
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 3 (1998) Paper no. 7, pages 1–14.

Journal URL
http://www.math.washington.edu/˜ejpecp/

Paper URL
http://www.math.washington.edu/˜ejpecp/EjpVol3/paper7.abs.html

ON THE APPROXIMATE SOLUTIONS
OF THE STRATONOVITCH EQUATION

Denis Feyel
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D.Feyel, A.de La Pradelle

Introduction

This paper is a contribution to the study of the approximations of solutions of the
Stratonovitch equation

(S) Xt = x0 +

∫ t
0

σ(Xs)◦dWs +

∫ t
0

β(Xs) ds

Many authors and especially Ikeda-Watanabe [8] have studied this problem by
means of piecewise linear approximations of the Brownian motion. Here we intro-
duce a method which simplifies and shortens the calculations in three ways.
a) We use the notion of (strong) approximate solution of (S), which eliminates the
need to have simultaneously the approximate solution and the exact solution in
the calculations.
b) We use the Liouville space Jα,p, where it turns out that the calculations are
simpler even than with uniform convergence.
The main point is the isomorphism Jα,p(Lp) ≈ Lp(Jα,p). Moreover this isomor-
phism is a sharpening of the Kolmogorov lemma (cf. [5, 6]).
c) With the classical regularity conditions on σ and β, we prove convergence of
approximate solutions in each space W r,p(Jα,p) for suitable values of α and p.
Without using truncation property, this improves some results of [8].
d) The p-admissibility (cf. [4]) of the vector-valued Sobolev spaceW r,p(Jα,p) allows
us to obtain easily convergence in the space L1(Ω, cr,p,Jα,p) which is the natural
space of Jα,p-valued quasi-continuous functions on the Wiener space Ω (cf. Cor.4
below). This is a sharpening of the preceding known results ([3, 8, 10, 12]).

As a corollary we not only see that the image measure X(µ) is carried by the
closure of the skeleton X(H) in the space Jα,p, but that this is also true for the
image measure X(ξ) for every measure ξ majorized by the capacity cr,p.

In fact, in the same way as for the Hölder support theorem (cf. [1, 2, 3, 7, 9, 10,
11, 14]), we obtain a support theorem for capacity : the support of the image
capacity X(cr,p) is exactly the closure of the skeleton.

I. Preliminaries

Let f : [0, 1]→ IR a Borel function. For 0 < α ≤ 1 the Liouville integral is

Iαf(x) =
1

Γ(α)

∫ x
0

(x− t)α−1f(t)dt =
1

Γ(α)

∫ x
0

tα−1f(x − t)dt

Recall that Iα(Lp(dx)) ⊂ Lp(dx) and that Iα is one to one (cf. [5, 13]). The range
Jα,p = Iα(Lp) is a separable Banach space under the norm

Nα,p(I
αf) = Np(f)

where Np stands for the Lp-norm. Denote Hα the space of α-Hölder continuous
functions vanishing at 0 with its natural norm. This is not a separable space.

2



Stratonovitch Equations

Nevertheless, for α > 1/p ≥ 0 and β > γ ≥ 0, we have the following inclusions (cf.
[5, 6, 13])

Jα,p ⊂ Hα−1/p & Hβ ⊂ Jγ,∞
These definitions and these inclusions extend to the case of B-valued functions
where B is a separable Banach space endowed with norm |.| (cf. [5, 6]).

Particularly, taking B = Lp(Ω, µ) where µ is a measure, we get the Kolmogorov
theorem:

if (Xt)t∈[0,1] is a IRm-valued process satisfying Np(Xt −Xs) ≤ c|t − s|α, then for
α > β > 1/p, this process has a modification with (β − 1/p)-Hölder continuous
trajectories. Indeed, it suffices to point out that X − X0 belongs to the space
Hα(Lp) ⊂ Jβ,p(Lp) ≈ Lp(Jβ,p) ⊂ Lp(Hβ−1/p). Observe that if Y is a process,

and Y.(ω) = Iβ(Z.(ω)) then the norm of Y in both spaces Jβ,p(Lp) and Lp(Jβ,p)
is worth [IE

∫
|Zt|p dt]1/p.

