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1 Introduction

The notion of non-linear Backward Stochastic Differential Equations (BSDE in short) was introduced
by Pardoux & Peng ([11], 1990). Their aim was to give a probabilistic interpretation of a solution
of second order quasi-linear partial differential equations. Since then, these equations have gradu-
ally become an important mathematical tool which is encountered in many fields such as financial
mathematics, stochastic optimal control, partial differential equations, ...

In ([6], 1997), El-Karoui et al. introduced the notion of a reflected BSDE, which is actually a backward
equation but one of the components of the solution is forced to stay above a given barrier, which is
an adapted continuous process.

Recently in ([1], 1995), Barles et al. considered standard BSDEs when the noise is driven by a
Brownian motion and an independent Poisson random measure. They have shown the existence and
uniqueness of the solution, in addition, the link with integral-partial differential equations is studied.

In this paper our aim is to study the one-dimensional reflected BSDE (RBSDE in short) when the
noise is driven by a Brownian motion and an independent Poisson random measure. This is the natural
generalization of the work of El-Karoui et al.. The component (Y%):<1 of the solution which is forced
to stay above a given barrier is, in our frame, no longer continuous but just right continuous and left
limited (rcll in short) (see equation (1) below). It has jumps which arise naturally since the noise
contains a Poisson random measure part.

The problem we consider here can be studied in a more general setting, namely, multivalued backward
stochastic differential equations (see [10], for the continuous case). But for the sake of simplicity, we
limit ourselves to the reflected framework. Finally, two other interesting papers on BSDEs with jumps
but without reflection can be mentioned, namely those of R.Situ [12], and S. Tang & X. Li [13]. This
latter is motivated by control problems.

In this work we mainly show the existence and uniqueness of the solution for the reflected BSDE with
jumps (i.e. whose noise includes a Poisson random measure part) for a given,

- terminal value £ which is square integrable random variable
- coefficient f(t,w,y, z,v) which is a function, uniformly Lipschitz with respect to (y, z, v)
- barrier (St)¢<1, which is the moving obstacle and which is a rcll process whose jumps are inaccessible.

In the proof of our result, we use two methods, the penalization and the Snell envelope theory.
However in order to prove the result in the general case, both methods use a contraction (fixed point
argument) since we do not have an efficient comparison theorem for solutions of standard BSDEs
whose noise contains a Poisson measure part (see e.g. [1] for a counterexample). On the other hand,
the fact that the jumping times of the moving barrier S are inaccessible is of crucial role. Finally
we highlight the connection of our reflected BSDEs with integral-differential mixed stochastic optimal
control. Nevertheless our results can be applied in mathematical finance, especially for the evaluation
of American contingent claims when the dynamic of the prices contains a Poisson point process part.

This paper is divided into three sections.

In Section 1, we begin to show the uniqueness of the solution of the reflected BSDE when it exits.
Then using the penalization method we show the existence of a solution when the function f does not



depend on (y, z,v). Therefore we construct a contraction which has a fixed point which is the solution
of our reflected BSDE with jumps. Finally we study the regularity of the non-decreasing process K
which is absolutely continuous in the case when the barrier is regular.

In Section 2, using the Snell envelope theory, once again, we prove the existence of the solution if the
function f does not depend on (y, z,v). Furthermore, as in Section 1, we obtain the solution in the
general setting.

Section 3 is devoted to the link of our reflected BSDEs with integral-differential mixed stochastic
optimal control. We show that the value function of the problem is solution of an appropriate reflected
BSDE with jumps. In addition an optimal control exits and its expression is given. Our result
generalizes that of J.P.Lepeltier & B.Marchal ([9]) on the same subject.

2 Reflected BSDEs with respect to Brownian motion and an inde-
pendent Poisson point process.

Let (€2, F, (Ft)i<1)) be a stochastic basis such that Fy contains all P-null sets of F, Fiy = ()~ Fite =
Fi, YVt < 1, and suppose that the filtration is generated by the two following mutually independent

processes :
- a d-dimensional Brownian motion (Bi)¢<1,

- a Poisson random measure g on IRt x U, where U := IR' \ {0} is equipped with its Borel fields U,
with compensator v(dt, de) = dtA(de), such that {f([0,¢] x A) = (u—v)(]0,t] X A)}+<1 is a martingale
for every A € U satisfying A(A) < co. A is assumed to be a o-finite measure on (U,U) satisfying
/(1 A le*)A(de) < oc.
U
On the other hand, let:

- 82 be the set of F-adapted right continuous with left limit (rcll in short) processes (Y;);<1 with
values in IR and JE[sup,<; |Y|?] < oo.

- H?** be the set of F;-progressively measurable processes with values in IR* such that
E[/l | Zs|*ds] < oc.

- £2Obe the set of mappings V : Q x [0,1] x U — IR which are P ® U-measurable and
IE[/Ol ds /U(Vs(e))zz\(de)] < 0o ; P is the predictable tribe on  x [0, 1]

- for a given rcll process (wy)i<1, wi— = limg  ws,t <1 (wo— = wp) ; w— 1= (Wi )<y 0

We are now given three objects:
-a terminal value ¢ € L%(Q, FY, P)

-amap f:Qx[0,1] x R x L2(U, U, \; R) — IR which with (t,w,y, z,v) associates f(t,w,y,z,)
and which is P ® B(IR'"?) @ B(L*(U,U, ); IR))-measurable. In addition we assume :

(i) the process (f(¢,0,0,0)):<1 belongs to L2(Q2 x [0,1],dP ® dt)



(7i) f is uniformly Lipschitz with respect to (y, z,v), i.e., there exists a constant & > 0 such that for
any y, v/, 2, 2/ € IR and v, v’ € L*(U,U, \; R),

P — a.s., |f(w,t,y,z,v) - f(watvy,7zl7vl)| < k(|y - y,| + |Z - Z/| + HU - UIH)‘

- an ”obstacle” process {S;, 0 <t < 1}, which is an F;—progressively measurable rcll, real valued

process satisfying

IE[ sup (SJ)Q] < +00; 8" = max{S;,0}.
0<t<1

Moreover we assume that its jumping times are inaccessible stopping times (see e.g. [3], p.58 for
the definition). This assumption on S is satisfied if, for example, Vt < T, Sy = S; + P, where S is
continuous and, for any t < T, P, = pu(t,w, A) where A is a Borel set such that A\(A) < oo.

