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Abstract

Following a hedging based approach to model free financial mathematics, we prove
that it should be possible to make an arbitrarily large profit by investing in those
one-dimensional paths which do not possess local times. The local time is constructed
from discrete approximations, and it is shown that it is α-Hölder continuous for all
α < 1/2. Additionally, we provide various generalizations of Föllmer’s pathwise Itô
formula.
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1 Introduction

This paper uses Vovk’s [22] game-theoretic approach to mathematical finance to
construct local times for “typical price paths”. Vovk’s approach is based on an outer
measure, which is given by the cheapest pathwise superhedging price, and it does
not presume any probabilistic structure. We define discrete versions of the local time
and prove that outside a set of outer measure zero they converge to a continuous
limit. Roughly speaking, this means that it should be possible to make an arbitrarily
large profit by investing in those paths where the convergence of the discrete local
times fails. A nice consequence is that the convergence takes place quasi surely under
all semimartingale measures for which the coordinate process satisfies the classical
condition of "no arbitrage opportunities of the first kind", i.e. for which the drift has a
square integrable density with respect to the quadratic variation of the local martingale
part.

Using these pathwise local times, we derive various pathwise change of variable
formulas which generalize Föllmer’s pathwise Itô formula [6] in the same way that the
classical Tanaka formula generalizes the classical Itô formula. In particular, we can
integrate f(S) against a typical price path S whenever f has finite q-variation for some
q < 2.
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Local times for typical price paths and pathwise Tanaka formulas

This work is a continuation of [16], where we used Vovk’s approach to show that
in a multidimensional setting every typical price path has a natural Itô rough path in
the sense of Lyons [14] associated to it. Based on this, we set up a pathwise theory
of integration which was motivated by possible applications in model free financial
mathematics. With the techniques of [16] we are able to treat integrands that are not
necessarily functions of the integrator. But if we want to construct

∫
f(S) dS, then we

need f ∈ C1+ε. The aim of the current paper is to show that for one-dimensional price
processes this assumption can be greatly relaxed.

Our motivation comes amongst others from [5], where pathwise local times and a
pathwise generalized Itô formula are used to derive arbitrage free prices for weighted
variance swaps in a model free setting. The techniques of [5] allow to handle integrands
in the Sobolev space H1. Here we extend this to not necessarily continuous integrands
of finite q-variation for some q < 2. Further motivations can be found in the survey
paper [7] which emphasizes possible applications of pathwise integration to robust
hedging problems, or in [3] and [18], where local times appear naturally in a financial
context and are used to resolve the so-called “stop-loss start-gain paradox”.

We refer to [16] for a more detailed discussion of the need for pathwise stochastic
integrals in model free finance.

Plan of the paper

In Section 2 we present various extensions of Föllmer’s pathwise Itô formula under
suitable assumptions on the local time. In Section 3 we show that typical price paths
possess local times which satisfy all the assumptions of Section 2.

2 Pathwise Tanaka formula

A first non-probabilistic approach to stochastic calculus was introduced by Föllmer
in [6], where an Itô formula was developed for a class of real-valued functions with
quadratic variation. This builds our starting point for a pathwise version of Tanaka’s
formula and a generalized Itô formula, respectively. Let us start by recalling Föllmer’s
definition of quadratic variation.
A partition π is an increasing sequence 0 = t0 < t1 < . . . without accumulation points,
possibly taking the value ∞. For T > 0 we denote by π[0, T ] := {tj : tj ∈ [0, T )} ∪ {T}
the partition π restricted to [0, T ], and if S : [0,∞)→ R is a continuous function we write

m(S, π[0, T ]) := max
tj∈π[0,T ]\{t0}

|S(tj)− S(tj−1)|

for the mesh size of π along S on the interval [0, T ]. We denote by B([0,∞)) the Borel
σ-algebra on [0,∞).

