memory, if r(t) in (3.3) satisfies

∞
∑

n=0

|r(n)| =∞.(3.4)

The concept of “long-memory” is still used in different ways. Historically, the long-

memory is measured in terms of correlations when processes have finite variances. (See

[4] and [11], Section 7.2.) In such a case, the condition (3.4) is well understood for

long-memory, especially for the increments of fractional Brownian motion. However,

Samorodnitsky ([10]) recently points out that correlations provide only very limited

information about the process if the process is “not very close” to being Gaussian. In

case when the variance is infinite, the situation is more chaotic. As we have mentioned

above, a “correlation like” quantity r(t) is taken as one candidate for measuring the

dependence in [2] and [11], Section 7.10, and we are following their idea in the present

paper. Once we adopt this quantity, it might be natural to call the process to have

“long-memory” if it satisfies (3.4), even if the process has infinite variance.
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4. Long-memory stable Ornstein-Uhlenbeck processes

We are now going to investigate Ornstein-Uhlenbeck processes driven by non-

Gaussian linear fractional stable motions as noise processes. Recall that we are re-

stricting ourselves to the case 1/α < H < 1, α < 2, and therefore 1 < α < 2.

Theorem 4.1.

X(t) = ∆H,α(t)− λ

∫ t

−∞

e−λ(t−u)∆H,α(u)du(4.1)

is the unique stationary solution of the Langevin equation,

X(t) = X(0)− λ

∫ t

0

X(u)du+∆H,α(t).

Proof. It is enough to show that when H > 1/α, {∆H,α(t)} satisfies Conditions (1),

(2) and (3) in Proposition 2.1.

Condition (1): By Proposition 3.3, when H > 1/α, ∆H,α(t) has a continuous

version. For any sample path of such a version, φ(t)∆H,α(t) is integrable over [0, 1].

Condition (2): Let us write ∆H,α(t) =
∫∞

−∞
f(t, x)dZα(x). Then, we have

E

[

log+

∣

∣

∣

∣

∫ 1

0

et∆H,α(t)dt

∣

∣

∣

∣

]

≤
∞
∑

n=0

P

(

log

∣

∣

∣

∣

∫ 1

0

et∆H,α(t)dt

∣

∣

∣

∣

≥ n

)

=
∞
∑

n=0

P

( ∣

∣

∣

∣

∫ 1

0

(

et
∫ ∞

−∞

f(t, x)dZα(x)

)

dt

∣

∣

∣

∣

≥ en
)

(by Proposition 3.5)

=
∞
∑

n=0

P

( ∣

∣

∣

∣

∫ ∞

−∞

(
∫ 1

0

etf(t, x)dt

)

dZα(x)

∣

∣

∣

∣

≥ en
)

.

Since
∫∞

−∞

(

∫ 1

0
etf(t, x)dt

)

dZα(x) is symmetric α-stable and the tail of its distribu-

tion has the power order of −α, we have, with some C1 > 0,

E

[

log+

∣

∣

∣

∣

∫ 1

0

et∆H,α(t)dt

∣

∣

∣

∣

]

= C1

∞
∑

n=0

(en)−α <∞ .

Condition (3): We have

E
[

log+ |∆H,α(1)|
]

≤
∞
∑

n=0

P
(

log |∆H,α(1)| ≥ n
)

=
∞
∑

n=0

P
(

|∆H,α(1)| ≥ en
)

(as above)
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= C2

∞
∑

n=0

(en)−α <∞ ,

for some C2 > 0. This completes the proof. ¤

We want to investigate the behavior of r(t) = r(θ1, θ2; t) as t → ∞ in (3.3).

However, since {X(t)} is stationary,

P (X(t) ∈ A,X(0) ∈ B) = P (X(0) ∈ A,X(−t) ∈ B),

and thus r(θ1, θ2; t) = r(θ2, θ1;−t). Therefore, the study of r(θ1, θ2; t), t > 0, as

t → ∞, is essentially the same as that of r(θ1, θ2; t), t < 0, as t → −∞. Since the

calculation for t < 0 as t → −∞ is a bit easier in our setting, we will show a result

on the behavior of r(θ1, θ2; t), t < 0, as t→ −∞.