Let us now introduce our reflected BSDE with jumps (in short, RDBSDE; "D” for discontinuous)
associated with (f,€,S). A solution is a quadruple (Y, Z, K, V) := (Y3, Zy, K¢, Vi)i<1 of processes with
values in IR x IRT x L?(U,U, \; IR) and which satisfies :

(i) Ye& ZeH*andV € L% K € S§? (K = 0), is continuous and non-decreasing
1 1 1
i)Y, :§+/ F(5,Ye Ze, Vi)ds + K1 — K, _/ Z.dB. _/ / Vi(e)ilds.de) b <1 )
t t t Ju
1

0

In our definition, the jumps of Y are those of its Poisson part since K is continuous [
To begin with, we are going to show the uniqueness of the solution of the RDBSDE (1) under the
above assumptions on f, £ and S.

2.1 Uniqueness.

1.1.a. Proposition: Under the above assumptions on f, { and (S;):<1, the DRBSDE (1) associated
with (f, €, S) has at most one solution.

Proof: Assume (Y, Z, K, V) and (Y', Z', K', V') are two solutions of (1). First let us underline that
(V; = Y)) (dK; — dKj) < 0.
On the other hand, using Itd’s formula with the discontinuous semi-martingale Y — Y and set
1 1
A=Y — Yt/|2 +/ | Zs — Z!|2ds —|—/ / (Vs(e) = Vi (e))2 A(de)ds
t t Ju

yields,
1
A = 2 / (Ya = YO (f(5, Yo, Zs, Vi) — f(5, Y1, 20, V1))ds
t

1 1
=) / (Ys = Y!)(Zs — Z)dB, +2 / (Y, — Y!)(dE, — dK')
t t

1
- / /U (Vae — V! +Vile) = VI(€)*~ (Yae — Y!_)?ji(ds, de).
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Now since — /O/U [(Ys_ —Y_ +Vi(e) = V! (e))2 — (Yoo — YSL)Q} i (ds,de) and

/ (Ys = Y{) (Zs — Z.) dB; are (F;, P)-martingales, then taking the expectation in both sides yields,
0
for any t <1,

CRAREC]

1
E[A] < 2 /t E((Ys — Y!) (f(s, Y, Z6, V) — f (5, Y, 20, V') ds.

If we choose o > 4k and ( > 4k, and denote

1! 1!
q)t:E[|3Q—)Q’|2+§/ ]ZS—Z;]2d3+§/ / (%(6)—‘/;’(6))2>\(d6)d3
t t U

we obtain,

1
o, < 2k(1+a+ﬁ)E[/ (Ys — Y!)* ds].
t

Henceforth from Gronwall’s lemma and the right continuity of (Y; — Y )i<1, we get Y =Y.
Consequently (Y, Z, V., K) = (Y', Z', V', K') whence the uniqueness of the solution of (1) O

We are going now to show that equation (1) has a solution in using two methods. Roughly speaking,
the first one is based on the penalization and the second on the well known Snell envelope theory of
processes. However, in order to obtain the result in the general frame, both methods use a contraction.
The penalization, as it has been used e.g. in [6], is not workable since we do not have an efficient
comparison theorem for solutions of BSDEs whose noise is driven by a Lévy process (see [1] for a
counter-example). That is the reason for which, in a first time, we suppose that the map f(¢t,w,y, z,v)
does not depend on (y, z,v).

2.2 The penalization method.

First let us assume the map f does not depend on (y, z,v), i.e., P-a.s., f(t,w,y, z,v) = g(t,w), for
any t,y,z and v. In the following result, we establish the existence of the solution of the RDBSDE
associated with (g, ¢, 5).

1.2.a. Theorem : The RDBSDE associated with (g,&,.S) has a unique solution (Y3, Z, Ky, Vi)i<1.

Proof: For each n € IN*, let (Y}", Zf,V;”)tSl be the Fi-progressively measurable process with
values in IR'T? x L2(U,U, \; IR), unique solution of the BSDE associated with (g(t,w) +n(y —S;)~, &)
((y — S¢)™ :=max{0,S; — y}). It exists according to Barles et al.’s result [1]. So,

1 1
Elsup [¥'? + / 202 dt + / / [V ()2 A (de) ds] < 4o (@)
t<1 0 0 U
and
1 1 1 1
Yt”:£+/ g(s)ds—/ Z?st+/ n(Y;"—SS)_dS—/ /VS” (e) fu(ds,de),Vt < 1.
t t t t U

)



From now on the proof will be divided into six steps.
Step 1: For any n >0, Y™ < Ynt+l,

Indeed, using the generalized It6’s formula with the convex function x —— (2%)? and Y™ — Y7+l
implies that the following process (A} ):<1, where

AP = (VP = VR (v - gy /] -
0,t

D DR (¢ A G} R I W) R 10 G (LA A WO S G |
0<s<t

YTy - Y

is continuous non-decreasing ([4], pp.349). Here A (Y™ — Y1) = (Y — Y+ — (Y2 — YY),
Vs < 1. Henceforth for any ¢t < 1 we have,

S 7E0 et R W (0 IS GOt R O (LS e
t<s<1

CAYR S YIEAL( - Y < 2 / (¥I — YD - KT
Jt.1]

—(2¢ — Z3*)dBs - / (VI (e) = Vi (e))fa(ds, de) }.
U

S

t
where for any n > 0 and t < 1, K[ := n/ (Y} — S5)"ds. But
0

Do AT =Y (YT o - YR A(YT - Y} 2 0
t<s<1
since (y1)? — (z1)% — 22F(y — ) > 0,Vx,y € IR. Then

(Y7 — Yy < 2 / (V2 — Y)Y HA(KD — K7 — (20— 2B,
i (3)
- /U (VI (e) — VP (e))i(ds, de) ).

