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Abstract. This paper concentrates on a particular first-order coupled PDE system. It provides both a
detailed treatment of the existence and uniqueness of monotone travelling waves to various equilibria, by
differential-equation theory and by probability theory and a treatment of the corresponding hyperbolic
initial-value problem, by analytic methods.

The initial-value problem is studied using characteristics to show existence and uniqueness of a bounded
solution for bounded initial data (subject to certain smoothness conditions). The concept of weak so-
lutions to partial differential equations is used to rigorously examine bounded initial data with jump
discontinuities.

For the travelling wave problem the differential-equation treatment makes use of a shooting argument
and explicit calculations of the eigenvectors of stability matrices.

The probabilistic treatment is careful in its proofs of martingale (as opposed to merely local-martingale)
properties. A modern change-of-measure technique is used to obtain the best lower bound on the speed of
the monotone travelling wave — with Heaviside initial conditions the solution converges to an approximate
travelling wave of that speed (the solution tends to one ahead of the wave-front and to zero behind it).
Waves to different equilibria are shown to be related by Doob h-transforms. Large-deviation theory
provides heuristic links between alternative descriptions of minimum wave speeds, rigorous algebraic
proofs of which are provided.
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1 Introduction

Connections between parabolic and elliptic equations and diffusion processes are well-known. In this paper
we explore the connections between hyperbolic partial differential equations and stochastic processes by
treating the following system.
Let r1, r2, q1, q2 be positive (since they correspond to rates of probabilistic processes) constants and
b1, b2 unrestricted real constants, fixed throughout. Let θ be a positive rate parameter. We consider
an equation system related to the generalized FKPP system discussed in Champneys, Harris, Toland,
Warren and Williams [2]. Here the system of interest is

∂u

∂t
= B

∂u

∂x
+R(u2 − u) + θQu, (1)

where u is a vector-valued function from [0,∞) × R to R
2 , u = (u1, u2) ∈ R

2 and u2 = (u2
1, u

2
2), and

where

B :=
(
b1 0
0 b2

)
, R :=

(
r1 0
0 r2

)
, Q :=

(−q1 q1
q2 −q2

)
.

(We use ‘:=’ to mean ‘is defined to equal’.)
Dunbar [8] considered a similar system but with q1 = q2, r1 = r2 and the nonlinearity was 1

4 (u1 +

u2)2
(

1
1

)
rather than u2. Holmes [10] compared reaction-diffusion systems to reaction-telegraph models

(again with symmetry in the nonlinearity in both terms) for animal movement; if equation (1) is rewritten
as a single second-order PDE it can be seen that our system is a reaction-telegraph model, though we
find it more convenient to work with the pair of first-order equations. Hadeler [9] discussed more general
non-linearities but still retained the condition q1 = q2. We contrast the probabilistic interpretation of
these models and ours in section 1.4.
A travelling-wave solution of equation (1) is a solution of the form u(t, x) := w(x − ct) (where w : R →
R

2 ). w describes a travelling wave if and only if

(B + cI)w′ +R(w2 − w) + θQw = 0. (2)

The ‘source point’ S = (0, 0) and the ‘target point’ T = (1, 1) are clearly equilibria of equation (2). If
r1r2 ≥ 4θ2q1q2, there will also be equilibria at the two points

E± =
(

1
2

+ θρ1 ±
√

∆,
1
2

+ θρ2 ∓
√

∆
)
,

where ρi := qi/ri and ∆ := 1
4 − θ2ρ1ρ2.

For θ ∈ (0,∞) we study the existence of monotone travelling waves from S to T . Waves from S to the
other equilibria can be obtained through a transformation detailed in section 1.3. Monotone travelling
waves from S to T have a direct probabilistic interpretation which we will explore in this paper, but
whether such an intepretation of other travelling waves is possible is unclear.

1.1 Stability of equilibria

Suppose that (B + cI) is invertible and write equation (2) in the form

dw
dx

= F (w). (3)

Then F is a quadratic polynomial. Let E be an equilibrium point of (2), thus F (E) = 0. Then write
w(x) − E = v(x) and expand equation (3) to first order in v. This yields

dv
dx

= K(E)v, Kij(E) :=
∂Fi

∂wj
evaluated at w = E.
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Thus Kc,θ(T ) (we write Kc,θ to emphasize the dependence on c and θ) satisfies

(B + cI)Kc,θ(T ) +R+ θQ = 0 (4)

and Kc,θ(S) satisfies
(B + cI)Kc,θ(S) −R+ θQ = 0.

The stability properties of these matrices are investigated in section 3.

1.2 The main ODE theorem

DEFINITION. An eigenvalue λ of a real 2 × 2 matrix M will be called stable [respectively, unstable]
monotone if

(i) λ is real and negative [positive], and

(ii) M has an eigenvector (v1, v2) corresponding to λ with v1v2 ≥ 0.

This definition links nicely with the Perron-Frobenius Theorem (see Seneta [15]). The theorem implies
that a square matrix M with all off-diagonal entries strictly positive has a special eigenvalue Λ

PF
(M)

with an associated eigenvector with all entries positive and such that every other eigenvalue of M has
real part less than Λ

PF
(M). Moreover, any eigenvector with all entries positive must be a multiple of the

Perron-Frobenius eigenvector.

As will be proven in section 3 (Lemma 3.1), for any fixed θ > 0, there exists a critical value c(θ) in the
interval min(−b1,−b2) ≤ c(θ) ≤ max(−b1,−b2) — with the property that if c > c(θ), c 6= max(−b1,−b2),
then Kc,θ(T ) has at least one stable monotone eigenvalue, and if c < c(θ), c 6= min(−b1,−b2), it has no
such eigenvalues. Since a necessary condition for the existence of a monotone travelling wave of (2) which
converges to T as x→ ∞ is the existence of a stable monotone eigenvalue of Kc,θ(T ) this provides a lower
bound on possible values of c for which a monotone travelling wave can exist. It is shown later that this
condition on c is also sufficient for the existence of a monotone connection from S to T , see section 4.5.
Large-deviation theory gives probabilistic heuristics for this critical value, see section 5.2. Thus we can
state our main result as follows.

Theorem 1.1 Suppose that c > c(θ), then there exists one and, modulo translation, only one monotone
solution of equation (2) with w(x) → S as x → −∞ and w(x) → T as x → +∞. For c < c(θ) there is
no such solution.

This theorem is proven in section 4 using a shooting argument. Behaviour at c(θ) itself depends on the
relative values of parameters as follows (these special cases are detailed in section 4.6):

• If c(θ) is in the interval min(−b1,−b2) < c(θ) < max(−b1,−b2) then there is a unique, monotone
solution for c = c(θ);

• For i = 1, 2, if c(θ) = −bi, then there is a unique monotone solution for c = c(θ) if and only if
θqi = ri.

1.3 A Doob h-transform

As in Champneys et al. [2] there is a Doob h-transform that maps monotone waves from S to one of
the equilibria to monotone waves from S to another of the equilibria. This fact is summarised by the
following Lemma.
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Lemma 1.2 Suppose that θ is fixed at a value where ∆ ≥ 0, so that E+ and E− exist. If E = (α1, α2)
denotes either E+ or E−, then the substitution

q̃i := qiαj/αi (j 6= i), r̃i := riαi, ũi := ui/αi, w̃i := wi/αi (5)

transforms (1) and (2) into their ∼ versions, monotone waves from S to E for the original problem
corresponding exactly to monotone waves from S to T for the ∼ problem. The possibility that E+ = E−
and ∆ = 0 is not excluded.

Much of our work therefore automatically transfers to the case when T is replaced by E+ or E−, though
the critical values c±(θ) of θ corresponding to waves from S to E± will be different.

1.4 Key probability theorems

Our aim in section 5 will be to prove the following theorems which connect a probability model, defined
below, with the system (1). Note that we often switch between two equivalent notations in the probability
part of this paper to reduce the use of subscripts. Thus we will sometimes write, for example, b(y) for
by, w(x, y) for wy(x) and u(t, x, y) for uy(t, x) (for y = 1, 2).

Let I := {1, 2} and consider the following two-type branching system of particles. At time t ≥ 0, there
are N(t) particles, the k-th particle — in order of birth — having position Xk(t) in R and type Yk(t) in
I. The state of the system at time t is therefore(

N(t); X1(t), . . . , XN(t)(t); Y1(t), . . . , YN(t)(t)
)
. (6)

Particles, once born, behave independently of one another. Each particle lives forever. The type of a
particle (once born) is an autonomous Markov chain on I with Q-matrix θQ. While a particle is of type
y ∈ I, it moves with constant velocity b(y), and it gives birth — to one child each time, at its own current
position and of its own current type — in a Poisson process of rate r(y). So, r(y) is the breeding rate of
type y.

The branching system in Dunbar [8] had q1 = q2, r(1) = r(2) and particles, rather than giving birth to
one particle of the same type and living on themselves, die and give birth to two particles of independent
random types, with each having equal probability of being of either type. The equations studied by
Hadeler [9] correspond to the new pair of particles having type correlated to that of their parents, for
any correlation except ±1. Our model permits q1 6= q2, so that the particle-type Markov Chain can have
any equilbrium distribution on I

For our model it makes no difference whether you consider that one new particle has been born and the
old one lives on too, or that two new particles of the same type are born. However, when the type of
the new particles is random, this distinction is crucial. Our model is thus distinct from those previously
considered.

Write Px,y (with associated expectation Ex,y ) for the law of this process when it starts from one particle of
type Y1(0) = y at position X1(0) = x. By martingale [respectively, local martingale, supermartingale, ...]
we mean a process which is for every Px,y a martingale [respectively, ...] relative to the natural filtration
Ft (Px,y-augmented, to be precise) of the process at (6).

The state-space for this process is

S :=
⋃
n≥1

(
{n} × R

n × In

)
. (7)

Define L(t) := infk≤N(t)Xk(t). This is the position of the left-most particle. The asymptotic speed of
the left-most particle is limt→∞ t−1L(t).
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Theorem 1.3 As t → ∞, the following holds almost surely (a.s.)

t−1L(t) → −c(θ). (8)

If u satisfies the coupled system (1), for t ≥ 0 and x ∈ R and if

u(0, x, y) =
{

1 if x > 0,
0 if x ≤ 0,

then for t > 0, 0 ≤ u(t, x, y) ≤ 1, u(t, x, y) = Px,y[L(t) > 0], and u is an approximate travelling wave of
speed c(θ) in the sense that

u(t, x+ γt, y) →
{

0 if γ < c(θ),
1 if γ > c(θ).

This theorem is proved, along with the following one, in sections 5.4 and 5.5. The theorem allows us to
relate the speed of the spread of the particles in the probabilistic model with the wave speed of travelling
waves. Specifically, we are claiming that the left-most particle travels, in the limit, at the speed −c(θ),
where c(θ) is the critical speed above which a unique monotone travelling wave exists and below which
no such wave exists.

An analytic proof that the weak solution of (1) is between 0 and 1 for the Heaviside initial data is
included in section 2.4, as well as a proof that for continuous initial data between 0 and 1 the solution
remains between 0 and 1 (see Lemma 2.2 and the subsequent remarks). The work of section 2 is not
necessary for the probabilistic approach to the problem but adds insight from the viewpoint of classical
analysis, and vice-versa. In section 5 we show that any (smooth) solution to the coupled system (1) that is
between 0 and 1 has a McKean representation. We use this representation to motivate the (probabilistic)
construction of a solution for the initial-value problem with Heaviside initial data. This constructed
solution is then directly verified to satisfy the appropriate equations and does remain between 0 and 1.

Consider the case when X1(0) = 0 and Y1(0) = 1, that is, work with the P0,1 law: P := P0,1. The
terminology — probabilistic eigenvalue of Kc,θ(T ) — is a shorthand explained fully after Theorem 5.2.

Theorem 1.4 (i) Let c > c(θ). Let λ be the probabilistic eigenvalue of Kc,θ(T ). Define

Zλ(t) :=
N(t)∑
k=1

vλ

(
Yk(t)

)
exp
{
λ
[
Xk(t) + ct

]}
,

with vλ being the eigenvector (with vλ(1) = 1) corresponding to Λ
P F

(λ), the Perron-Frobenius eigenvalue
of λB + θQ+R. The fact that Zλ is a martingale (see the discussion after Theorem 5.2) implies that

lim inf
t→∞ t−1L(t) ≥ λ−1Λ

PF
(λ) (a.s.).

(ii) Since Zλ(∞) exists in L1 (by Theorem 5.4) and Zλ(0) = 1, we can define a measure Qλ equivalent
to P on F∞ by

dQλ/dP = Zλ(∞) on F∞, whence dQλ/dP = Zλ(t) on Ft.

Then
Mλ(t) := Zλ(t)−1 ∂

∂λ
Zλ(t)

defines a Qλ-martingale, and
t−1Mλ(t) → 0 (a.s.).

This implies that

lim sup
t→∞

t−1L(t) ≤ ∂

∂λ
ΛPF (λ) (a.s.).
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(iii) As c ↓ c(θ), we have

λ−1ΛPF (λ) → −c(θ) and
∂

∂λ
ΛPF (λ) → −c(θ),

so that (8) follows.

This result gives us the weaponry to prove Theorem 1.3 using martingale techniques. Note that Theo-
rem 1.3 is proved using Theorem 1.4, and that in section 5.4 we prove Theorem 1.4 via the Theorems
and Lemmas in the preceding sections of section 5 — hence various references to Theorems of section 5
in the statement of Theorem 1.4 are not circular.