The following is our main theorem in this paper.

Theorem 4.2. Let 1 < α < 2, H > 1/α and let {X(t)} be the stochastic process in

(4.1). Then as t→ −∞,

r(t) := r(θ1, θ2; t) ∼ −KC|t|α(H−1),(4.2)

where

K = exp

{

− (|θ1|
α + |θ2|

α)(4.3)

×

(
∫ 0

−∞

∣

∣

∣

∣

∫ 0

x

(H −
1

α
)aeλu(u− x)H−

1

α
−1du

+

∫ x

−∞

(H −
1

α
)beλu(x− u)H−

1

α
−1du

∣

∣

∣

∣

α

dx

+

∫ ∞

0

∣

∣

∣

∣

∫ 0

−∞

(H −
1

α
)beλu(x− u)H−

1

α
−1du

∣

∣

∣

∣

α

dx

)}

and

C = λ−α
(

H −
1

α

)α ∫ ∞

1

(

∣

∣

∣
θ1a(x− 1)H−

1

α
−1 + θ2ax

H− 1

α
−1
∣

∣

∣

α

(4.4)

−
∣

∣

∣
θ1a(x− 1)H−

1

α
−1
∣

∣

∣

α

−
∣

∣

∣
θ2ax

H− 1

α
−1
∣

∣

∣

α
)

dx

+λ−α
(

H −
1

α

)α ∫ 1

0

(

∣

∣

∣
θ1b(1− x)H−

1

α
−1 + θ2ax

H− 1

α
−1
∣

∣

∣

α

−
∣

∣

∣
θ1b(1− x)H−

1

α
−1
∣

∣

∣

α

−
∣

∣

∣
θ2ax

H− 1

α
−1
∣

∣

∣

α
)

dx

+λ−α
(

H −
1

α

)α ∫ 0

−∞

(

∣

∣

∣
θ1b(1− x)H−

1

α
−1 + θ2b(−x)

H− 1

α
−1
∣

∣

∣

α
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−
∣

∣

∣
θ1b(1− x)H−

1

α
−1
∣

∣

∣

α

−
∣

∣

∣
θ2b(−x)

H− 1

α
−1
∣

∣

∣

α
)

dx.

Theorem 4.3. Let 1 < α < 2 and H > 1/α. Then {X(t)} in (4.1) has long-memory

in the sense of (3.4).

Proof. Since α < 2 and H > 1/α, we have α(H − 1) > 1 − α > −1. Thus by (4.2),
∑∞

n=0 |r(n)| =∞. ¤

5. Proof of the main theorem

In the following, for notational convenience, put β = H − 1/α. To prove our

main theorem, Theorem 4.2, we start with stating a lemma, the proof of which will

be given in the last section. Recall that t < 0.

Lemma 5.1. We have
∫ t

−∞

λe−λ(t−u)

(
∫ u

−∞

∣

∣a(u− x)β − a(−x)β
∣

∣

α
dx

)1/α

du <∞,(5.1)

∫ t

−∞

λe−λ(t−u)

(
∫ 0

u

∣

∣b(x− u)β − a(−x)β
∣

∣

α
dx

)1/α

du <∞(5.2)

and
∫ t

−∞

λe−λ(t−u)

(
∫ ∞

0

∣

∣b(x− u)β − bxβ
∣

∣

α
dx

)1/α

du <∞.(5.3)

From (4.1) and the definition of {∆H,α(t)}, we have

X(t) = ∆H,α(t)−

∫ t

−∞

λe−λ(t−u)

(
∫ u

−∞

(

a(u− x)β − a(−x)β
)

dZα(x)

)

du

−

∫ t

−∞

λe−λ(t−u)

(
∫ 0

u

(

b(x− u)β − a(−x)β
)

dZα(x)

)

du

−

∫ t

−∞

λe−λ(t−u)

(
∫ ∞

0

(

b(x− u)β − bxβ
)

dZα(x)

)

du.