Through estimates (2) we deduce that / (Y -y Y T{(z0 — Z7TdB, +
0

/ (V' (e) — VL (e))i(ds, de)} is an (F;, P)-martingale. Now taking expectation in both sides of (3)
U
yields

B[y — Y)Y <2 / (Y7 — YYD — K]
1t,1]

<2B[[ (V=YY - ST - n(YH - S0)7]ds
Jt.1]

<onBl| (V! y sl
1¢.1]

since the function y — n(y — S;)~ is Lipschitz. Finally Gronwall’s inequality implies, for any ¢ < 1,
Y < Y[‘H, P-a.s. and then Y™ < Y"™*! since Y™ and Y™ are right continuous processes.

Step 2: There exists a constant C' > 0 such that

1 1
Wn>0and t <1, B[V +/ |zg|2ds+/ ds/ (VP()2A(de) + (KM < C.  (4)
0 0 U
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Indeed by Ito’s rule we obtain,

1
v +/ yzg|2ds+/ ds/(VS"(e))QA(de)+ > (AT g2+2/ Yg(
t 1¢.,1] U

t<s<1
+2/ nY (Y — Ss)"ds — 2 Y Z'dBs — 2/ YS"/ V' (e)i(ds,de),t < 1.
16,1] 16,1] 1] U

Taking the expectation in both sides yields,

1
B+ / 20 2ds + /] X /U (V" (€))2A(de)]

< B¢ + 20| / yog(s)ds] + 2] [ nYP (Y7 — 8.7 ds]
1t,1] 1t,1]

< Blg? + E[/ﬁ ; (Y")?ds] + IE| - (g9(s))%ds] + e_llE[tilslgl(Si)z] +eB[(K] — Ki')?);

€ is a universal non-negative real constant. But for any ¢ < 1 we have,

1
BKY - K7 < C{BE + V7 + / l9(s))ds)? + </t ZrdB,)?

/“]/ VI (e)i(ds, de))?])

< CE[E+ Y72 + / 19(s)|ds)’ / 127 2ds)

of o /U VI (e) PA(de)]

where C is a constant. Now plugging this inequality in the previous one yields,

Yy +/ 27| ds+/ ds/ (VP (e))2A(de)] <
tl

(1+ €C)E[E2] + cCB[Y?] + E| /]t ](Y”)2ds] (14 €C)IE] /]t 1}(9(5))%15]

+e 1E[supt<s<1(5 )]—i—eClE/ | Z7?ds) + /

]t7

ds/ (VI(€))*A(de)], t < 1.
) Ju
Choosing eC' = 1/2 yields

B+ [ 122 s [ o [ e DA < €O L[ 0ash o<

where C' is an appropriate real constant. Now Gronwall’s inequality leads to the desired result for

1 1
Y2 and then also for IE] / 127 2ds], ] / ds / (V(e))2A(de)] and E[(KT)2].
0 0 U
Step 3: There exists a constant C' > 0 such that for any n > 0 we have IF[supy<;<; Y ?] < C. In
1
addition there exists an Fi-adapted process (Y;)i<1 such that IE[/ Y™ — Y,|?ds] — 0 as n — oo.
0

Indeed for n > 0, using once again It6’s formula we obtain,

1
+/ yZ§|2ds+/ ds/(VS”( Ade) + > (AY™)? =¢2 +2/ Y7g(s)ds
t 1t.1] U

t<s<1 (5)
+2/ nY (Y] — Ss) " ds —2 Y Z"dBs — 2/ Y / Vi'(e)i(ds,de),t < 1.
1t.1] 1t.1] 1t.1]
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1 1 1
But | [ Yrg(s)ds| < [ ey e gl )ds. [ VIRD < o sup |8+ (T~ KD On
t t t SSS

the other hand using the Burkholder-Davis-Gundy inequality ([4],p.304) we get,
1
Elsw | [ Y7228, < ol swp VP 5 B[ |27 Pdr]
t<s<1 Jjs1] t<s<1 t

and

E[su nyr r, de r nyn e))1/2
pt<s<l|/ /Y VO de)] < OBI( | d /|Y VI (e) PA(de)}/?)
Sup;<s<q |Ys = s [ (V(e))*A(de)].
< B pt_s_1|YH+c4JE/t d /Uv<>> A(de)

Here ¢y, c2, c3 and ¢4 are universal non-negative real constants. Now combining these inequalities
with (5) yields,

1
B supeoa [VIP+ [ |22Pds+ [ ds [ (v2(0)PAe)
T t 1t,1] U

< E[E) + 2] / (Y7 4 67 g(s)Pds + 26 ] sup |57
1t,1] t<s<l

1
2265 EI(KY — K1)?) + 203 Elsupeer V) + 265 VB / |20 2y
t

1
P2 Elsupic,e [VIP) + 26 B[ ds [ (V0P Ade) v <1
- t U

Finally choosing 2(c3 + ¢4) < 1 we obtain E[sup,<; [Y7|*] < C

Now let Y; = liminf,, . Y;", t < 1. Since the sequence (Y™),>0 is non-decreasing then, using Fatou’s

lemma, E[Y}!] < E[Y;] < liminf, . E[Y}"] < C. Tt follows that for any ¢t < 1, ¥; < oo and then

P-a.s., Y* — Y; as n — oo. In addition the Lebesgue’s dominated convergence theorem implies that
1

E[/ Y™ — Yi|?ds] — 0 as n — oo.
0

Step 4: limy, o0 IE[supy<; |(Y;* = S;)~[*] = 0. This property is the key point in the proof of our result.

