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Abstract

We consider in this work a one parameter family of hypoelliptic diffusion processes
on the unit tangent bundle T 1M of a Riemannian manifold (M, g), collectively called
kinetic Brownian motions, that are random perturbations of the geodesic flow, with
a parameter σ quantifying the size of the noise. Projection on M of these processes
provides random C1 paths in M. We show, both qualitively and quantitatively, that
the laws of these M-valued paths provide an interpolation between geodesic and
Brownian motions. This qualitative description of kinetic Brownian motion as the
parameter σ varies is complemented by a thourough study of its long time asymptotic
behaviour on rotationally invariant manifolds, when σ is fixed, as we are able to give a
complete description of its Poisson boundary in geometric terms.
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1 Introduction

1.1 Motivations and related works

We introduce in this work a one parameter family of diffusion processes that model
physical phenomena with a finite speed of propagation, collectively called kinetic
Brownian motion. The need for such models in applied sciences is real, and ranges
from molecular biology, to industrial laser applications, see for instance the works
[CDR08, GS13, GKMSW14] and the references therein. As a first step in this direction,
we consider here what may be one of the simplest example of such a process and provide
a detailed study of its behaviour in a fairly general geometric setting. In the Euclidean
space Rd, kinetic Brownian motion with parameter σ, is simply described as a C1 random
path (xt)t≥0 with Brownian velocity on the unit sphere, run at speed σ2, so

dxt
dt

= ẋt, ẋt = Wσ2t, (1.1)

for some Brownian motion W on the unit sphere of Rd.
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Kinetic Brownian motion on Riemannian manifolds

Figure 1: Kinetic Brownian motion in Euclidean space, velocity on the sphere on the left
and the corresponding position on the right.

In contrast with Langevin process, whose Rd-valued part can go arbitrarily far in an
arbitrarily small amount of time, kinetic Brownian motion provides a bona fide model
of random process with finite speed. Its definition on a Riemannian manifold follows
the intuition provided by its Rd version, and can be obtained by rolling onM without
slipping its Euclidean counterpart. Figure 2 below illustrates the dynamics of kinetic
Brownian motion on the torus, as time goes on.

Figure 2: Simulations of a the kinetic Brownian motion on the torus over different time
intervals.

We devote most of our efforts in this work in relating the large noise and large time
behaviour of the process to the geometry of the manifold. On the one hand, we show
that kinetic Brownian motion interpolates between geodesic and Brownian motions, as σ
ranges from 0 to∞, leading to a kind of homogenization. Our use of rough paths theory
for proving that fact may be of independent interest. We first prove the interpolation
property in the model space Rd, and strengthen the associated convergence results into
some rough paths convergence results. The twist here is that once the latter result is
proved, the fact that kinetic Brownian motion can be constructed from the rough path
lift of kinetic Brownian motion in Rd by solving a rough differential equation, together
with the continuity of the Itô map, in rough path topology, provides a clean justification
of the homogenization phenomenon.

This result strongly echoes Bismut’s corresponding result for his hypoelliptic Lapla-
cian [Bis05] which, roughly speaking, corresponds in its simplest features to replacing
the Brownian velocity on the sphere by a velocity process given by an Ornstein-Uhlenbeck
process. As a matter of fact, our method for proving the above mentionned homogeniza-
tion result can also be used to recover the corresponding result for Bismut’s hypoelliptic
diffusion.
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Kinetic Brownian motion on Riemannian manifolds

On the other hand, we are able to give a complete description of the Poisson boundary
of kinetic Brownian motion when the underlying Riemannian manifold is sufficiently
symmetric and σ is fixed. In comparison with the case of classical Brownian motion on
a Riemannian manifold, this is far from obvious. Indeed, Kinetic Brownian motion is
defined on the unitary tangent bundle of the base manifold, hence the geometric context
is intrinsically higher dimensional. Moreover, the process is hypoelliptic and the lack
of noise prevents from using of standard coupling techniques. We take advantage in
this task of the powerful dévissage method that was introduced recently in [AT13] as a
tool for the analysis of the Poisson boundaries of Markov processes on manifolds. Its
typical range of application involves a diffusion (zt)t≥0 that admits a subdiffusion (xt)t≥0
whose Poisson boundary is known. If the remaining piece yt of zt = (xt, yt) converges to
some random variable y∞, the dévissage method provides conditions that garantee that
the invariant sigma field of (zt)t≥0 will be generated by y∞ together with the invariant
sigma field of (xt)t≥0, see the end of Section 3.2.2 where the main results of [AT13]
are recalled. In the present situation, and somewhat like Brownian motion on model
spaces, the Poisson boundary of kinetic Brownian motion is described by the asymptotic
direction in which the process goes to infinity. It is remarkable, however, that depending
on the geometry, kinetic Brownian motion may have a trivial Poisson boundary while
Brownian motion will have a non-trivial Poisson boundary.

Kinetic Brownian motion is the Riemannian analogue of a class of diffusion processes
on Lorentzian manifolds that was introduced by Franchi and Le Jan in [FLJ07], as
a generalization to a curved setting of a process introduced by Dudley [Dud66] in
Minkowski spacetime. These processes model the motion in spacetime of a massive
object subject to Brownian fluctuations of its velocity. Despite their formal similarities,
the causal structure of spacetime makes relativistic diffusions very different from kinetic
Brownian motion, as the reader will find out by reading the litterature on the subject,
such as [FLJ07, FLJ10, Fra09, Bail08, BR10, Bail10, Ang14], for instance.

We have organized the article as follows. Kinetic Brownian motion on a given
Riemannian manifold (M, g) is introduced formally in Section 1.2 below. Section 2 is
dedicated to proving that the manifold-valued part of a time rescaled version of kinetic
Brownian motion converges weakly to Brownian motion as the intensity of the noise,
quantified by σ2, increases indefinitely, if the manifold is stochastically complete. This
is the main content of Theorem 2.2, which is proved using rough paths theory. The
necessary material on this subject is recalled, so the reader can follow the proof without
preliminary knowledge about rough paths. Section 3 provides a thourough description
of the asymptotic behaviour of kinetic Brownian motion on a rotationnaly invariant
manifold, through the identification of its Poisson boundary in a generic setting.

We collect here a number of notations that will be used throughout that work.

• (M, g) will denote a d-dimensional oriented complete Riemannian manifold, whose
unit tangent bundle and orthonormal frame bundle will be denoted respectively by
T 1M and OM. We shall denote by z = (x, e) a generic point of OM, with x ∈ M
and e : Rd → TxM, an orthonormal frame of TxM; we write π : OM→M for the
canonical projection map. Last, we shall denote by

(
ε1, . . . , εd

)
the canonical basis

of Rd, with dual basis
(
ε∗1, . . . , ε

∗
d

)
.

• Denote by (Vi)2≤i≤d, the canonical vertical vector fields on OM, associated with
the Lie elements vi := εi ⊗ ε∗1 − ε1 ⊗ ε∗i of the orthonormal group of Rd. The Levi-
Civita connection on TM defines a unique horizontal vector field H1 on OM such
that (π∗H1)(z) = e(ε1), for all z = (x, e) ∈ OM. The flow of this vector field is
the natural lift to OM of the geodesic flow. Taking local coordinates xi on M
induces canonical coordinates on OM by writing ei := e(εi) = eji∂xj , with Einstein’s
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Kinetic Brownian motion on Riemannian manifolds

summation convention. Denoting by Γkij the Christoffel symbol of the Levi-Civita
connection associated with the above coordinates, the vector fields Vi and H1 have
the following expressions in these local coordinates

Vi(z) = eki
∂

∂ek1
− ek1

∂

∂eki
, 2 ≤ i ≤ d,

H1(z) = ei1
∂

∂xi
− Γkij(x)ei1e

j
l

∂

∂ekl
.

1.2 Definition of kinetic Brownian motion

As said above, kinetic Brownian motion on a d-dimensional oriented complete Rie-
mannian manifold (M, g), is a diffusion with values in the unit tangent bundle T 1M
of M. In the model setting of Rd, it takes values in Rd × Sd−1, and is described as a
random C1 path run at unit speed, with Brownian velocity, as described in Equation
(1.1). As in the classical construction of Eells-Elworthy-Malliavin of Brownian motion on
M, it will be convenient later to describe the dynamics of kinetic Brownian motion on a
general Riemannian manifold (M, g) as the projection in T 1M of a dynamics with values
in the orthonormal frame bundle OM ofM, obtained by rolling without splitting kinetic
Brownian motion in Rd. The following direct dynamical definition in terms of stochastic
differential equation provides another description of the dynamics of kinetic Brownian
motion which we adopt as a definition. The equivalence of the two point of views is
shown in section 2.4.1. In the sequel σ will always stand for some non-negative constant
which will quantify the strength of the noise in the dynamics of kinetic Brownian motion.

Definition 1.1. Given z0 ∈ OM, the kinetic Brownian motion with parameter σ,
started from z0, is the solution to the OM-valued stochastic differential equation in
Stratonovich form

dzt = H1(zt) dt+ σVi(zt) ◦dBit, (1.2)

started from z0. It is defined a priori up to its explosion time and has generator

Lσ := H1 +
σ2

2

d∑
j=2

V 2
j .

It is elementary to see that its canonical projection on T 1M is a diffusion on its
own, also called kinetic Brownian motion. In the coordinate system (xi, ẋi) := (xi, ei1) on
T 1M induced by a local coordinate system onM, kinetic Brownian motion satisfies the
following stochastic differential equation in Itô form dxit = ẋit dt,

dẋit = −Γijk ẋ
j
t ẋ
k
t dt+ σdM i

t −
σ2

2
(d− 1)ẋit dt.

(1.3)

where 1 ≤ i ≤ d, and where Mt is an Rd-valued local martingale with bracket

d〈M i,M j〉t =
(
gij(xt)− ẋitẋ

j
t

)
dt,

for any 1 ≤ i, j ≤ d and gij stand for the inverse of the matrix of the metric in the
coordinates used here.

The readers acquainted with the litterature on relativistic diffusions will recognize
in equation (1.2) the direct Riemannian analogue of the stochastic differential equation
defining relativistic diffusions in a Lorentzian setting. Despite this formal similarity, the
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two families of processes have very different behaviours. As a trivial hint that the two
situations may differ radically, note that the unit (upper half) sphere Hd in the model
space R1,d of Minkowski spacetime, is unbounded. As a result, there exists deterministic
Hd-valued paths ẋs that explode in a finite time, giving birth to exploding R1,d-valued
paths xs = x0 +

∫ s
0
xr dr. The work [Bail11] even gives some reasonnable geometric

conditions ensuring the non-stochastic completeness of relativistic diffusions. No such
phenomenon can happen in Rd or on a complete Riemannian manifold for a C1 path
defined on a finite open interval, and run at unit speed.

Proposition 1.2 (Non-explosion). Assume the Riemannian manifold (M, g) is complete.
Then kinetic Brownian motion has almost surely an infinite lifetime.

Proof. Denote by τ the lifetime of kinetic Brownian motion zt = (xt, et), and assume, by
contradiction, that τ is finite with positive probability. Since the C1 path (xt)0≤t<τ has
unit speed, it would converge as t tends to τ , on the event {τ <∞}, as a consequence
of the completeness assumption onM. The horizontal lift

(
zt
)
0≤t<τ := (xt, et)0≤t<τ of

(xt)0≤t<τ in OM would converge as well. Write vi for the Lie element εi ⊗ ε∗1 − ε1 ⊗ ε∗i
of the orthonormal group SO(d) of Rd. We have then et =: etht where the process
(ht) ∈ SO(d) satisfies the stochastic differential equation

dht = −viht ◦dBit,

in particular (ht) is well defined for all times t ≥ 0. Consequently, both processes (et)

and (zt) should converge as t tends to τ , contradicting the necessary explosion of zt .

From now on we shall assume that the Riemannian manifold (M, g) is complete, and
turn in the next section to the study of kinetic Brownian motion as a function of σ.

2 From geodesics to Brownian paths

Let emphasize the dependence of kinetic Brownian motion on the parameter σ by
denoting it zσt =

(
xσt , e

σ
t

)
∈ OM. We show in this section that the family of laws of xσ·

provides a kind of interpolation between geodesic and Brownian motions, as σ ranges
from zero to infinity, as expressed in Theorem 2.2 below and illustrated in Fig. 3 below
when the underlying manifold is the 2-dimensional flat torus.

2.1 Statement of the results

To fix the setting, add a cemetary point ∂ toM, and endow the unionMt {∂} with
its usual one-point compactification topology. That being done, denote by Ω0 the set of
continuous paths γ : [0, 1]→Mt{∂}, that start at some reference point x0 and that stay
at point ∂ if they exit the manifoldM. Let F :=

∨
t∈[0,1] Ft where (Ft)0≤t≤1 stands for

the filtration generated by the canonical coordinate process. Denote by BR the geodesic
open ball with center x0 and radius R, for any R > 0. The first exit time from BR is
denoted by τR, and used to define a measurable map

TR : Ω0 → C
(
[0, 1], B̄R

)
,

which associates to any path (γt)0≤t≤1 ∈ Ω0 the path which coincides with γ on the time
interval

[
0, τR

]
, and which is constant, equal to γτR , on the time interval

[
τR, 1

]
. The

following definition then provides a convenient setting for dealing with sequences of
random process whose limit may explode.
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Kinetic Brownian motion on Riemannian manifolds

Figure 3: Kinetic Brownian motion on the flat torus for σ = 10−2, 10−1, 1, 2, 4, 10.

Definition 2.1. A sequence (Pn)n≥0 of probability measures on
(
Ω0,F

)
is said to con-

verge locally weakly to some limit probability P on
(
Ω0,F

)
if the sequence Pn ◦ T−1R of

probability measures on C([0, 1], B̄R) converges weakly to P ◦ T−1R , for every R > 0.

Equipped with this definition, we can give a precise sense to the above interpolation
between geodesic and Brownian motions provided by kinetic Brownian motion.

Theorem 2.2 (Interpolation). Assume the Riemannian manifold (M, g) is complete.
Given z0 =

(
x0, e0

)
∈ OM we have the two following asymptotics behaviours.

• The law of the rescaled process
(
xσσ2t

)
0≤t≤1 converges locally weakly under Pz0 to

Brownian motion onM, run at speed 4
d(d−1) over the time interval [0, 1], as σ goes

to infinity.

• The law of the non-rescaled process
(
xσt
)
0≤t≤1 converges locally weakly under Pz0 ,

as σ goes to zero, to a Dirac mass on the geodesic started from x0 in the direction
of the first vector of the basis e0.