1 Proposition: (The Kolmogorov-Ascoli lemma) Let Xn ∈ Hα(Lp) with p ∈
]1,+∞[ a sequence of processes. Assume that Np(Xn

t − Xn
s ) ≤ c|t − s|α and

that Lim
n→∞

Np(Xt − Xn
t ) = 0 for every t. Then Xn converges to X in the space

Lp(Jβ,p) ⊂ Lp(Hβ−1/p) (α > β > 1/p > 0).

Proof : First it is easily seen that Np(Xt − Xn
t ) converges to 0 uniformly with

respect to t as n→∞. Take α′ such that α > α′ > β > 1/p and η > 0. We get

Np(Xt −Xn
t −Xs +Xn

s )

|t− s|α′ ≤ εn

ηα′

for |t− s| ≥ η, and

Np(Xt −Xn
t −Xs +Xn

s )

|t− s|α′ ≤ 2cηα−α
′

for |t− s| ≤ η. That is

Lim
n→∞

Sup
s,t

Np(Xt −Xn
t −Xs +Xn

s )

|t− s|α′ = 0

Hence, convergence holds in the space Hα′(Lp) ⊂ Jβ,p(Lp), and we are done.

2 Remarks: a) One can only assume that Lim
n→∞

Np(Xt −Xn
t ) = 0 for every t in

a dense subset D ⊂ [0, 1].

b) We can prove more precisely the estimate ‖X −Xn‖Hα′ (Lp) ≤ Kε1−α′/α
n . This

gives a criterion for the convergence of the series Σn(X −Xn).

Now assume that (Ω, µ) is a Gaussian vector space, and let W r,p(Ω, µ) be the
(r, p) Sobolev space endowed with the norm ‖f‖r,p = Np

(
(I −L)r/2f

)
where

L is the Ornstein-Uhlenbeck operator. Recall that we have the isomorphism

3



D.Feyel, A.de La Pradelle

W r,p(Ω,Jβ,p) ≈ Ur(Lp(Ω,Jβ,p)) where U = (I − L)−1/2 according to [4], th.25
(p-admissibility of the space Jβ,p which is a closed subspace of an Lp-space). In
view of the above proposition, we obtain

3 Proposition: (The Sobolev-Kolmogorov-Ascoli lemma) For p ∈]1,+∞[ and
r ∈]0,+∞[, we have Jα,p(W r,p(Ω, µ)) ≈ W r,p(Ω, µ,Jα,p) as above. Moreover, let
Xn ∈ Hα(W r,p) a sequence of processes. Assume that ‖Xn

t −Xn
s ‖r,p ≤ c|t− s|α

and that Lim
n→∞

‖Xt − Xn
t ‖r,p = 0 for every t. Then Xn converges in the space

W r,p(Jβ,p) (α > β > 1/p).

Proof : As above, if Y is a process, and Y.(ω) = Iβ(Z.(ω)) then the norm of Y
in both spaces Jβ,p(W r,p), and W r,p(Jβ,p) is worth [IE

∫
|(I−L)r/2Zt(ω)|p dt]1/p.

The first isomorphism is obvious (cf. [5]). Put Y nt = (I − L)r/2Xn
t and apply the

previous proposition to Xn and Y n.

4 Corollary: Under the same conditions, the process Xn converges to X in the
space L1(Ω, cr,p,Jβ,p).
Proof : Recall (cf. [4]) that L1(Ω, cr,p,Jβ,p) is the functional completion of Jβ,p-
valued bounded continuous functions with the norm

cr,p(ϕ) = Inf {Np(f)
/
f(ω) ≥ Nβ,p(ϕ(ω))}

The results follows from the inclusion Ur(Lp(Ω,Jβ,p)) ⊂ L1(Ω, cr,p,Jβ,p) (cf. [4]).