Definition 2.1. Let (πn) be a sequence of partitions and let S ∈ C([0,∞),R) be such
that limn→∞m(S, πn[0, T ]) = 0 for all T > 0. We say that S has quadratic variation along
(πn) if the sequence of measures

µn :=
∑

tj∈πn\{∞}

(S(tj+1)− S(tj))
2δtj , n ∈ N,

on ([0,∞),B([0,∞))) converges vaguely to a nonnegative Radon measure µ without
atoms, where δt denotes the Dirac measure at t ∈ [0,∞). We write 〈S〉(t) := µ([0, t])

for the continuous “distribution function” of µ and Q(πn) for the set of all continuous
functions having quadratic variation along (πn).
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Local times for typical price paths and pathwise Tanaka formulas

The reason for only requiring limnm(S, πn[0, T ]) = 0 rather than assuming that the
mesh size of (πn) goes to zero is that later we will work with Lebesgue partitions and
paths with piecewise constant parts, in which case only the first assumption holds.

We stress the fact that Q(πn) depends on the sequence (πn) and that for a given
path the quadratic variation along two different sequences of partitions can be different,
even if both exist. This is very unpleasant and might lead the reader to question the
usefulness of our results. But quite remarkably there is a large class of paths which
have a natural pathwise quadratic variation that is independent of the specific partition
used to calculate it. More precisely, in the master’s thesis [13], see also [4], the notion
of quadratic arc length is introduced. Roughly speaking, a path S has quadratic arc
length A if the quadratic variation of S along any sequence of Lebesgue partitions
is equal to A. It is shown in [13], Theorem III.3.3, that almost every sample path
S(ω) of a continuous semimartingale has a quadratic arc length which is equal to the
semimartingale quadratic variation 〈S〉(ω). The same theorem also shows that almost
every sample path of a continuous semimartingale has a natural local time which can be
obtained by counting interval upcrossings.

For k ∈ N let us write Ck = Ck(R,R) for the space of k times continuously differen-
tiable functions, and Ckb = Ckb (R,R) for the space of functions in Ck that are bounded
with bounded derivatives, equipped with the usual norm ‖ · ‖Ck

b
.

Theorem 2.2 ([6]). Let (πn) be a sequence of partitions and let S ∈ Q(πn) and f ∈ C2.
Then the pathwise Itô formula

f(S(t)) = f(S(0)) +

∫ t

0

f ′(S(s)) dS(s) +
1

2

∫ t

0

f ′′(S(s)) d〈S〉(s)

holds with∫ t

0

f ′(S(s)) dS(s) := lim
n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞), (2.1)

where the series in (2.1) is absolutely convergent.
In particular, the integral

∫ ·
0
g(S(s)) dS(s) is defined for all g ∈ C1, and for all T > 0

the map C1
b 3 g 7→

∫ ·
0
g(S(s)) dS(s) ∈ C([0, T ],R) defines a bounded linear operator and

we have∣∣∣ ∫ t

0

g(S(s)) dS(s)
∣∣∣ ≤ |S(t)− S(0)| × ‖g‖L∞(supp(S|[0,t])) +

1

2
〈S〉(t)‖g′‖L∞(supp(S|[0,t]))

for all t ≥ 0, where supp(S|[0,t]]) denotes the support of S restricted to the interval [0, t].

Föllmer actually requires the mesh size maxtj∈πn\{t0}, tj≤T |tj − tj−1| to converge to
zero for all T > 0, but he also considers càdlàg functions S. For continuous S, the proof
only uses that m(S, πn[0, T ]) converges to zero.

The continuity of the Itô integral is among its most important properties: if we ap-
proximate the integrand in a suitable topology, then the approximate integrals converge
in probability to the correct limit. This is absolutely crucial in applications, for example
when solving stochastic optimization problems or SDEs. Here we are arguing for one
fixed path, so the statement in Theorem 2.2 is a natural formulation of the continuity
properties in our context.