Implicit in the above statement concerning the small noise asymptotics is the fact that
the geodesic curve is only run over the time interval [0, 1]; no stochastic completeness
assumption is made above. The proof of the second item in the interpolation theorem
is trivial, since the generator of the process then converges to the generator of the
geodesic flow as it is clear from the Definition 1.1 of the process. We shall first prove
the result stated in the first item by elementary means in the model Euclidean case, in
Section 2.2. Using the tools of rough paths analysis, we shall see in Section 2.3 that
elementary moment estimates allow a strengthening of the weak convergence result of
Section 2.2 into the weak convergence of the rough path lift of the Euclidean kinetic
Brownian motion to the (Stratonovich) Brownian rough path. To link kinetic Brownian
motion in Euclidean space to its Riemannian analogue, we use the fact that the latter can
be constructed by rolling onM without slipping the former, using Cartan’s development
map. This means, from a practical point of view, that one can construct theM-valued
part of kinetic Brownian motion as the solution of anM-valued controlled differential
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equation equation in which the Euclidean kinetic Brownian motion plays the role of the
control. This key fact will enable us to use the continuity of the Itô-Lyons map associated
with Cartan’s development map, and transfer in Section 2.4 the weak convergence result
proved for the Euclidean kinetic Brownian motion to the curved setting of any complete
Riemannian manifold.

Note that the above theorem only involves local weak convergence; it can be strength-
ened under a very mild and essentially optimal natural assumption.

Corollary 2.3. If the manifold (M, g) is complete and stochastically complete then
the rescaled process

(
xσσ2t

)
0≤t≤1 converges in law under Pz0 , as σ goes to infinity, to

Brownian motion run at speed 4
d(d−1) over the time interval [0, 1].

X.-M. Li proved recently in [Li14] an interpolation theorem similar to Corollary 2.3,
under stronger geometric assumptions on the base manifold M, requiring a positive
injetivity radius and a control on the norm of the Hessian of the distance function on
some geodesic ball. Her proof rests on a formulation of the weak convergence result
in terms of a martingale problem, builds on ideas from homogenization theory, and
uses tightness techniques. It is likely that the very robust nature of our proof, based
on the rough paths machinery, offers a convenient setting for proving more general
homogenization results at a low cost. As a basic illustration, notice for example that the
proof below works verbatim with the Levi-Civita connection replaced by any other affine
metric preserving connection H : TM→ TOM. The limit process in OM is not in that
case the lift to OM of a Brownian motion onM anymore, but it is still described as the
solution to the Stratonovich differential equation

det = H(et) ◦dBt,

where B is an Rd-valued Brownian motion.

Note that a slightly more general family of diffusions on the frame bundle than those
given by equation (1.2) is considered in [Li14], where in addition to the Brownian noise
in the canonical vertical directions, scaled by a factor σ, she also considers a vertical
constant drift independent of σ. It is elementary to adapt our method to this setting.

Remark 2.4. The idea of using rough paths theory for proving elementary homogeniza-
tion results as in theorem 2.2 was first tested in the work [FGL15] of Friz, Gassiat and
Lyons, in their study of the so-called physical Brownian motion in a magnetic field. That
random process is described as a C1 path (xt)0≤t≤1 in Rd modeling the motion of an
object of mass m, with momentum p· = mẋ·, subject to a damping force and a magnetic
field. Its momentum satisfies a stochastic differential equation of Ornstein-Uhlenbeck
form

dpt = − 1

m
Mptdt+ dBt,

for some matrix M whose eigenvalues all have positive real parts, and B is a d-
dimensional Brownian motion. While the process (Mxt)0≤t≤1 is easily seen to converge
to a Brownian motion, its rough path lift is shown to converge in a rough paths sense in
Lq, for any q ≥ 2, to a random rough path different from the Brownian rough path.

The proof of the interpolation theorem 2.2 and Corollary 2.3 is split into three steps,
performed in the next three subsections. We prove the Euclidean version of Corollary
2.3 in Section 2.2, and strengthen that weak convergence result in

(
C
(
[0, 1],Rd

)
, ‖ · ‖∞

)
into a weak convergence result in rough paths topology of the rough paths lift of
Euclidean kinetic Brownian motion. This is done in Section 2.3 by using some general
compactness criterion on distributions in rough paths space. The point here is that
kinetic Brownian motion on any complete Riemannian manifold can be constructed
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from its Euclidean analogue by solving a controlled differential equation in which the
control is the Euclidean kinetic Brownian motion. One can then use Lyons’ universal
limit theorem, on the continuity of the Itô-Lyons map, to transfer the weak convergence
result of the rough kinetic Brownian motion in Rd to its Riemannian analogue; this is
explained in Section 2.4, where Corollary 2.3 is also proved.

2.2 Proof of the interpolation result in the Euclidean setting

When the underlying manifoldM is the Euclidean space Rd, the state space of kinetic
Brownian motion becomes Rd× Sd−1, with coordinates (x, ẋ) = (xi, ẋi)1≤i≤d ∈ Rd× Sd−1,
inherited from the canonical coordinates on Rd × Rd. System (1.3) describing the
dynamics of kinetic Brownian motion in a general local coordinate system takes in the
present setting the simple form

dxit = ẋitdt,

dẋit = −σ2 d− 1

2
ẋitdt+ σ

d∑
j=1

(
δij − ẋitẋ

j
t

)
dW j

t ,
(2.1)

for 1 ≤ i ≤ d, with W =
(
W 1, . . . ,W d

)
a standard Rd-valued Brownian motion.

Proposition 2.5. Given (x0, ẋ0) ∈ Rd × Sd−1, we have the following two asymptotic
regimes, in terms of σ.

1. The non-rescaled process (xσt )0≤t≤1 converges weakly to the Dirac mass on the
geodesic path

(
x0 + tẋ0

)
0≤t≤1, as σ tends to zero.

2. The time-rescaled process (xσσ2t)0≤t≤1 converges weakly to a Euclidean Brownian
motion with covariance matrix 4

d(d−1) times the identity, as σ tends to infinity.

Proof. The convergence result when σ tends to zero is straightforward. We present two
proofs of the weak convergence to Brownian motion as σ tends to infinity, to highlight
the elementary nature of this claim. In order to simplify the expressions, let us define
for all t ≥ 0

Xσ
t := xσσ2t.

The first approach takes as a starting point the integrated version of equation (2.1),
namely

Xσ
t = x0 +

2

d− 1

1

σ2
(ẋ0 − ẋσσ2t) +Mσ

t , (2.2)

where Mσ
t is a d−dimensional martingale whose bracket is given by

〈Mσ,i,Mσ,j〉t =
4

(d− 1)2
1

σ2

∫ σ2t

0

(
δij − ẋσ,is ẋσ,js

)
ds.

The mid-terms in the right hand side of Equation (2.2) clearly go to zero when σ tends
to ∞, uniformly in t, so that the asymptotic behavior of Xσ

t is the same as that of
the martingale Mσ

t . To analyse that martingale, note that the time-rescaled process
(yt)t≥0 := (ẋt/σ2)t≥0 is a standard Brownian motion on Sd−1, solution of the equation, for
each 1 ≤ i ≤ d

dyit = −d− 1

2
yitdt+

d∑
j=1

(
δij − yity

j
t

)
dBjt ,

=: −d− 1

2
yitdt+ dN i

t ,

(2.3)
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for some Rd-valued Brownian motion B. The bracket of the martingale Mσ is simply
given in terms of (yt)t≥0 by the formula

〈Mσ,i,Mσ,j〉t =
4

(d− 1)2
1

σ4

∫ σ4t

0

(
δij − yisyjs

)
ds,

so, for a fixed time t, the ergodic theorem satisfied by the process (yt)t≥0 entails the
almost sure convergence

lim
σ→+∞

〈Mσ,i,Mσ,j〉t =
4

d(d− 1)
t δij .

The result of Proposition 2.5 then follows from the asymptotic version of Knight Theorem,
as stated form instance in Theorem 2.3 and Corollary 2.4, pp. 524-525, in the book
[RY99] of Revuz and Yor. The second approach consists in starting from the integral
representation

Xσ
t = x0 +

1

σ2

∫ σ4t

0

yisds, (2.4)

where (yt)t≥0 is the above standard spherical Brownian motion, so that the result can
alternatively be seen a consequence of a standard central limit theorem for ergodic
diffusions applied to the ergodic process (yt)t≥0, see for instance the reference [CCG12].

We shall prove in Section 2.3 that the weak convergence result of Proposition 2.5 can
be enhanced to the weak convergence of the rough path associated with the random C1

path (Xσ
t )t≥0 to the Stratonovich Brownian rough path. This requires the study of the

(Rd)⊗2-valued process defined for any t ≥ 0 by the integral

Xσ
t =

∫ t

0

Xσ
s ⊗ dXσ

s .

For those readers not acquainted with tensor products, one can simply see the tensor
product a⊗ b of two vectors a, b in Rd, as the linear map x ∈ Rd 7→

(∑
i=1..d b

ixi
)
a.

Proposition 2.6. The Rd × (Rd)⊗2-valued process (Xσ
t )t≥0 :=

(
Xσ
t ,X

σ
t

)
t≥0 converges

weakly, as σ goes to infinity, to the Brownian rough path over Rd, run at speed 4
d(d−1) .

Proof. It will be convenient to use the representation of Xσ
t given by identity (2.4), for

which there is no loss of generality in assuming x0 = 0. Recall (Nt)t≥0 stands for the
martingale part of (yt)t≥0 in Equation (2.3), seen as an Rd-valued path. We have

Xσ
t =

2

(d− 1)σ4

(
−
∫ σ4t

0

y⊗2s ds+
2

d− 1
N⊗2σ4t

)

+
4

(d− 1)2σ4

(
−Nσ4t ⊗ yσ4t +

∫ σ4t

0

dNs ⊗ ys −
∫ σ4t

0

dNs ⊗Ns

)
.

As the symmetric part 1
2 (Xσ

t )
⊗2 of Xσ

t converges to the corresponding symmetric
part of the Brownian rough path, by Proposition 2.5, we are left with proving the
corresponding convergence result for the anti-symmetric part of the process (Xσ

t )t≥0,
namely

4

(d− 1)2σ4

(
yσ4t ⊗Nσ4t −Nσ4t ⊗ yσ4t +

∫ σ4t

0

dNs ⊗ ys − ys ⊗ dNs

)

+
4

(d− 1)2
1

σ4

∫ σ4t

0

(
Ns ⊗ dNs − dNs ⊗Ns

)
.

(2.5)
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As the process (yt)t≥0 lives on the unit sphere, the terms in the first line of expression
(2.5) clearly converge to zero in L2, as σ goes to infinity, uniformly on bounded intervals
of time. Using the notations introduced in Equation (2.2), we are thus left with the
martingale term

Mσ
t :=

4

(d− 1)2
1

σ4

∫ σ4t

0

(
Ns ⊗ dNs − dNs ⊗Ns

)
=

∫ t

0

(
Mσ
s ⊗ dMσ

s − dMσ
s ⊗Mσ

s

)
.

The weak convergence of this term to the awaited Lévy area of the Brownian rough path
is dealt with by the following lemma, which concludes the proof.

Lemma 2.7. The Rd × (Rd)⊗2-valued martingale (Mσ
t )t≥0 := (Mσ

t ,M
σ
t )t≥0 converges

weakly as σ goes to infinity, to the process(
Bt,

∫ t

0

(Bs ⊗ dBs − dBs ⊗Bs)
)
t≥0

,

where B is an Rd-valued Brownian motion run at speed 4
d(d−1) .

Proof. Given x ∈ Rd, let Lx stand for the linear map from Rd to Rd × (Rd)⊗2 defined by
the formula

Lxv :=
(
v, vx∗ − xv∗

)
,

where the star notation is used to denote linear form canonically associated with an
element of the Euclidean space Rd. With this notation, we can write

Mσ
t =

∫ t

0

LMσ
s
dMσ

s .

Recall that we have already proved that the process Mσ
· converges weakly when σ goes

to infinity, to a Brownian motion Bt of variance 4
d(d−1) . It follows from the continuity of

the map x 7→ Lx, that the process
(
LMσ

t
,Mσ

t

)
0≤t≤1 converges weakly to (LBt , Bt)0≤t≤1.

Refering to Theorem 6.22, p. 383 of [JS03], the result of the lemma will follow from
the previous fact if we can prove that the martingales Mσ are uniformly tight – see
Definition 6.1, p. 377 of [JS03]. But since we are working with continuous martingales
whose brackets converge almost surely when σ goes to infinity, we can use Proposition
6.13 of [JS03], p. 379, to obtain the awaited tightness.

2.3 From paths to rough paths in the Euclidean setting

Proposition 2.6 shows that the natural lift Xσ
· of Xσ

· as a weak geometric Hölder
p-rough path, for 2 < p < 3, converges weakly to the Brownian rough path, when seen
as an element of a space of continuous paths on [0, 1], endowed with the topology of
uniform convergence. We show in this section that a stronger convergence result holds,
with the rough path metric in place of the uniform topology. This stronger convergence
result will be the main ingredient used in Section 2.4 to prove the interpolation theorem
2.2, by relying on Lyons’ universal limit theorem.

For the basics of rough paths theory, we refer the reader to the very nice account
given in the book [FH14] by Friz and Hairer. Alternative pedagogical accounts of the
theory can be found in [Bai14a, Bau13, Lej09], see also the book [FV10] of Friz and
Victoir for a thourough account of their approach of the theory. Let 2 < p < 3 be given.

Proposition 2.8. The weak geometric Hölder p-rough path (Xσ
t )0≤t≤1 converges weakly

as a rough path to the Brownian rough path.
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The remainder of this section is dedicated to the proof of this statement. Our strategy
of proof is simple. Using elementary moment estimates, we show that the family of laws
of Xσ

· is tight in some rough paths space. As the rough path topology is stronger than
the topology of uniform convergence on bounded intervals, Proposition 2.6 identifies the
unique possible limit for these probability measures on the rough paths space, giving
the convergence result as a consequence.

To show tightness, we shall rely on the following Kolmogorov-Lamperti-type compact-
ness criterion; see Corollary A.11 of [FV10] for a reference. As a shortcut, we will write
zts or zt,s for the increment zt − zs, for any s ≤ t, and any path z· with values in a vector
space.

Theorem 2.9 (Kolmogorov-Lamperti tightness criterion). Given any 1
3 < γ ≤ 1

2 , consider
the laws of (Xσ

t )0≤t≤1 =
(
Xσ
t ,X

σ
t

)
0≤t≤1, for σ > 0, as probability measures on the metric

space RP(γ) of weak geometric γ-Hölder rough paths. If the following moment estimates

sup
σ
E
[∣∣Xσ

ts

∣∣q] ≤ Cq |t− s| q2 ,
sup
σ
E
[∣∣Xσ

ts

∣∣q] ≤ Cq |t− s|q, (2.6)

hold for all 0 ≤ s ≤ t ≤ 1, for some positive constants Cq, for all q ≥ 2, then the family of
laws of (Xσ

t )0≤t≤1 is tight in RP(γ).