II The Stratonovitch equation.

Now let Ω = C([0, 1], IRl) endowed with the Wiener mesure µ. Let

(S) Xt = x0 +

∫ t
0

σ(Xs)◦dWs +

∫ t
0

β(Xs) ds

a Stratonovitch SDE. In this formula, Wt is the `-dimensional Brownian motion,
◦dWs stands for the Stratonovitch differential, σ(x) is an (m, `)-matrix, β(x) an
(m, 1)-column, σ and β are Lipschitz, and x0 ∈ IRm.

If X is a Borel process, we denote X̂ its predictable projection. Note that we have
X̂t = IE(Xt

∣∣ Ft) for every t ∈ [0, 1].

Let ε > 0, we say that a Borel process X is an ε-approximate solution in Lp of (S)
if we have

Np

(
Xt − x0 −

∫ t
0

σ(X̂s)dWs −
1

2

∫ t
0

Trϕ(X̂s)ds−
∫ t

0

β(X̂s)ds

)
≤ ε

for every t ∈ [0, 1]. In this formula, the stochastic integral is to be taken in the
Ito sense. Moreover ϕ = σ′ ·σ is the contracted tensor product ϕij,` = Σk(∂kσij)σ

k
`

and Trϕ stands for the convenient vector-valued trace Σj,k(∂kσij)σ
j
k .
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In fact we will suppose in the following that β = 0. Indeed, the case β 6= 0 does
not bring any other difficulty.

5 Proposition: Let εn be a sequence tending to 0, and let Xn be a sequence of
εn-approximate solutions in Lp. Assume that σ and ϕ are Lipschitz. Then, Xn

t

converges in Lp towards the solution of (S).

In addition suppose that we have

Np(X
n
t −Xn

s ) ≤ K
√
t− s

for every 0 ≤ s ≤ t ≤ 1 then Xn converges in the space Lp(Jα,p) for 1/p < α < 1
2 .

With this additional condition, we say thatXn is a sequence of strong εn-approximate
solutions.

Proof : Burkholder’s inequality gives

Np (Xn
t −Xm

t )
2 ≤ K

∫ t
0

Np (Xn
s −Xm

s )
2
ds+K(ε2

n + ε2
m)

so that by Gronwall’s lemma we have

Np (Xn
t −Xm

t ) ≤ K ′(εn + εm)

Now under the additional hypothesis, in view of the Kolmogorov-Ascoli lemma,
the convergence holds in the space Lp(Jα,p) for 1/p < α < 1/2.

Searching approximate solutions

Now the problem is to find a sequence of strong εn-approximate solutions of (S)
with εn → 0.

Consider a partition π = {0 = t0 < t1 < · · ·< tn = 1} of [0, 1]. Put δi = ti+1 − ti,
δ = Supi δi, ∆Wi = Wti+1 −Wti , and t̃ = ti for t ∈ [ti, ti+1[. If f is a function, we

define f̃(t) = f(t̃).
Let Wπ

t be the linear interpolation defined by

Wπ
t = Wti(ω) + (t− ti)

∆Wi

δi

for t ∈ [ti, ti+1[.

Note Xt the unique solution of the ODE

Xt = x0 +

∫ t
0

σ(Xs)dW
π
s

For t ∈ π we also have

(Sπ) Xt = x0 + Zt +

∫ t
0

[
σ(Xs)− σ(X̃s)

]
dWπ

s
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with the martingale

Zt =

∫ t
0

σ(X̃s)dWs

We remark that X is not an adapted process, we only have Xt ∈ Ft for t ∈ π so
that X̃ is an adapted process.
For t ∈ [ti, ti+1[ we have

d

dt
σ(Xt) = σ′(Xt)·σ(Xt)

∆Wi

δi
⇒

∣∣∣∣ ddtσ(Xt)

∣∣∣∣ ≤ k|σ(Xt)|
|∆Wi|
δi

so that we obtain the following inequalities

(1)
∣∣σ(Xt)

∣∣ ≤ |σ(Xti)| ek|∆Wi|

(2) |Xt −Xti | ≤ |σ(Xti)||∆Wi| ek|∆Wi|

(3) |Xti+1 −Xti − Zti+1 + Zti | ≤ k|σ(Xti)||∆Wi|2 ek|∆Wi|

The next lemma proves that if as δ → 0 X is an approximate solution of (S), then
it defines a strong approximate solution.