Here we apply Proposition 3.5 to change the order of three integrals above. Condition

(3.2) in Proposition 3.5 can be verified by Lemma 5.1, and note that the second

integral becomes the sum of two integrals. Thus we have

X(t) =

∫ t

−∞

(

a(t− x)β − a(−x)β
)

dZα(x)

9



+

∫ 0

t

(

b(x− t)β − a(−x)β
)

dZα(x) +

∫ ∞

0

(

b(x− t)β − bxβ
)

dZα(x)

−

∫ t

−∞

(
∫ t

x

aλe−λ(t−u)(u− x)βdu− a
(

1− e−λ(t−x)
)

(−x)β
)

dZα(x)

−

∫ t

−∞

(
∫ x

−∞

bλe−λ(t−u)(x− u)βdu− ae−λ(t−x)(−x)β
)

dZα(x)

−

∫ 0

t

(
∫ t

−∞

bλe−λ(t−u)(x− u)βdu− a(−x)β
)

dZα(x)

−

∫ ∞

0

(
∫ t

−∞

bλe−λ(t−u)(x− u)βdu− bxβ
)

dZα(x)

=

∫ t

−∞

(

a(t− x)β −

∫ t

x

aλe−λ(t−u)(u− x)βdu

−

∫ x

−∞

bλe−λ(t−u)(x− u)βdu

)

dZα(x)

+

∫ ∞

t

(

b(x− t)β −

∫ t

−∞

bλe−λ(t−u)(x− u)βdu

)

dZα(x),

and hence

X(t) =

∫ t

−∞

(
∫ t

x

βae−λ(t−u)(u− x)β−1du(5.4)

+

∫ x

−∞

βbe−λ(t−u)(x− u)β−1du

)

dZα(x)

+

∫ ∞

t

(
∫ t

−∞

βbe−λ(t−u)(x− u)β−1du

)

dZα(x).

We first calculate K. By (5.4) and Proposition 3.4, we have

K = E
[

exp{iθ1X(0)}
]

E
[

exp{iθ2X(0)}
]

= exp

{

−

∫ 0

−∞

∣

∣

∣

∣

∫ 0

x

θ1βae
λu(u− x)β−1du+

∫ x

−∞

θ1βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

dx

−

∫ ∞

0

∣

∣

∣

∣

∫ 0

−∞

θ1βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

dx

−

∫ 0

−∞

∣

∣

∣

∣

∫ 0

x

θ2βae
λu(u− x)β−1du+

∫ x

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

dx

−

∫ ∞

0

∣

∣

∣

∣

∫ 0

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

dx

}

= exp

{

− (|θ1|
α + |θ2|

α)

(
∫ 0

−∞

∣

∣

∣

∣

∫ 0

x

βaeλu(u− x)β−1du+

∫ x

−∞

βbeλu(x− u)β−1du

∣

∣

∣

∣

α

dx

10



+

∫ ∞

0

∣

∣

∣

∣

∫ 0

−∞

βbeλu(x− u)β−1du

∣

∣

∣

∣

α

dx

)}

.

This is K in (4.3).

We next calculate I(t). By (5.4) and Proposition 3.4 again, and by a standard

calculation, we have

I(t) = − logE
[

exp{i(θ1X(t) + θ2X(0))}
]

+ logE
[

exp{iθ1X(t)}
]

+ logE
[

exp{iθ2X(0)}
]