We shall prove these two bounds separately, starting with the bound on Xσ
ts. We use

for that purpose the representation

Xσ
ts =

1

σ2

∫ σ4t

σ4s

yu du,

in terms of a unit speed Brownian motion (yt)t≥0 on the sphere, already used in the
previous section, together with Equation (2.3) giving the dynamics of (yt)t≥0 in terms
of an Rd-valued Brownian motion (Bt)t≥0. Denoting by xi the ith coordinate of a vector
x ∈ Rd, this gives the equation

(Xσ)its =
2

(d− 1)σ2

(
−yiσ4t,σ4s +

∫ σ4t

σ4s

(
δij − yiuyju

)
dBju

)
.

So we have

E
[∣∣Xσ

ts

∣∣q] ≤ cq
σ2q

{
E
[∣∣yσ4t,σ4s

∣∣q]+ E

[∣∣∣∣∣
∫ σ4t

σ4s

(
δij − yiuyju

)
dBju

∣∣∣∣∣
q]}

=: cq {(1) + (2)} (2.7)

for some positive constant cq depending only on q. Note that term (2) contains an implicit
sum over i and j. We use Burkholder-Davis-Gundy inequality to deal with it, taking into
account the fact that the process (yt)t≥0 takes values in the unit sphere. This gives the
estimate

(2) ≤ σ−2qE

∣∣∣∣∣
∫ σ4t

σ4s

(
δij − yiuyju

)
du

∣∣∣∣∣
q
2

 ≤ 2
q
2 |t− s|

q
2 . (2.8)

For term (1), remark simply that since the identity

yba = −d− 1

2

∫ b

a

yudu+Bba −
∫ b

a

yu
(
yiudB

i
u

)
holds for all 0 ≤ a ≤ b ≤ 1, for some Rd-valued Brownian motion B, we have

E
[
|yba|q

]
≤ cq

[(
d− 1

2

)q
|b− a|q + |b− a|

q
2 + |b− a|

q
2

]
,
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using the fact that (yt)t≥0 lives on the unit sphere, so the process
∫ ·
0
yiudW

i
u is a real-

valued Brownian motion, together with Burkholder-Davis-Gundy inequality. So we have

E
[
|yba|q

]
≤ c |b− a|

q
2

for all 0 ≤ a ≤ b ≤ 1, for some well-chosen constant c ≥ 2q, since |yba| ≤ 2. The upper
bound E

[
|Xts|q

]
≤ cq|t − s|

q
2 , follows then from equations (2.7) and (2.8). To deal with

the double integral Xσ
ts, let us start from Equation (2.3) to write

Xts =
1

σ4

∫ σ4t

σ4s

(∫ u

σ4s

yvdv

)
⊗ yu du

=
1

σ4

∫ σ4t

σ4s

−2

d− 1
yu,σ4s ⊗ yudu+

2

(d− 1)σ4

∫ σ4t

σ4s

Nσ4s,u ⊗ yudu.
(2.9)

Again, as the process (yt)t≥0 lives in the unit sphere, the first term in the right hand
side above is bounded above by 2

d−1 |t − s|. Let us denote by (Yt)t≥0 the C1 path in

with values in Rd whose velocity is given (yt)t≥0. To deal with the term involving the
martingale N in equation (2.9), we use an integration by parts, and the elementary
inequality |a+ b|q ≤ c

(
|a|q + |b|q

)
, to get the existence of a positive constant cq depending

only on q such that we have

E

[∣∣∣∣∣ 1

σ4

∫ σ4t

σ4s

Nσ4s,u ⊗ yudu

∣∣∣∣∣
q]
≤ cq

{
(3) + (4)

}
. (2.10)

where we have set

(3) := E

[∣∣∣∣Nσ4t,σ4s ⊗ Yσ4t,σ4s

σ4

∣∣∣∣q] , (4) := E

[∣∣∣∣∣ 1

σ4

∫ σ4t

σ4s

dNu ⊗ Yu,σ4sdu

∣∣∣∣∣
q]
.

There is an absolute positive constant c for which

(3) ≤ cE
[∣∣∣∣Nσ4t,σ4s

σ2

∣∣∣∣q ∣∣∣∣Yσ4t,σ4s

σ2

∣∣∣∣q] ≤ cE
[∣∣∣∣Nσ4t,σ4s

σ2

∣∣∣∣2q
] 1

2

E

[∣∣∣∣Yσ4t,σ4s

σ2

∣∣∣∣2q
] 1

2

On the one hand, taking once more into account the fact the the process (yt)t≥0 lives on
the unit sphere, the Burkholder-Davis-Gundy inequality gives us the upper bound

E

[∣∣∣∣Nσ4t,σ4s

σ2

∣∣∣∣2q
]

= E

[∣∣∣∣∫ t

s

(
δ·j − yσ4uy

j
σ4u

)
dBju

∣∣∣∣2q
]
≤ c′q|t− s|q.

On the other hand, we can use the identity

Yσ4t,σ4s

σ2
= − 2

(d− 1)σ2
yσ4t,σ4s +

2

(d− 1)σ2
Nσ4t,σ4s

and the fact that σ−2Nσ4t,σ4s has the same law as
∫ t
s

(
δ·j − yσ4uy

j
σ4u

)
dBju, to see that

E

[∣∣∣∣Yσ4t,σ4s

σ2

∣∣∣∣2q
]
≤ c′q

{
E

[∣∣∣yσ4t,σ4s

σ2

∣∣∣2q]+ E

[∣∣∣∣∫ t

s

(
δ·j − yσ4uy

j
σ4u

)
dBju

∣∣∣∣2q
]}

.

We recognize in the first term on the right hand side term (1), with 2q in the role of q,
and use the Burkholder-Davis-Gundy inequality to deal with the other expectation. The
two results together give an upper bound of size |t− s|q, up to a multiplicative constant
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depending only on q, showing that (3) is also bounded above by a constant multiple of
|t− s|q. The inequality of Burkholder-Davis-Gundy is used once more, together with the
bound just proved, to estimate term (4) by a constant multiple of

E

(∫ σ4t

σ4s

∣∣∣∣Yu,σ4s

σ4

∣∣∣∣2 du
) q

2

 = E

(∫ t

s

∣∣∣∣Yσ4v,σ4s

σ2

∣∣∣∣2 dv
) q

2


≤ cq|t− s|q−1

∫ t

s

E

[∣∣∣∣Yσ4v,σ4s

σ2

∣∣∣∣q] dv
≤ c′q|t− s|

q
2−1

∫ t

s

|v − s|
q
2 dv = c′q|t− s|q.

Note that all the above estimates hold regardless of the values of σ > 0. All together,
these estimates prove that the two conditions of the compactness in Theorem 2.9 hold
for the family of weak geometric γ-Hölder rough paths (Xσ

t )0≤t≤1. The family of laws of
(Xσ

t )0≤t≤1 is thus relatively compact on the space RP(γ). As its unique possible cluster
point is identified by Proposition 2.6, this proves the weak convergence of the random
weak geometric γ-Hölder rough paths (Xσ

t )0≤t≤1 to the Brownian rough path, as stated
in Proposition 2.8.

2.4 From the Euclidean to the Riemannian setting via Cartan’s development
map

The homogenization result proved in Proposition 2.8 puts us in a position to use the
machinery of rough differential equations and prove homogenization results for solutions
of rough differential equations driven by Xσ

· , using to our advantage the continuity of
the Itô map in a rough paths setting. This is in particular the case of kinetic Brownian
motion on any complete Riemannian manifold, which can be constructed from kinetic
Brownian motion on Rd, using Cartan’s development map. The interpolation theorem
2.2 will follow from this picture of kinetic Brownian motion as a continuous image of
Xσ
· . Before following that plan, we recall the reader the basics of Cartan’s development

method and rough differential equations.

2.4.1 Cartan’s development map

As advertized above, one can actually construct kinetic Brownian motion on a complete
Riemannian manifoldM by rolling onM without slipping its Euclidean analogue. While
this will be clear to the specialists from the very definition of kinetic Brownian motion,
Cartan’s development procedure can be explained to the others as follows. In its classical
form, this machinery provides a flexible and convenient way of describing C2 paths on
M from Rd-valued paths; it requires the use of the frame bundle and the horizontal
vector fields associated with a choice of connection (Levi-Civita connection presently).

Let H stand for the TOM-valued 1-form on Rd uniquely characterized by the property

π∗
(
H(u)

)
(z) = e(u),

for any u ∈ Rd and z = (x, e) ∈ OM.

Definition 2.10. Given z0 = (x0, e0) in OM, Cartan’s development of an Rd-valued
path (mt)0≤t≤1 of class C2 is defined as the solution to the ordinary differential equation

dzt = H(zt) dmt (2.11)

started from z0. As before, we shall write zt = (xt, et) ∈ OM.
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This description of an OM-valued path may seem somewhat different from the kind
of dynamics described by Equation (1.2) defining kinetic Brownian motion. To make the
link clear, assume, without loss of generality, that (mt)0≤t≤1 is run at unit speed, and
denote its speed by (ṁt)0≤t≤1. Recall the definition of the elements vi of the Lie algebra
of SO(d) given at the end of Section 1.1. Then, given an orthonormal basis f0 of Rd, with
f0(ε1) = ṁ0, solve the SO(d)-valued ordinary differential equation

dft =
(
ft(εi), dṁt

)
vi(ft),

started from f0, and define the Rd−1-valued control (ht)0≤t≤1, started from zero, by the
formula

dhit =
(
ft(εi), dṁt

)
,

for 2 ≤ i ≤ d. Now, given any orthonormal basis g0 of Tm0
M with g0(ε1) = e0(ε1), it is

elementary to see that the OM-valued path
(
z′t
)
0≤t≤1 obtained by parallel transport of

g0 along the path (xt)0≤t≤1 = (π(zt))0≤t≤1, satisfies the ordinary differential equation

dz′t = H1

(
z′t
)
dt+ Vi

(
z′t
)
dhit. (2.12)

Let emphasize the fact that, by construction

π(z′t) = xt,

Both Equations (2.11) and (2.12) make perfect sense with a C1 path (mt)0≤t≤1 whose
derivative (ṁt)0≤t≤1 is a continuous semimartingale; we talk in that case of stochastic
development. The reader can consult the book [Hsu02] of Hsu for a pedagogical
account of stochastic differential geometry. Considering in particular the stochastic
development inM of kinetic Brownian motion on Rd, provides a control

dhit = σ ◦dBis, (2.13)

for some Stratonovich (d− 1)-dimensional Brownian increment, in which case Equation
(2.12) is nothing but the equation giving the dynamics of kinetic Brownian motion,
identifying (zσt )t≥0 with (z′t)t≥0. Since the control given by formula (2.13) has a law
independant of the arbitrary choice of frame f0 satisfying the above constraint, the path
xσ· = π(z·) = π(zσ· ) is seen to be the projection onM of a kinetic Brownian motion onM.

Although we know that the Rd-valued part (mσ
t )t≥0 of kinetic Brownian motion on

Rd converges weakly to some Brownian motion B run at speed 4
d(d−1) , the setting of Itô

or Stratonovich differential calculus is not robust enough to infer from that result the
weak convergence of the developped process (xσt )0≤t≤1 to the process (π(wt))0≤t≤1, with
(wt)0≤t≤1 solution of the OM-valued stochastic differential equation

dwt =
2√

d(d− 1)
H(wt) ◦dBt,

for which π(wt) is nothing else than a scalar time-changed Brownian motion on M.
This comes from the fundamental lack of continuity of the solution map for stochastic
differential equations, in Itô stochastic integration theory. This missing crucial continuity
property is precisely what rough paths theory provides. We give in the next subsection
the information on rough paths theory and rough differential equations needed to
understand our reasoning, and refer the reader to the litterature on the subject for more
insights; see the references below.
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2.4.2 Rough differential equations and the interpolation result

Let N be a smooth finite dimensional manifold. We adopt in this work the definition of a
solution path to an N -valued rough differential equation given in [Bai12, Bail14b], as
it is perfectly suited for our needs. It essentially amounts to requiring from a solution
path that it satisfies some uniform Taylor-Euler expansion formulas, in the line of Davie’
seminal work [Dav07]. Let A1, . . . , A` be vector fields of class C3 on N ; write A for the
vector field-valued 1-form

A : u ∈ R` 7→
∑̀
i=1

uiAi.

Let 2 < p < 3 and a weak geometric Hölder p-rough path X = (X,X) over R` be given.

Definition 2.11. An N -valued continuous path (mt)0≤t<τ is said to solve the rough
differential equation

dmt = A(mt)X(dt) (2.14)

if there exists a constant a > 1 with the following property. For any 0 ≤ s < τ , there
exists an open neighbourhood Vs of ms such that the Taylor-Euler expansion

f(mt) = f(ms) +Xi
ts

(
Aif

)
(ms) +Xjk

ts

(
AjAkf

)
(ms) +O

(
|t− s|a

)
holds for all t close enough to s, for mt to belong to Vs, and for any function f of class
C3 defined on Vs.

The remainder term O
(
|t− s|a

)
is allowed to depend on X and f . It should be clear

on this definition that the notions of classical controlled and rough differential equations
coincide if the driving rough path is the canonical lift of a C1 path, for the Xts term, of
size (t− s)2 in that case, can be put in the remainder. The crucial point for us here will
be that if X is the (Stratonovich) Brownian rough path, associated with Brownian motion
B, then this notion of solution gives back the solution of the Stratonovich differential
equation

dmt = Vi(mt) ◦dBit.