Let (Y,», 20,V be the solution of the following BSDE :
t t t Ji<1

V" —§+/{g —n(Y, )}ds—/t Z"dBs — //V” i (ds, de)

By comparison we have P-a.s., Vt < 1, Y;* > Y;*, for any n > 0 (the proof is similar to the one we
have done to prove Y™ < Y"*! in Step 1). Now let 7 be an F;-stopping time such that 7 < 1. Then,
- 1
Y'=F[fexp—n(l—7)+ / (9(s) +nSs)exp —n (s — 1) ds |Fr].

T

Since S is a right continuous then

Eexp—n(l—7)+ n/ Ssexp —n (s —7)ds — {lj;—1) + Srlj;<q) as n — o0
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P—a.s. and in L?(f2, P). Henceforth we have also the convergence of the conditional expectation in

L?(Q2, P). In addition
1 t, :
< 7x ([ #om)

1
/ g(s)exp —n (s —7)ds — 0 in L*(Q, P) asn — oo.

1
/ g(s)exp{—n (s —7)}ds

then

Consequently
yr— Elpr=1) + Srljp<q) in L*(Q,P) as n — oo.
Therefore Y; > S; P — a.s. From that and the section theorem ([4], p.220), we deduce that Y; >
St, ¥Vt <1, P—a.s. and then (V;" —S;)” \, 0, Vt <1, P-a.s.
Now since Y™ 7Y then, if we denote by PX the predictable projection of any process X, PY"™ /PY
t
and PY > PS. But for any n the jumping times of the process (/ / VI (e) ji(ds,de))o<i<1 are

inaccessible since p is a Poisson random measure. It follows that the jumping times of Y™ are also
inaccessible. Then for any predictable stopping time § we have Y;* = Y{* , henceforth the predictable
projection of Y™ is Y, i.e., PY™ = Y. In the same way we have P.S = S_ since we have supposed
the jumping times of S inaccessible.

So we have proved that PY"™ ~PY >PS ie., Y™ /PY >S5S  henceY"—-S_ /" PY —-5_2>0.1It
follows that (Ytﬁ — St,)_ N\, 0, Vt <1 P-a.s. as n — oo. Consequently, from a weak version of the
Dini’s theorem ([4], p.202), we deduce that sup,<; (Y;* — S;)” \, 0 P-a.s. as n — oo. Therefore the
dominated convergence theorem implies

Elsup |(Y* — S;)"|*] — 0a.s. as n — oo
t<1

since for any n > 0, Y;! — S;” <Y;® — S; and then (Y] — S;)~ < !Ytl‘ + S
Step 5: limp—oo IE[sup;<; |Y;" — Y4|?] = 0 and there exist Fi-adapted processes Z = (Z;)i<1, K =
(Kt)t<1 (K non-decreasing and Ko = 0) and V' = (V;)i<1 such that
1 1
E[/ |Z7 — Zg*ds + sup | K] — K;|* —|—/ ds/ [V (e) — VP(e)]?A(de)] — oo as n — oo.
0 t<1 0 U

Indeed using It6’s formula we have for any p >n >0 and t <1,

1 1
v+ [z - s [ ds [ Ve - vePA@ + Y Ay - vy
t t U

t<s<1

1
- / (V7 = YKT — dKD) —2 [ (7 - v2 )20 - 20, (6)
= / | astv = Y2V €)= V)it de).

1
So since p > n, then / (Y —=YP)(dK]! —dKP) < —/ (Y] — S5)dK? < sup(Y]'—Ss)” K}. Therefore
t t t<1
taking expectation in (6) and using the results of Step 2 and Step 4, yields

/ |Z" — ZP|?ds —i—/ ds/ [V (e) — VP(e)]*A(de)] < QE[StliIf(st —Ss)"KY] — 0 as n — .



It follows that (Z"),>0 and (V™),>0 are Cauchy sequences in complete spaces then there exist processes
Z and V, respectively F;-progressively measurable and P ® U-measurable such that the sequences
(Z™)p>0 and (V™),>¢ converge respectively toward Z and V in L?(dP ® dt) and L?(dP ® dt\(de))
respectively.

Now going back to (6), taking first the supremum then the expectation and using the Burkholder-
Davis-Gundy inequality ([4], p.304) yields,

1 1
Bl supyeyey (V2 — YP)? + / 1z — Z72ds + / ds / VI (e) — VP(e)|2A(de)
< 2E[supt<s<1(Y —Ss)" . K]+ 20E| supt<s<1 Y2 — Y2+

_1IE/ |z — ZPds] + a~ / /ds|V" —VP(e)PA(de)],t < 1,

where « is a universal real non-negative constant. Henceforth choosing o < 1/2 implies that
E[supgc <y (Y = YP)?] — 0 as p,n — oo and then E[supgc,<;(Yy" — Ys)?] — 0 as n — oo, moreover
Y = (Y;)i<1 is an Fr-adapted rell process.

Finally since for any n > 0 and t < 1,

1 ¢ ¢
K=Y -Y" - / g(s)ds +/ Z7dBs —|—/ / Vi'(e)ii(ds,de),
0 0 o Ju

then we have also, IE[supg< < |K? — K§|?] — 0 as n,p — oo. Hence there exists an Fy-adapted
non-decreasing and continuous process (K;)i<1 (Ko = 0) such that E[supyc,<; |KI — K [*] — 0 as
n — 00.

Step 6: The limiting process (Y, Z, K, V) = (Yi, Zt, K¢, Vi)i<1 is the solution of the reflected DBSDE
associated with (g, &, .S).