=

∫ t

−∞

(∣

∣

∣

∣

∫ t

x

θ1βae
−λ(t−u)(u− x)β−1du+

∫ x

−∞

θ1βbe
−λ(t−u)(x− u)β−1du

+

∫ 0

x

θ2βae
λu(u− x)β−1du+

∫ x

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ t

x

θ1βae
−λ(t−u)(u− x)β−1du+

∫ x

−∞

θ1βbe
−λ(t−u)(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ 0

x

θ2βae
λu(u− x)β−1du+

∫ x

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α)

dx

+

∫ 0

t

(∣

∣

∣

∣

∫ t

−∞

θ1βbe
−λ(t−u)(x− u)β−1du

+

∫ 0

x

θ2βae
λu(u− x)β−1du+

∫ x

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ t

−∞

θ1βbe
−λ(t−u)(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ 0

x

θ2βae
λu(u− x)β−1du+

∫ x

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α)

dx

+

∫ ∞

0

(∣

∣

∣

∣

∫ t

−∞

θ1βbe
−λ(t−u)(x− u)β−1du+

∫ 0

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ t

−∞

θ1βbe
−λ(t−u)(x− u)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ 0

−∞

θ2βbe
λu(x− u)β−1du

∣

∣

∣

∣

α)

dx.

Here by change of variables x = xt, u = ut, we have

I(t) = |t|αH
∫ ∞

1

(∣

∣

∣

∣

∫ x

1

θ1βae
λt(u−1)(x− u)β−1du+

∫ ∞

x

θ1βbe
λt(u−1)(u− x)β−1du

+

∫ x

0

θ2βae
λtu(x− u)β−1du+

∫ ∞

x

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ x

1

θ1βae
λt(u−1)(x− u)β−1du+

∫ ∞

x

θ1βbe
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

α

11



−

∣

∣

∣

∣

∫ x

0

θ2βae
λtu(x− u)β−1du+

∫ ∞

x

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α)

dx

+|t|αH
∫ 1

0

(
∣

∣

∣

∣

∫ ∞

1

θ1βbe
λt(u−1)(u− x)β−1du

+

∫ x

0

θ2βae
λtu(x− u)β−1du+

∫ ∞

x

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ ∞

1

θ1βbe
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ x

0

θ2βae
λtu(x− u)β−1du+

∫ ∞

x

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α)

dx

+|t|αH
∫ 0

−∞

(∣

∣

∣

∣

∫ ∞

1

θ1βbe
λt(u−1)(u− x)β−1du+

∫ ∞

0

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ ∞

1

θ1βbe
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

α

−

∣

∣

∣

∣

∫ ∞

0

θ2βbe
λtu(u− x)β−1du

∣

∣

∣

∣

α)

dx

=: |t|αH
∫ ∞

1

(|f(t, x) + g(t, x)|α − |f(t, x)|α − |g(t, x)|α)dx

+|t|αH
∫ 1

0

(|h(t, x) + g(t, x)|α − |h(t, x)|α − |g(t, x)|α)dx

+|t|αH
∫ 0

−∞

(|h(t, x) + k(t, x)|α − |h(t, x)|α − |k(t, x)|α)dx,

where

f(t, x) =

∫ x

1

θ1βae
λt(u−1)(x− u)β−1du+

∫ ∞

x

θ1βbe
λt(u−1)(u− x)β−1du, x > 1,

g(t, x) =

∫ x

0

θ2βae
λtu(x− u)β−1du+

∫ ∞

x

θ2βbe
λtu(u− x)β−1du, x > 0,

h(t, x) =

∫ ∞

1

θ1βbe
λt(u−1)(u− x)β−1du, x < 1

and

k(t, x) =

∫ ∞

0

θ2βbe
λtu(u− x)β−1du, x < 0.

Thus

(5.5)

lim
t→−∞

|t|α(1−H)I(t)

= lim
t→−∞

∫ ∞

1

(|tf(t, x) + tg(t, x)|α − |tf(t, x)|α − |tg(t, x)|α)dx

12



+ lim
t→−∞

∫ 1

0

(|th(t, x) + tg(t, x)|α − |th(t, x)|α − |tg(t, x)|α)dx

+ lim
t→−∞

∫ 0

−∞

(|th(t, x) + tk(t, x)|α − |th(t, x)|α − |tk(t, x)|α)dx.

In order to apply the dominated convergence theorem, we need the following lemmas.