See for instance the lecture notes [FH14] of Friz and Hairer, or the book [LQ02] of Lyons
and Qian. Classical results show that such a rough differential equation has a unique
maximal solution started from any given point, and that the Itô map, that associates
to the driving signal X the solution path x to the rough differential equation (2.14) is
continuous in the following sense. Fix T < τ and cover the compact support of the path
(mt)0≤t≤T by finitely many local chart domains (O′i)1≤i≤N and (Oi)1≤i≤N , with O′i ⊂ Oi
for all 1 ≤ i ≤ N . Then, there exists a positive constant δ such that for every rough
path Y δ-close to X in the Hölder rough path distance, the solution path (yt)0≤t<τ to the
rough differential equation

dyt = A(yt)Y(dt)

started from y0 = m0, is well-defined on the time interval [0, T ] and remains in the open
neighbourhood

⋃N
i=1Oi of the support of (mt)0≤t≤T , with yt in Oi whenever mt is in

O′i. This very strong continuity property implies in particular the following “transport
property” of weak convergence. We endow the space Ω0 defined in the introduction of
Section 2 with the topology generated by the elementary open sets{

(yt)0≤t≤1 ∈ C
(
[0, 1],N t {∂}

)
; dist(yt, γt) < ε, for all t ≤ τR

}
,

where (γt)0≤t≤1 is any element of Ω0 started from a point of the manifold, R and ε

are arbitrary positive constants, and dist stands for any Riemannian distance function
defined in a neighbourhood of the support of γ. The constant path, equal to ∂, is isolated.
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Proposition 2.12 (“Transporting” weak convergence by the Itô map). Let (Xk)k≥0 be a
sequence of random weak geometric 1

p -Hölder rough paths over R`, whose distribution
converges weakly in the rough paths space as k goes to infinity, to the distribution of
some random weak geometric Hölder p-rough path X. Fix x0 ∈ N , and consider the
solution path (mk

t )0≤t≤1 to the equation

dmk
t = A

(
mk
t

)
Xk(dt),

as an element of Ω0. Then its distribution converges locally weakly to the distribution of
the solution path to the rough differential equation

dmt = A
(
mt

)
X(dt)

started from x0.

The interpolation result Theorem 2.2 follows directly from this fact, together with the
construction of kinetic Brownian motion onM as the image of its Rd-valued counterpart
by Cartan’s development map, as described above, and the results of Section 2.3 on
the weak convergence of the rough path lift of kinetic Brownian motion on Rd to the
Stratonovich Brownian rough path. This closes the proof of the interpolation theorem
2.2.

The above result on transport of weak convergence only gives locally weak con-
vergence of the image measures. The additional ingredient needed to turn that local
weak convergence into genuine weak convergence, as stated in corollary 2.3, is a direct
consequence of the following elementary lemma, in which we denote by CR the set of
continuous BR-valued paths on [0, 1] – recall BR stands for a geodesic ball of radius R.
Denote by ∂A the boundary of a subset A of a topological space.

Lemma 2.13. Let (Pn)n≥0 be a sequence of probability measures on Ω0 such that

• the measures Pn are all supported by C ([0, 1],M),

• they converge locally weakly to a probability measure P on Ω0, which is also
supported on C ([0, 1],M), and such that P

(
∂CR

)
= 0, for all R > 0.

Then the sequence Pn converge weakly to P in C ([0, 1],M).

Proof. First note that given any Borel set A of C
(
[0, 1],M

)
such that P(∂A) = 0, we have∣∣Pn(A)− P(A)

∣∣ ≤ ∣∣Pn(A ∩ CR)− P(A ∩ CR)
∣∣+
∣∣Pn(A ∩ CcR)

∣∣+
∣∣P(A ∩ CcR)

∣∣.
Since C

(
[0, 1],M

)
=
⋃
R>0 CR, and since P is supported on C

(
[0, 1],M

)
, given any ε > 0,

we can find R large enough such that
∣∣1− P(CR)

∣∣ ≤ ε; in particular
∣∣P(A ∩ CcR)

∣∣ ≤ ε. We
have also ∣∣Pn(A ∩ CcR)

∣∣ ≤ ∣∣1− Pn(CR)
∣∣.

Moreover since P(∂CR) = 0 we obtain that P(∂(A ∩ CR)) = 0 and since Pn converges
locally weakly to P we have

Pn
(
T−1R (A ∩ CR)

)
−→

n→+∞
P
(
T−1R (A ∩ CR)

)
.

Since T−1R (A ∩ CR) = A ∩ CR it comes

|Pn(A ∩ CR)− P(A ∩ CR)| −→
n→+∞

0

and for the same reason Pn(CR) converges to P(CR). Thus lim supn
∣∣1−Pn(CcR)

∣∣ ≤ ε and
finally

lim sup
n→∞

∣∣Pn(A)− P(A)
∣∣ ≤ 2ε

which ends the proof of the lemma.
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3 Asymptotics on rotationally invariant manifolds

We aim, in this last section, to try and understand the long time asymptotic behaviour
of kinetic Brownian motion when t goes to infinity and σ is fixed. As for classical
Brownian motion on a general Riemannian manifold, there is no hope to fully determine
the asymptotic behaviour of kinetic Brownian motion on arbitrary Riemannian manifolds,
as even for Brownian motion it is likely to depend on the base space in a very sensitive
way; see for instance the work [ATU09] of Arnaudon, Thalmaier and Ulsamer for the
study of the asymptotic behaviour of Brownian motion on Cartan-Hadamard manifolds.
Of crucial importance in the latter study is the fact that the distance to a fixed point
defines a one-dimensional subdiffusion. The difficulties are actually a priori greater
here as kinetic Brownian motion does not live on the base manifold, but on its unit
tangent bundle, so that it is basically (2d − 1)−dimensional when the base manifold
have dimension d, and there is no general reason why it should have lower-dimensional
subdiffusions.

The question of the long time asymptotic behaviour of a manifold-valued diffusion
process is of course of different nature depending on whether or not the underlying
manifold is compact. If it is compact, the question consists mainly in studying the trend
to equilibrium of the process, and in relating the rate of convergence to the geometry of
the manifold or to the parameters of the process. In our case, the infinitesimal generator
of kinetic Brownian motion is hypoelliptic and T 1M is compact, ifM is compact, and
it is elementary to see that for all times t strictly greater than the diameter ofM, the
density pt(·, ·) of the process is uniformly bounded below by a positive time-dependent
constant. This ensures that the law of the process converges exponentially fast to the
equilibrium measure, which is the Liouville measure on the unitary tangent bundle here.
The question of determining the exact rate of convergence to equilibrium, in terms of
the geometry of M and the parameter σ is difficult and will be the object of another
work by the authors.

If the base manifold is non-compact, the question of the long time asymptotics of a
diffusion process amounts to find whether it is recurrent or transient, to exhibit some
geometric asymptotic random variables associated to the sample paths, and, in the
nicest situations, to determine the Poisson boundary of the process. In order to get some
tractable and significant information on the asymptotic behaviour of kinetic Brownian
motion, we will restrict ourselves here on the case where the underlying manifoldM is
rotationally invariant. As in the case of classical Brownian motion, symmetries simplifies
greatly the study as they allow to exhibit some lower dimensional subdiffusions of the
initial process. The class of rotationally invariant manifolds is nevertheless rich enough
to have some good idea of the interplay between geometry, through curvature of the
manifold, and the asymptotic behaviour of the process. Our goal here is to obtain
some natural conditions on the curvature to ensure transience or recurrence of kinetic
Brownian motion; if transient to determine its rate of escape, the existence or not of an
asymptotic escape angle, and if possible to characterize the Poisson boundary of the
process. We compare these conditions and results to those obtained for Brownian motion
on rotationally invariant manifolds, in order to highlight the similarities and differences
between the two processes.

We recall in Section 3.1 the setting of rotationally invariant manifolds and present our
results on the asymptotic behaviour of kinetic Brownian motion in Section 3.2, comparing
theorem to their Brownian analogue. As said above, we take advantage of this special
symmetric setting to exhibit some subdiffusions that are easier to analyse than the full
process. The radial component, together with its derivative, provide a 2-dimensional
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subdiffusion whose asymptotic behaviour is thouroughly studied in Section 3.4. As a
result, we are able to decide on the recurrent/transient character of kinetic Brownian
motion, and in the latter case, to exhibit a whole range of behaviours for its escape
rate, depending on the expansion factor in the warped product defining the metric.
The angular component is studied in Section 3.5, while we show that the asymptotic
angle generates the invariant sigma field of the process under rather general geometric
assumptions. Working with a hypoelliptic diffusion makes that task highly non-trivial.

3.1 Rotationally invariant manifolds

Let us recall that a rotationally invariant Riemannian manifold (M, g) is a Riemannian
manifold such that M or M minus a point, admits a global polar coordinates system
in which the metric g has a warped product structure. Namely, as illustrated in Figure
4 below, (M, g) is a rotationnaly invariant ifM orM\{o}, where o is a point inM, is
diffeomorphic to the product (0,+∞)×Sd−1 endowed with its standard polar coordinates
(r, θ) in which the Riemannian metric g takes the form

g = dr2 + f(r)2dθ2, (r, θ) ∈ (0,+∞) × Sd−1,

where f is a positive smooth function on (0,+∞), say at least C2, satisfying the classical
assumptions f(0) = 0 and f ′(0) = 1, see e.g. [Sto69] p. 179-183, and dθ2 stands for the
metric on Sd−1 inherited from the Euclidean metric of Rd.

Figure 4: Global polar coordinates system on a rotationally invariant manifold.

We refer to [GW79] for a detailed study of such manifolds. Since we are interested in
non compact manifolds here, we shall suppose in the sequel that

f(r) goes to infinity with r.

We shall also assume that

the dimension d is larger than 3.

The case d = 2 presents no difficulty but requires a separate treatment, see Remark 3.12
in Section 3.3 below, and Appendix A. The radial curvature K on a rotationally invariant
manifoldM is given by

K(r) := −f
′′(r)

f(r)
,
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so that the curvature properties of the manifold are intimately related to the convexity
of the warping function f . For example, global convexity of f is equivalent to global non
positive curvature, and in that case we have f ′(r)/f(r) ≥ 1/r for all r > 0, in particular
f is increasing. Indeed, we have(

f ′

f
(r)

)′
=
f ′′

f
(r)−

(
f ′

f
(r)

)2

, so that f ′′(r) ≥ 0 =⇒ −
(
f ′

f
(r)

)′
≤
(
f ′

f
(r)

)2

and integrating the ratio, since f(0) = 0 and f ′(0) = 1, we get f ′(r)/f(r) ≥ 1/r. Moreover,
if the warping function f is log−concave, the logarithmic derivative f ′/f is decreasing
and converge to ` ∈ [0,+∞) when r goes to infinity. In that case, for ε > 0 and for r
sufficiantly large, we have thus −(`+ ε)2 ≤ K(r) ≤ 0. In particular, if f is log−concave
and ` = 0, the rotationally invariant manifold (M, g) is asymptotically flat.

Example 3.1. Here are some classical examples of rotationnaly invariant manifolds and
their associated radial curvature.

1. The d-dimensional Euclidean space minus a point is of course a rotationally invari-
ant manifold. It corresponds to the choice f(r) = r for the warping function and
has constant zero curvature.

2. The d-dimensional hyperbolic space Hd minus a point, seen as the pseudo-sphere
in Minkowski space R1,d, corresponds to the choice f(r) = sinh(r). The radial
curvature is constant equal to −1.

3. If f is of polynomial growth, say f(r) = rβ for r large enough, then the curvature
K(r) = −β(β−1)r2 has the sign of 1− β et goes to zero as r goes to infinity, i.e. the
manifold is asymptotically flat.

4. If f is of subexponential growth, say f(r) = exp
(
rβ
)

with 0 < β < 1 for r large
enough, then the curvature

K(r) = −β(β − 1)

r2−β
− β2

r2(1−β)

is asymptotically negative and goes to zero as r goes to infinity.

5. If the growth of f is more than exponential, e.g. f(r) = exp
(
rβ
)

with β > 1 for r
large enough, then radial curvature is negative and goes to minus infinity as r goes
to infinity.

3.2 Statement of the results

Before expliciting the long time asymptotic behaviour of kinetic Brownian motion
on M in terms of the geometry of M, let us recall the corresponding results for the
classical Brownian motion (Xt)0≤t<τ onM.

3.2.1 Asymptotics of classical Brownian motion

On a rotationally invariant manifold, the classical Brownian motion fortunately admits a
one-dimensional diffusion, namely the radial subdiffusion (rt)0≤t<τ when written in polar
coordinates (rt, θt)0≤t<τ . Moreover, the angular component (θt)0≤t<τ can be shown to
be a time-changed spherical Brownian motion on Sd−1, the clock being a simple additive
functional of the radial process, see Example 3.3.3 of [Hsu02]. The following classical
results are thus simple consequences of the study of this radial one-dimensional diffusion,
see for instance [AT11] and the references therein.
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Theorem 3.2. Let (rt, θt)0≤t<τ stand for the polar decomposition of the classical Brown-
ian motion with generator 1

2∆M on a rotationally invariant manifold (M, g) parametrized
by
(
(0,+∞)× Sd−1, dr2 + f2(r)dθ2

)
.

1. The lifetime τ of the process is almost surely finite or infinite; it is finite almost
surely if and only if ∫ +∞

1

fd−1(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

2. The radial process rt is transient a.s. if and only if∫ +∞

1

f1−d(r)dr < +∞.

3. The angular process θt converges a.s. to a random point θ∞ in Sd−1 if and only if∫ +∞

1

fd−3(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

When the process is transient and admits a random escape direction θ∞ ∈ Sd−1, it
can be shown that this direction is the only non-trivial asymptotic variable, namely the
Poisson boundary of the process coincides almost surely with σ(θ∞), see e.g. Theorem 4
of [AT13] for a simple proof. Recall that the Poisson boundary of a Markov process can
be defined either as its invariant sigma field or equivalently, via the classical bijection,
as the set bounded harmonic functions of its infinitesimal generator.

Theorem 3.3. Let (rt, θt)t≥0 stand for the polar decomposition of the classical Brownian
motion with generator 1

2∆M on a rotationally invariant manifold (M, g) parametrized by(
(0,+∞)× Sd−1, dr2 + f2(r)dθ2

)
such that∫ +∞

1

fd−3(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

Then, the Poisson boundary of the process (rt, θt)t≥0 coincides almost surely with σ(θ∞).

3.2.2 Asymptotics of kinetic Brownian motion

The following results sum up the long time asymtotics of kinetic Brownian motion on
rotationally invariant manifolds. For simplicity and clarity of the statements, we give
here the results under non-optimal assumptions. More precise and stronger results are
given in Sections 3.4, 3.5 and 3.6, along with the proofs of the corresponding statements.

As shown in Proposition 1.2, the lifetime of kinetic Brownian motion on any complete
Riemannian manifold is almost surely infinite. The recurrent and transient character of
kinetic Brownian motion are clarified by the following statement.

Theorem 3.4. Let (zt)t≥0 = (xt, ẋt)t≥0 be the kinetic Brownian motion with values in the
unitary tangent bundle T 1M of a rotationally invariant manifold (M, g) parametrized by(
(0,+∞)× Sd−1, dr2 + f2(r)dθ2

)
and let (xt)t≥0 = (rt, θt)t≥0 be the polar decomposition

of the first projection.