1.5 Summary chart of results

This table is intended to help keep track of the various cases determined by the values of parameters.
There is no monotone travelling wave from S to T if No appears in both right-hand columns. The inside
and outside regions mentioned here are defined in section 4 where it is shown that if a monotone travelling
wave exists then it lies either in an inside, or an outside region.

Number of unstable Number of stable Monotone Connection
monotone monotone through

eigenvalues at S eigenvalues at T inside region outside region
c > max(−b1,−b2) 1 1 Yes No

max(−b1,−b2) > c > c(θ) 1 2 No Yes
c(θ) > c > min(−b1,−b2) 1 0 No No

c < min(−b1,−b2) 0 0 No No

When c ∈ {−b1,−b2} the coupled system (1) becomes an ODE and an algebraic equation. The only
candidate for a travelling wave from S to T is the corresponding segment of the solution of the algebraic
equation (which is a parabola) — full details of this special case are in section 4.6.

2 Existence and uniqueness results for the PDE initial-value
problem

To study the question of global existence and uniqueness of solutions to the initial-value problem for the
system (1), it is convenient to change to moving coordinates (moving at a speed of 1

2 (b1 + b2)) and then
re-scale space so that the coefficients of ux are 1 and −1. This is possible unless b1 = b2 — we deal with
this case in section 2.6. We use subscript notation to represent derivatives and relabel so that the system
becomes:

ut − ux = r1(u2 − u) + θq1(v − u) =: f(u, v); (9)
vt + vx = r2(v2 − v) + θq2(u− v) =: g(u, v). (10)

The functions f and g are introduced to simplify notation.

We are particularly interested in the Cauchy problem for Heaviside initial data:

u(0, x) = v(0, x) =
{

1 if x > 0,
0 if x ≤ 0,
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which we study in section 2.4, but first we study the Cauchy problem with C1-initial data.
The characteristics are x+t = constant, on which ∂u

∂t = f(u, v) and x−t = constant, on which ∂v
∂t = g(u, v).

Integrating along the characteristics from t = 0 to a point (T,X) gives:

u(T,X) = u(0, X + T ) +
∫ T

0

f
(
(u, v)(t,X + T − t)

)
dt;

v(T,X) = v(0, X − T ) +
∫ T

0

g
(
(u, v)(t,X − T + t)

)
dt.

We work in the Banach space C1 of 2-vector-valued functions w for which w and wx are continuous and
bounded for all x, in which we choose as norm |||w||| = max(||w||, ||wx||), where ||w|| := supx∈R |w(x)|, the
usual L∞-norm. These equations can be used with the Contraction Mapping Principle to prove existence
and uniqueness of classical solutions for a short time for C1-initial data. See Courant and Hilbert [5,
pages 461–471] for details.

2.1 Proofs for smooth initial data

To go from short-time existence and uniqueness of solutions to global existence and uniqueness we prove
the following lemmas which give bounds on the solutions for all time (for a certain class of initial data).
These bounds then allow iteration of the Contraction Mapping argument — hence local existence and
uniqueness become global. This iteration is done by using the solution obtained from local existence and
uniqueness, up until a small, fixed time, τ , then taking the value of this solution at time τ as initial data,
and repeating the argument. The bounds obtained in the following two lemmas allow repeated use of the
same τ at each step, rather than having to take a sequence of τn (whose sum may converge to a finite
blow-up time), thus we obtain existence and uniqueness for all time. To set our notation, note that we
will write u(0, x) = u0(x), v(0, x) = v0(x) for −∞ < x <∞.

Lemma 2.1 If 0 < u0(x), v0(x) < K ≤ 1 for all x, and (u0, v0) is in C1, then C1 solutions (u, v) of
equations (9), (10) satisfy 0 < u, v < K for all time.

Proof. Suppose, for a contradiction, that there exists a point (T,X) where (u, v) is outside the square,
(0,K)2. The value of (u, v) at this point only depends on the initial data in the interval [X−T,X+T ] —
this is the domain of dependence (see Courant and Hilbert [5, pages 438–440]). This data determines the
solution (u, v) throughout the closed triangle, which we shall denote by Ω, of (t, x)-space whose corners
are (T,X), (0, X − T ) and (0, X + T ).

Since Ω is compact and u and v are continuous, for each of the possible violations (that is, violations of
the four inequalities u < K, u > 0, v < K and v > 0) we can find a first time it occurs in Ω. For example,
if u ≥ K at some point in Ω then there exists a point (t0, x0) ∈ Ω such that u(t0, x0) = K and, for all
(t, x) ∈ Ω with t < t0, u(t, x) < K. Similarly we can find a time (and corresponding spatial position)
where the first violations of u > 0, v < K and v > 0 occur in Ω (if such violations do occur). We can
then study the first violation that happens, by taking the one corresponding to the minimum of these 4
times (taking the time to be T + 1 if it does not occur in Ω). This is well-defined because we know there
is at least 1 violation and at most 4.

So, consider each possible first violation in turn. Firstly, that there exists a point (t0, x0) ∈ Ω such
that u(t0, x0) = K and, for all (t, x) ∈ Ω with t < t0,

(
u(t, x), v(t, x)

) ∈ (0,K)2. Then consider u
restricted to the characteristic x = x0 + t0 − t through (t0, x0) (which lies entirely in Ω). From (9), with
u = u(t, x0 + t0 − t),

∂u

∂t
= r1(u2 − u) + θq1(v − u) < r1(u2 − u) + θq1(K − u)

≤ θq1(K − u).
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Therefore, u ≤ K + (u0 −K) exp(−θq1t) < K where u0 = u(0, x0 + t0), for 0 ≤ t ≤ t0, which contradicts
u(t0, x0) = K.
Similarly, we can show that v(t, x) < K for all (t, x) ∈ Ω, and we use a similar argument to show u > 0
and v > 0:

∂u

∂t
≥ −(r1 + θq1)u,

so u ≥ u0 exp
(−(r1 + θq1)t

)
> 0 if u0 > 0.

Hence no violation occurs in Ω which is a contradiction. This completes the proof. �

Lemma 2.1 allows us to prove the following:

Lemma 2.2 If 0 ≤ u0(x), v0(x) ≤ K for all x, for some constant, 0 < K ≤ 1, and u0, v0 are in C1,
then there exists a unique (global) C1 solution (u, v) of equations (9), (10) satisfying 0 ≤ u, v ≤ K for all
time.

Proof. Consider a sequence (un, vn)(x) of initial data satisfying the conditions of Lemma 2.1, which
converges in C1 to (u0, v0)(x). That is, each (un, vn) ∈ C1, 0 < un, vn < K,

sup
x

(|u0 − un| , |v0 − vn|) → 0 as n→ ∞

and

sup
x

(∣∣∣∣∂u0

∂x
− ∂un

∂x

∣∣∣∣ ,
∣∣∣∣∂v0∂x

− ∂vn

∂x

∣∣∣∣
)

→ 0 as n→ ∞.

Up to any fixed time τ , solutions u(n)(t, x), v(n)(t, x) satisfy 0 < u(n), v(n) < K by Lemma 2.1, so that,
limn→∞(u(n), v(n)) = (u, v) lies in [0,K]2. The fact that this limit exists and is a unique solution is
standard (see Courant and Hilbert [5, pages 467–468]). Since τ is arbitrary the result is true for all time. �

This lemma completes the proof of global existence and uniqueness of bounded solutions for smooth
initial conditions between 0 and any constant 0 < K ≤ 1. This upper limit on K is the best possible,
since u2 − u > 0 for u > 1, so the solution tends to grow. Indeed, it is clear that for u0(x) = v0(x)
identically equal to 1 + ε, for any ε > 0, the solution blows up in finite time.
However it is possible to extend the above lemmas to deal with initial data below 0, since the u2 − u
nonlinearity will tend to push the solution up towards 0.

Lemma 2.3 If −∞ < K < u0(x), v0(x) < 0 for all x, and (u0, v0) is in C1, then C1 solutions (u, v) of
equations (9), (10) satisfy K < u, v < 0 for all time.

Proof. We can again look for the first violation, this time of the four restrictions u > K, u < 0, v > K, v <
0, and look at a characteristic going through a point at which the first violation occurs.
For the case u = K, note that

∂u

∂t
= r1(u2 − u) + θq1(v − u) > θq1(v − u)

> θq1(K − u),

so that u does not hit K.

For u = 0, note that, looking at the characteristic sufficiently close to the violation point (so that u > −1)

∂u

∂t
= r1(u2 − u) + θq1(v − u) < r1(−2u) + θq1(−u)

< −(2r1 + θq1)u,
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so that u does not hit 0 either.
Similarly for v. Thus all the contraction mapping arguments extend to all time in the same way that the
bounds on data between 0 and K (for 0 < K ≤ 1) extended existence and uniqueness in that case. �

In the same way that we passed from Lemma 2.1 to Lemma 2.2 we can relax the strict inequalities in the
hypotheses of Lemma 2.3 to obtain the following result.

Lemma 2.4 If −∞ < K ≤ u0(x), v0(x) ≤ 0 for all x, for some constant K < 0, and (u0, v0) is in C1,
then C1 solutions (u, v) of equations (9), (10) satisfy K ≤ u, v ≤ 0 for all time.

Combining Lemma 2.2 and Lemma 2.4 prepares the ground for the following result.

Lemma 2.5 If K1 < u0(x), v0(x) < K2 for all x, for some constants −∞ < K1 ≤ 0 and 0 ≤ K2 ≤ 1,
and (u0, v0) is in C1, then C1 solutions (u, v) of equations (9), (10) satisfy K1 < u, v < K2 for all time.

Proof. If K1 = 0 then this result is simply a restatement of Lemma 2.2, and Lemma 2.4 deals with the
case K2 = 0. So, we may assume that K1 < 0 < K2.
For a violation such as, say, u = K1, note that, considering a section of the characteristic sufficiently
close to the violation point for u < 0

∂u

∂t
= r1(u2 − u) + θq1(v − u) > θq1(v − u)

> θq1(K1 − u),

so that u does not hit K1.
For u = K2, note that, considering the characteristic sufficiently close to the violation point (so that
u > 0)

∂u

∂t
= r1(u2 − u) + θq1(v − u) < θq1(v − u)

< θq1(K2 − u),

so that u does not hit K2.
Similarly for v, hence we are done. �

Finally, again using the inequality relaxation, and noting that if the initial data is identically zero then
the solution is identically zero for all time, we have:

Lemma 2.6 If K1 ≤ u0(x), v0(x) ≤ K2 for all x, for some constants −∞ < K1 ≤ 0 and 0 ≤ K2 ≤ 1,
and (u0, v0) is in C1, then C1 solutions (u, v) of equations (9), (10) satisfy K1 ≤ u, v ≤ K2 for all time.

No such result will be true for a pair of constants K1 and K2 both strictly on the same side of zero —
the solution to the initial value problem with u0 = v0 identically equal to some constant K, such that
−∞ < K < 1, tends monotonically to zero (see section 2.6). This fact is put together with comparison
arguments in section 2.2 to give a much stronger result than Lemma 2.6.
Given bounded initial data with an upper bound no greater than 1, we can read off the appropriate values
of K1 and K2 by defining:

K1 = min
(

0, inf
x

(
u0(x)

)
, inf

x

(
v0(x)

))
,

K2 = max
(

0, sup
x

(
u0(x)

)
, sup

x

(
v0(x)

))
.
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Local existence of solutions with piecewise smooth initial data (i.e. continuous but with a finite number
of jump discontinuities in the x-derivative) follows by approximating (in the supremum norm) piecewise
smooth data by C1 data — the limiting solutions are classical except on characteristics x ± t = x0

propagating from points x0 of discontinuity of ∂u0
∂x ,

∂v0
∂x .

2.2 Comparison results

Consider two solutions (u, v) and (ũ, ṽ) of the equations (9),(10), with u(0, x) = u0(x), v(0, x) = v0(x),
ũ(0, x) = ũ0(x), ṽ(0, x) = ṽ0(x). On the characteristics of the form x+ t = constant, we know that

∂u

∂t
= r1(u2 − u) + θq1(v − u),

∂ũ

∂t
= r1(ũ2 − ũ) + θq1(ṽ − ũ),

and similar equations for v and ṽ along the other characteristics.

Studying the difference between the solutions along a characteristic x+ t = constant, we see that it obeys
the equation

∂(u− ũ)
∂t

= r1
(
(u2 − ũ2) − (u− ũ)

)
+ θq1

(
(v − ṽ) − (u− ũ)

)
,

= (u− ũ)
(
r1(u+ ũ− 1) − θq1

)
+ θq1(v − ṽ).

Provided that the initial data (u0, v0) and (ũ0, ṽ0) satisfies the conditions of Lemma 2.6, then (u + ũ)
will be bounded below (for all time), enabling us to write, along the characteristic up until a putative
equality of u and ũ,

∂(u− ũ)
∂t

≥ C(u− ũ) + θq1(v − ṽ),

for some constant C. There is a similar equation for the difference of v and ṽ.

Thus, if u0 > ũ0 and v0 > ṽ0, then, for all time, u > ũ and v > ṽ. By taking sequences of initial data we
obtain the following result.