Obviously the process (Y, Z, K, V) satisfies

1
—§+/g(s)ds+K1—Kt—/ ZsdBs /ds/ f(ds, de),Vt < 1.
t t

On the other hand since limp .o IE[sup;<; ((Y;" — S;)7)?] = 0 then P-a.s., V¢ < 1, Y; > S;. Finally let
1
us prove / (Ys — Ss)dKs = 0.
0

First there exists a subsequence of (K"),>o which we still denote (K™),>9 such that P—a.s.
limy, o0 supy<q |[Kf* — K¢| = 0. Now let w be fixed. Since the function Y (w) — S(w) : ¢t € [0,1]
Yi(w) — S¢(w) is rcll then there exists a sequence of step functions (f™(w))m>0 which converges uni-
formly on [0,1] to Y (w) — S(w). Now

1 1 1
[ on=sgar = [ = soa, - g2+ [ (- s)dre. (7)

On the other hand the result stated in Step 5 implies, for any € > 0, there exists ng(w) such that for
any n > no(w), Vt < 1, Vi(w) — Si(w) < Y"(w) — Si(w) + € and K'(w) < Kj(w) + €. Therefore for
n > ng(w) we have

/ Y SR < Ky (w) 4 (8)
0

10



since . X
/ (Y= S,)dKY = —n/ ((Ys” - 38)7)2 ds < 0.
0 0

Now there exists mg(w) > 0 such that for m > mg(w) we have Vt < 1, |Yi(w) — St(w) — fi*(w)| < e.
It follows that

1 1
/Om—sgd(Ks—Ks) :/< @)K, — KT /f d(K, — K™
/fs K™) + e( Ky (@) + K7 ().

But the right-hand side converge to 2eK;(w), as n — oo, since f™(w) is a step function and then

1
/ [l (w)d(Ks — K') — 0. Therefore we have
0

1
lim sup /0 (Y — S )d(K, — K7) < 21 (w). (9)

n—oo

Finally from (7), (8) and (9) we deduce that
1
/ (Vs — S)dK, < 3K (w) + €2
0
As € is whatever and Y > S then

1
/ (Ys — S5)dKs = 0.
0
The other properties are satisfied by construction of the quadruple of processes (Y, Z, K, V) and the
proof is complete [1.

We are now ready to give the main result of this section.

1.2.b. Theorem: The reflected BSDE with jumps (1) associated with (f,&,.S) has a unique solution
(Y, Z, K, V).

Proof: It remains to show the existence which will be obtained via a fixed point of the contraction
of the function ® defined as follows:

Let D := 8% x H*>? x £2? endowed with the norm,

1
| 2, V) = (] /0 e (Va2 + | Z4[2 + /U Va(e)PA(de))ds]} /% a > 0.

Let ® be the map from D into itself which with (Y, Z, V) associates ®(Y, Z,V) = (Y, Z,V) where
(Y,Z,K,V) is the solution of the reflected DBSDE associated with (f(t, Yy, Zi, V4), &, S). Let
(Y',Z', V') be another triple of D and ®(Y’, 2", V') = (Y',Z', V'), then using It&’s formula we obtain,
for any t <1,

1 1
eat(f/t_?t/)Q_’_a/ eOzS(?S_Y/S/)2dS+/ eas,Zg_Z;,st_i_
t t
1
/ €5 ds / (Vale) = V/(e)?A(de) + 3 e (ALY — AV = (My — My)+
¢ U t<s<1

1 1
2 / (Y, — VI)(dK, — dK') + 2 / (Vs — V) (5, Yo 2oy Vi) — f(s, Y/, 20, V) ds
t t

11



1
where (M;)i<1 is a martingale. But / e (Ys — Y))(dKs — dK.) <0 then
t

1
aE[ | (Y, =Y 2ds|+ E[| e*|Zs— Z'%ds| + E[ | e*ds | (Vi(e) — V!(e))?\(de)]
/e [ / ,
§2E/ (Y, — Y (f(s,Ys, Zg, Vi) — f(s,Y!, ZL,V]))ds

] yLtgy gy Vg
1
<keE/ (Y, = Y!) ds}+kE[/ e {|Y, = Y!* 4+ |Z, — Z.)*+
€ t
/ Vale) - V!(e)PA(de)}ds].
U

It implies that

(a— ke)E[/l €05 (¥, — V7)2ds] + JE[/l (Z,— Z2ds)+

/ asds/ (€))*A(de)] <

’WE[/ Yy~ VI[P + | Zo — 2L + /\v V/(€) PA(de) ds].

Now let « great enough and € such that k < e < 9=, then ® is a contraction on D, henceforth there
exists a triple (Y, Z, V) such that ®(Y, Z,V) = (Y, Z, V) which, with K, is the unique solution of the
reflected DBSDE associated with (f,¢,.5) O

2.3 Regularity of the process K.

We now focus on the regularity of the process K. We are going to show that the process K = (K)i<1
is absolutely continuous if the barrier S = (St):<1 is regular. Precisely we have :

1.3.a. Proposition: Assume the barrier S = (S¢):<1 satisfies:

P—a.s. S;=H*' — lim S

m—00

where for any m > 0, (S{"):<1 is a semimartingale which satisfies

t
St =Sy + / I7'dBs +/ / f(ds, de) + / altds,t <1,
0

with .
JE[/ {(l?‘)gds—k/ (w™ (e))? A (de)}ds] < +o00 ,¥m € IN,
0 U
and
sup IF| | )" |?ds] <
m2>0

In addition (S7")m>0 converges to S; in LZ(Q, dP). Then the process K of the solution of the reflected
DBSDE associated with (f,&,.S) is absolutely continuous with respect to the Lebesgue measure dt.