6 Lemma: If σ is Lipschitz, and p > 1, there exists a constant K such that
Np(Xt −Xs) ≤ K|σ(x0)|

√
t− s, for every s, t ∈ [0, 1] and every π.

Proof : First, for a, b ∈ π we get from (3)

|Xb −Xa −Zb + Za| ≤ k
∑

a≤ti<b
|σ(Xti)||∆Wi|2 ek|∆Wi|

Np(Xb −Xa − Zb + Za) ≤ k′
∑

a≤ti<b
Np(σ(Xti))δi = k′

∫ b

a

Np(σ(X̃s))ds

By Burkholder’s and Cauchy-Schwarz inequalities

Np(Xb −Xa)2 ≤ K1

∫ b

a

Np(σ(X̃s))
2 ds

and by Gronwall’s lemma, as σ is Lipschitz

Np(Xb −Xa) ≤ K2Np(σ(Xa))
√
b− a ≤ K3|σ(x0)|

√
b− a

In view of (2) this last inequality extends to every a, b ∈ [0, 1], with a constant K
independent of π.
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7 Lemma: If σ and ϕ are Lipschitz, we have for t ∈ π

Np

(
Xt − x0 −Zt −

1

2

∑
ti<t

ϕ(Xti)·(∆Wi)
(2)

)
≤ K|σ(x0)|t

√
δ

where the symbol ϕ(Xti)·(∆Wi)(2) stands for
∑

k,` ϕ
j
k,`(Xti)∆W

k
i ∆W `

i

Proof : First by the fundamental theorem of calculus we get

Xti+1−Xti−σ(Xti).∆Wi−
1

2
ϕ(Xti)·(∆Wi)

(2) =

∫ ti+1

ti

(ti+1−s) [ϕ(Xs)− ϕ(Xti)]·(∆Wi)
(2) ds

δ2
i

∣∣∣∣Xti+1−Xti− σ(Xti)·∆Wi −
1

2
ϕ(Xti) · (∆Wi)

(2)

∣∣∣∣ ≤ K|σ(Xti)||∆Wi|3 ek|∆Wi|

Np

(
Xt− x0−Zt−

1

2

∑
ti<t

ϕ(Xti)·(∆Wi)
(2)

)
≤ K

∑
i

|σ(x0)|δ3/2
i ≤ K|σ(x0)|t

√
δ

8 Lemma: For t ∈ π we have

Np

(∑
ti<t

ϕ(Xti) · (∆Wi)
(2) −

∫ t
0

Trϕ(X̃s)ds

)
≤ K|σ(x0)|

√
tδ

Proof : Put

Ht =
∑
ti<t

ϕ(Xti)·(∆Wi)
(2) −

∫ t
0

Trϕ(X̃s)ds

It is easy to see that Ht is the martingale

Ht = 2

∫ t
0

ϕ(X̃s)·(Ws − W̃s)·dWs

with the symmetrized ϕ, so that by Burkholder’s inequality we get

Np(Ht)
2 ≤ K1

∫ t
0

(s− s̃)Np(ϕ(X̃s))
2 ds ≤ K2|σ(x0)|2δt

9 Proposition: For t ∈ [0, 1] we have

Np

(
X̃t − x0 −

∫ t
0

σ(X̃s)dWs −
1

2

∫ t
0

Trϕ(X̃s)ds

)
≤ K|σ(x0)| Inf(

√
δ,
√
t)

7
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Proof : In view of the preceding lemmas, this is obvious for t ∈ π. If t ∈ [ti, ti+1[
we have to add a term which is (by formulas (1)–(3)) easily seen to be smaller
than K|σ(x0)|

√
t− ti, and use the inequality

√
δt+

√
t− ti ≤ 2 Inf(

√
δ,
√
t).