Lemma 2.7 If (u, v) and (ũ, ṽ) are C1 solutions of equations (9),(10) with u0 ≥ ũ0 and v0 ≥ ṽ0, then,
for all time, u ≥ ũ and v ≥ ṽ.

Since the solution to the initial value problem with u0 = v0 identically equal to some constant K, such
that −∞ < K < 1, tends monotonically to zero (see section 2.6), then any solution bounded between
−∞ < K1 ≤ 0 and 0 ≤ K2 < 1 will tend to zero. Thus Lemma 2.6 can be modified to the following
result.

Lemma 2.8 If K1 ≤ u0(x), v0(x) ≤ K2 for all x, for some constants −∞ < K1 ≤ 0 and 0 ≤ K2 < 1,
and (u0, v0) is in C1, then C1 solutions (u, v) of equations (9), (10) satisfy K1 ≤ u, v ≤ K2 for all time
and u(t, x) and v(t, x) → 0 (uniformly in x) as t→ 0.

2.3 Weak solutions and the Rankine-Hugoniot jump conditions

To deal with discontinuous initial data it is necessary to utilize the concept of weak solution.

DEFINITION. A test function is a 2-vector-valued function Φ :=
(
φ1(t, x), φ2(t, x)

)
such that each of φ1

and φ2 is infinitely differentiable with compact support (i.e. φ1, φ2 ∈ C∞
0 ).
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DEFINITION. For u, v bounded and measurable, we say that U := (u, v) is a weak solution of equation (1)
if, for all test functions Φ,∫ ∞

t=0

∫ ∞

x=−∞

(
U · Φt −BU · Φx +

(
R(U2 − U) + θQU

) · Φ)dtdx+
∫ ∞

x=−∞
U(0, x) · Φ(0, x)dx = 0. (11)

For a piecewise classical solution to be a weak solution its curves of discontinuity in the xt-plane must
satisfy certain conditions, known as the jump or Rankine-Hugoniot conditions. For a semi-linear system
such as (1) it is well known that these conditions imply that a component of the weak solution can only
have discontinuities across characteristics corresponding to that component (shock paths can only be
characteristic curves).

Moving to the weak setting requires care since jump conditions are not necessarily sufficient to guarantee
uniqueness of solutions. Lemma 2.9 proves existence and uniqueness of weak solutions for a certain class
of bounded, measurable initial data.

2.4 Heaviside initial data

We now construct explicitly a piecewise classical solution for Heaviside initial data that satisfies the
Rankine-Hugoniot jump conditions (hence it is a weak solution and will be shown to be unique by
Lemma 2.9).

For the Heaviside initial data the jump conditions reduce to two requirements — that the discontinuity
in u propagates along the characteristic for u that goes through zero, i.e. u jumps across x = −t and
is continuous elsewhere, and that the discontinuity in v propagates along the characteristic for v that
goes through zero, i.e. v jumps across x = t and is continuous elsewhere. We have defined the Heaviside
function so as to be left-continuous and construct so that our solution inherits this property — this
matches the continuity which the probabilistic approach implies. The probabilistic interpretation of this
solution is discussed in section 5.5.

Clearly the solution for the Heaviside data is identically zero for x ≤ −t and identically one for x > +t.

We are constructing a left-continuous solution — therefore on x = +t, u = 1 while v remains to be
calculated.

We integrate along the x = +t characteristic to find v there. Since u = 1,

∂v(t,+t)
∂t

= r2(v2 − v) + θq2(1 − v)

and v(0, 0) = 0. Hence, when r2 6= θq2,

v(t,+t) =
θq2

(
exp
(
(r2 − θq2)t

)− 1
)

r2 exp
(
(r2 − θq2)t

)− θq2
,

and v increases from 0 to min
(

θq2
r2
, 1
)

as t goes from 0 to ∞. When r2 = θq2,

v(t,+t) =
r2t

r2t+ 1
,

and v increases from 0 to 1 as t goes from 0 to ∞.

We can also investigate the discontinuity in u along x = −t similarly. v is continuous across this
characteristic and zero on it, so is zero on x = −t+. Thus, integrating along the inside edge of the
characteristic,

∂u(t,−t+)
∂t

= r1(u2 − u) − θq1u

11



and u(0, 0+) = 1. Hence,

u(t,−t+) =
r1 + θq1

r1 + θq1 exp
(
(r1 + θq1)t

) ,
and u decreases from 1 to 0 as t goes from 0 to ∞.

We now know the values of both u and v on the inside edge of the wedge |x| < t, between the discontinuities
— and this data is continuous and between 0 and 1. Thus there is a unique solution to the problem
with these as initial/boundary values and this solution is between 0 and 1. It can be found by following
characteristics x+ t = constant from the x = +t characteristic. This solution is piecewise classical with
the only discontinuities being across the characteristics as required and so is indeed a weak solution.

Results of computational work on this initial-value problem will be reported elsewhere.

2.5 Discontinuous initial data

We follow the method of Beale [1] in his work on the Broadwell model. Let φ be a test function with

φ ∈ C∞
0 , φ ≥ 0,

∫ ∞

−∞
φ(x)dx = 1,

and let φk(x) = kφ(kx), k ∈ N. For non-smooth initial data (u0, v0) we consider initial data formed
by mollifying (u0, v0). We use the convolutions u(k)

0 = u0 ∗ φk and v
(k)
0 = v0 ∗ φk and check that the

corresponding solutions of the PDE converge as k → ∞. Note that if u0 and v0 are between constants
K1 and K2, then so are the mollified versions, u(k)

0 and v(k)
0 .

In the following argument we consider differences between solutions for different mollifications of the
same measurable initial data. We work with initial data that is bounded between constants K1 and K2,
such that −∞ < K1 ≤ 0 and 0 ≤ K2 ≤ 1, i.e.

(
u0(x), v0(x)

) ∈ [K1,K2]2 for all x. For the argument to
work these differences between solutions should be in L1, which we show follows if the difference between
two different mollifications of the initial data is in L1. This is clearly true for the Heaviside data, and
for initial data that is itself in L1. Then, for example, it is true for bounded initial data that only differs
from the Heaviside function by an L1-function.

With this in mind define a step function s to be a function of the form

s(x) =
{
k1 if x > 0,
k2 if x ≤ 0,

for some constants k1 and k2 such that −∞ < k1, k2 ≤ 1. Then if both components of the initial
data differ from step functions (with possibly different constants) by L1-functions, the difference between
mollifications will be L1.

Lemma 2.9 Let
(
u0(x), v0(x)

) ∈ [K1,K2]2 for all x, such that each of u0(x) and v0(x) differs from a
step function by an L1-function. Define u(k)

0 = u0 ∗ φk and v(k)
0 = v0 ∗ φk as above and let (u(k), v(k)) be

the solution of (1) with
(
u(k)(0), v(k)(0)

)
= (u(k)

0 , v
(k)
0 ). Then the u(k) and v(k) are between K1 and K2

for all t, x and, for 1 ≤ p < ∞, for τ > 0 arbitrary, (u(k) − u(1), v(k) − v(1)) converges in C(0, τ ;Lp) to
(u − u(1), v − v(1)) where (u, v) is a weak solution of (1) with

(
u(0), v(0)

)
= (u0, v0). This weak solution

is also bounded by K1 and K2 and is unique.

Proof. By Lemma 2.6, K1 ≤ u(k)(t, x) ≤ K2 and K1 ≤ v(k)(t, x) ≤ K2. Now, if U = (u(k) − u(k′), v(k) −
v(k′)), then, for i = 1, 2 and integers k, k′,

Ui,t = (−1)i−1Ui,x + hi(t, x), |hi(t, x)| ≤ C|U(t, x)|, (12)
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where C depends on the parameters θ, q1, q2, r1 and r2, but not on k, k′. Define fn by fn(y) = |y|−1/(2n)
for |y| ≥ 1/n, fn(y) = ny2/2 for |y| ≤ 1/n. Note that, for each n, fn is continuous with continuous first
derivative. Also 0 ≤ fn(y) ≤ |y|, and fn(y) → |y| as n→ ∞.

Multiplying equation (12) by f ′
n(Ui), yields:(
fn(Ui)

)
t
= (−1)i−1

(
fn(Ui)

)
x

+ f ′
n(Ui)hi(t, x).

Integrating in x over a finite interval [x1, x2] gives, for i ∈ {1, 2},
∂

∂t

(∫ x2

x1

fn(Ui)dx
)

≤ (−1)i−1
(
fn

(
Ui(t, x2)

)− fn

(
Ui(t, x1)

))
+ C

∫ x2

x1

|Ui(t, x)|dx.

We now integrate on [0, t] to get

∫ x2

x1

fn

(
Ui(t, x)

)
dx ≤

∫ x2

x1

fn

(
Ui(0, x)

)
dx+ C

∫ t

0

∫ x2

x1

|Ui(s, x)|dxds

+ (−1)i−1

∫ t

0

(
fn

(
Ui(s, x2)

)− fn

(
Ui(s, x1)

))
ds.

Letting n→ ∞ and taking limits using the bounded convergence theorem implies that∫ x2

x1

|Ui(t, x)|dx ≤
∫ x2

x1

|Ui(0, x)|dx+ C

∫ t

0

∫ x2

x1

|Ui(s, x)|dxds

+ (−1)i−1

∫ t

0

(|Ui(s, x2)| − |Ui(s, x1)|
)
ds (13)

≤
∫ ∞

x=−∞
|u(k)

i,0 − u
(k′)
i,0 |dx+ C

∫ t

0

∫ x2

x1

|Ui(s, x)|dxds
+ 2t||Ui||L∞[R×[0,t]],

where in the latter step we are using the fact that the initial data is only an L1-function from a step
function to say that

∫∞
x=−∞ |u(k)

0 − u
(k′)
0 |dx is finite.

Hence, for any T ,

sup
t∈[0,T ]

∫ x2

x1

|Ui(t, x)|dx ≤
∫ ∞

x=−∞
|u(k)

0 − u
(k′)
0 |dx+ CT

(
sup

t∈[0,T ]

∫ x2

x1

|Ui(t, x)|dx
)

+ 2T ||Ui||L∞[R×[0,T ]].

Choosing T sufficiently small so that CT < 1 and rearranging gives,

(1 − CT )

(
sup

t∈[0,T ]

∫ x2

x1

|Ui(t, x)|dx
)

≤
∫ ∞

x=−∞
|u(k)

0 − u
(k′)
0 |dx+ 2T ||Ui||L∞[R×[0,T ]],

where the constant on the right-hand side (which we will now denote by γ) does not depend on x1 and
x2 (γ is finite due to boundedness of solutions for smooth, bounded initial data). Thus, for 0 ≤ t < T ,∫ ∞

−∞
|Ui(t, x)|dx ≤ γ

1 − CT
<∞,
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and hence each Ui(t, ·) ∈ L1((0, T ) × R). Now it is possible to return to equation (13) and improve our
estimate. Firstly, rewrite it as:∫ x2

x1

|Ui(t, x)|dx ≤
∫ x2

x1

|Ui(0, x)|dx+ C

∫ t

0

∫ x2

x1

|Ui(s, x)|dxds

+
∫ t

0

|Ui(s, x2)|ds+
∫ t

0

|Ui(s, x1)|ds. (14)

Since each Ui(t, ·) ∈ L1((0, T )×R) there exist sequences such that, letting x1 → −∞ and x2 → ∞ along
these sequences, keeping t fixed, the latter two terms of equation (14) tend to zero. The fact that each
Ui(t, ·) ∈ L1((0, T ) × R) keeps the other terms finite as x1 → −∞ and x2 → ∞.

Hence: ∫ ∞

x=−∞
|U(t, x)|dx ≤

∫ ∞

x=−∞
|u(k)

0 − u
(k′)
0 |dx+ C

∫ t

0

∫ ∞

x=−∞
|U(s, x)|dxds.

Thus, from Gronwall’s inequality, |U(t, ·)|L1 ≤ eCt|u(k)
0 − u

(k′)
0 |L1 . Since (u(k)

0 − u
(1)
0 , v

(k)
0 − v

(1)
0 ) →

(u0 − u
(1)
0 , v0 − v

(1)
0 ) in L1(R), it follows that (u(k) − u(1), v(k) − v(1)) converges in C

(
0, τ ;L1(R)

)
to a

function w(t, x) =
(
w1(t, x), w2(t, x)

)
. In fact, since the u(k) and v(k) are all bounded between K1 and K2,

the convergence takes place in C
(
0, τ ;Lp(R)

)
, 1 ≤ p <∞. Then it is easily seen that

(
u(t, x), v(t, x)

)
:=

w(t, x) +
(
u(1)(t, x), v(1)(t, x)

)
is a weak solution of the equation and that (u, v) is again bounded by K1

and K2 for all time.
We now verify the uniqueness property. For these solutions we can show, for u that, for arbitrary
φ ∈ C∞

0 (R) and t > 0, ∫ ∞

−∞
u(t, x+ t)φ(x)dx −

∫ ∞

−∞
u0(x)φ(x)dx =

∫ ∞

−∞

∫ t

0

(
r1
(
u(s, x+ s)2 − u(s, x+ s)

)
+ θq1

(
v(s, x+ s) − u(s, x+ s)

))
φ(x)dsdx

and similarly for v.
Therefore

u(t, x+ t) − u0(x) =∫ t

0

(
r1
(
u(s, x+ s)2 − u(s, x+ s)

)
+ θq1

(
v(s, x+ s) − u(s, x+ s)

))
ds

for almost all (t, x). Hence if there are two solutions with the same initial data and y(t) is the L∞-norm
of the difference at time t, we obtain (using the boundedness between K1 and K2) an estimate

y(t) ≤ c

∫ t

0

y(s)ds, y(0) = 0,

and this implies y is identically zero. �

The restriction to initial data that is an L1 function different from a step function can be removed using
domains of dependence and a truncation argument as follows.
The value of u on the line (T,X) to (T,X + 1) depends only on the initial data in the interval [X −
T,X + T + 1]. Thus it should agree with the solution whose initial data is identically zero outside this
interval, and matches on the interval, which we shall describe as the truncated initial data. However
the truncated initial data satisfies the conditions of Lemma 2.9 and so the truncated initial data has a
unique corresponding solution. Thus we can define the solution for more general initial data to be that
constructed by piecing together solutions for the truncated initial data, Lemma 2.9 guarantees that this
will be well-defined.
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2.6 The case when b1 = b2

When b1 = b2 we change to moving coordinates at speed b1. Relabelling as before we obtain the ODE:

ut = r1(u2 − u) + θq1(v − u) = f(u, v); (15)
vt = r2(v2 − v) + θq2(u − v) = g(u, v).