12



Proof: Let (Y, Z, K, V) be the solution of the reflected DBSDE associated with (f,&,S) and for n > 0,
let (Y™, Z", V") be the solution of the following standard BSDE :

1 1 1
Y =¢ +/ {f(s,Ys,Zs, Vs) + n(Y) — Ss)” }ds —/ Z'dBs — / / Vi'(e)(ds, de),t < 1.
t t t Ju
Since the solution of the reflected DBSDE associated with (f, &, S) is unique then, as it has been shown
in Thm.1.2.a, the sequence ((Y",Z",/ n(YS — Ss)"ds), V"))n>0 converges toward (Y, Z, K,V) in
0
S? x H>? x 82 x 2.
Now using the generalized Itd’s formula with the convex function z +—— 2~2 and the process Y — S™

implies that A", defined below, is non-decreasing in ¢ ;

AP (Y ST (Y — St / (Y2~ ST d(Y! — ST
10,2]
sl (Y = ST 72— (Y2 — ST TR 2V — ST TA(Y - S}
Then for any ¢ < 1 we have A7 — A;""™ > 0 which yields,
(V7 = S e LY = ST — (Y2 — ST )% 4+ 2(Y — ST0) ™ A(Y™ — 8™}

<(6— 5Pyt / (Y~ S d(Y - ST
1t,1]

< (€SP ?ee /} (VST Vi) =7 )7 s

1
+2/ (YL = S88)7{(Z5 = [§")dBs +/(Vs"(6) +wy'(e))iulds, de)}.
t U
Now since (y~)%2 — (z7)2 + 227 (y — x) > 0,Vz,y € IR then

ST - ST (Y - ST T 2V - ST TA(Y™ — 8™} > 0.

t<s<1

Taking the expectation in both sides above yields, for any t < 1,
1
n m _2 m _2 n m\ — n — m
E[Y;" - 5")""] < E[(§ - 57") ]—2E[/ (Y = 58 (8, Y5, Zs, Vi) + n(YS" = 56)7 + a bds).
t

Then

It follows that
1 1 1
o IE| / (Y7 — ST (YD — S.)"ds] < B[ — 7)) + S B / (v — s 2ds) + EC.
0 € 0

Now since the sequence of processes (S™),,>0 converges to S in H 2L and S1 = L? — im0 ST then
taking the limit in the previous inequality as m — oo yields,

1 1 1
QnE[/ (Y — Ss)_2ds] < —2]E[/ (Y — SS)_Q]ds + €20,
0 € 0

S S
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. 1
and choosing e = n™ 2 implies

¢

1
B[ 07 -8 < (10)

3

But the inequality (10) can be written as

sup E[HKnHHl(O,l;Rd)] <00
nelN*

t
where K] = n/ (Y — S)"ds,t < 1, and H'(0,1; R?) is the usual Sobolev space consisting of all
0

absolutely continuous functions with derivative in L2(0,1). Hence the sequence (K™), is bounded in
the Hilbert space L?(Q; H'(0,1; IR?)) and then there exists a subsequence of (K™) which converges
weakly. The limiting process, which is actually K, belongs to L?(Q; H'(0,1; IR%)) and then P-a.s.,
K (w) € H(0,1; IR?) i.e. K is absolutely continuous with respect to Lebesgue measure dt (]

2.4 The Snell envelope method.

The aim of this part is to give another proof of the existence and uniqueness result using the so called
Snell envelope of processes (see El Karoui et al. [6] for the continuous case). However as it is pointed
out in the beginning of Section 1.2, first we assume the function f does not depend on (y, z,v), i.e.
f(t,y,z,v) = g(t), then we have the following result.

1.4.a. Proposition: There exists a process (Yz, Zt, Vi, K¢)i<1 solution of the reflected DBSDE asso-
ciated with (g, ¢, 5).

Proof: Let n:= (n:)t<1 be the process defined as follows:

t
ne = &ly=1y + Silpeny +/0 g9(s)ds,

then 7 is rcll and its jumping times 7 before 1 are the same as the ones of S and then they are
inaccessible since those of this latter process are so. Moreover

sup | € L (9). (11)
0<t<1

The Snell envelope of n is the smallest rcll supermartingale which dominates the process 7, it is given
by :

5, (n) = ess sup I [, | ]
veTy

where 7; is the set of stopping time v such that ¢ < v <1 a.s. Now due to (11), we have
E[sup,<; |S:|*] < oo and then (S;(n)):<1 is of class [D], i.e. the set of random variables {S-(n), 7 € 7o}
is uniformly integrable. Henceforth it has the following Doob-Meyer decomposition

1
&WZEF+Ag@w+mmﬂ—Kw

where (K (t)):<1 is an (Fi)i<1-adapted rcll non-decreasing process such that K(0) = 0. Furthermore
we have IE[K (1)?] < oo since E[sup,<; |S¢[*] < oo (see e.g. [4], p.221). It follows that

14



Esup;; |IE[§ + K(1)|F]|*] < oo and then, through the representation theorem of martingales with
respect to (Fi)i<1 (see [8]), there exist two processes Z = (Zi)i<1 and V = (V})i<1 which belong
respectively to H>? and £? such that,

M, = E[§+/1g(s)ds+K(1)\Ft]:]E[§+K(1)] /ZdB +/ /V i(ds, de), ¥t < 1.
0

Now let us show that the process K is continuous.

First let us underline that the jumping times of K are included in the set {S_ (n) = Q} where 1, =
limsupy » 75 = ni— since the process 7 is rell (see e.g. [EK], pp.131).

Now let 7 be a predictable stopping time, then

E[ST— (n)l{AK(7)>O}] = E[nT—l{AK(T)>O}] (12)
< En:liakmsoy) < ElS:(m)1liak >0yl

The second inequality is obtained through the fact that the process 1 has inaccessible jumping times,
and may have a positive jump at ¢ = 1. On the other hand,

E[S:-(M1{ak )=o) = E[(Mr— + K(7))1{ak (r)=0}]

— BI(M, + K()Liaxerrzoy) = EIS: ()1 iax ). (13)

The second equality stems from the fact that 7 is predictable, then M, = M, since the jumping times
of (My)¢<1 are those of its Poisson part and those latter are inaccessible. Now combining (12) and (13)
yields IE[S;_(n)] < IE[S;(n)] and then, since S(n) is a supermartingale, IE[S._(n)] = IE[S;(n)] for any
predictable stopping time 7. Henceforth the supermartingale (S¢(n)):<1 is regular, i.e. PS(n) = S_(n),
and then the process K is continuous (see [3], p.119).