1. If K ≤ 0, then the process rt is transient almost surely.

2. If K ≥ 0 the process rt is transient almost surely if and only if∫ +∞

1

f1−d(r)dr < +∞.
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Remark 3.5. Note that the condition ensuring the transience of the radial component
of the kinetic Brownian motion is the same as the one for the classical Brownian motion.
Indeed, the strategy of the proof of Theorem 3.4, which is given in Section 3.4 below, is
to use a change of variables and a time change for the kinetic Brownian motion to make
it look “similar” to its classical analogue and then use comparison results.

The next proposition gives a sufficient condition for the convergence of the angular
component of kinetic Brownian motion in terms of the warping function: for simplicity, we
assume here that it is log−concave. We strongly believe that this condition is necessary
but despite our efforts, we did not manage to give a proof of the corresponding statement,
see Remark 3.24 below.

Proposition 3.6. Let (zt)t≥0 = (xt, ẋt)t≥0 stand for kinetic Brownian motion with val-
ues in the unitary tangent bundle T 1M of a rotationally invariant manifold (M, g),
parametrized by

(
(0,+∞)× Sd−1, dr2 + f2(r)dθ2

)
. Let (rt, θt)t≥0 stand for the polar co-

ordinates of (xt)t≥0. Suppose that the warping function f is log−concave and satisfies∫ +∞

1

fd−2(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

Then, the angular process (θt)t≥0 converges almost surely to a random point θ∞ on Sd−1.

Remark 3.7. Note that this time, we obtain a convergence criterion which is different
from the one concerning the classical Brownian motion. Namely, the exponent d− 3 of
the classical case is replaced by d− 2 here. Therefore, if the integrability condition of
Proposition 3.6 is indeed necessary, there are situations where the angle θt is convergent
for the classical Brownian motion and does not converge for the kinetic Brownian motion.
For example, if the warping function is of the form f(r) = rβ with β > 0, then the angular
component converges in the classical case if and only if β > 1, whereas it would converge
in the kinetic case if and only if β > 2.

Let us conclude the synthetic description of the long time asymptotic behaviour of
kinetic Brownian motion by expliciting its Poisson boundary, as we did in the Brownian
case, in Theorem 3.3 above.

Theorem 3.8. Let (zt)t≥0 = (xt, ẋt)t≥0 stand for kinetic Brownian motion with values in
the unitary tangent bundle T 1M of a rotationally invariant manifold (M, g), parametrized
by
(
(0,+∞)× Sd−1, dr2 + f2(r)dθ2

)
. Let (rt, θt)t≥0 stand for the polar coordinates of

(xt)t≥0. Suppose that the warping function f is log−concave and satisfies∫ +∞

1

fd−2(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

Then the Poisson boundary of the whole process (zt)t≥0 coincides almost surely with
σ(θ∞), the sigma field generated by the escape angle.

The proof of Theorem 3.8, which is given in Section 3.6 below, is based on the
dévissage method introduced by two of the authors in [AT13], and which allows to
identify Poisson boundaries of diffusion processes with values in manifolds provided
the latter admit enough symmetries so that the original diffusion has some natural
subdiffusions. Various examples and counterexamples of application of the method are
given in Section 4 of [AT13], in both Riemannian and Lorentzian settings. This method is
particularly well suited here since the warped product structure of the manifold gives
automatically the existence of lower dimensional subdiffusions; see Section 3.3 below.
To help the reader by keeping the present paper as self-contained as possible, let us
recall the main result of [AT13].
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Theorem 3.9 (Dévissage method – Theorem A of [AT13]). Let N be a differentiable
manifold and G be a finite dimensional connected Lie group. Let (xt, gt)t≥0 be a diffusion
process with values in N ×G, starting from (x, g) ∈ N ×G. Denote by P(x,g) its law. Let
us suppose that following conditions are satisfied:

1. Dévissage condition: the process (xt)t≥0 is itself a diffusion process with values
in N . Its own invariant sigma field Inv((xt)t≥0) is either trivial or generated by a
random variable `∞ with values in a separable measure space (S,G, λ) and the law
of `∞ is absolutely continuous with respect to λ.

2. Convergence condition: the second projection (gt)t≥0 converges almost surely to a
random element g∞ of G.

3. Equivariance condition: the infinitesimal generator L of the diffusion (xt, gt)t≥0 is
equivariant under the action of G on C∞(N ×G,R), i.e. ∀f ∈ C∞(N ×G,R), we
have for (x, g, h) ∈ N ×G×G:

L(f(·, g·))(x, h) = (Lf)(x, gh).

4. Regularity condition: all bounded L−harmonic functions are continuous on the
state space N ×G.

Then, Inv((xt, gt)t≥0) and Inv((xt)t≥0) ∨ σ(g∞) coincide up to P(x,g)−negligeable sets.

Note that this result can be generalized to the case where the second projection does
not take values in a finite dimensional Lie group G but in a finite dimensional connected
co-compact homogeneous space Y := G/K, see Theorem B of [AT13].

3.3 Kinetic Brownian motion in polar coodinates

The remainder of this article is devoted to proving (finer versions of) Theorem 3.4,
Proposition 3.6 and Theorem 3.8. We shall exclusively be working, from now on, on a
rotationnaly invariant manifold and use polar coordinates. In order to make explicit
the long time behaviour of kinetic Brownian motion, we first write down the system of
stochastic differential equations satisfied by the polar coordinates of kinetic Brownian
motion on a rotationally invariant manifold. We exhibit in particular a lower dimensional
subdiffusion that will facilitate its study. Let us denote by (r, θ, ṙ, θ̇) the polar coordinates
in T 1M. Then, system (1.3) giving the dynamics of kinetic Brownian motion in any local
chart reads here

drt = ṙtdt,

dθt = θ̇tdt,

dṙt = σdM ṙ
t −

σ2

2
(d− 1)ṙtdt+

f ′

f
(rt)

(
1− ṙ2t

)
dt,

dθ̇it = σdM θ̇i

t −
σ2

2
(d− 1)θ̇itdt− 2

f ′

f
(rt)ṙtθ̇

i
tdt− θit

(
1− ṙ2t
f2(rt)

)
dt, i = 1, . . . , d,

(3.1)
where M ṙ and M θ̇i

t are local martingales whose covariance matrix is given by

d〈M ṙ,M ṙ〉t = (1− ṙ2t )dt,

d〈Mr,M θ̇j 〉t = −ṙtθ̇jtdt, j = 1, . . . , d,

d〈M θ̇i ,M θ̇j 〉t =

(
δij − θitθ

j
t

f2(rt)
− θ̇itθ̇

j
t

)
dt, i, j = 1, . . . , d.

(3.2)
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Since the sample paths are parametrized by the arc-length, we have also the following
metric relation, relating the radial and angular components:

ṙ2t + f(rt)
2
∣∣θ̇t∣∣2 = 1. (3.3)

Due to isotropy, kinetic Brownian motion on a rotationally invariant manifold for-
tunately admits a radial subdiffusion. Contrary to the case of the classical Brownian
motion where the radial subdiffusion is one dimensional, the radial subdiffusion of kinetic
Brownian motion is 2−dimensional.

Proposition 3.10. The process (rt, ṙt)t≥0 with values in (0,+∞)×[−1, 1] is a subdiffusion
of the kinetic Brownian motion (rt, ṙt, θt, θ̇t)t≥0 in T 1M.

Proof. From Equation (3.1), the 2−dimensional radial process is clearly a subdiffusion
of the whole process. Namely, there exists a real standard Brownian motion B such that
(rt, ṙt) is solution to the following stochastic differential equations system:

drt = ṙtdt,

dṙt = σ
√

1− ṙ2t dBt −
σ2

2
(d− 1)ṙtdt+

f ′

f
(rt)

(
1− ṙ2t

)
dt.

(3.4)

Let us describe the behaviour of this radial process (rt, ṙt) at the boundary points of
its state space (0,+∞)× [−1, 1].

Proposition 3.11. If d ≥ 3, for all starting point (r0, ṙ0) ∈ (0,+∞)×[−1, 1], the stochastic
differential equation system (3.4) admits a unique strong solution, which is well defined
for all t > 0, and such that rt > 0 and −1 < ṙt < 1 for all t > 0.

Proof. First remark that if ṙ20 < 1 and r0 > 0, all the coefficients in (3.4) being smooth for
(r, ṙ) ∈ (0,+∞)× (−1, 1), it admits a unique strong solution up to explosion. Moreover,
if ṙ20 = 1, since r 7→

√
1− ṙ2 is 1/2−Hölder, Equation (3.4) also admits a unique strong

solution up to explosion and ṙ2t < 1 for arbitrary small t > 0 almost surely. From the
metric relation (3.3), we have ṙ2t ≤ 1 so that rt can not go to infinity in finite time almost
surely. Otherwise, if ṙ20 < 1 and r0 > 0, straightforward Itô calculus shows that

f2(rt)(1− ṙ2t ) = f2(r0)(1− ṙ20) exp

(
−σ2t+ (d− 3)σ2

∫ t

0

ṙ2s
1− ṙ2s

ds+ 2σ

∫ t

0

ṙs√
1− ṙ2s

dBs

)
.

From this, we deduce that, almost surely, the left hand side can not vanish in finite time,
in particular rt > 0 and −1 < ṙt < 1 for all t > 0.

Remark 3.12. In the case d = 2, standard comparison arguments show that the end-
points −1 and +1 can be reached by rt in finite time almost surely, and that these points
are instantaneously reflecting. From relation (3.3), the norm |θ̇| vanishes at such hitting
times, so the renormalized process θ̇/|θ̇| can not be considered. This is the only reason
why the case d = 2 requires a separate treatment. Nevertheless, the study can be done
in the same line as in the case d ≥ 3, see e.g. Appendix A for a complete treatment of
the case where the base manifold is the hyperbolic plane.

From Equation (3.3), Proposition 3.11 ensures that |θ̇t| > 0 for all t > 0 almost surely.
It will be usefull in the sequel to consider the normalized angular process (θt, θ̇t/|θ̇t|)t≥0
with values in T 1Sd−1. Starting from Equation (3.1), a direct calculation shows that this
process satisfies the following system of stochastic differential equations, for 1 ≤ i ≤ d:
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
dθit =

θ̇it

|θ̇t|

(√
1− ṙ2t
f(rt)

)
dt,

d
θ̇it

|θ̇t|
= −θit

(√
1− ṙ2t
f(rt)

)
dt− σ2

2
(d− 2)

θ̇it

|θ̇t|
dt

1− ṙ2t
+ σdN i

t ,

(3.5)

where the local martingales are given by

dN i
t :=

1

|θ̇t|

dM θ̇i

t −
θ̇it

|θ̇t|

d∑
j=1

θ̇jt

|θ̇t|
dM θ̇j

t

 ,

so that their covariance matrix reads

d
〈
N i
t , N

j
t

〉
=

(
δij − θitθ

j
t −

θ̇it

|θ̇t|
θ̇jt

|θ̇t|

)
dt

1− ṙ2t
. (3.6)

Moreover, for 1 ≤ i ≤ d, we have

d
〈
M ṙ
t , N

i
t

〉
=

1

|θ̇t|

〈dM ṙ, dM θ̇i

t

〉
− θ̇it

|θ̇t|

d∑
j=1

θ̇jt

|θ̇t|

〈
dM ṙ, dM θ̇j

t

〉 = 0. (3.7)

Equivalently, the infinitesimal generator of the full process (rt, ṙt, θt, θ̇t/|θ̇t|)t≥0 is given
by

L = L(r,ṙ) +

(
θ̇i

|θ̇|
∂θi − θi∂θ̇i/|θ̇|

)(√
1− ṙ2
f(r)

)

+
σ2

2

(
−(d− 2)

θ̇it

|θ̇t|
∂θ̇i/|θ̇| +

(
δij − θiθj − θ̇i

|θ̇|
θ̇j

|θ̇|

)
∂θ̇i/|θ̇|∂θ̇j/|θ̇|

)(
1

1− ṙ2

)
,

(3.8)

where L(r,ṙ) is the infinitesimal generator of the subdiffusion (rt, ṙt)t≥0, namely

L(r,ṙ) = ṙ∂r +
f ′

f
(r)
(
1− ṙ2

)
∂ṙ +

σ2

2

(
−(d− 1)ṙ∂ṙ +

(
1− ṙ2

)
∂2ṙ
)
.

Note that if σ = 0, the above infinitesimal generator is nothing but the generator of the
geodesic flow on T 1M.

Remark 3.13. Note that local martingale Nt = (N1
t , . . . , N

d
t ) can be represented by a

standard Euclidean Brownian motion Wt = (W 1
t , . . . ,W

d
t ) in the following way:

dNt =
1√

1− ṙ2t
×

(
dWt − θt〈θt, dWt〉 −

θ̇t

|θ̇t|

〈
θ̇t

|θ̇t|
, dWt

〉)
.

In particular, dNt is orthogonal to both θt and θ̇t
|θ̇t|

.

3.4 Asymptotics of the radial components

We study in this section the recurrence and transience properties of the radial
subdiffusion. We give in particular the proof of Theorem 3.4 stated in Section 3.2.1.
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3.4.1 Transience/recurrence of the radial process rt

We first show that the under the single hypothesis that the radial curvature K(r) is
globally non-positive, the first projection rt is almost surely transient, which is the first
statement of Theorem 3.4.

Proposition 3.14. Let (rt, ṙt)t≥0 be the unique strong solution of Equation (3.4) starting
from (r0, ṙ0) ∈ (0,+∞) × [−1, 1]. If the warping function f is convex on (0,+∞) or
equivalently, if the radial curvature K(r) is globally non positive, then rt goes almost
surely to infinity with time t.

Remark 3.15. Let us stress that we are dealing here with global convexity and not
convexity outside a compact set. Even in the case of the standard Brownian in a
rotationally invariant manifold, negative curvature outside a compact set is not sufficient
to ensure transience of process, see Remark 2.4 of [AT11].

Proof. Let (rt, ṙt) be the solution of Equation (3.4) starting from (r0, ṙ0). We have then

rt − r0 =
2(ṙ0 − ṙt)
(d− 1)σ2︸ ︷︷ ︸

:=It

+
2

(d− 1)σ2

∫ t

0

f ′

f
(rs)

(
1− ṙ2s

)
ds︸ ︷︷ ︸

:=Jt

+
2

(d− 1)σ

∫ t

0

√
1− ṙ2sdBs︸ ︷︷ ︸
:=Mt

. (3.9)

Note that the process It is bounded since ṙt is. Otherwise, by Itô’s formula, we have

ṙ2t = ṙ20 − (d− 1)σ2t+ dσ2

∫ t

0

(1− ṙ2s)ds︸ ︷︷ ︸
=〈M〉t

+2

∫ t

0

f ′

f
(rs)ṙs

(
1− ṙ2s

)
ds︸ ︷︷ ︸

:=Kt

+2σ

∫ t

0

ṙs
√

1− ṙ2sdBs︸ ︷︷ ︸
:=Nt

.