In the theory of continuous semimartingales, Itô’s formula can be extended further
to a generalized Itô rule for convex functions, see for instance Theorem 6.22 in [12]. In
the spirit of Föllmer, a generalized Itô rule for functions in suitable Sobolev spaces was
derived in the unpublished diploma thesis of Wuermli [23]. We briefly recall here the
idea for this pathwise version as presented in [23] or [5].
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Let f ′ be right-continuous and of locally bounded variation, and we define f(x) :=∫
(0,x]

f ′(y) dy for x ≥ 0 and f(x) := −
∫
(x,0]

f ′(y) dy for x < 0. Then we get for b ≥ a that

f(b)− f(a) = f ′(a)(b− a) +

∫
(a,b]

(f ′(x)− f ′(a)) dx = f ′(a)(b− a) +

∫
(a,b]

(b− t) df ′(t),

where we used integration by parts, and where the integral on the right hand side
is to be understood in the Riemann-Stieltjes sense. For b < a, we get f(b) − f(a) =

f ′(a)(b− a) +
∫
(b,a]

(t− b) df ′(t). Therefore, for any S ∈ C([0,∞],R) and any partition π
we have

f(S(t))− f(S(0)) =
∑
tj∈π

f ′(S(tj ∧ t))(S(tj+1 ∧ t)− S(tj ∧ t))

+

∫ ∞
−∞

(∑
tj∈π

1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|
)

df ′(u), (2.2)

where we used the notation

Lu, vK :=

{
(u, v], if u ≤ v,
(v, u], if u > v,

for u, v ∈ R. Let us define a discrete local time by setting

Lπt (S, u) :=
∑
tj∈π

1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|, u ∈ R,

and note that Lπt (S, u) = 0 for u /∈ [infs∈[0,t] S(s), sups∈[0,t] S(s)]. In the following we may
omit the S and just write Lπt (u).

Definition 2.3. Let (πn) be a sequence of partitions and let S ∈ C([0,∞),R). A function
L(S) : [0,∞)×R→ R is called L2-local time of S along (πn) if for all t ∈ [0,∞) it holds
limn→∞m(S, πn[0, t]) = 0 and the discrete pathwise local times Lπ

n

t (S, ·) converge weakly
in L2(du) to Lt(S, ·) as n→∞. We write LL2(πn) for the set of all continuous functions
having an L2-local time along (πn).

Using this definition of the local time, Wuermli showed the following theorem, where
we denote by Hk = Hk(R,R) the Sobolev space of functions which are k times weakly
differentiable in L2(R,R).

Theorem 2.4 ([23], Satz 9 or [5], Proposition B.4). Let (πn) be a sequence of partitions
and let S ∈ LL2(πn). Then S ∈ Q(πn), and for every f ∈ H2 the generalized pathwise Itô
formula

f(S(t)) = f(S(0)) +

∫ t

0

f ′(S(s)) dS(s) +

∫ ∞
−∞

f ′′(u)Lt(S, u) du

holds with∫ t

0

f ′(S(s)) dS(s) := lim
n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞).

(Note that f ′ is continuous for f ∈ H2). In particular, the integral
∫ ·
0
g(S(s)) dS(s) is

defined for all g ∈ H1, and for all T > 0, the map H1 3 g 7→
∫ ·
0
g(S(s)) dS(s) ∈ C([0, T ],R)

defines a bounded linear operator. Moreover, for A ∈ B(R) we have the occupation
density formula ∫

A

Lt(u) du =
1

2

∫ t

0

1A(S(s)) d〈S〉(s), t ∈ [0,∞).

In other words, for all t ≥ 0 the occupation measure of S on [0, t] is absolutely continuous
with respect to the Lebesgue measure, with density 2Lt.
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Local times for typical price paths and pathwise Tanaka formulas

Sketch of proof. Formula (2.2) in combination with the continuity of f and S yields

f(S(t))− f(S(0)) =
∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t))

+

∫ ∞
−∞

( ∑
tj∈πn

1LS(tj∧t),S(tj+1∧t)K(u)|S(tj+1 ∧ t)− u|
)
f ′′(u) du.