Then, as δ → 0 we see that X̃t is a convergent sequence of approximate solutions
of (S) (it is strong by lemma 6).

10 Theorem: If σ and ϕ are Lipschitz then we have

Np

(
Xt − x0 −

∫ t
0

σ(X̂s)dWs −
1

2

∫ t
0

Trϕ(X̂s)ds

)
≤ K|σ(x0)|

√
δ

so that as δ → 0, Xt is a sequence of approximate solutions of (S). Moreover we
also have

Np(Xt −Xs) ≤ K|σ(x0)|
√
t− s

so that the convergence holds in Lp(Jα,p) for 1/p < α < 1/2.

Proof : It suffices to remark that Np(X̂t − X̃t) ≤ Np(Xt − X̃t) ≤ K|σ(x0)|
√
t − t̃

and to bring it up in the inequality of proposition 5.
The second inequality is exactly lemma 6.

11 Remarks: a) The theorem extends to the case where β 6= 0 and β Lipschitz,
as noted before proposition 5.
b) By remark 2b we can calculate the rate of decrease of a sequence δn in order to
have for the corresponding series Σn(Xn −Xn+1) to converge normally.

III. Approximate solutions in the Sobolev space

By Meyer’s theorem, the Sobolev space W 1,p(Ω, µ) exactly is the space of functions
f ∈ Lp such that the weak derivative f ′(x, y) ∈ Lp(Ω× Ω, µ⊗ µ) with the norm[∫

|f |pdµ+

∫∫
|f ′|pd(µ⊗ µ)

]1/p

Recall that

Xt = x0 +

∫ t
0

σ(Xs)dW
π
s

the solution of an ODE. Its derivative Yt(ω,$) = X ′t(ω,$) in W 1,p(Ω, µ) satisfies
the following ODE

Yt(ω,$) =

∫ t
0

σ′(Xs(ω))dWπ
s (ω)Ys(ω,$) +

∫ t
0

σ(Xs(ω))dWπ
s ($)

This is a linear equation, we then have

Yt(ω,$) = Rt(ω)

∫ t

0

R−1
s (ω)σ(Xs(ω))dWπ

s ($)

8
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where the resolvent Rt(ω) satisfies

Rt(ω) = I +

∫ t
0

σ′(Xs(ω))dWπ
s (ω)Rs(ω)

12 Lemma: Assume that σ and σ′ are Lipschitz and bounded. Then Rt and R−1
t

are bounded in Lp independently of π.

Proof : For t ∈ π, write

Rt = I + St +
∑
ti<t

∫ ti+1

ti

[
σ′(Xs)

∆Wi

δi
Rs − σ′(X̃s)

∆Wi

δi
R̃s

]
ds

with the martingale St =
∫ t

0
σ′(X̃s)dWs ·R̃s

σ′(Xs)·∆Wi·Rs−σ′(X̃s)·∆Wi·R̃s = [σ′(Xs)− σ′(Xti)]·∆Wi·Rs+σ′(Xti)·∆Wi·[Rs −Rti ]

|Rt − I − St| ≤ K
∑
ti<t

|∆Wi|2 ek|∆Wi| |Rti |

Np(Rt − I − St) ≤ K ′
∑
ti<t

Np(Rti)δi ≤ K ′
∫ t

0

Np(R̃s)ds

as above. Burkholder’s inequality yields for t ∈ π

Np(Rt − I)2 ≤ K ′′
∫ t

0

Np(R̃s)
2 ds

By Gronwall’s lemma we get as above

Np(R̃t) ≤ K ′′′

This extends to every t ∈ [0, 1] for we have |Rt −Rti | ≤ ek|∆Wi| |Rti ||∆Wi| as in
formula (2).
The same result holds for R−1

t , as it satisfies

R−1
t = I −

∫ t
0

R−1
s σ′(Xs)dW

π
s

13 Proposition: Assume that σ is bounded with all of its derivatives up to order
3. Then Rt converges in Lp(Jα,p) for every 1/2 > α > 1/p as π refines indefinitely.