Now let us set

Y; =esssup I [{1{1, 1+ Sulfpeny +/ g(s)ds ]Ft} ,
veT;

t
then Y; +/ g(s)ds = Si(n) = My — K(t),t < 1, henceforth we have
0

}/}+/Otg(s)d3:]E[§+K(l)] / ZsdBs —l—// e)ii(ds,de) — K(t),vt <1,

and then for any ¢t < 1 we have,

Yt=5+/ ()ds—/tZdW //v ids, de) + K(1) — K(t).

t
Now since Y; + / g(s)ds = S¢(n) then Y; > S, for any t < 1.
0

1
Finally it remains to show that / (Y —S¢)dK (t) = 0. The Snell envelope process (S¢(1))<1 is regular

0
ie. S_(n) =PS(n). Now let t <1 and §; := inf{s > ¢, K(s) > K(t)} A 1. As S(n) is regular then d;
is the largest optimal stopping time after ¢ (see e.g. [EK], p.140). It implies that Ss,(n) = 15, ([EK],

15



p.111) . Henceforth for any s € [t, ;] we have (Ss(n) —ns)dK(s) = 0 and then (Y; — S5)dK(s) =0
1
which implies / (Y, — Sy)dK(t) = 0.
0

The process (Y, Z, K, V) is then solution of the reflected BSDE associated with (g, &, S) O

Now we argue as in Thm.1.2.b. to obtain the existence and uniqueness of the solution of the reflected
discontinuous BSDE associated with coefficients f which depend on (y, z,v) and which are uniformly
Lipschitz with respect to those variables. Therefore we have,

1.4.b. Theorem: There exists a unique solution (Y, Z, K, V) = (Y, Z¢, K¢, Vi)i<1 for the reflected
backward stochastic differential equation (1) with jumps associated with (f,§,.5) O

2.5 Application of Reflected DBSDEs in mixed stochastic control.

Now we are going to highlight the link between mixed stochastic optimal control, when the noise is of
gaussian and Poisson types, and RDBSDEs.

Let us consider D; and Dj two compact metric spaces whose Borel o-algebras are respectively B(D1)
and B(Dz2), and f, g two functions defined as :

(i) f maps [0,1] x Q x D; into IR?, bounded and P ® B(D1)/B(IR?)-measurable. Moreover for any
(t,w) € [0,1] x £, the function f(t,w,.):d; € D1 — f(t,w,d;) is continuous.

(73) g maps [0, 1] xQx Dy x U into IR, is P x B(Dyx U)/B(IR)-measurable and there exist two constants
a1 and ag such that [g(t,w,da, e)| < aile|le<y) + azljjes1) for any (t,w,da,e) € [0,1] x 2 x Dy x U.
Moreover for any (t,w, e) the function g(t,w,e,.) : do € Dy +—— g(t,w, da,€) is continuous.

Now let Dy (resp. Dz) be the set of P-measurable processes with values in Dy (resp. Dsz). The set
D := Dy x Dy is called of admissible controls. For any § = (d1,d2) € D we associate a process Lo
defined as follows:

= ool feae)as g [1feaePas [ [ s.0ndeds)

t
- / / {e9(02(5)€) _ 1 _ g(s5,85(s), e) }A(de)ds], t < 1.
0 JU

The above assumptions on f and ¢ imply that L% is an (F}, P)-martingale and the measure P° on
(Q, F) defined by dP? = L9.dP is a probability (see e.g. [9]). Moreover under P, i9(dt, de) :=

t
fi(dt, de) — (e992(D)¢) _ 1)dt\(de) is an F;—martingale measure and (W) = W; — / f(s,01(s))ds)t<1
0

is an F;—Brownian motion.

Now let us consider § = (d1,02) € D, 7 an Fi-stopping time such that 7 < 1, P-a.s. and J(J,7) a
functional whose expression is given by:

J6,7) = B / ds{c(s, 51(s)) + / h(s,82(s), )R\ (de)} + Syl cy) + €1y
0 U
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where ¢ and h are two bounded measurable functions defined respectively on [0,1] x Q x D; and
[0,1] x © x Dy x U. Furthermore we suppose that ¢ is continuous with respect to dj, h continuous
with respect to dp and satisfies Ve € U, |h(t,w,ds, e)| < a(1 A le|?) for some a > 0.

The problem on which we are interested in is to look for (6%, 7*) which maximizes J(0, 7) i.e. J(0*,7*) >
J(0,7) for any other ¢ and 7.

We can think of J(d,7) as the profit that makes an agent who intervenes on a system whose evolution
is described by a stochastic process, say (X¢)i<1. An intervention strategy for the agent is a pair
(0,7), ¢ is his control action and 7 is the time he chooses to stop controlling. A strategy (0*,7*) which
maximizes J(J,7), if it exists, is called optimal for the agent.

In the expression of J(J,7), the term which is absolutely continuous with respect to dt is the instan-
taneous reward and the other is the reward at stopping for the agent.

This problem is called of mixed control type because it combines optimal control and stopping.