(3.10)
Let us first remark that the martingale Mt and the process Jt can not converge simultane-
ously when t goes to infinity. Indeed, if it was the case, since ṙ2t ≤ 1, the processes 〈M〉t,
Kt and Nt would also converge and from Equation (3.10), ṙ2t would tend to minus infinity,
hence the contradiction. Thus, if we suppose that Mt is convergent, necessarily Jt is
divergent and by Equation (3.9), so is rt. Let us suppose now that Mt is not convergent
so that the following time change Dt and its inverse D−1t are well defined for all t ≥ 0

and both go to infinity when t goes to infinity:

Dt := σ2〈M〉t = σ2

∫ t

0

(1− ṙ2s)ds, D−1t := inf{s > 0, Ds > t}.

To simplify the expressions, let us define ρt := rD−1
t

, ρ̇t := ṙD−1
t

and introduce the process

ut := σ̃ρt + ρ̇t, where σ̃ :=
(d− 1)σ2

2
.

Then, ut satisfies the equation

dut =
1

σ2

f ′

f
(ρt)dt+ dBt, i.e. dut =

1

σ2

f ′

f

(
σ̃−1(ut − ρ̇t)

)
dt+ dBt. (3.11)

Now consider the process vt starting from v0 = u0 and solution of the following stochastic
differential equation

dvs =
d− 1

2

dt

1 + vt
+ dBt.

Note that vt + 1 is then a standard Bessel process of dimension d ≥ 3, in particular
it is almost surely transient. Otherwise, as already noticed at the end of Section 3.1,
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thanks to the curvature hypothesis, we have f ′/f(r) ≥ 1/r. Recalling that ρ̇t ∈ [−1, 1],
we deduce that

d(vt − ut)+ =

[
d− 1

2

1

1 + vt
− 1

σ2

f ′

f

(
σ̃−1(ut − ρ̇t)

)]
1vt>utdt

≤ d− 1

2

[
1

1 + vt
− 1

ut − ρ̇t

]
1vt>utdt

=
d− 1

2

[
(ut − vt)− (1 + ρ̇t)

(1 + vt)(ut − ρ̇t)

]
1vt>utdt ≤ 0.

In other words, we have ut ≥ vt almost surely. We can then conclude that ut is transient,
and since ρ̇t is bounded, ρt is transient and finally the time changed process rt = ρDt is
transient.

Remark 3.16. If rt is transient almost surely and if moreover the warping function f is
such that f ′(r)/f(r) goes to zero when r goes to infinity, then Equation (3.10) shows that
almost surely

lim
t→+∞

1

t

∫ t

0

(1− ṙ2s)ds = 1− 1

d
, i.e. lim

t→+∞

1

t

∫ t

0

ṙ2sds =
1

d
.

As in the case of Brownian motion on rotationally symmetric manifolds, the transience
of rt can also be caracterized by the integrability of the inverse of the function f . Since
the radial subdiffusion is 2−dimensional here, things are less simple. Nevertheless,
we can charaterize transience of kinetic Brownian motion under a simple monotonicity
condition on the logarithmic derivative of f .

Proposition 3.17. Let (rt, ṙt)t≥0 be the solution of Equation (3.4) associated with the
function f and starting from (r0, ṙ0) ∈ (0,+∞)× [−1, 1].

1. Suppose that there exists a smooth function g on (0,+∞), such that g is positive
and log−concave, and such that f ′/f ≥ g′/g. Then, if

∫ +∞
1

g1−d < +∞, the radial
process rt is transient almost surely.

2. On the contrary, suppose that there exists a smooth function h on (0,+∞), such that
h is positive and log−concave, and such that h′/h ≥ f ′/f . Then, if

∫ +∞
1

h1−d = +∞,
almost surely the radial process rt is not transient.

3. In particular, if the warping function f is log−concave, then the radial process rt is
almost surely transient if and only if

∫ +∞
1

f1−d < +∞.

Proof. Let (rt, ṙt) be as in the above statement. With the same notations as in the proof
of Proposition 3.14, the process ut is then solution of Equation (3.11), namely

dut =
1

σ2

f ′

f

(
σ̃−1(ut − ρ̇t)

)
dt+ dBt.

Let us first suppose that there exists a smooth function g on (0,+∞), such that g is
positive, log−concave, and such that f ′/f ≥ g′/g. Consider the process vt starting from
v0 = u0 and solution of the stochastic differential equation

dvt =
1

σ2

g′

g

(
σ̃−1(vt + 1)

)
dt+ dBt.

Classical comparison results then show that ut ≥ vt almost surely for all t ≥ 0. To
conclude, note that the process ṽt := σ̃−1(vσ̃2t + 1) is solution of the equation

dṽt =
d− 1

2

g′

g
(ṽt) dt+ dBt,
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and ṽt is transient if (and only if)
∫ +∞
1

g1−d < +∞, see e.g. Theorem 1.1 p. 208 of [Pin95],
hence the first point. Suppose now that there exists a smooth function h on (0,+∞),
such that h is positive, log−concave, and h′/h ≥ f ′/f . As above, classical comparison
results then show that ut ≤ vt almost surely for all t ≥ 0, where vt is now the solution
starting from v0 = u0 of the equation

dvt =
1

σ2

h′

h

(
σ̃−1(vt − 1)

)
dt+ dBt.

Again, to conclude, remark that new rescaled process ṽt := σ̃−1(vσ̃2t − 1) is now solution
of the equation

dṽt =
d− 1

2

h′

h
(ṽt) dt+ dBt,

and ṽt is recurrent if (and only if)
∫ +∞
1

h1−d = +∞, hence the result. Now if the warping
function is log−concave, combining the first two points, we deduce that rt is transient if
and only if

∫ +∞
1

f1−d = +∞.

The last result allows to caracterize the transience of the radial process in non
negatively curved rotationally symmetric manifolds. Indeed, recall that K = −f ′′/f =

−(f ′/f)′ − (f ′/f)2, thus if K ≥ 0, we have necessarily (f ′/f)′ ≤ 0 i.e. f is log−concave.
From Proposition 3.17, we thus deduce the following results which is the second point in
Theorem 3.4.

Corollary 3.18. If the radial curvature K is globally non negative, then the radial
process rt is transient if and only if

∫ +∞
1

f1−d < +∞.

3.4.2 Transience/recurrence of ṙt

We now describe the asymptotic behaviour of the radial derivative ṙt in the case where
rt is transient. We first consider the simplest case where the ration f ′/f is constant and
thus ṙt is a one dimensional diffusion in [−1,+1]. We then have the following lemma:

Lemma 3.19. Let (rt, ṙt)t≥0 be the solution of Equation (3.4) associated with the warping
function f such that f ′/f(r) ≡ ` ∈ R and starting from (r0, ṙ0) ∈ (0,+∞)× [−1, 1]. Then
the process ṙt is ergodic in the interval (−1,+1) with invariant probability measure

µ`(dx) :=
(1− x2)

d−3
2 e

2`
σ2
x∫ 1

−1
(1− x2)

d−3
2 e

2`
σ2
xdx

dx.

In particular, if ` > 0 we have almost surely

lim
t→+∞

rt
t

=

∫ 1

−1
xµ`(dx) ∈ (0,+∞).

Proof. If f ′/f is constant, then Equation (3.4) shows that ṙt is a one-dimensional diffusion
and the probability measure µ`, whose support is the interval (−1,+1), is invariant, hence
the result. The ergodic theorem then ensures that rt is ballistic almost surely.

Now if f ′/f is not constant but bounded outside a compact set, we can then deduce
that ṙt is Harris recurrent as soon as rt is transient.

Proposition 3.20. Let (rt, ṙt)t≥0 be the unique strong solution of Equation (3.4) starting
from (r0, ṙ0) ∈ (0,+∞)× [−1, 1]. Suppose that there exists R > 0 and ` > 0 such that for
all r > R, we have |f ′(r)/f(r)| < `. Then, if rt is transient almost surely, the process ṙt is
Harris recurrent in (−1,+1).
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Proof. If rt is transient almost surely, using classical one dimensional comparison results,
we have e−t ≤ ṙt ≤ e+t for t sufficiently large where the two processes e±t are solutions of
the equations

de±t = σ

√
1− |e±t |2dBt −

σ2

2
(d− 1)e±t dt± `

(
1− |e±t |2

)
dt.

From Lemma 3.19, both processes are ergodic in (−1,+1), hence the result.

Corollary 3.21. Let (rt, ṙt)t≥0 be the unique strong solution of Equation (3.4) starting
from (r0, ṙ0) ∈ (0,+∞) × [−1, 1]. Suppose that the warping function f is log−concave
with limr→+∞ f ′/f(r) = ` > 0. Then the process ṙt is Harris recurrent in (−1,+1).

Proof. Using the monotonicity of f ′/f , we have f ′/f(rt) ≥ ` almost surely. By classical
comparison theorems, we deduce that ṙt is bounded below by its analogue with f ′/f ≡ `.
In particular, by Lemma 3.19, we obtain that rt is transient almost surely. Then using
again comparison results and Lemma 3.19, we deduce that ṙt is Harris recurrent.

The almost sure asymptotic behaviour of ṙt is not clear in the case where f ′/f is not
bounded above but does not go to infinity. Nevertheless, if the logarithmic derivative
is non decreasing outside a compact set and goes to infinity with r, then one can show
that ṙt converges to one in probability. A typical example of this last case is a smooth
function f such that f(r) = exp(rβ) for r > 1 with β > 1 so that f ′/f(r) = βrβ−1 grows
to infinity with r.

Proposition 3.22. If f is convex and if f ′/f is non decreasing outside a compact set
and goes to infinity with r, then ṙt converges in probability to one as t goes to infinity.

Proof. If f is convex, we know that rt is transient almost surely by Proposition 3.14.
In particular, since f ′/f(r) goes to infinity with r, by classical comparison results, we
get that for all ` > 0 and for all t sufficiently large, ṙt ≥ u`t where u`t is the solution
of Equation (3.4) associated with a warping function whose logarithmic derivative is
constant equal to `. Therefore, if ε > 0, for t sufficiently large, we have

P(ṙt ≥ 1− ε) ≥ P
(
u`t ≥ 1− ε

)
−−−−→
t→+∞

µ`
(
[1− ε, 1]

)
,

where the last convergence is a consequence of Lemma 3.19 and of the ergodicity of
the process (u`t). A direct calculation shows that µ`([1 − ε, 1]) goes to one as ` goes to
infinity, hence the result.

3.4.3 Rate of escape

We conclude this section dedicated to the study of the radial process by expliciting
the rate of escape of rt when transient. Under some simple extra assumptions on the
behaviour of f ′/f at infinity, it is indeed possible to caracterize the speed of divergence of
rt. With the same notations as in the proof of Proposition 3.14, let (rt, ṙt) be the solution of
Equation (3.4) associated with the function f and starting from (r0, ṙ0) ∈ (0,+∞)× [−1, 1]

and ut the associated solution of Equation (3.11). If we assume that f is log−concave,
then the same arguments than the ones used in the proof of Proposition 3.17 show that
the speed of divergence of σ̃−1uσ̃2t and thus the speed of divergence of ρσ̃2t is the same
as the one of the process ṽt solution of

dṽt =
d− 1

2

f ′

f
(ṽt) dt+ dBt. (3.12)
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Recall that ρt is obtained from rt by the simple time change

Dt = σ2

∫ t

0

(1− ṙ2s)ds,

and from Remark 3.16, we know that almost surely, the clock Dt is asymptotically linear
in t as soon as f ′/f(r) goes to zero at infinity. In fine, if f ′/f(r) decrease to zero as r
goes to infinity, up to a scalar factor, the rate of escape of rt is the same as the one of ṽt
solution of Equation (3.12) given above. So kinetic Brownian motion happens to escape
to∞ at the same speed as Brownian motion, up to a multiplicative constant.

Proposition 3.23. Let (rt, ṙt)t≥0 be the unique strong solution of Equation (3.4) starting
from (r0, ṙ0) ∈ (0,+∞)× [−1, 1]. In the following cases, up to a multiplicative constant,
the rate of escape of the process rt is the same as the one of the solution ṽt of Equation
(3.12) :

1. If f is of polynomial growth at infinity, namely if f(r) = rβ for r large enough with
(d − 1)β > 1, then the process ṽt behaves asymptotically as a Bessel process of
dimension d′ := 1 + β(d− 1).

2. If f is of subexponential growth at infinity, e.g. if f(r) = exp(rβ) for r large enough

with 0 < β < 1, then ṽt goes to infinity at speed t
1

2−β , in the sense that the ratio of
the two terms converges almost surely to a positive deterministic explicit constant.

3. If f is of exponential growth at infinity, e.g. f(r) = ecr for c > 0, then rt/t converges
almost surely to a positive deterministic explicit constant.

Proof. In the three cases, we know from Theorem 3.2 that the process ṽt is almost surely
transient. In the first case where f(r) = rβ , Equation (3.12) reads

dṽt =
(d− 1)β

2

dt

ṽt
+ dBt,

i.e. ṽt is a Bessel process of dimension d′ = (d− 1)β + 1, hence the result. In the second
case where f(r) = exp(rβ) for r large enough, we have for t large enough

dṽt =
(d− 1)β

2

dt

ṽ1−βt

+ dBt, (3.13)

or equivalently if H(x) := x2−β :

dH(ṽt) =
2− β

2

(
(d− 1)β +

1− β
ṽβt

)
dt+ (2− β)ṽ1−βt dBt (3.14)

Since ṽt is transient almost surely, from Equation (3.14) we have

H(ṽt) =

(
β(2− β)(d− 1)

2
+ o(1)

)
t+Mt, (3.15)

where Mt is a martingale with bracket

〈M〉t = (2− β)2
∫ t

0

ṽ2−2βs ds.

Otherwise, from Equation (3.13), we have that ṽt = o(t) almost surely as t goes to infinity.
Injecting this first estimate in the expression for the bracket of Mt, we get that Mt/t

converges almost surely to zero as soon as 1/2 < β < 1, in other words, as t goes to
infinity, we have almost surely

lim
t→+∞

ṽ2−βt

t
=
β(2− β)(d− 1)

2
. (3.16)
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Now if 0 < β′ ≤ 1/2 < β, classical comparison results ensure that the solutions ṽt and ṽ′t
of (3.13) associated with β and β′ respectively, and starting from a same point, satisfy
ṽ′t ≤ ṽt almost surely for all t ≥ 0. As before, we have

H(ṽ′t) =

(
β′(2− β′)(d− 1)

2
+ o(1)

)
t+M ′t , (3.17)

where

〈M ′〉t = (2− β′)2
∫ t

0

(ṽ′s)
2−2β′

ds ≤ (2− β′)2
∫ t

0

ṽ2−2β
′

s ds.