Lemma 5.2. For 1 < α < 2 and for any r, s ∈ R, it holds that

| |r + s|α − |r|α − |s|α | ≤ α|r||s|α−1 + (α+ 1)|r|α.

Lemma 5.3. There exist constants K1, K2, K3 and K4 such that for any t < 0,

|tf(t, x)| ≤ K1(x− 1)β−1, for any x > 1,(5.6)

|tg(t, x)| ≤ K2x
β−1, for any x > 0,

|th(t, x)| ≤ K3(1− x)β−1, for any x < 1(5.7)

and

|tk(t, x)| ≤ K4(−x)
β−1, for any x < 0.

Lemma 5.4.

lim
t→−∞

tf(t, x) =
1

λ
θ1βa(x− 1)β−1,(5.8)

lim
t→−∞

tg(t, x) =
1

λ
θ2βax

β−1,

lim
t→−∞

th(t, x) =
1

λ
θ1βb(1− x)β−1(5.9)

and

lim
t→−∞

tk(t, x) =
1

λ
θ2βb(−x)

β−1.

The proofs of these lemmas will also be given in the last section.

By Lemma 5.2 with r = tg(t, x), s = tf(t, x) and Lemma 5.3, we have

|tf(t, x) + tg(t, x)|α − |tf(t, x)|α − |tg(t, x)|α

≤ α|tg(t, x)||tf(t, x)|α−1 + (α + 1)|tg(t, x)|α

≤ αK2x
β−1(K1(x− 1)β−1)α−1 + (α + 1)(K2x

β−1)α

= αK
(α−1)(β−1)
1 K2x

β−1(x− 1)(α−1)(β−1) + (α + 1)Kα
2 x

α(β−1).

Note that (α− 1)(β − 1) > −1 and α(β − 1) < −1, which we are going to use below

frequently. Thus the above function of x belongs to L1(1,∞).

13



When 0 ≤ x ≤ 1/2, by Lemma 5.2 with r = th(t, x), s = tg(t, x) and Lemma 5.3,

we have

|th(t, x) + tg(t, x)|α − |th(t, x)|α − |tg(t, x)|α

≤ α|th(t, x)||tg(t, x)|α−1 + (α + 1)|th(t, x)|α

≤ αK3(1− x)β−1(K2x
β−1)α−1 + (α+ 1)(K3(1− x)β−1)α

= αK
(α−1)(β−1)
2 K3(1− x)β−1x(α−1)(β−1) + (α + 1)Kα

3 (1− x)α(β−1),

which belongs to L1(0, 1/2).

When 1/2 < x ≤ 1, by Lemma 5.2 with r = tg(t, x), s = th(t, x) and Lemma 5.3,

we have

|th(t, x) + tg(t, x)|α − |th(t, x)|α − |tg(t, x)|α

≤ α|tg(t, x)||th(t, x)|α−1 + (α+ 1)|tg(t, x)|α

≤ αK2x
β−1(K3(1− x)β−1)α−1 + (α + 1)(K2x

β−1)α

= αK2K
(α−1)(β−1)
3 xβ−1(1− x)(α−1)(β−1) + (α + 1)Kα

2 x
α(β−1),

which belongs to L1(1/2, 1).

By Lemma 5.2 with r = th(t, x), s = tk(t, x) and Lemma 5.3, we have

|th(t, x) + tk(t, x)|α − |th(t, x)|α − |tk(t, x)|α

≤ α|th(t, x)||tk(t, x)|α−1 + (α + 1)|th(t, x)|α

≤ αK3(1− x)β−1(K4(−x)
β−1)α−1 + (α + 1)(K3(1− x)β−1)α

= αK
(α−1)(β−1)
4 K3(1− x)β−1(−x)(α−1)(β−1) + (α+ 1)Kα

3 (1− x)α(β−1).

This belongs to L1(−∞, 0).