For this pair of equations the square [0, 1]2 is positively invariant — since f(0, v) > 0 and f(1, v) < 0 for
0 < v < 1 and similarly g(u, 0) > 0 and g(u, 1) < 0 for 0 < u < 1. S and T are clearly equilibria. At all
other boundary points the flow is into the unit square in forwards time. In fact, any square of the form
[K1,K2]2 for −∞ < K1 ≤ 0 and 0 ≤ K2 ≤ 1 is positively invariant.

For the Heaviside initial data the solution is clear — the Heaviside function simply propagates at speed
−b1. This is also clear from the probabilistic method (see section 5.5).

The pair of equations (15) is also relevant because, if the initial data in the PDE system (equation (1))
is constant, that is u(0, x) = K1, v(0, x) = K2 (independently of x), then the solution satisfies (15), with
initial conditions u(0) = K1, v(0) = K2. The constant initial data case is particularly relevant in light
of the comparison arguments in section 2.2. Solutions with initial data bounded below and above by
constants K1 and K2 can be bounded below and above by the solutions for constant initial data K1 and
K2, but these solutions clearly go to zero for −∞ < K1 ≤ 0 and 0 ≤ K2 < 1 (since the square [K1,K2]2 is
positively invariant, contains only one equilibrium, which is S, and a periodic solution within the square
is not possible due to the direction of the vector field).

3 Useful algebraic results

Throughout this section we shall assume, without loss of generality, that b1 ≥ b2.

Lemma 3.1 For θ > 0, there exists a (finite) number c(θ) that satisfies −b1 ≤ c(θ) ≤ −b2 and such that

(i) for c > c(θ), c 6= −b2, the matrix Kc,θ(T ) has at least one stable monotone eigenvalue, and

(ii) for c < c(θ), c 6= −b1, the matrix Kc,θ(T ) has no stable monotone eigenvalues.

Proof. In fact, we can say rather more than this about Kc,θ(T ). Explicitly, if (B + cI) is invertible,

Kc,θ(T ) =




θq1−r1
b1+c − θq1

b1+c

− θq2
b2+c

θq2−r2
b2+c


 .

Thus, its two eigenvalues, λ+ and λ−, are given by:

λ± =
1
2


θq1 − r1

b1 + c
+
θq2 − r2
b2 + c

±
√(

θq1 − r1
b1 + c

− θq2 − r2
b2 + c

)2

+
4θ2q1q2

(b1 + c)(b2 + c)


 . (16)

These eigenvalues correspond to eigenvectors of the form
(

1
v±

)
, where

v± =
(θq1 − r1) − λ±(b1 + c)

θq1
. (17)

Bifurcation diagrams of the eigenvalues as functions of c are given in Figures 1 and 2.
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Figure 1: Bifurcation diagrams — plots of the eigenvalues λ+ and λ−, of Kc,θ(T ), against c (where the
eigenvalues are a complex conjugate pair the real part is plotted). All diagrams use θ = 1, b1 = 1 and
b2 = −1. The asymptotes c = −1 and c = 1 are marked. c(θ) = 1 in (d), and is slightly smaller than
that in each of (a)-(c) — it is the right-hand intersection of λ+ and λ−.16
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Figure 2: Bifurcation diagrams — plots of the eigenvalues λ+ and λ−, of Kc,θ(T ), against c (where the
eigenvalues are a complex conjugate pair the real part is plotted). All diagrams use θ = 1, b1 = 1 and
b2 = −1. The asymptotes c = −1 and c = 1 are marked. c(θ) = 1 in each of these plots.
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For c > −b2, note that λ− is a stable monotone eigenvalue and λ+ is not, since v+ < 0 (as λ+ > θq1−r1
b1+c

in this case). For c < −b1, note that neither eigenvalue is stable monotone as v− < 0 and λ+ > 0. Thus,
if there is a critical value c(θ) it lies in the interval claimed. For b1 = b2 = b, say, this is enough to prove
the lemma, c(θ) = −b, independent of θ.

So, to complete the proof of the lemma it is sufficient to consider the case b1 > b2, where it is necessary
to examine the eigenvalues when −b1 < c < −b2, i.e. (b1 + c) > 0 > (b2 + c).

Examining the term under the square root in equation (16) (which we will denote by h(c), for fixed θ),
for −b1 < c < −b2, note that it can have one, two or no zeroes. If there are two zeroes let us denote them
by c1 and c2, with −b1 < c1 < c2 < −b2. When θq2 > r2 and θq1 6= r1, there are two zeroes of h and for
c1 < c < c2, h(c) < 0. So in this case the eigenvalues of Kc,θ(T ) are complex. When −b1 < c < c1 and
when c2 < c < −b2, h(c) > 0, so the eigenvalues are real. When c2 < c < −b2 both eigenvalues are stable
monotone. When −b1 < c < c1 the eigenvalues are not stable monotone — θq1 < r1 implies that the
eigenvectors have components of opposite signs (as shown in Figure 1 (a)) while θq1 > r1 implies that
the eigenvalues are positive (as shown in Figure 1 (b)). Thus, in this case, c(θ) = c2.

When θq2 > r2 and θq1 = r1 there is a single zero of h, at c1 say (as shown in Figure 1 (c)). When
c1 < c < −b2, h(c) > 0 and both eigenvalues are stable monotone. When −b1 < c < c1, h(c) < 0 and so
the eigenvalues are complex. Hence c(θ) = c1 in this case.

When θq2 ≤ r2 matters are simpler because θq1 < r1 implies that the eigenvectors have components of
opposite signs or the eigenvalues are complex, within the interval −b1 < c < −b2 (as shown in Figures 1
(d) and 2 (a) and (b)), and θq1 ≥ r1 implies that the eigenvalues have non-negative real part throughout
the interval −b1 < c < −b2 (as shown in Figures 2 (c) and (d)). Thus, for θq2 ≤ r2, c(θ) = −b2.
Hence the lemma is proven. �

When c = c(θ) there is a repeated stable monotone eigenvalue, unless c(θ) = −bi, in which case the point
is moot since the stability matrix does not exist, but the analysis can be completed by direct methods
(see section 4.6).

For the probabilistic method we need to look at one of these special cases in more detail — the case
where −b1 < c(θ) < −b2 and c = −b2. Note that −b1 < c(θ) < −b2 if and only if r2 < θq2.

Recall that Kc,θ(T ) is defined by equation (4), thus an eigenvector v (with corresponding eigenvalue λ)
of Kc,θ(T ) will satisfy the equation

λ(B + cI)v + (R+ θQ)v = 0. (18)

For (B + cI) invertible, this relation is also true in the opposite direction — a non-trivial vector v that
satisfies equation (18) is an eigenvector of Kc,θ(T ) with eigenvalue λ. However, for (B + cI) singular,
equation (18) can still have non-trivial solutions, in the case of interest it has one solution,

λ = − (r1 − θq1)(r2 − θq2) − θ2q1q2
(b1 − b2)(r2 − θq2)

< 0,

with v =
(

1
v2

)
, where

v2 =
θq2

θq2 − r2
> 0.

Thus this solution (which is what we are really interested in, analysis of Kc,θ(T ) is a short-cut, and
simplifies discussion by giving us a way of referring to eigenvalues and eigenvectors as those of Kc,θ(T ))
can be thought of as a generalized stable monotone eigenvalue of Kc,θ(T ) and we have proved that, for
c > c(θ) the matrix Kc,θ(T ) has at least one (possibly generalized) stable monotone eigenvalue.

The value of c(θ) can also be derived from the probabilistic model of the system: the theory of large
deviations gives a formula for c(θ) which effectively summarises all these cases; see section 5.2. That
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formula, which is shown in section 5.2 to be entirely equivalent to the preceding characterization, makes
it easy to observe that c(θ) is decreasing as θ increases and that

c∗ := lim
θ→∞

c(θ) = −
(
b1q2 + b2q1
q1 + q2

)
.

This limit will be discussed in section 5.2, for now note that the lower bound on c(θ) given by Lemma 3.1
can therefore be tightened to c∗.

It is also possible to arrive at this limit by further manipulating h(c). Rearranging the equation h(c) = 0
to express it as a quadratic in c (where the coefficients are quadratic in the other parameters, including
θ) enables us to consider the limit as θ → ∞ by picking out the terms of highest order (i.e. order two in
θ) only. Simplifying this expression yields

θ2
{
c(θ)(q1 + q2) + (b1q2 + b2q1)

}2

+ terms of lower order in θ = 0.

Thus the θ2 term is zero if, and only if, c = c∗.

Further explicit calculation on Kc,θ(S) and Kc,θ(T ) allows us to summarize the locations (i.e. left- or
right-half plane) of the eigenvalues as follows:

• For c > −b2: both eigenvalues of Kc,θ(S) are real and positive, the smaller is unstable monotone,
the larger not; Kc,θ(T )’s eigenvalues are both real, for θ < 1

ρ1+ρ2
both are negative, for θ = 1

ρ1+ρ2

one is zero and the other is negative and for θ > 1
ρ1+ρ2

one is positive and one is negative.

• For c < −b1: both eigenvalues ofKc,θ(S) are real and negative, the eigenvalue closer to zero is stable
monotone, the other not; Kc,θ(T )’s eigenvalues are real and positive for θ < 1

ρ1+ρ2
, for θ = 1

ρ1+ρ2

one is positive and the other is zero and for θ > 1
ρ1+ρ2

one is positive and one is negative.

• For −b1 < c < −b2: the eigenvalues of Kc,θ(S) are real and have opposite signs, one is stable
monotone, the other unstable monotone; for θ < 1

ρ1+ρ2
, Kc,θ(T )’s eigenvalues are real and have

opposite signs, details for larger θ depend on the relative sizes of c and c(θ).

The following result is required in our proof of L1 convergence of Zλ in Theorem 5.4.

Lemma 3.2 (i) Suppose that c > c(θ). Let λs(c) be the stable monotone eigenvalue of Kc,θ(T ) (the one
nearer to 0 if there are two). From the definition of Kc,θ and λs(c) it is easily seen that −λs(c)c is the
Perron-Frobenius eigenvalue of (λs(c)B + θQ+R). For µ < λs(c), with µ sufficiently close to λs(c),

ΛPF (µB + θQ+R) = −µc1(µ) for some c1(µ) < c.

(ii) As c ↓ c(θ), we have

λs(c)−1ΛPF (λs(c)B + θQ+R) → −c(θ) and
[
∂

∂µ
ΛPF (µB + θQ+R)

]
µ=λs(c)

→ −c(θ).

(iii) When c(θ) < −b2, Kc(θ),θ(T ) has a double eigenvalue, which we will denote by λ0. This eigenvalue is
geometrically simple, i.e. it has only one normalised eigenvector even though it has algebraic multiplicity
two, and is stable monotone.

Proof. We follow the proof of Lemma 4.4 of Crooks [6].

(i) We can explicitly write λs(·) as a function of c — for c > −b2 it is λ− from equation (16), for
c < −b2 it is λ+ from equation (16). Considered as a function of c it is easy to see that it is continuously
differentiable away from c = −bi for i = 1, 2 and to check that λs(c) ↓ λ0 as c ↓ c(θ). So for c > c(θ)
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and λ0 < µ < λs(c), there exists some c1(µ) such that c(θ) < c1(µ) < c and λs

(
c1(µ)

)
= µ and thus

ΛPF (µB + θQ+R) = −µc1(µ).
(ii) The first part follows from the fact that λs(c)−1ΛPF (λs(c)B + θQ + R) = c. For the second part
consider again the explicit form of the Perron-Frobenius eigenvalue as a function of µ:

ΛPF (µB + θQ+R) =
1
2
(
µ(b1 + b2) − (θq1 − r1) − (θq2 − r2)

)

+
1
2

√(
µ(b1 − b2) − (θq1 − r1) + (θq2 − r2)

)2

+ 4θ2q1q2.