Proof : As in lemma 7, we get

Np

(
Rt − I − St −

1

2

∑
ti<t

[
(σ′′σ)(Xti )·(∆Wi)

(2) + σ′(Xti)·∆Wi ·σ′(Xti)·∆Wi

]
Rti

)
≤ Kt

√
δ

9
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and as in proposition 9

Np

(
Rt − I − St −

1

2

∫ t
0

[
σ′′(X̃s)·σ(X̃s) + σ′(X̃s)·σ′(X̃s)

]
·R̃s ds

)
≤ Kt

√
δ

As in theorem 10 we infer that Rt is an approximate solution of the Stratonovitch
SDE

Rt = I +

∫ t
0

σ′(Xs)◦ dWs◦Rs

which in Ito form reads

Rt = I +

∫ t
0

σ′(Xs)·dWs·Rs +
1

2

∫ t
0

[σ′′(Xs)·σ(Xs) + σ′(Xs)·σ′(Xs)]·Rs ds

where Xt is the solution of the corresponding SDE.

14 Remark: The analogous result holds for R−1
t . As in theorem 10, the conver-

gence holds in the space Lp(Jα,p) for every 1/2 > α > 1/p.

15 Theorem: Assume that σ is bounded with all of its derivatives up to order 3.
Then as π refines indefinitely, Yt(ω,$) converges in every Lp(Jα,p). In the same
way Xt(ω) converges in every W 1,p(Jα,p).
Proof : It suffices to remark that for almost every ω, Yt(ω,$) converges to a
Wiener integral in $. The convergence takes place in Lp(µ⊗ µ,Jα,p).

10
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Higher order derivatives

Now, assume that σ is bounded with all of its derivatives. For a partition π
compute

Y
(2)
t (ω, ω1, ω2) =

∫ t
0

σ′(Xs(ω))·dWπ
s (ω)·Y (2)

s (ω, ω1, ω2) +L
(2)
t (ω, ω1, ω2)

where

L
(2)
t (ω, ω1, ω2) =

∫ t
0

σ′′(Xs(ω))·Ys(ω, ω1)·Ys(ω, ω2)·dWπ
s (ω)+

+

∫ t
0

σ′(Xs(ω))·Ys(ω, ω1)·dWπ
s (ω2)+

+

∫ t
0

σ′(Xs(ω))·Ys(ω, ω2)·dWπ
s (ω1)

As in the preceding proof we can write

Y
(2)
t (ω, ω1, ω2) = Rt(ω)

∫ t
0

R−1
s (ω)dL(2)

s (ω, ω1, ω2)

where Rt denotes the resolvent of this linear ODE, which is the same as in propo-
sition 13.

16 Lemma: Let π be a partition of [0,1], let vt be a continuous process which is
π–adapted, that is vt ∈ Ft for t ∈ π. Assume that

Np(vt − vs) ≤ Kp

√
t− s

where Kp does not depend on π. Consider the following processes

ut =

∫ t
0

vs · dWπ
s

st =

∫ t
0

us · dWπ
s

If for every t ut and vt converges in every Lp, then st converges in the space
Lp(Jα,p) for 1/p < α < 1/2.