Altogether, by applying the dominated convergence theorem to (5.5) and by

Lemma 5.4, we have

lim
t→−∞

|t|α−αHI(t)

= λ−αβα
∫ ∞

1

(

|θ1a(x− 1)β−1 + θ2ax
β−1|α − |θ1a(x− 1)β−1|α − |θ2ax

β−1|α
)

dx

+λ−αβα
∫ 1

0

(

|θ1b(1− x)β−1 + θ2ax
β−1|α − |θ1b(1− x)β−1|α − |θ2ax

β−1|α
)

dx

+λ−αβα
∫ 0

−∞

(

|θ1b(1− x)β−1 + θ2b(−x)
β−1|α − |θ1b(1− x)β−1|α − |θ2b(−x)

β−1|α
)

dx,

which is C in (4.4). Thus I(t)→ 0 as t→∞, and hence

r(t) ∼ −KI(t) ∼ −KC|t|α(H−1)

14



as t→∞. This completes the proof of Theorem 4.2.

6. Proofs of Lemmas

Proof Lemma 5.1. (5.1) can be proved as
∫ t

−∞

λe−λ(t−u)

(
∫ u

−∞

∣

∣a(u− x)β − a(−x)β
∣

∣

α
dx

)1/α

du

=

∫ t

−∞

λe−λ(t−u)

(
∫ −1

−∞

∣

∣a(u+ uy)β − a(uy)β
∣

∣

α
(−u)dy

)1/α

du

=

∫ t

−∞

λe−λ(t−u)|u|Hdu

(
∫ ∞

1

∣

∣a(y − 1)β − ayβ
∣

∣

α
dy

)1/α

<∞,

and (5.2) and (5.3) can also be shown similarly. The proof is thus completed. ¤

Proof of Lemma 5.2. We consider two cases when r, s > 0 and when r > 0, s < 0.

(1) When r, s > 0. Since (r + s)α − rα − sα > 0, it is enough to show that f(r) :=

−(r+s)α+αrsα−1+(α+2)rα+sα ≥ 0. Using an inequality rα−1+sα−1−(r+s)α−1 > 0,

we have

f(0) = 0, f ′(r) = −α(r + s)α−1 + αsα−1 + α(α + 2)rα−1 ≥ 0.

(2) When r > 0, s < 0. Since |r + s|α − rα − |s|α < 0, it is enough to show that

f(r) := |r + s|α + αr|s|α−1 + αrα − |s|α ≥ 0. When r + s > 0,

f(0) = 0, f ′(r) = α(r + s)α−1 + α(−s)α−1 + α2rα−1 ≥ 0,

and when r + s < 0

f(0) = 0, f ′(r) = −α(−r − s)α−1 + α(−s)α−1 + α2rα−1 ≥ 0.

This completes the proof. ¤

Proof of Lemma 5.3. We first note that θ1
−1f(t, x) = θ2

−1g(t, x−1) and θ1
−1h(t, x) =

θ2
−1k(t, x− 1). Thus it is enough to prove (5.6) and (5.7).

Proof of (5.6): We have

|tf(t, x)| =

∣

∣

∣

∣

∫ x

1

θ1βate
λt(u−1)(x− u)β−1du+

∫ ∞

x

θ1βbte
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ (x+1)/2

1

θ1βate
λt(u−1)(x− u)β−1du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ x

(x+1)/2

θ1βate
λt(u−1)(x− u)β−1du

∣

∣

∣

∣
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+

∣

∣

∣

∣

∫ 2x−1

x

θ1βbte
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

2x−1

θ1βbte
λt(u−1)(u− x)β−1du

∣

∣

∣

∣

=: F1 + F2 + F3 + F4,

say. We have

F1 ≤ |θ1βat|

(

x− 1

2

)β−1 ∫ (x+1)/2

1

eλt(u−1)du ≤
1

λ
|aθ1|β

(

x− 1

2

)β−1

.

We have

F2 ≤ |θ1βat| e
λt(x−1)/2

∫ x

(x+1)/2

(x− u)β−1du

= |aθ1|

(

x− 1

2

)β

|t|eλt(x−1)/2 ≤
1

λe
|aθ1|

(

x− 1

2

)β−1

,

since z(t) := |t|eλt(x−1)/2 takes its maximum value 2/(λ(x−1)e) at t = −2/(λ(x−1)).