It is clear, by continuity (considering ΛPF as a function of µ and noting that the term under the square
root is strictly positive), that[

∂

∂µ
ΛPF (µB + θQ+R)

]
µ=λs(c)

→
[
∂

∂µ
ΛPF (µB + θQ+R)

]
µ=λ0

as c ↓ c(θ) because λs(c) → λ0 as c ↓ c(θ). Now

∂

∂µ
ΛPF (µB + θQ+R) =

∂

∂µ
ΛPF (µB + µc(θ)I + θQ+R) − c(θ). (19)

We claim that ΛPF (µB+ µc(θ)I + θQ+R) must attain a local minimum at µ = λ0. Note that, for fixed
c > c(θ), sufficiently close to c(θ), there are two values of µ such that ΛPF (µB + µcI + θQ + R) = 0,
these two values of µ are the two stable monotone eigenvalues of Kc,θ(T ). We now use a convexity result
due to Cohen [4].
To be precise, Cohen’s result states that the Perron-Frobenius eigenvalue of a matrix M1 + M2 is a
convex function of M2, where M1 has positive elements off the main diagonal and M2 is a diagonal
matrix (possibly 0). Thus, for µ between the two eigenvalues ΛPF (µB + µcI + θQ + R) < 0 (strict
inequality since there can be at most two zeroes — each is an eigenvalue of Kc,θ(T ), a 2 × 2 matrix).
Thus, for c = c(θ), ΛPF (µB + µc(θ)I + θQ+R) > 0 except at µ = λ0 where it is zero.
Thus the derivative on the right hand side of equation (19) is zero at µ = λ0 and hence the proof of (ii)
is complete.
(iii) As c decreases through c(θ) the two stable monotone eigenvalues of Kc,θ coalesce and, at least for c
sufficiently close to c(θ), become a complex conjugate pair with negative real part. From equation (16),
λ0 = 1

2

{
θq1−r1
b1+c(θ) + θq2−r2

b2+c(θ)

}
, and from equation (17), this corresponds to an eigenvector of the form(

1
v0

)
, where

v0 =
(θq1 − r1) − λ0

(
b1 + c(θ)

)
θq1

.

We can verify directly that λ0 and v0 as given above have the correct signs (negative and positive
respectively) by using inequalities arising from the definition of c(θ). �

For the probabilistic proof of uniqueness, modulo translation, of monotone travelling waves from S to T ,
the next lemma is important.

Lemma 3.3 Suppose that c > c(θ) and that Kc,θ(T ) has two stable monotone eigenvalues. Let β be
the stable monotone eigenvalue further from 0. Then, for α > β with α sufficiently close to β, the only
non-negative 2-vector g such that

0 ≤ (α(B + cI) + θQ+R
)
g

is the zero vector: g = 0.
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Proof. Convexity of ΛPF (µ(B + cI) + θQ + R) as a function of µ given by Cohen’s Theorem [4], for
β < µ < λ, yields ΛPF (µ(B+ cI)+ θQ+R) ≤ 0. However, there can only be two values (µ1 and µ2, say)
of µ at which this function is 0 since each µi is thus an eigenvalue of a 2 × 2 matrix. These two values
are therefore β and λ and the inequality is strict.

Suppose that for some µ satisfying β < µ < λ, there exists g, non-negative, with g 6= 0, and
(µ(B + cI) + θQ+R)g > 0. Then ΛPF (µ(B + cI) + θQ+R) ≥ 0 which is a contradiction. �

Finally, we need the following result in showing that

Px,y

[
Zλ(∞) = 0

]
= 0 or 1.

Lemma 3.4 If w is a 2-vector such that 0 ≤ w ≤ 1 and

R(w2) = (R − θQ)w,

then either w = (1, 1) or w = (0, 0).

Proof. Rearranging the above equation notice that the problem amounts to searching for intersections of
two parabolae inside the unit square — θq1w2 = (r1 + θq1)w1 − r1w

2
1 and θq2w1 = (r2 + θq2)w2 − r2w

2
2 .

Since each parabola goes through w = (0, 0) and w = (1, 1) there can be no other intersections in the
square — since from (0, 0) to (1, 1) the curve θq1w2 = (r1 + θq1)w1 − r1w

2
1 is above the line w2 = w1

while the other curve is below it. �

4 Analytic proofs of existence and uniqueness of travelling
waves

4.1 Plan of attack

To prove Theorem 1.1 we use shooting arguments. First note that the path of any solution w of (2) which
satisfies

w(x) → T as x→ ∞, w(x) → S as x→ −∞ and w′(x) > 0, x ∈ R,

must lie entirely inside the open unit square. Whether it must also lie between the nullclines w′
1 = 0 and

w′
2 = 0 depends on the values of various parameters, as explained below. Depending on the geometric

configuration of the nullclines, we introduce shooting boxes. We observe that these regions have four key
properties upon which our proof will be based:

• Non-constant solution curves do not intersect the boundary of the region tangentially and hence
any non-constant solution curve which intersects the boundary crosses it transversally;

• Exit-times of solutions in the regions are continuous functions of initial conditions;

• No non-constant solution curve passes through S or T ;

• Other than S and T there are no equilibria in the closure of these regions.

There are two types of region that we use — inside regions when c > max(−b1,−b2) and outside regions
when min(−b1,−b2) < c < max(−b1,−b2). The terminology is based on the geometry of the phase plane
as will be seen shortly.
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4.2 Labelling the phase plane

In the 2-dimensional w = (w1, w2)-plane consider the parabolae

P1 : θq1w2 − (r1 + θq1)w1 + r1w
2
1 = 0

and
P2 : θq2w1 − (r2 + θq2)w2 + r2w

2
2 = 0

and let Ωi denote the open region in the first quadrant between Pi and the wi-axis, i = 1, 2. The
parabolae are of course the nullclines for the system, and their intersections are its equilibria. The point
S = (0, 0) ∈ P1 ∩ P2 for all θ > 0, the point T = (1, 1) ∈ P1 ∩ P2 for all θ > 0 and E± ∈ P1 ∩ P2 if
0 < θ ≤ (4ρ1ρ2)−

1
2 .

Note that the relative positions of E+, E− and T depend on the value of θ and that no two of them
are commensurate with respect to the partial ordering on R

2 induced by the positive quadrant. Let us
denote by E1 the element of {E+, E−, T } with the largest w1-component and by E3 that with the largest
w2-component. Then, for θ(ρ1 + ρ2) < 1, T = E2. When θ(ρ1 + ρ2) > 1 and θ ≤ (4ρ1ρ2)−

1
2 , T could be

E1 or E3. In this case T = E1 for ρ2 > ρ1, T = E3 for ρ1 > ρ2. The various equality cases missed out of
this enumeration are those where equilibria coincide.

Also note that the relative position of T and the maximum of the parabola Pi is determined by the sign
of θqi − ri — if θqi ≥ ri then the segment of Pi from S to T is monotone; if θqi < ri then this segment
has a turning point before reaching T .

Regions of interest. Now let Σ̃ denote the rectangle in the w-plane with two sides on the axes intersecting
at 0, a side through E1 parallel to {w1 = 0} and one through E3 parallel to {w2 = 0}. Let Σ denote
the open convex subset of Σ̃ whose boundary comprises four straight-line segments from ∂Σ̃, a parabolic
segment from P1 joining E1 to E2 and a parabolic segment from P2 joining E2 to E3. Thus the boundary
of Σ always has four straight-line segments: in addition it has two parabolic components when E+, E−
and T are distinct, one parabolic component when two of E+, E− and T coincide and no parabolic
component when θ > (4ρ1ρ2)−

1
2 . Also Σ consists of the union of three sets: ω2 = Σ̃∩Ω1∩Ω2, a relatively

closed component ω3 whose boundary intersects {w1 = 0} away from the origin and a relatively closed
component ω1 whose boundary intersects {w2 = 0} away from the origin. (See Figure 3.) Note that

(r1 + θq1)w1 − r1w
2
1 − θq1w2 > 0, (w1, w2) ∈ ω2 ∪ ω1,

(r2 + θq2)w2 − r2w
2
2 − θq2w1 > 0, (w1, w2) ∈ ω2 ∪ ω3;

and hence, if w = (w1, w2) satisfies (2) then,

(b1 + c)w′
1 is strictly positive at x if w(x) ∈ ω2 ∪ ω1,

(b2 + c)w′
2 is strictly positive at x if w(x) ∈ ω2 ∪ ω3, (20)

(b1 + c)w′
1 is strictly negative at x if w(x) ∈ ω3 \ ω2,

(b2 + c)w′
2 is strictly negative at x if w(x) ∈ ω1 \ ω2.

A monotone curve connecting S to E1 must approach E1 from ω1 ∪ ω2. Thus, by (20), if (b1 + c) < 0
there cannot be a monotone connection from S to E1. Similarly, a monotone curve connecting S to E3

must approach E3 from ω2 ∪ ω3. Thus, by (20), if (b2 + c) < 0 there cannot be a monotone connection
from S to E3.

A monotone connection to E2 must eventually approach through ω2, so a necessary condition for existence
is (b1 + c) > 0 and (b2 + c) > 0.

When considering monotone connections from S to T it is sufficient to restrict attention to the intersec-
tions of each ωi with the unit square — a monotone connection to T must lie entirely within the unit
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Figure 3: The regions of interest

square and must eventually approach T through some ωi. It is possible to work with just ω2 and ω3

— since ω1 is mapped to ω3 by swapping b1 and b2, r1 and r2 and q1 and q2. (It is not possible for a
monotone connection from S to T to lie partly within ω1 and partly within ω3 since both w′

1 and w′
2 have

signs opposite in ω1 to their signs in ω3.) The outside region is ω3 intersected with the unit square; the
inside region is a subset of ω2 inside the unit square. Examination of these two regions allows us to cover
all possible monotone connections to T — connections must eventually approach from one of the two.

Also note that the nullclines represent points at which solution curves are vertical or horizontal (where
the nullclines cross, there are fixed points). Thus, if a solution curve hits a nullcline somewhere other than
an equilibria it immediately crosses to the other side of the nullcline, tangency is not possible since the
nullclines are nowhere vertical (for the one representing vertical solution curves) and nowhere horizontal
(for the other).

4.3 The inside region

Consider the region formed by the segment of the parabola P1 from S to the first intersection with the
line w2 = 1 (this is at T if θq1

r1
> 1); if the intersection is not at T then use the line w2 = 1 to connect the

endpoint of the segment to T ; the segment of P2 from S to the first intersection with the line w1 = 1 (this
is at T if θq2

r2
> 1) and if the intersection is not at T then use the line w1 = 1 to connect the endpoint to

T . Thus, the inside region is defined to be the region inside both parabolae and the unit square, in the
notation of the previous section it is a subset of ω2. See Figures 4 and 5.

Denote the edges of the region as follows:

• The open segment of P1 (not including S or the other endpoint) by A.

• The open segment of P2 (not including S or the other endpoint) by B.

• If A does not connect S to T then denote the open segment of w2 = 1 (not including endpoints) by
C.
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Figure 5: An example of an inside region with only 3 distinct edges
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• If B does not connect S to T then denote the open segment of w1 = 1 (not including endpoints)
by D.

Notice that a monotone connection from S to T must approach T from inside this region if both C and
D exist. If either C or D does not exist then it is possible to reach T monotonically from outside the
inside region — then we must use the outside region as discussed below.

If C exists, then denote its left endpoint by x and if D exists then denote its lower endpoint by y.

By (20) and the following discussion, a necessary condition for a monotone connection that eventually
approaches T from the inside region is that c > max(−b1,−b2), i.e.

b1 + c > 0 and b2 + c > 0, (C1)

since w′
1 > 0 and w′

2 > 0 (throughout the interior of the region) if and only if (C1) holds.

Lemma 4.1 Assume (C1) holds. Then a solution curve that hits the boundary of the inside region at
any point other than S or T immediately crosses the boundary.

Proof. Consider the various segments of the boundary. On A and at the point x, if it exists, w′
1 = 0 and

w′
2 > 0. Thus (using continuity and the fact that the slope of this boundary is bounded and positive, so

the flow is not tangent to the boundary) if w(t) ∈ A or w(t) = x then there exists an ε > 0 such that for
s ∈ (t− ε, t), w(s) is inside the region and for s ∈ (t, t+ ε), w(s) is outside the region.

Similarly for B and y — w′
2 = 0 and w′

1 > 0 so the same argument works.

For C, if it exists, note that w′
1 > 0 and w′

2 > 0 on C and again the solution curve crosses from inside to
outside automatically. Similarly for D, and the lemma is proved. �

4.4 The outside region

We have observed that there are monotone curves from S to T that do not intersect the inside region,
except at T itself, when the inside region does not have four edges. Without loss of generality assume
that the edge C of the inside region does not exist, i.e. θq1

r1
> 1, so that there is a possibility of a monotone

connection through ω3. When neither C nor D exists there are two outside regions, by equation (20) the
flow is in opposite directions in the two regions. Hence there can be a monotone connection through at
most one of them.

Consider the region formed by the segment of the parabola P1 from S to T ; the w2 axis and the line
w2 = m(w1 − 1) + 1 for some m ∈ (0, 1 − r1

θq1
). This restriction on m ensures that the line has positive

slope and lies above the parabola P1 (the upper bound just given is the slope of the parabola at T and the
assumption that θq1

r1
> 1 ensures that the slope is strictly positive). We will choose a particular value of

m later. In the notation of section 4.2 this region is therefore a subset of ω3. See Figure 6 for a diagram
of a typical example of this region.