Since β > 1/2, we know that almost surely ṽt = O(t1/(2−β)) and injecting this new
estimate in the expression of 〈M ′〉t, we get that M ′t/t goes almost surely to zero as t goes
to infinity as soon as 1/4 < β′ ≤ 1/2. Iterating the above argument, we eventually obtain
that the almost sure convergence (3.16) holds true for all 0 < β < 1. Finally, in the third
case where the warping function has exponential growth, the logarithmic derivative in
Equation (3.12) is constant, and ṽt is then trivially ballistic, hence the result.

3.5 Asymptotics of the angular components

Let us now describe the asymptotic behavior of the angular components in function
of the geometry of the underlying manifold. From Equation (3.3), we have

θt = θ0 +

∫ t

0

θ̇s

|θ̇s|

√
1− ṙ2s
f(rs)

ds.

Thus, if we introduce the new clock Ct :=

∫ t

0

√
1− ṙ2s
f(rs)

ds with inverse C−1t , we have

θt = θ0 +

∫ Ct

0

θ̇C−1
s

|θ̇C−1
s
|
ds.

Since the last integrand is bounded by one, we deduce that θt converges to a random
point θ∞ on the sphere as soon as Ct converges when t goes to infinity. Therefore, a
sufficient condition for the almost sure convergence of the angle is the almost sure
finiteness of Ct as t goes to infinity.

Remark 3.24. We were not able to prove that the almost sure convergence of Ct as t
goes to infinity is a necessary condition for the almost sure convergence of the angle.
Nevertheless, the next proposition, which completes the proof of Proposition 3.6, gives a
necessary and sufficient condition, in terms of the integrability of f , for the almost sure
convergence of the clock Ct.

Proposition 3.25. Suppose that the warping function f is log−concave and satisfies
the integrability criterion

∫ +∞
1

f1−d(ρ)dρ < +∞, then the clock Ct converges almost
surely if and only if

Id(f) :=

∫ +∞

1

fd−2(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

Proof. Recall that, by Proposition 3.17, rt is transient almost surely if f1−d is integrable.
By hypothesis, the warping function f(r) goes to infinity with r. If it is log−concave, the
logarithmic derivative f ′/f(r) then admits a limit ` ≥ 0. Let us first suppose that ` > 0.
In that case, f has exponential growth and classical comparison results and Lemma 3.19
show that rt is ballistic. Therefore, the process Ct converges almost surely as t goes to
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infinity and the integral Id(f) is of course convergent, hence the result. Suppose now
that ` = 0. Applying Itô’s formula, we have

d

(√
1− ṙ2t
f(rt)

)
=

(√
1− ṙ2t
f(rt)

)[
−d− 1

2
σ2 − 2

f ′

f
(rt)ṙt

]
dt+

σ2

2

(
(d− 2)dt

f(rt)
√

1− ṙ2t

)
−σ ṙt

f(rt)
dBt,

and

d

(
1− ṙ2t
f(rt)

)
=

(
1− ṙ2t
f(rt)

)[
−dσ2 − 3

f ′

f
(rt)ṙt

]
dt+

σ2

2

(
(d− 1)dt

f(rt)

)
− 2σ

ṙt
√

1− ṙ2t
f(rt)

dBt,

Since rt is transient and f ′/f(r) goes to zero as r goes to infinity, from these two
equations, we deduce the almost sure equivalences∫ +∞ 1− ṙ2t

f(rt)
dt < +∞⇐⇒

∫ +∞ √1− ṙ2t
f(rt)

dt < +∞⇐⇒
∫ +∞ dt

f(rt)
√

1− ṙ2t
dt < +∞.

In other words, with the notations of the proof of Proposition 3.14, the process Ct
converges almost surely as t goes to infinity if and only if∫ +∞ √1− ṙ2t

f(rt)
dt =

∫ +∞ dt

f(ρt)
< +∞ a.s.,

where ρt = rD−1
t

and Dt = σ2
∫ t
0
(1 − ṙ2s)ds. Otherwise, from Remark 3.16, the clock

Dt is almost surely asymptotically linear in t, and from the proofs of Propositions 3.14
and 3.17, the process ρt is asymptotically equivalent to the process σ̃−1ut, where ut is
solution of Equation (3.11). In fine, we have the almost sure equivalence∫ +∞ dt

f(ρt)
< +∞⇐⇒

∫ +∞ dt

f(yt)
< +∞,

where yt is the solution of the equation

dyt =
d− 1

2

f ′(yt)

f(yt)
dt+ dBt.

The almost sure finiteness of the last integral is then equivalent to the fact that the new
time changed diffusion ỹt solution of

dỹt =
d− 1

2
f ′(ỹt)dt+

√
f(ỹt)dBt,

has an almost surely finite lifetime, which is finally equivalent to the finitness of Id(f),
see e.g. Theorem 1.5 p. 212 of [Pin95].

3.6 Poisson boundary of the process

To conclude this section, we make explicit the Poisson boundary of kinetic Brownian
motion in rotationally invariant manifolds whose warping function f is log−concave
and for which f1−d is integrable at infinity. We show that the invariant sigma field of
the whole kinetic Brownian motion (zt)t≥0 = (xt, ẋt)t≥0 coincides almost surely with
the sigma field generated by the escape angle when convergent. As announced above,
we take advantage here of the powerfull dévissage method introduced in [AT13] that
allows to compute the Poisson bourdary of a diffusion process starting from the one of
a subdiffusion. Recall Theorem 3.9 giving its main range of application. This method
is particularly well suited here because, thanks to the warped product structure of
rotationally invariant manifolds, the radial process is always a subdiffusion of dimension
two of the whole process. The plan of the proof of Theorem 3.8 is thus the following :
using coupling arguments, prove first that the Poisson boundary of the radial process
(rt, ṙt)t≥0 is trivial, then use the dévissage method to deduce that the Poisson boundary
of the full process is generated by the escape angle.
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3.6.1 Poisson boundary of the radial subdiffusion

In this first section, we show that if rt is transient and ṙt is Harris recurrent, then the
Poisson boundary of the radial subdiffusion (rt, ṙt)t≥0 is trivial. Let us first make a very
simple but crucial remark: the first projection rt increases if and only if ṙt is non negative
so that the typical behaviour a of sample path of the radial subdiffusion looks like Fig. 5
below.

Figure 5: Typical behaviour of the sample paths of the radial subdiffusion.

In this situation, we can exhibit a shift coupling between two independant copies of
the radial process (rt, ṙt)t≥0. Recall that the existence of shift couplings between sample
paths is equivalent to the fact that the underlying process has trivial Poisson boundary,
see e.g. [CW00].

Proposition 3.26. If rt is transient almost surely and if ṙt is Harris recurrent in (−1,+1),
then the Poisson boundary of the radial subdiffusion (rt, ṙt) is trivial.

Proof. Let (r1t , ṙ
1
t ) and (r2t , ṙ

2
t ) be two independant solutions of Equation (3.4) starting

from (r10, ṙ
1
0) and (r20, ṙ

2
0) respectively. Without lost of generality, we can suppose that

r20 ≤ r10. Let us define S := inf{t ≥ 0, ṙ1t = 1/2} and T := inf{t ≥ S, ṙ1t = 0}. Since ṙ1t is
Harris recurrent, S and T are finite almost surely. Since r1t increases if and only if ṙ1t is
non negative, we have almost surely

inf
r≥r10

α(r) ≥ 0, where α(r) := sup
t≥0
{ṙ1t , r1t = r} ≥ 0.

Geometrically, this means that the top of the grey zone associated with (r1t , ṙ
1
t ) on Fig. 6

below is always non negative. Since r2t goes almost surely to infinity with t, the hitting
time T ′ := inf{t ≥ 0, r2t = r1T } is finite almost surely. If ṙ2T > α(r1T ), since ṙ2t is recurrent,
the curves (r1t , ṙ

1
t ) and (r2t , ṙ

2
t ) must intersect in finite time. Indeed, ṙ2t must visit zero

after T ′ and the grey zone is a barrier, this situation is illustrated in red on Fig. 6 below.
If ṙ2T ≤ α(r1T ), then the two curves must have intersected before T , this situation is
illustrated in green on Fig. 6.

Corollary 3.27. Suppose that the warping function f is log−concave and satisfies the
integrability criterion

∫ +∞
1

f1−d(ρ)dρ < +∞, then the Poisson boundary of the radial
subdiffusion (rt, ṙt) is trivial.

Proof. From Proposition 3.17, if f1−d is integrable at infinity, the process rt is transient
almost surely. Otherwise, if f is log−concave, then f ′/f is bounded ouside a compact set
and from Proposition 3.20, ṙt is then Harris recurrent in (−1,+1). Thus the assumptions
of Proposition 3.26 are fulfilled, hence the result.
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Figure 6: Typical behaviour of the sample paths of the radial subdiffusion.

3.6.2 A diffusion lifting kinetic Brownian motion

Let us first observe that one cannot directly use the devissage method to make explicit
the Poisson boundary of the kinetic Brownian motion (rt, ṙt, θt, θ̇t/|θ̇t|)t≥0. Indeed, even
if θt converges almost surely to θ∞ when t goes infinity, the dynamics of θ̇t/|θ̇t| involves
terms in θt (to keep θt on the sphere Sd−1) and the process (rt, ṙt, θ̇t/|θ̇t|)t≥0 is not
a subdiffusion although we do not expect invariant information from this term. In
particular, the dévissage condition of Theorem 3.9 is not fulfilled. In order to perform
the setting of application of the dévissage method we thus need to represent the angular
process (θ̇t/|θ̇t|, θt)t≥0 ∈ T 1Sd−1 by a process with values in a bigger space where the
dévissage method can indeed be applied. Namely, in two steps, we will represent the
angular process as a projection of some process (bt, gt)t≥0 living in SO(d− 1)× SO(d).
Recall that (ε1, . . . , εd) denotes the canonical basis of Rd and let us denote by SO(d− 1)

(resp. SO(d− 2)) the subgroup of SO(d) made of elements fixing ε1 (resp. fixing both ε1
and ε2).

First remark that the angular process (θt, θ̇t/|θ̇t|)t≥0 takes values in T 1Sd−1, which
can be seen as the homogeneous space SO(d)/SO(d − 2). Then consider the process
(rt, ṙt, et)t≥0, where et = (e1t , . . . , e

d
t ) ∈ SO(d), whose infinitesimal generator is given by

G = L(r,ṙ) + α(r, ṙ)H0 +
σ2

2
β(ṙ)

d∑
j=3

V 2
j , (3.18)

where

α(r, ṙ) :=

√
1− ṙ2
f(r)

, β(ṙ) :=
1

1− ṙ2

and H0(g) := gH0 (resp. Vj(g) = gVj) is the left invariant vector field in SO(d) generated
by H0 := ε1⊗ ε2− ε2⊗ ε1 (resp. Vj := ε2⊗ εj − εj ⊗ ε2). In other words, the process (et)t≥0
is solution of the Stratonovich stochastic differential equation

det = α(rt, ṙt)etH0dt+ β(ṙt)

d∑
j=3

etVj ◦ dBjt , (3.19)

for a standard (d − 2)-Euclidean Brownian motion (B3
t , . . . , B

d
t ). Doing so, the process

(rt, ṙt, et(ε1), et(ε2))t≥0 has the same law as the target process
(
rt, ṙt, θt, θ̇t/|θ̇t|

)
t≥0 i.e. in

this first step, we lifted kinetic Brownian motion to a diffusion on R+ × [−1, 1]× SO(d).
Let us now consider the time changed Brownian motion (bt)t≥0 on SO(d− 1) solution of

dbt = β(ṙt)

d∑
i=3

btVi ◦ dBit. (3.20)
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Finally, viewing bt as the element diag(1, bt) of SO(d), define the process (gt)t≥0 on SO(d)

by gt := etb
−1
t so that we have

dgt = α(rt, ṙt)gt btH0 b
−1
t dt. (3.21)

Note that, by construction, we have gt(ε1) = θt and gtbt(ε2) = θ̇t/|θ̇t|, i.e. after this
second step, kinetic Brownian motion is now represented by a diffusion (rt, ṙt, bt, gt)t≥0
with values in R+ × [−1, 1] × SO(d − 1) × SO(d). But, now we are in good position to
apply the dévissage scheme. Indeed, the process (rt, ṙt, bt)t≥0 is a now subdiffusion of
(rt, ṙt, bt, gt)t≥0. Moreover one shows that this diffusion has a trivial Poisson boundary.

Proposition 3.28. Suppose that the warping function f is log−concave and satisfies the
integrability criterion

∫ +∞
1

f1−d(ρ)dρ < +∞, the Poisson boundary of the subdiffusion
(rt, ṙt, bt)t≥0 is trivial.

Proof. Let us first remark that, following [CW00], it is sufficient to construct a shift cou-
pling between any two

(
rt, ṙt, bt

)
-diffusions started from two different initial conditions

to get the triviality of the Poisson boundary. We can construct such a shift coupling in the
following way. Let

(
r1t , ṙ

1
t , b

1
t

)
t≥0 and

(
r2t , ṙ

2
t , b

2
t

)
t≥0 be two independant versions of the(

rt, ṙt, bt
)
-diffusion starting from

(
r10, ṙ

1
0, b

1
0

)
and

(
r20, ṙ

2
0, b

2
0

)
respectively. We know from

Proposition 3.26 that there exists random times T1, T2 that are finite P(r10 ,ṙ
1
0 ,b

1
0)

-almost
surely, respectively P(r20 ,ṙ

2
0 ,b

2
0)

-almost surely, and such that one can modify the process(
r1t , ṙ

1
t , b

1
t

)
t≥0 so as to have

(
r1T1+t

, ṙ1T1+t

)
=
(
r2T2+t

, ṙ2T2+t

)
, for all t ≥ 0. In particular, for

all t ≥ 0, we have ∫ T1+t

T1

ds

1− |ṙ1s |2
=

∫ T2+t

T2

ds

1− |ṙ2s |2
.