Assume the state evolution (X;):<; of the non-controlled system is described by a stochastic differential
equation of the following type:

Xt—x+Wt+ZAX1AXS|>1]+// dS de t§1

s<t |<1

The control action of the agent consists in choosing a probability P° under which the system will
evolve. So under P? the state evolution of the controlled system is described by :

X, = o+ WP+ /f561 ds+ZAX1[|AX‘>1 // ds ,de)

s<t |<1

t
+/ / e(e9(592(5)€) _ 1)\(de)ds, t < 1
0 Jlel<1

It means that the agent control action generates a drift for the dynamic of the system and a reward
which is equal to J(4, 7), therefore he looks for optimal strategies [J

We now go back to our general mixed control problem. Let H; and Hy be the hamiltonian functions
associated with this control problem, defined on [0, 1] x Qx IR¢x Dy and [0, 1] x Qx L2(U,U, X; IR) x Dy
respectively, as follows:

Hy(t,w,p,d1) =pf(t,w,dy) + c(t,w,d;)

and

Hy(t,w,v, dy) = / w(e)(e92:0) _ 1)) (de) + / h(t,w, d, €)e9042:0) ) (de).
U U

According to Benes’selection theorem [2], through the above assumptions on f and g, there exist
two measurable functions dj (¢, w,p) and d5(t,w,v) with values respectively in D; and Dj such that
Hy(t,w,p,d}) = supy,ep, Hi1(t,w,p,dy) and Hs(t,w,v,d3) = supy,cp, Ha(t,w,v,dz). Moreover the
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function from [0,1] x Q x R? x L%,(U,U, \) which with (¢,w,p,v) associates Hi(t,w,p,dj(t,w,p)) +
Hy(t,w,v,d5(t,w,v)) is Lipschitz in (p,v) uniformly on (¢,w). Indeed,

’Hl(t7wap> dT(t7w7p)) - Hl(tvwaplvdf(tawap/)”
= ‘ Supd1€D1 Hl(t?w7p7 dl) - Supd1€D1 Hl(t?w?p,7 dl)‘
< SUPg, eD; ’Hl(t7w>pa dl) - H1<taw7p,ad1)’ = SUPgq,eD, ‘f(tawadl)Hp _p/’ < C’p _pl‘7

since f is a bounded function. On the other hand
|H2(t7 W, v, d;(t’ w, U)) - HQ(tv W, Ulv d; (ta w, U/))‘ < SudeGDQ | / (U(B) - ,U/(e))(eg(t,W,dQ,e) - 1))‘(d6)|
U

< o = vl supg,ep, { / et —1PA(de)}2 < Cllo ],
U
since [e9(t92¢) — 112 < C(1 A |e|?), for any (t,ds, e) O

Now we are ready to give the main result of this part. Let (W*, Z* K* V*) be the solution of the
reflected DBSDE associated with [H1(t, z,d}(t,2)) + Ha(t,v, d5(t,v)), &, S| namely,

W*, K* € 82, YARS Hz’d, V* e 52; K™ is moreover continuous non-decreasing and K3 = 0
1 1
Wi = 6o [ (s 2200 20)) + Halo V25, V2 ) s + K = KE = [ 2,
t t

1 1
—/ ds/ Vi(e)iu(ds,de); Wi > Sy, vt < 1; / (Ws —SHdK? =0.
t U 0

On the other hand for any ¢ <1, let 77" = inf{s > ¢, W} = Ss} A1 and 6" = (di(¢, Z}), d2(t, Vi) )i<1-
Then we have :

1.5.a. Theorem: The process (W;");<1 is the value function of the mized optimal control problem,
ie., forany t <1,

W; = esssupgepesssupTZtE‘s[/T ds{c(s,di(s)) —I—/ h(s,da(s),e)ed®%2()€) \(de)}
' +Sr 1<) + 515:1} |Fi]; 7 is a stopping time.
Moreover the strategy (6%, 75) is optimal and Wy = J(6*, 7).
Proof: Through the Burkholder-Davis-Gundy inequality ([4], p.304), the processes

t t
(/ / VZ(e)i® (ds,de))i<1 and (/ ZXdW? )< are PY"-martingales. In addition we have
0 Ju 0

S
Whe = WE e ) + Wil = Sep Lirca) + Eljrp=)-
It follows that, since W} is Fy-measurable and K| = K :{"

Wi = I*Ea* [Sri <1y + €1y =1y +

T T . .
/ (s, d%(s, Z2))ds + / ds / h(s,d5(s, Vi (e)), e)ed®d &V €)e) X (de)| 7.
t t U
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Now let 6 = (d1,d2) be another control and 7 a stopping time such that 7 > ¢, P-a.s.. Once again
since W} is Fi-measurable, we have,

Wi :E6[/ {Hl(s,Z;‘,dT(s,Z;“))+H2(5,VS*,d§(s,V:))}ds+K:—Kt*—/ 7*dB,
t - 0
_/ /%*(e)ﬂ(ds,de)+W:]ft]
t U
But
Ha(s, 22, d5(5, 22)) > 72 £(s,da(5)) + cls, i (5)) and H(s, Vi, d3(s, V) > Ha(s, Vi d(s),

then
W >E5/ (27 f(5,di(5)) + cls,d1(s)) + Ha(s, V*, do(s)) Vs + K — K7
t

—/ Z7dBs — / /V* f(ds, de) + W*|Fi
t

which implies, since K7 — Ki > 0 and W > 57119 + {11,
Wi > E(S[/ ds{c(s, di(s)) +/ h(s,da(s), )e? RN (de)} + 871y q) + Elpryy | 7]
t U

The last inequality is due to the fact that / Z*dB® and // Vi (e)ii®(ds,de) are (F;, PY)-
0 U
martingales. Henceforth we have, for any ¢t < 1,

Wi = esssup(;epesssup7>tlE‘s[/ ds{c(s,dl(s))+/ h(s,da(s),e)ed®%2(5)e) \(de)}
- t U

+8r1r<1) + &1 =q]|F]; 7 is a stopping time.

Now taking ¢t = 0 we have W5 = J(6*,7;) and Wj > J(J,7) for any 6 € D and 7 a stopping time,
since Fy is the trivial tribe. It follows that J(0*,75) > J(0,7) for any ¢, 7, i.e., (6%, 7;) is an optimal
strategy for the agent. [J

This problem has been considered yet by N. El-Karoui [5] in a general case and J.P.Lepeltier &
B.Marchal [9] in a particular case. Using martingale methods, which are a heavy tool, all of them
show the existence of an optimal strategy. We show here that this problem can be solved in a simple
way.
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