Denote the edges of the region as follows:

• The open segment of P1 (not including S or T ) by A.

• The half-open segment of the w2 axis (not including S but including the other endpoint) by B.

• The open segment of w2 = m(w1 − 1) + 1 strictly between the w2 axis and T by C.

For a monotone connection from S to T that does not go through the inside region it is necessary that
w′

1 > 0 and w′
2 > 0 throughout the interior of the outside region (note that though there are curves from
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S to T that exit the outside region through C and still converge monotonically to T this condition will
still be necessary).

Using equation (20) to consider the direction of the flow within the region notice that is is therefore
necessary that b2 > b1 and that −b2 < c < −b1, i.e. (b2 + c) > 0 > (b1 + c). So, for there to be a
possibility of a monotone connection that is not through the inside region, the following conditions are
necessary:

(b2 + c) > 0 > (b1 + c) and
θq1
r1

> 1. (C2)

For a monotone connection through the other outside region it is necessary that (b1+c) > 0 > (b2+c) and
θq2
r2

> 1 — the subsequent analysis is entirely equivalent since we can simply interchange the subscripts
1 and 2. The two cases are clearly mutually exclusive.

The condition (C2) ensures that, for each k > 0, a curve that satisfies w′
2/w

′
1 = k is an ellipse passing

through S and T . This observation is used below to rule out internal tangencies to the region.

A solution curve cannot exit from the outside region through A or B in forwards time. On A observe
that w′

1 = 0 and w′
2 > 0 and on B that w′

1 > 0 and w′
2 > 0.

We need to check that the flow does not have an internal tangency to C in order to construct a shooting
argument for the outside region. The shooting argument used runs backwards in time, but note that a
tangency backwards in time is also a tangency forwards in time, and vice versa.

Lemma 4.2 Assume condition (C2) holds. Then a solution curve that hits the boundary of the outside
region (from the inside of the region — an external tangency is immaterial) at any point other than S or
T immediately crosses the boundary.

Proof. If a solution curve hits A or B the observations above show that the curve (in backwards time)
will cross from the inside to the outside of the region. So assume, for a contradiction, that at a point x1

on C the solution curve is internally tangent to C. The solution curve in forwards time will re-enter the
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interior of the region — where w′
1 > 0 and w′

2 > 0 — and must eventually hit the line C again or else
approach T . This is since it cannot leave the region through A because w′

1 = 0, w′
2 > 0 there. Call the

first point at which this occurs x2.

Thus, the solution curve is a smooth curve from x1 to x2, both of which are on the line w2 = m(w1−1)+1,
therefore there is a point x3 on this curve at which the curve has slope m. However, the curve on which
the slope of the flow is m is an ellipse; an ellipse that passes through S, T and x1 — so x3 cannot be on
this ellipse. This contradiction proves the result. �

4.5 The shooting argument

To establish the main result (Theorem 1.1) we shall use the preceding observations in a shooting argument
through the outside region (backwards in time), as well as a more standard forward time argument from
S to T for the inside region. Note that a monotone travelling wave from S to T is possible only if T has
stable monotone eigenvalues. A corresponding unstable direction at S is also necessary, but this always
exists when a stable monotone eigenvalue at T exists. (See the discussion before Lemma 3.2 in section 3.)
It is known so far that if c > max(−b1,−b2) then a monotone connection can only exist through the inside
region — we show below that in this case it does indeed exist and is unique. For c < min(−b1,−b2)
there cannot be a monotone connection from S to T and for c in between then there may or may not be
a monotone connection (which necessarily lies entirely in an outside region) — the determining factor is
whether c is greater than c(θ). When such a connection exists it is unique.

4.5.1 Through the inside region when (C1) holds

Consider the intersection of the inside region with the circle of radius ε, centred at the origin, S. This
is a segment of a circle with 2 endpoints on the boundary of the inside region. w′

1 > 0 and w′
2 > 0 are

necessary for a monotone connection through the region (i.e. (b1 +c) > 0 and (b2 +c) > 0 are necessary in
this region) — when this is true a connection looks plausible. Considering the family of solution curves
which pass through points of this segment at time zero completes our shooting argument, since, running
backwards in time all these curves must go to S (since they cannot exit the region and cannot tend to
any point other than an equilibrium), and running forwards in time, the curves from the 2 endpoints
leave the region immediately and curves from points in between will exit transversally from the region (by
Lemma 4.1), thus exiting in between the exit/end-points. Hence classical continuous dependence theory
for initial value problems allows us the conclude that a monotone connection from S to T exists.

4.5.2 Through the outside region when (C2) holds

Assume condition (C2), otherwise there is no monotone connection through the region. This time we
shoot backwards in time.

Firstly we deal with c > c(θ). Choose m so that the edge C has slope equal to half that of the dominant
eigenvector of Kc,θ(T ) (the dominant eigenvector is that corresponding to the negative real eigenvalue
of smallest modulus — when (C2) and c > c(θ) there are two simple stable monotone eigenvalues so
m is well-defined). Thus the upper edge of the region bisects the angle between the line w2 = 1 and
the dominant eigenvector at T . This enables us, backwards in time, to obtain paths leaving the outside
region on both sides of T , and hence shoot to S. More precisely, for c > c(θ) we already know that
Kc,θ(T ) has two stable monotone eigenvalues. Consideration of equation (17) shows that both have slope

less than that of the P1 at T . The dominant eigenvector is
(

1
v+

)
. Thus we choose m to correspond

to a direction
(

1
v+/2

)
. Hence, by shooting backwards from points suitably close to T and using the
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fact that the flow is determined by the dominant eigenvector we observe the flow sweeps through the
boundaries of the region (by Lemma 4.2) as we follow a segment of a circle around T that intersects the
region. Classical continuous dependence theory for initial value problems tells us that a connection from
S to T exists.

For c < c(θ) there is no stable monotone eigenvalue at T and there cannot be a monotone connection.
Thus we have completed showing that a monotone eigenvalue at T is sufficient (except for the cases
c = c(θ) and c = max(−b1,−b2) > c(θ) which are discussed below in section 4.6) for a monotone
connection — we already knew it was necessary.

4.6 Special cases

We have been wary of the cases where c = c(θ) and c = −bi. Assume, without loss of generality, that
b1 > b2.

If θq2 ≤ r2, then c(θ) = −b2. For c = c(θ) the only candidate for a connection from S to T is the segment
of the w2-nullcline, P2, connecting S to T . If θq2 < r2 then this is not monotone from S to T and so there
is no monotone travelling wave at this speed. When θq2 = r2 this connection is monotone. The travelling
wave equations consists of one algebraic — defining the nullcline — and one differential equation. We
can substitute the algebraic into the differential equation to obtain a one-dimensional problem where we
are looking for a connection from 0 to 1. Since the derivative is positive between these points this indeed
exists and the segment of nullcline is a monotone travelling wave.

When θq2 > r2, −b1 < c(θ) < −b2. For the case c = c(θ) we can use the argument we used in the outside
region — by part (iii) of Lemma 3.2 there is a double stable monotone eigenvalue so the corresponding
eigenvector determines the nature of the flow near T . We simply repeat the bisection procedure and
show that the flow leaves either side of the region — so there is a monotone connection for c = c(θ) in
this case. We also must check the case c = −b2, but here the solution is simply the segment of nullcline
exactly as for θq2 = r2.

Thus we can summarize as follows:

• For θq2 < r2, there is a monotone travelling wave if and only if c > c(θ).

• For θq2 ≥ r2. There is a monotone travelling wave if and only if c ≥ c(θ).

4.7 Uniqueness modulo translation

To establish uniqueness of monotone travelling waves from S to Ei, i = 1, 2, 3, it suffices, because of
the change of variables at (1.26), to prove that the wave from S to T is unique. However, due to the
dimensionality of the unstable and stable manifolds at S and T respectively, we have very little left to
show. As we summarised in section 3; just above Lemma 3.2; we have that:

• For c > max(−b1,−b2); Kc,θ(T ) has a one-dimensional stable manifold for θ ≥ 1
ρ1+ρ2

.

• For c < min(−b1,−b2); Kc,θ(S) has a two-dimensional stable manifold. (Of course, here c < c(θ)
anyway.)

• For min(−b1,−b2) < c < max(−b1,−b2); Kc,θ(S) has a one-dimensional unstable manifold.

Thus, since we can only possibly have non-uniqueness when:

• Kc,θ(S) has a two-dimensional unstable manifold and Kc,θ(T ) has a two-dimensional stable mani-
fold,
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we have only one case left to check, i.e. c > max(−b1,−b2) and θ < 1
ρ1+ρ2

.

In this case the two eigenvalues of T are negative and distinct, denote them by α < β < 0, and the
corresponding eigenvectors by vα and vβ , respectively. α is a stable monotone eigenvalue (i.e. vα has
both components of the same sign) and β is not. Note that the dominant eigenvalue β is the non-
monotone eigenvalue. This suggests that most of the flow entering T will do so non-monotonically and
so there may indeed be a unique monotone connection. We now use this idea to complete the proof of
uniqueness.

Firstly, by standard theory (Coddington and Levinson [3, Chapter 13, Theorem 4.4]), all solutions that
converge to T do so exponentially. For notational convenience define u by wi(x) = ui(x)+1 for i = {1, 2},
so that u converges to the origin when w converges to T . Then there exists a one-dimensional manifold
of solutions u such that

log ‖ u(x) ‖
x

→ α as x→ ∞.

and all other solutions that converge to the origin do so with rate β.

By Coddington and Levinson [3, Chapter 13, Theorem 4.5] it follows that these other solutions are of the
form u(x) = kβe

βxvβ + o(eβx) as x→ ∞ for some kβ 6= 0. However, since vβ has components of opposite
sign these are not monotone solutions, leaving us with only the one-dimensional manifold of solutions as
candidates for monotone connections.

Hence uniqueness is proven and we have completed the proof of Theorem 1.1.

5 Probabilistic results

5.1 Martingales for a branching two-type process

Consider the two-type branching system of particles which was defined in section 1.4 and recall our
notation that I = {1, 2} and that we often switch between two equivalent notations in this section to
reduce the use of subscripts. Thus we will sometimes write, for example, b(y) for by, w(x, y) for wy(x)
and u(t, x, y) for uy(t, x) (for y = 1, 2).

Recalling the definitions of B and R in equation (1), let λ < 0, let ΛPF (λ) be the Perron-Frobenius
eigenvalue of λB + θQ+R, and let vλ be the associated eigenvector with vλ(1) = 1.

The formal generator G of the two-type branching process is

G = GB + GQ + GR,

where, for n ≥ 1, x ∈ R
n , and y ∈ In, we have

(GBF )(n;x; y) =
n∑

k=1

b(yk)
∂F

∂xk
,

(GQF )(n;x; y) = θ
n∑

k=1

∑
j 6=yk;j∈I

Q(yk, j)
{
F
(
n;x; sk,j(y)

)− F
(
n;x; y

)}
,

(GRF )(n;x; y) =
n∑

k=1

r(yk)
{
F
(
n+ 1; (x, xk); (y, yk)

)− F
(
n;x; y

)}
,

where sk,j(y) := (y1, . . . , yk−1, j, yk+1, . . . , yn) and (x, xk) := (x1, . . . , xn, xk), etc. If F : [0,∞)×S (where
S is the state-space of the branching process as defined by equation (7)) and{(

∂

∂t
+ G

)
F

}
(t;n;x; y) = 0 (n ≥ 1, x ∈ R

n , y ∈ In), (21)

29



then F
(
t;N(t);X(t);Y (t)

)
is a local martingale.

In particular, if u is a C1,1 solution of the coupled system (1), define, for t > 0,

M(s) :=
N(s)∏
k=1

u
(
t− s;Xk(s);Yk(s)

)
. (22)

This satisfies the conditions of equation (21) (the partial differential equation enables us to do the time
differentiation of M) and hence defines a ‘multiplicative’ local martingale M on the time-parameter set
[0, t]. If in addition 0 ≤ u(·, x, y) ≤ 1, then 0 ≤M ≤ 1, so that M is a true martingale and

Ex,yM(0) = Ex,yM(t),

that is,

u(t, x, y) = Ex,y

N(t)∏
k=1

f
(
Xk(t), Yk(t)

)
= E0,y

N(t)∏
k=1

f
(
x+Xk(t), Yk(t)

)
,

where f(x, y) = u(0, x, y) is C1.
Thus we have proved the following:

Theorem 5.1 If u ∈ C1,1 satisfies the system (1) with 0 ≤ u(t, x, y) ≤ 1 on [0,∞) × R × I and with
initial condition

u(0, x, y) = f(x, y) ∈ C1,

then u has a McKean representation

u(t, x, y) = Ex,y

N(t)∏
k=1

f
(
Xk(t), Yk(t)

)
.

The above theorem clearly tells us that there is at most 1 bounded (between 0 and 1) solution to the
system (1) for smooth, bounded (between 0 and 1) initial data.
Now we look at ‘additive’ martingales. If h : [0,∞) × R × I → R satisfies the linear equation

∂h

∂t
+B

∂h

∂x
+ θQh+Rh = 0,

then, again by using (21),
N(t)∑
k=1

h
(
t,Xk(t), Yk(t)

)
is a local martingale.