Since Brownian motion in SO(d − 1) is ergodic, one can find two Brownian motions
(c1(t))t≥0 and (c2(t))t≥0 on SO(d − 1), started from b1T1

and b2T2
respectively, which are

independant of the radial subdiffusions and which couple almost surely in finite time.
Then, the processes yit, i = 1, 2, defined by the formulas

yit =


(
rit, ṙ

i
t, b

i
t

)
, for 0 ≤ t ≤ Ti,(

rit, ṙ
i
t, c

i

(∫ t

Ti

ds

1− |ṙis|2

))
, for t ≥ Ti,

have the laws of
(
rt, ṙt, bt

)
-diffusions started from

(
r10, ṙ

1
0, b

1
0

)
and

(
r20, ṙ

2
0, b

2
0

)
, respectively

and will couple in finite time almost surely, hence the result.

3.6.3 Poisson boundary of the full diffusion

We can now give the proof of Theorem 3.8 describing the Poisson boundary of the full
kinetic Brownian motion. As mentioned before, the key tool used in this proof is the
dévissage method introduced in [AT13], with the twist that we shall not apply it to
kinetic Brownian motion, but rather to the lifted diffusion (rt, ṙt, gt, bt)t≥0 with values
R+ × [−1, 1]× SO(d)× SO(d− 1) introduced in the last paragraph. In a final step one
obtains the Poisson boundary of the kinetic Brownian motion from the Poisson boundary
of the this lift.

We have shown in Proposition 3.28 that if f is log−concave and satisfies the inte-
grability criterion

∫ +∞
1

f1−d(ρ)dρ < +∞, then the Poisson boundary of the subdiffusion
(rt, ṙt, bt)t≥0 is trivial. Moreover, if the second integrability condition Id(f) < ∞ of
Proposition 3.25 is satisfied, the clock Ct is almost surely convergent and from Equa-
tion (3.21), the component gt then converges almost surely to g∞ in SO(d). In other
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words, the dévissage and convergence conditions of Theorem 3.9 are satified, with
N = R+ × [−1, 1]× SO(d− 1), G = SO(d), with

(
rt, ṙt, bt

)
t≥0 in the role of the subdiffu-

sion. Moreover, by equations (3.20) and (3.21), the infinitesimal generator Gb of the full
diffusion (rt, ṙt, gt, bt)t≥0 is very similar to the generator G defined in (3.18), except the
geodesic flow is now conjugated, namely

Gb := L(r,ṙ) + β(ṙ)

d∑
i=3

V 2
j + α(r, ṙ)Hb,

where Hb denotes the left invariant vector field on SO(d) defined at point g by the
formula gbH0b

−1 ∈ TgSO(d). It follows that the equivariance condition (3) of theorem
3.9 is fulfilled, while it is easy to check that Gb satisfies Hörmander condition and, so, is
hypoelliptic. As the regularity condition is also fulfilled, the dévissage method applies.
Namely, Theorem 3.9 implies the following statement:

Proposition 3.29. Suppose that the warping function f is log-concave and satisfies

Id(f) :=

∫ +∞

1

fd−2(r)

(∫ +∞

r

f1−d(ρ)dρ

)
dr < +∞.

Then, the Poisson boundary of the diffusion (rt, ṙt, bt, gt)t≥0 coincides almost surely with
σ(g∞).

To finally deduce the Poisson boundary of kinetic Brownian motion starting from the
Poisson boundary of its lift (rt, ṙt, bt, gt)t≥0 with values in R+× [−1, 1]×SO(d)×SO(d−1),
it is convenient to introduce the map χ from R+× [−1, 1]×SO(d)×SO(d− 1) to the base
space R+ × [−1, 1]× T 1Sd−1, given by the formula

χ
(
r, ṙ, g, b

)
=
(
r, ṙ, g(ε1), gb(ε2)

)
.

Let now f : R+ × [−1, 1]× T 1Sd−1 → R be a bounded harmonic function for the infinitesi-
mal generator of kinetic Brownian motion (rt, ṙt, θt, θ̇t/|θ̇t|)t≥0. Then, f ◦χ is Gb-harmonic,
and by Proposition 3.29 there exists a bounded measurable real-valued function F on
SO(d) such that we have

(f ◦ χ)
(
r, ṙ, g, b

)
= E(r,ṙ,g,b)

[
F(g∞)

]
,

for all (r, ṙ, g, b). Let now fix
(
r, ṙ, θ, θ̇/|θ̇|

)
and g ∈ SO(d), such that(

r, ṙ, θ, θ̇/|θ̇|
)

= χ
(
r, ṙ, g, Id

)
,

and remark that we have χ
(
r, ṙ, g, Id

)
= χ

(
r, ṙ, gk, k−1

)
, for any k ∈ SO(d− 1), so one can

write

f
(
r, ṙ, θ, θ̇/|θ̇|

)
= E(r,ṙ,gk,k−1)

[
F(g∞)

]
, (3.22)

for all k ∈ SO(d − 1). The conclusion will then come from the following equivariance
result.

Lemma 3.30. The law of (gt)t≥0 under P(r,ṙ,gk,k−1) coincides with the law of
(
gtk
)
t≥0

under P(r,ṙ,g,Id), for all k ∈ SO(d− 1).

Proof. Consider the processes (gt, bt)t≥0 starting at (gk, k−1), and set g′t := gtk and
b′t := kbt. Then, using equations (3.20) and (3.21), one easily checks that the process b′t
starts from the identity and satisfies the equation

db′t = β(ṙt)

d∑
i=3

b′tVi ◦ dBit
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while the process (g′t)t≥0 starts from g and satisfies the equation

dg′t = α(rt, ṙt)g
′
tb
′
tH0(b′t)

−1dt.

So the law of the process
(
rt, ṙt, g

′
t, b
′
t

)
t≥0 is P(r,ṙ,g,Id), giving the result.

It follows from the previous lemma that the law of g∞ under P(r,ṙ,gk,k−1) coincides
with the law of g∞k under P(r,ṙ,g,Id). However, as

f
(
r, ṙ, θ, θ̇/|θ̇|

)
= E(r,ṙ,g,Id)

[
F(g∞k)

]
, (3.23)

for all k ∈ SO(d− 1), from equation (3.22), we have

f
(
r, ṙ, θ, θ̇/|θ̇|

)
= E(r,ṙ,g,Id)

[∫
SO(d−1)

F(g∞k) dk

]
, (3.24)

where dk stands for the normalized Haar measure on SO(d − 1). Now, given any
measurable section S : Sd−1 ' SO(d)/SO(d− 1)→ SO(d) to the natural projection, we
define a bounded measurable real-valued function F setting

F(θ) :=

∫
SO(d−1)

F
(
S(θ)k

)
dk.

In those terms, we finally have

f
(
r, ṙ, θ, θ̇/|θ̇|

)
= E(r,ṙ,g,Id)

[
F
(
g∞(ε1)

)]
= E(r,ṙ,θ̇/|θ̇|,θ)

[
F
(
θ∞
)]
,

which shows indeed that the Poisson boundary of kinetic Brownian motion is generated
by the escape angle θ∞.

A Kinetic Brownian motion in the hyperbolic plane

In the preceeding section, we exhibited the almost sure long time asymptotic behavior
of the kinetic Brownian motion in rotationally invariant manifolds of dimension d ≥ 3.
As noted in Remark 3.12, the case d = 2 requires a separate treatment since in that
case the norm |θ̇t| vanishes almost surely in finite time so that the process θ̇t/|θ̇t| is not
well defined. Nevertheless, this is just a formal difficulty due to the choice of polar
coordinates, and an exhaustive study can be done in the same lines as above on a
rotationally invariant manifold of dimension 2. To emphasize this fact, let us consider
the case of H2, the hyperbolic space of dimension 2.

A.1 Kinetic Brownian motion in T 1H2

We consider the half-space model of the hyperbolic plane, namely we view H2 as the
half-space {(x, y) ∈ R2, y > 0} endowed with the metric ds2 = y−2(dx2 + dy2). In this
coordinates system, the kinetic Brownian motion (xt, yt, ẋt, ẏt) started at (x0, y0, ẋ0, ẏ0) ∈
T 1H2 is the solution of the system of stochastic differential equations (1.3) which simply
writes here: 

dxt = ẋtdt,

dyt = ẏtdt,

dẋt = 2
ẋtẏt
yt

dt− σ2

2
ẋtdt+ σdM ẋ

t ,

dẏt =

(
ẏ2t
yt
− ẋ2t
yt

)
dt− σ2

2
ẏtdt+ σdM ẏ

t ,

(A.1)
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where the martingales M ẋ and M ẏ have the following covariations

d〈M ẋ, M ẋ〉t =
(
y2t − ẋ2t

)
dt, d〈M ẋ, M ẏ〉t = −ẋtẏtdt, d〈M ẏ, M ẏ〉t =

(
y2t − ẏ2t

)
dt,

and can thus be represented by a real Brownian motion (Bt)t≥0:

dM ẋ
t = ẏtdBt, dM ẏ

t = −ẋtdBt.

Recall moreover that the process is parametrized by the arc length so that we have
almost surely, for all time t ≥ 0:

ẋ2t + ẏ2t
y2t

= 1. (A.2)

Note that since the process can not explode in finite time, we have yt ∈ (0,+∞) for
all t ≥ 0 almost surely. As in the case where d ≥ 3, the study of the process is then made
easier thanks to the presence of two subdiffusions:

Lemma A.1. The kinetic Brownian motion (xt, yt, ẋt, ẏt) in T 1H2 admits the following
subdiffusions of dimension one, two and three respectively:

(ut)t≥0 :=

(
ẏt
yt

)
t≥0

, (yt, ut)t≥0, (yt, ẋt, ẏt)t≥0.

Proof. Starting from the system (A.1), a direct application of Itô’s formula gives
dyt = utytdt,

dut = −(1− u2t )dt−
σ2

2
utdt+ σ

√
1− u2tdBt,

hence the result for the first two subdiffusions. Moreover, from Equation (A.1), the
evolution of (yt, ẋt, ẏt)t≥0 does not depend on xt.

Remark A.2. Note that, by symmetry if (yt, ẋt, ẏt) is a version of the 3−dimensional
subdiffusion starting from (y0, ẋ0 = 0, ẏ0 = ±1), then (yt,−ẋt, ẏt) is also a version of the
process.

A.2 Long time asymptotics

From the ergodicity of the subdiffusion (ut)t≥0, one can then deduce the following
almost sure long time asymptotic behavior for the whole process:

Proposition A.3. Let (xt, yt, ẋt, ẏt) be the kinetic Brownian motion in T 1H2 starting from
(x0, y0, ẋ0, ẏ0). Then the process (ut)t≥0 is ergodic in [−1, 1] with invariant probability
measure

µ(dx) =
1

Z

e−2x/σ
2

√
1− x2

,

where Z is a normalizing constant. Moreover, as t goes to infinity, we have

lim
t→+∞

1

t
log

(
yt
y0

)
=

∫ 1

−1
xµ(dx) ∈ (−∞, 0),

in particular yt goes almost surely to zero exponentially fast and the process xt converges
almost surely to a random variable x∞ ∈ R.
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Figure 7: Simulation of the process and the corresponding geodesic for σ = 0.01, 0.1, 1, 2.

Proof. One easily checks that µ is an invariant probability measure for (ut)t≥0 which is
thus ergodic. The ergodic theorem then ensures that almost surely

1

t
log

(
yt
y0

)
=

1

t

∫ t

0

usds
t→+∞−−−−→

∫ 1

−1
xµ(dx) ∈ (−∞, 0).

In particular, almost surely, yt goes to zero exponentially fast as t goes to infinity.
Moreover, from the relation (A.2), we have ẋ2t ≤ y2t from which we deduce that

xt = x0 =

∫ t

0

ẋsds

is also almost surely convergent, hence the result.

A.3 Poisson boundary

We conclude the study of the kinetic Brownian motion in the hyperbolic plane by
expliciting its Poisson boundary. We show that the invariant sigma field of the full
process coincides almost surely the sigma field generated by the point (x∞, 0) ∈ ∂H2 the
boundary at infinity.

Proposition A.4. Let (xt, yt, ẋt, ẏt) be the kinetic Brownian motion in T 1H2 starting from
(x0, y0, ẋ0, ẏ0). Then the Poisson boundary of the process coincides almost surely with
σ(x∞).

Proof. The proof is again an application of the dévissage method. Since (ut)t≥0 is
ergodic in [−1, 1], its invariant sigma field is clearly trivial. Otherwise, the invariant
sigma field of the process (yt, ẏt)t≥0 coincides almost surely with the one of the process
(− log(yt), ut)t≥0, whose behavior is stricly similar to the one of the process (rt, ṙt)t≥0 in
the proof of Proposition 3.26, namely − log(yt) goes almost surely to infinity with t while
its derivative ut is ergodic. The exact same proof then shows that the invariant sigma
field of (− log(yt), ut)t≥0 and thus (yt, ẏt)t≥0 is trivial. Equivalently, if (y1t , ẏ

1
t )t≥0 and

(y2t , ẏ
2
t )t≥0 are two versions of the process starting from (y10 , ẏ

1
0) and (y20 , ẏ

2
0) respectively,

there exists two random times T1 and T2 that are finite almost surely and such that
(y1T1+t

, ẏ1T1+t
)t≥0 = (y2T2+t

, ẏ2T2+t
)t≥0. Without loss of generality, we can suppose that
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T1 ≥ S where S is the first hitting point of ±1 by u1t = ẏ1t /y
1
t , which is also finite almost

surely. Indeed, considering the natural scale of the diffusion ut, and applying Theorem
23.12 p. 462 of [Kal02], one gets that ±1 are accessible and reflecting points, hence the
result. Now, the relation (A.2) implies that a shift coupling between (y1t , ẏ

1
t ) and (y2t , ẏ

2
t )

yields automatically a shift coupling between the corresponding versions of the process
(yt, ẋt, ẏt, )t≥0. Indeed, Equation (A.2) then ensures that |ẋ1T1

|2 = |ẋ2T2
|2 almost surely. If

ẋ1T1
= ẋ2T2

, there is nothing to prove, if ẋ1T1
= −ẋ2T2

, we can use the symmetry argument
of Remark A.2 and consider the process (−ẋ1S+t)t≥0 starting at −ẋ1S = 0. In other words,
the invariant sigma field of the subdiffusion (yt, ẏt, ẋt)t≥0 is almost surely trivial. To apply
the devissage scheme, we are left to check the equivariance and regularity properties
of Theorem 3.9. We have xt = x0 +

∫ t
0
ẋsds so that the infinitesimal generator of the

full diffusion (xt, yt, ẋt, ẏt) is clearly equivariant under the action of R by translation on
the x component. Moreover, the generator is hypoelliptic so that harmonic function are
continuous. By Theorem 3.9, we can conclude that the invariant sigma field of the kinetic
Brownian motion (xt, yt, ẋt, ẏt) coincides almost surely with the sigma field generated by
the limit x∞.
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