Proof : As in lemma 7, by the fundamental theorem of calculus, we get for t ∈ π

sti+1 − sti − uti ·∆Wi −
1

2
vti · (∆Wi)

(2) =

∫ ti+1

ti

(ti+1 − s)[vs − vti ] · (∆Wi)
(2) ds

δi

11
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As in lemma 7 and lemma 8

Np

(
st −

∫ t
0

ũs · dWs −
1

2

∫ t
0

Tr (vs)ds

)
≤ K
√
tδ

where Tr stands for a suitable tensor-contraction of vt. As π refines indefinitely,
we get the convergence of st in every Lp, for every t.
It remains to prove the convergence in the space Lp(Jα,p). Replacing [0, t] with
[ti, tj ] and using Burkholder’s inequality yield

Np(stj − sti) ≤ K
√
tj − ti

Then for s < ti < tj < t we get

Np(st − ss) ≤ K
√
tj − ti

Applying the Kolmogorov-Ascoli lemma (prop. 1) gives the result.

Then we get as above

17 Theorem: Assume that σ is bounded with all of its derivatives. Then as π
refines indefinitely, Xt converges in every W r,p(Ω, µ,Jα,p)
(r ≥ 1, p > 2, 1/2 > α > 1/p).

Proof : First, for the second derivative, it suffices to apply the preceding lemma
to the processes

st(ω, ω
1, ω2) =

∫ t
0

R−1
s (ω)dL(2)

s (ω, ω1, ω2)

which is an Lp(dω1 ⊗ dω2)-valued process.
It is straightforward to verify that the lemma applies in the same way at any order
of derivation.

18 Corollary: Xt converges in every L1(Ω, cr,p,Jα,p) (r ≥ 1, p > 2, 1/2 > α >
1/p).

Proof : Apply corollary 4.

19 Remark: As proved in [4], th.27, we find again that X has a modification

X̃ : Jα,p → Jα,p which is cr,p-quasi-continuous for every (r, p).
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Stratonovitch Equations

Application to the support theorem

Assume that the hypotheses of theorem 15 hold, that is σ and β are bounded with
all of its derivatives up to order 3. Denote Xn the solution of the ODE

Xn
t = x0 +

∫ t
0

σ(Xn
s )dWn

s +

∫ t
0

β(Xn
s )ds

where dWn
s stands for the ordinary differential associated to the subdivision of

maximum length δn. We have seen that Xn converges in the space Lp(Jα,p) for
1/2 > α > 1/p. Let X be the limit, which is the solution of the Stratonovitch
SDE. We also denote X(h) the solution of the ODE

Xt(h) = x0 +

∫ t
0

σ(Xs(h))h′(s)ds +

∫ t
0

β(Xs(h))ds

where h(t) =
∫ t

0
h′(s)ds belongs to the Cameron-Martin spaceHl = W 1,2

0 ([0, 1], dx, IRl).
Recall that h→ X(h), which is a map from Hl into Hm, is the so-called skeleton
of X. Of course Xn = X(ωn) where ωn is the piecewise linear approximation of
ω. Then we have an improvement of the classical support theorem

20 Theorem: The support of the image capacityX(c1,p) is the closure in Ω = Jα,p
of the skeleton X(H).

Proof : Let ϕ be a continuous function on Jα,p which vanishes on X(H). Then
ϕ(Xn) vanishes for every n. We can assume that Xn converges c1,p-q.e. to X, so
that as n converges to +∞, ϕ(Xn) = 0 converges to ϕ(X). Then ϕ(X) = 0 q.e.,
so X(c1,p) is carried by the closure of the skeleton.
Now notice that by the result of [3, 10], any point in the skeleton belongs to the
support of X(µ) in the space Hγ . As Hγ ⊂ Jα,p for 1/2 > γ > α > 1/p, (cf. [5,
6]), so by the obvious inclusion Supp (X(µ)) ⊂ Supp (X(c1,p)), we get the result.

Now let ξ a measure belonging to the dual space of L1(Ω, c1,p). Then X is ξ-
measurable and we have

21 Corollary: The image measure X(ξ) is carried by the closure of the skeleton
X(H).

22 Remark: If σ is bounded with all of its derivatives, we can replace c1,p with
cr,p in the preceding results.
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CRAS Paris, t.316, série I, no3, 1993, p.283-286

[3] G.Ben Arous-G.Gradinaru-M.Ledoux Hölder norms and the support theorem
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