Now we have:

Theorem 5.2 If w is a C1 function on R × I, then

N(s)∏
k=1

w
(
Xk(s) + cs, Yk(s)

)
is a local martingale if, and only if, w solves the travelling-wave system (2).
If g is a C1 function on R × I, then

N(t)∑
k=1

g
(
Xk(t) + ct, Yk(t)

)
is a local martingale if, and only if, g solves the linearization of (2) at the point (1, 1):

(B + c)g′ + θQg +Rg = 0.
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This theorem follows from the fact that in (22) M is a local martingale and from the local-martingale
property established immediately before Theorem 5.2.

Let c > c(θ), where c(θ) is defined in Theorem 1.1. If c < max(−b1,−b2), take λ to be the stable
monotone eigenvalue of Kc,θ(T ) nearer to 0; if c = max(−b1,−b2), take λ to be the unique generalized
stable monotone eigenvalue of Kc,θ(T ) and if c > max(−b1,−b2), take λ to be the unique stable monotone
eigenvalue of Kc,θ(T ). This definition of λ is possible and well-defined by the the work at the start of
section 3. Call, for future reference, this definition of λ the probabilistic eigenvalue of Kc,θ(T ). Hence, if
λ is the probabilistic eigenvalue of Kc,θ(T ) then −λc is the Perron-Frobenius eigenvalue of λB + θQ+R.
Recall the definition of Zλ in Theorem 1.4,

Zλ(t) =
N(t)∑
k=1

vλ

(
Yk(t)

)
exp
{
λ
[
Xk(t) + ct

]}
.

Then, by Theorem 5.2, Zλ is an ‘additive’ local martingale; and since it is non-negative, it is also a
supermartingale. We wish to show that Zλ is a true martingale, this can be done just as for ζλ by noting
that EN(t) ≤ er0t and each individual term of the sum is again bounded up to any fixed t.

5.2 A large-deviations approach to c(θ)

As we have already observed in Theorem 1.3, the asymptotic behaviour of the position of the left-most
particle of the system should give us the wave speed c(θ). This is proved later in this section; for now we
want to give probabilistic heuristics to obtain this value.

If we consider a particle’s type intuitively we note that it flicks between the two types with an equilibrium
distribution independent of θ. On average the particle will spend a proportion q2

q1+q2
of its time with

type 1 and a proportion q1
q1+q2

of its time with type 2. A larger θ will tend to force each particle’s type
distribution closer to the equilibrium distribution.

So, we are interested in considering how far from the equilibrium distribution (for time spent in the two
states) a particle can deviate. The largest deviations will give the positions of the most extreme particles,
including the left-most particle. Clearly, the higher the breeding rate (the parameters r1, r2) for each
state, the easier it will be to find a particle in that state. As θ is increased the deviations from the
equilibrium distribution will be smaller.

The theory of large deviations is the appropriate technique for tackling such a problem. We use the
Dirichlet form ε(u, v) := −uT ΠQv, where Π is the diagonal matrix whose elements are the components
of the equilibrium distribution for the Markov chain. This is a positive-definite, symmetric bilinear form.
Then the large-deviation rate functional Jε(µ) is ε(f1/2, f1/2) where f is the ratio of µ to the invariant
distribution and µ is any distribution for time spent in the two states (see Deuschel and Stroock [7, page
129]). So, if µ corresponds to spending a proportion of time m1 in state 1, then Jε(µ) = (

√
q1m1 −√

q2m2)2, and hence enables us to state that the probability that a particle, at time t, has spent a
proportionm1 of its time in state 1 and a proportionm2 of its time in state 2 (form1,m2 ≥ 0,m1+m2 = 1)
is approximately exp

(−tθ(√q1m1 − √
q2m2)2

)
. Thus, for all proportions other than the equilibrium

proportions this decays exponentially and an increase in θ increases the rate of decay. Now, this decay
is balanced by the breeding — the number of particles grows exponentially at a rate m1r1 +m2r2. So,
when

m1r1 +m2r2 − θ(
√
q1m1 −√

q2m2)2 > 0 (23)

there is exponential growth in the number of particles who have spent a proportion m1 of their time in
state 1 and a proportion m2 of their time in state 2; when this is strictly less than zero there is decay in
the number of such particles. This leads us to define c̃(θ) as:

c̃(θ) = − inf
{
b1m1 + b2m2 : m1r1 +m2r2 − θ(

√
q1m1 −√

q2m2)2 > 0;
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m1,m2 ≥ 0,m1 +m2 = 1
}
,

where m1 and m2 represent the proportions of times in the two states. This is well-defined since for
m1 = q2

q1+q2
(the equilibrium distribution) the inequality is certainly satisfied.

To demonstrate the correspondence of c(θ) and c̃(θ) we examine some specific cases.

Firstly if b1 = b2 = b then the above formula gives c̃(θ) = −b, which tallies with the result for c(θ) we
obtained in section 3. As before we can now assume, without loss of generality, that b1 > b2. For the
equilibrium proportions the inequality (23) is satisfied, so we immediately have that c∗ = −( b1q2+b2q1

q1+q2
) ≤

c̃(θ) ≤ −b2.
So we ask, when is c̃(θ) = −b2? Putting m2 = 1 the inequality (23) becomes r2 − θq2 > 0, so r2 > θq2
implies that c̃(θ) = −b2. For r2 = θq2 we use the concavity of m1r1 + m2r2 − θ(

√
q1m1 − √

q2m2)2 to
observe that the inequality (23) is satisfied for m2 = 1− ε for all ε in the interval 0 < ε < q2

q1+q2
, thus the

infimum is still m2 = 1 — just it is not attained (this corresponds to the fact that in this case there is a
travelling wave corresponding to c̃(θ)

(
= c(θ)

)
, for r2 > θq2 there is not).

For r2 < θq2, c̃(θ) < −b2 and so all that remains to prove is that c̃(θ) = c(θ) in this case too. We can
rearrange our formula for c̃(θ) by writing c = −b1m1 + b2(m1 − 1) and hence m1 = b2+c

b2−b1
. Substituting

this into the defining inequality we note that

m1r1 +m2r2 − θ(
√
q1m1 −√

q2m2)2 = 0

implies that the term under the square root in equation (16) is zero. Now we note that this corresponds
to the zero with the larger value of c since c̃(θ) is at least c∗.

This formula for c(θ) makes it easier to observe that we can have mi = 1 only when ri > θqi, which
makes intuitive sense — the breeding in state i needs to be larger than the mutation out of the state for
there to be a persistent family of that type of particle over time. It also makes it clear that c(θ) decreases
from max(−b1,−b2) to c∗ as θ → ∞.

5.3 Convergence properties of Zλ martingales

The full assumptions which we have made about Zλ (defined in Theorem 1.4) — that c > c(θ), that
λ is the probabilistic eigenvalue of Kc,θ, etc. — will now be needed in proving that Zλ converges in Lp

for some p > 1 (and hence in L1). According to Doob’s Lp inequality (see Rogers and Williams [14],
Theorem II.70.2), we need only show that Zλ is bounded in Lp for some p > 1. The key result is from
Neveu [13] and the method of using it follows Champneys et al. [2].

Lemma 5.3 (Neveu) Let p ∈ (1, 2]. For any finite sequence W1, . . . ,Wn of non-negative independent
variables in Lp and any sequence c1, . . . , cn of non-negative real numbers,

ψ

(
n∑

k=1

ckWk

)
≤

n∑
k=1

cpkψ(Wk),

where ψ(W ) := E(W p ) − (E(W )
)p for W ∈ Lp.

Proof of L1 convergence of Zλ. Fix t > 0. Because of the branching character of the (N,X, Y ) process,
we have for each s > 0,

Zλ(s+ t) =
N(s)∑
k=1

exp
{
λ [Xk(s) + cs]

}
Wk(t, s)
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where, conditionally on Fs, the Wk(t, s) are independent, each with the P0,y(k) law of Zλ(t) where
y(k) = Yk(s) ∈ I. Since t is fixed, and I is finite, Neveu’s lemma, applied conditionally on Fs, gives

Ex,y

{
Zλ(s+ t)p | Fs

}− Zλ(s)p ≤ K1(t, x, λ)
N(s)∑
k=1

exp
{
λp [Xk(s) + cs]

}
,

so that, on taking expectations,

Ex,y

{
Zλ(s+ t)p

}− Ex,y

{
Zλ(s)p

} ≤ K1(t, x, λ)Ex,y




N(s)∑
k=1

exp
{
µ [Xk(s) + cs]

} ,

where µ := λp < λ < 0. We choose p in (1, 2] sufficiently close to 1 that (see Lemma 3.2) c > c1, where
−µc1 = ΛPF (µB + θQ+R) and vµ is the corresponding eigenvector with vµ(1) = 1. But then

Ex,y

N(s)∑
k=1

exp
{
µ [Xk(s) + cs]

}

≤ K2(x, µ, y) exp
{
µ(c− c1)s

}
Ex,y

N(s)∑
k=1

vµ

(
Yk(s)

)
exp
{
µ [Xk(s) + c1s]

}
≤ K3(x, µ, y) exp

{
µ(c− c1)s

}
,

since Zµ is a martingale. Hence,∑
m

Ex,y

{
Zλ(ms+ s)p − Zλ(ms)p

}
≤ K1(s, x, λ)K3(x, µ, y)

∑
m

exp
{
µm(c− c1)s

}
<∞,

and Zλ is bounded in Lp. �

Now we prove, with the same notation and assumptions, that

w(y) := Px,y

(
Zλ(∞) = 0

)
= 0 for all (x, y). (24)

(The fact that w(y) does not depend on x is obvious.)
Proof of (24). Let J be the first jump time of Y1 and let T be the first branch time of (N,X, Y ). On
decomposing w(y) according as T < J or T > J , we obtain

w(y) =
r(y)w(y)2 + θ

∑
z 6=y Q(y, z)w(z)

r(y) + θq(y)
,

so that Rw = R(w2) + θQw. By Lemma 3.4, w ≡ 0 on I or w ≡ 1 on I. When Zλ converges in L1, then,
obviously, w ≡ 0 on I. �

The following theorem is now proven.

Theorem 5.4 Let c > c(θ). Let λ be the probabilistic eigenvalue of Kc,θ(T ). Thus −λc is the Perron-
Frobenius eigenvalue of λB + θQ+R and, as usual, we denote by vλ the corresponding eigenvector with
vλ(1) = 1. Then

Zλ(t) =
N(t)∑
k=1

vλ

(
Yk(t)

)
exp
{
λ [Xk(t) + ct]

}
.

is a true (not just a local) martingale, and Zλ(t) converges to a limit Zλ(∞) almost surely and in L1.
Moreover, Px,y(Zλ(∞) > 0) = 1 for all x and y.
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For the proof of the uniqueness modulo translation of the monotone travelling wave from S to T , we need
the following result. When there is only one stable monotone eigenvalue of Kc,θ(T ) we have no other
candidate for a wave (each stable monotone eigenvalue gives us a martingale which could correspond to
a suitable wave), when there are two we use this result to rule out the other possibility.

Lemma 5.5 Suppose that c > c(θ) and that there are two stable monotone eigenvalues of Kc,θ(T ).
Denote by β the eigenvalue further from 0, and by vβ the associated Perron-Frobenius eigenvector of
βB + θQ+R with vβ(1) = 1. Then, almost surely,

Zβ(t) =
N(t)∑
k=1

vβ

(
Yk(t)

)
exp
{
β [Xk(t) + ct]

}→ 0

as t→ ∞.

Proof. We prove this result by modifying an argument in Neveu [13]. Let 0 < p < 1. Then for u, v > 0,

(u+ v)p ≤ up + vp.

Again, let J be the first jump time of Y1 and let T be the first branch time of (N,X, Y ). The decomposition

Zβ(∞) =

{
exp
{
β[X1(J) + cJ ]

}
Z

(1)
β (∞) if J < T ,

exp
{
β[X1(T ) + cT ]

}[
Z

(2)
β (∞) + Z

(3)
β (∞)

]
if T < J ,

leads to the formula

g(y) := E0,y [Zβ(∞)p] ≤ E0,y exp
{
α[X1(J) + cJ ]

}
I

J<T
g
(
Y1(J)

)
+ 2E0,y exp

{
α[X1(T ) + cT ]

}
I

T <J
g
(
Y1(T )

)
,

where α := pβ. On evaluating these expectations, we obtain

g(y) ≤
{
θ
∑

z 6=y Q(y, z)g(z)
}

+ 2r(y)g(y)

−(b(y) + c
)
α+ r(y) + θq(y)

,

which rearranges to give
0 ≤ ((B + cI)α+ θQ+R

)
g.

We know that g ≥ 0 on I. Lemma 3.3 shows that if we choose p sufficiently close to 1, then g = 0. The
lemma is proved. �

5.4 Proof of Theorem 1.4

We now verify steps in the proof of Theorem 1.4, which lead to the important equality (8) of Theorem 1.3:

lim t−1L(t) = −c(θ) (a.s.) where L(t) = inf
k≤N(t)

Xk(t).

Part (i). Let c > c(θ), and let λ be the probabilistic eigenvalue of Kc,θ(T ). Let Zλ be the associated
martingale. We see by considering the position of the left-most particle that

Zλ(t) =
N(t)∑
k=1

vλ

(
Yk(t)

)
exp
{
λ [Xk(t) + ct]

} ≥ min
(
vλ(1), vλ(2)

)
exp
{
λ [L(t) + ct]

}
.
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Since Zλ(∞) exists a.s., lim inf [L(t) + ct] > −∞, a.s., so that

lim inf t−1L(t) ≥ −c = λ−1ΛPF (λ).