Similarly, we have

F3 ≤ |θ1βbt| e
λt(x−1)

∫ 2x−1

x

(u− x)β−1du ≤
1

λe
|bθ1|(x− 1)β−1.

We finally have

F4 ≤ |θ1βbt| (x− 1)β−1

∫ ∞

2x−1

eλt(u−1)du ≤
1

λ
|bθ1|β(x− 1)β−1.

Altogether, we have

|tf(t, x)| = F1 + F2 + F3 + F4 ≤ K1(x− 1)β−1.

Proof of (5.7): We have

|th(t, x)| ≤ |θ1βbt| (1− x)β−1

∫ ∞

1

eλt(u−1)du =
1

λ
|bθ1|β(1− x)β−1,

and thus (5.7). The proof of Lemma 5.3 is now completed. ¤

Proof of Lemma 5.4. By the same reasoning mentioned in the beginning of the proof

of Lemma 5.3, we need to prove only (5.8) and (5.9).

Proof of (5.8): We have

lim
t→−∞

tf(t, x) = lim
t→−∞

∫ (x+1)/2

1

θ1βate
λt(u−1)(x− u)β−1du

+ lim
t→−∞

∫ x

(x+1)/2

θ1βate
λt(u−1)(x− u)β−1du

+ lim
t→−∞

∫ ∞

x

θ1βbte
λt(u−1)(u− x)β−1du

=: f1 + f2 + f3,(6.1)
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say. We have

f1 = − lim
t→−∞

∫ 0

t(x−1)/2

θ1βae
λv
(

x−
v

t
− 1
)β−1

dv

= − lim
t→−∞

∫ 0

−∞

1{t(x−1)/2≤v≤0}θ1βae
λv
(

x−
v

t
− 1
)β−1

dv,

where

1{t(x−1)/2≤v≤0}e
λv
(

x−
v

t
− 1
)β−1

≤ eλv
(

x− 1

2

)β−1

,

which is integrable with respect to v over (−∞, 0). Hence, by the dominated conver-

gence theorem,

f1 =

∫ 0

−∞

θ1βae
λv(x− 1)β−1dv =

1

λ
θ1βa(x− 1)β−1.(6.2)

As to f2,

|f2| ≤ lim
t→−∞

|θ1βat|e
λt(x−1)/2

∫ x

(x+1)/2

(x− u)β−1du = 0.(6.3)

We finally have, by a standard argument,

f3 = lim
t→−∞

θ1βb

∫ t(x−1)

−∞

eλv
(v

t
+ 1− x

)β−1

dv = 0.(6.4)

Thus, it follows from (6.1)–(6.4) that

lim
t→−∞

tf(t, x) = λ−1θ1βa(x− 1)β−1,

which is (5.8).

Proof of (5.9): We have

lim
t→−∞

th(t, x) = lim
t→−∞

∫ 2

1

θ1βbte
λt(u−1)(u− x)β−1du

+ lim
t→−∞

∫ ∞

2

θ1βbte
λt(u−1)(u− x)β−1du

=: h1 + h2,(6.5)

say. We have

h1 = lim
t→−∞

∫ 0

t

θ1βbe
λv
(v

t
+ 1− x

)β−1

dv

= lim
t→−∞

∫ 0

−∞

1{t≤v≤0}θ1βbe
λv
(v

t
+ 1− x

)β−1

dv,

where

1{t≤v≤0}e
λv
(v

t
+ 1− x

)β−1

≤ eλv(1− x)β−1,
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which is integrable with respect to v over (−∞, 0), and thus

h1 =

∫ 0

−∞

θ1βbe
λv(1− x)β−1dv =

1

λ
θ1βb(1− x)β−1.

h2 = 0 is shown similarly as (6.4), and we thus have

lim
t→−∞

th(t, x) = λ−1θ1βb(1− x)β−1,

which is (5.9). This completes the proof of Lemma 5.4. ¤
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