Part (ii). Before Theorem 1.4 was stated we noted that we would consider working with the P = P0,1

law, so that Zλ(0) = 1. Since Zλ converges in L1, we can define a probability measure Qλ on F∞ via

dQλ/dP = Zλ(∞) on F∞, whence dQλ/dP = Zλ(t) on Ft.

Define
Mλ(t) := Zλ(t)−1 ∂

∂λ
Zλ(t).

Because (∂/∂λ)Zλ(t) is a P-martingale, Mλ is a Qλ-martingale.
For t ≥ 0 and 1 ≤ k ≤ N(t), define

H(t, k) :=
vλ

(
Yk(t)

)
exp
[
λXk(t) − ΛPF (λ)t

]
∑N(t)

j=1 vλ

(
Yj(t)

)
exp
[
λXj(t) − ΛPF (λ)t

] .
Note that H(t, k) ≥ 0 and

∑
j H(t, j) = 1. Now (denoting by prime differentiation with respect to λ),

Mλ(t) =
N(t)∑
k=1

H(t, k)
{
uλ

(
Yk(t)

)
+Xk(t) − Λ′

PF (λ)t
}
,

where uλ(j) := v′λ(j)/vλ(j), so that

t−1Mλ(t) ≥ t−1
{
min
i∈I

uλ(i)
}

+ t−1L(t) − Λ′
PF (λ). (25)

By Jensen’s inequality,

Mλ(t)2 ≤
∑

H(t, k)
{
uλ

(
Yk(t)

)
+Xk(t) − Λ′

PF (λ)t
}2

. (26)

However,

Zλ(t)−1 ∂
2

∂λ2
Zλ(t)

is a Qλ-martingale, and clearly

Zλ(t)−1 ∂
2

∂λ2
Zλ(t) =

∑
H(t, k)

{
uλ

(
Yk(t)

)
+Xk(t) − Λ′

PF (λ)t
}2

+
∑

H(t, k)
{
u′λ
(
Yk(t)

)− Λ′′
PF (λ)t

}
.

Thus, (26) shows that the Qλ-expectation of Mλ(t)2 satisfies the inequality

Qλ

[
Mλ(t)2

] ≤ Qλ

[
Zλ(t)−1 ∂

2

∂λ2
Zλ(t)

]
−Qλ

[∑
H(t, k)

{
u′λ
(
Yk(t)

)− Λ′′
PF (λ)t

}]
.

The first term on the right-hand side is constant by the martingale property so that

Qλ

[
Mλ(t)2

] ≤ K1(λ) −Qλ

[∑
H(t, k)

{
max

(
u′λ(1), u′λ(2)

)− Λ′′
PF (λ)t

}]
.

Since
∑

j H(t, j) = 1 further simplification gives

Qλ[Mλ(t)2] ≤ K2(λ) +K3(λ)t

35



for finite constants K1(λ), K2(λ) and K3(λ), independent of t. Hence, for ε > 0,

Qλ

(
sup

{
s−1|Mλ(s)| : 2n−1 ≤ s ≤ 2n

} ≥ ε

)

≤ Qλ

(
sup
s≤2n

|Mλ(s)| ≥ ε2n−1

)
≤ (ε2n−1

)−2 [
K2(λ) + 2nK3(λ)

]
,

by Doob’s submartingale inequality. By the Borel-Cantelli lemma, we have t−1Mλ(t) → 0, a.s., whence,
from (25),

lim sup
t→∞

t−1L(t) ≤ Λ′
PF (λ).

Part (ii) of Lemma 3.2 clinches Part (iii) of Theorem 1.4, and the proof of (8) is complete. �

5.5 Heaviside initial conditions

We have the McKean representation

u(t, x, y) = Ex,y

N(t)∏
k=1

u
(
0, Xk(t), Yk(t)

)

for the unique (by the work of section 2) solution of our coupled equation (1) when 0 ≤ u ≤ 1 and the
initial data u(0, ·, ·) are sufficiently smooth. We would like to obtain a McKean representation in the case
of the Heaviside initial data. We verify this directly below then, because t−1L(t) → −c(θ) (a.s.), the rest
of Theorem 1.3 is obvious. In a separate paper (currently in preparation), Lyne and Williams will

• give a new direct analytic method of proving existence and uniqueness of weak solutions with
bounded, measurable initial data,

• show that these solutions lead to martingales and hence to a McKean representation,

• give numerical and simulation studies of the solutions with Heaviside initial data, and

• study the long-term behaviour of these Heaviside solutions.

We now verify that, defining u(t, x, y) to be Px,y[L(t) > 0], gives a weak solution of the coupled equation (1)
with Heaviside initial data. Conditioning on the first jump

u(t, x, y) = exp
{
−(r(y) + θq(y)

)
t
}
u
(
0, x+ b(y)t, y

)

+
∫ t

s=0

{
exp
(
−(r(y) + θq(y)

)
s
)}{

r(y)u2
(
t− s, x+ b(y)s, y

)
+ θq(y)u

(
t− s, x+ b(y)s, ŷ

)}
ds

where {y, ŷ} = {1, 2}. Integrating by parts and comparing the terms with those obtained by differentiating
this expression for u(t, x, y) by each of t and x yields

u(t, x, y) =
r(y)

r(y) + θq(y)
u2(t, x, y) +

θq(y)
r(y) + θq(y)

u(t, x, ŷ) +
b(y)∂x − ∂t

r(y) + θq(y)
u(t, x, y)

hence u(t, x, y) satisfies equation (1). Clearly this expression for u corresponds to the Heaviside initial
conditions.

We can observe several features of the solution from this representation. Since the left-most particle must
lie in the interval [x + tmin(b1, b2), x + tmax(b1, b2)] at time t then the solution is identically zero for
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x ≤ −tmax(b1, b2) and is identically one for x > −tmin(b1, b2). It is clear that the solution retains the
left-continuity of the initial data. Also, u(t, x, y) must be strictly increasing (in x) inside this region.
The case b1 = b2 = b, say, is very simple. All particles will travel at speed b, so that, at time t, all particles
will be at x+bt. Hence, L(t) = x+bt, so Px,y[L(t) > 0] = I{x>−bt}. This is simply the Heaviside function
travelling at speed −b. This corresponds to the analysis in section 2.6.
To deal with b1 6= b2 assume from now on, without loss of generality, that b1 > b2.
Note that the only way that the left-most particle can be at position x+ b1t at time t > 0 is if the first
particle was of type 1 and there have been no mutations to type 2 by the particle or any of its descendants
so far. The probability of this event occurring when the initial particle is of type 1 is

r1 + θq1

r1 + θq1 exp
(
(r1 + θq1)t

) ,
which explains why u(t,−t+) equals this in the calculation in section 2.4.
The only way that the left-most particle can be at position x+ b2t at time t > 0 is if the first particle was
of type 2 and the embedded birth and death process on this line has not become extinct. This embedded
process is that constructed by considering a particle to die when it mutates to type 2. Thus, on x = −b2t,
for t > 0, u1 is identically zero. The probability of this event occurring when the initial particle is of
type 2 is exactly the expression calculated for v(t,+t) in section 2.4, and the limit as t → ∞ (which is
min( θq2

r2
, 1)) is the probability of eventual extinction.

More generally it is natural to expect that the McKean representation will tie up with weak solutions of our
coupled equation (1). This is because they are piecewise classical and any discontinuities (corresponding
to atoms of probability in the distribution of the particles’ positions) will naturally propagate only along
characteristics (since the atoms of probability travel at b1 and b2). Thus a solution satisfying the McKean
representation satisfies the Rankine-Hugoniot conditions, hence is a weak solution (see section 2.3).

5.6 Polishing off the probability

Theorem 5.6 Assume c > c(θ), let λ be the probabilistic eigenvalue of Kc,θ(T ), and as usual denote by
vλ be the corresponding eigenvector with vλ(1) = 1. Then if u satisfies the coupled system (1), u ∈ C1,1

and satisfies 0 ≤ u ≤ 1, and if also, for y ∈ I,

1 − u(0, x, y) ∼ vλ(y)eλx (x→ ∞),

then, as t→ ∞,
u(t, x+ ct, y) → w(x, y),

where
w(x, y) := Ex,y exp

[−Zλ(∞)
]
.

This function w satisfies the travelling-wave equation (2) and is, modulo translations, the unique monotone
wave of speed c from S to T .

Proof. We are guided by McKean [11]. So, we are supposing that u solves (1), that 0 ≤ u ≤ 1 and that

1 − u(0, r, y) ∼ vλ(y)eλr (r → ∞). (27)

For (temporarily) fixed ε > 0, we have for large r,

exp
{−(1 + ε)vλ(y)eλr

} ≤ u(0, r, y) ≤ exp
{−(1 − ε)vλ(y)eλr

}
.

Now since L(t) + ct→ ∞ (a.s.), we shall (a.s.) have for large t,

exp
{−(1 + ε)Zλ(t)

} ≤
N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

) ≤ exp
{−(1 − ε)Zλ(t)

}
.
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Thus we have that

lim inf
t→∞ exp

{−(1 + ε)Zλ(t)
} ≤ lim inf

t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)

≤ lim sup
t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)
≤ lim sup

t→∞
exp
{−(1 − ε)Zλ(t)

}
.

Since Zλ(∞) exists almost surely (and clearly all the terms in the sequence of inequalities are bounded
below by 0 and above by 1) this becomes

exp
{−(1 + ε)Zλ(∞)

} ≤ lim inf
t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)

≤ lim sup
t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)
≤ exp

{−(1 − ε)Zλ(∞)
}
.

After taking expectations and using Fatou’s Lemma, this implies that

Ex,y exp
{−(1 + ε)Zλ(∞)

} ≤ Ex,y lim inf
t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)

≤ lim inf
t→∞ Ex,y

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)

≤ lim sup
t→∞

Ex,y

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)

≤ Ex,y lim sup
t→∞

N(t)∏
k=1

u
(
0, Xk(t) + ct, Yk(t)

)
≤ Ex,y exp

{−(1 − ε)Zλ(∞)
}
.

Using the McKean representation (4.19) this yields that

Ex,y exp
{−(1 + ε)Zλ(∞)

} ≤ lim inf
t→∞ u(t, x+ ct, y)

≤ lim sup
t→∞

u(t, x+ ct, y)

≤ Ex,y exp
{−(1 − ε)Zλ(∞)

}
.

On letting ε ↓ 0, we now obtain the desired result

u(t, x+ ct, y) → w(x, y) = Ex,y exp{−Zλ(∞)}. (28)

Existence of a monotone travelling wave from S to T when c > c(θ). It is now intuitively obvious, and not
that difficult to prove directly from the branching property, that the function w(·, ·) in (28) is a monotone
travelling wave from S to T . Firstly it does in fact satisfy the travelling wave equation (2) because it can
be written in the form

w(x, y) =
∫ ∞

t=0

(
exp
(
−(r(y) + θq(y)

)
t
)) {

r(y)w2
(
x+ (b(y) + c)t, y

)
(29)

+θq(y)w
(
x+ (b(y) + c)t, ŷ

)}
dt
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where {y, ŷ} = {1, 2}. Integrating by parts gives

w(x, y) =
r(y)

r(y) + θq(y)
w2(x, y) +

θq(y)
r(y) + θq(y)

w(x, ŷ) +
b(y) + c

r(y) + θq(y)
w′(x, y)

since the last term in the integration by parts is simply a multiple of the x-derivative of equation (29).

Then note that
w(x, y) = E0,y exp

{−eλxZλ(∞)
}
,

(from the definitions of Ex,y and Z), that w(x, y) → 0 as x → −∞ (because Zλ > 0 (a.s.) and λ < 0),
and that

1 − w(x, y) ∼ vλ(y)eλx (x→ ∞) (30)

because Zλ converges L1 (by Theorem 5.4). Hence

Ex,yZλ(∞) = Ex,yZλ(0) = eλxvλ(y).

Hence our claim is proved.

Uniqueness modulo translation of the monotone travelling wave from S to T . Let c > c(θ), and let w̃ be
a monotone travelling wave from S to T . We know from differential-equation theory that

either a suitable translate of w̃ satisfies (30), or a suitable translate of w̃ satisfies

1 − w̃(x, y) ∼ vβ(y)eβx (x→ ∞), (31)

where β is the monotone eigenvalue of Kc,θ further from 0.

If w̃ satisfies (2) and (30), then u(t, x, y) := w̃(x− ct, y) satisfies (1) and (27), so that from (28), we must
have w̃ = w. If w̃ satisfied (31), then we would have

w̃(x, y) = Ex,y exp{−Zβ(∞)} = 1,

because Zβ(∞) = 0 (a.s.) by Lemma 5.5; and w̃ would not go from S to T .

The proof of uniqueness is now complete, so we have proven Theorem 5.6. �

It is interesting to compare the above probabilistic proofs of existence and uniqueness modulo translation
of travelling waves with the analytic proofs given in section 4. We could, for example, use ODE results
to obtain results on L1 convergence of our martingales.

The methods in section 4 dealt with the c = c(θ) case; the probability theory for this case should be
amenable to the techniques of Neveu [13] — stopping lines will correspond to simple conditions on the
occupation times of the two states of the Markov chain.
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