By assumption, the second term on the right hand side converges to
∫∞
−∞ f ′′(u)Lt(S, u) du

as n tends to∞, so that also the Riemann sums have to converge.
The occupation density formula follows by approximating 1A with continuous func-

tions.

As already observed by Bertoin [1], the key point of this extension of Föllmer’s
pathwise stochastic integral is again that it is given by a continuous linear operator
on H1. Since Lt(S, ·) is compactly supported for all t ≥ 0, the same arguments also
work for functions f that are locally in H2, i.e. such that f |(a,b) ∈ H2((a, b),R) for all
−∞ < a < b <∞.

As we make stronger assumptions on the local times L(S), it is natural to expect that
we can extend Wuermli’s generalized Itô formula to larger spaces of functions.

Definition 2.5. Let (πn) be a sequence of partitions and let S ∈ LL2(πn). We say that
S has a continuous local time along (πn) if for all t ∈ [0,∞) the discrete pathwise
local times Lπ

n

t (S, ·) converge uniformly to a continuous limit Lt(S, ·) as n → ∞ and
if (t, u) 7→ Lt(S, u) is jointly continuous. We write Lc(πn) for the set of all S having a
continuous local time along (πn).

In the following theorem, BV = BV(R,R) denotes the space of right-continuous
bounded variation functions, equipped with the total variation norm.

Theorem 2.6. Let (πn) be a sequence of partitions and let S ∈ Lc(πn). Let f : R → R

be absolutely continuous with right-continuous Radon-Nikodym derivative f ′ of locally
bounded variation. Then we have the generalized change of variable formula

f(S(t)) = f(S(0)) +

∫ t

0

f ′(S(s)) dS(s) +

∫ ∞
−∞

Lt(u) df ′(u)

for all t ∈ [0,∞), where∫ t

0

f ′(S(s)) dS(s) := lim
n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞). (2.3)

In particular, the integral
∫ ·
0
g(S(s)) dS(s) is defined for all g of locally bounded variation,

and for all T > 0 the map BV 3 g 7→
∫ ·
0
g(S(s)) dS(s) ∈ C([0, T ],R) defines a bounded

linear operator.

Proof. From (2.2) we get

f(S(t))− f(S(0)) =
∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)) +

∫ ∞
−∞

Lπ
n

t (u) df ′(u)

for all t ≥ 0. Since Lπ
n

t converges uniformly to Lt, our claim immediately follows.

Observe that f satisfies the assumptions of Theorem 2.6 if and only if it is the differ-
ence of two convex functions. For such f , Sottinen and Viitasaari [19] prove a generalized
change of variable formula for a class of Gaussian processes. They make the very nice
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observation that for a suitable Gaussian process X one can control the fractional Besov
regularity of f ′(X), and they use this insight to construct

∫ ·
0
f ′(Xt) dXt as a fractional

integral. Such a regularity result is somewhat surprising since in general f ′(X) is not
even làdlàg, so in particular not of finite p-variation for any p > 0. But since regularity of
f ′(X) is shown using probabilistic arguments, the integral of Sottinen and Viitasaari is
not directly a pathwise object: the null set outside of which it exists may depend on f .
Moreover, they can only handle Gaussian processes that are Hölder continuous of order
α > 1/2, and their approach breaks down when considering processes with non-trivial
quadratic variation. Here we have a completely different focus, since we are interested
in pathwise results for paths with non-trivial quadratic variation.

As an immediate consequence of Theorem 2.6 we obtain a pathwise version of the
classical Tanaka formula.

Corollary 2.7. Let (πn) be a sequence of partitions and let S ∈ Lc(πn). The pathwise
Tanaka-Meyer formula

Lt(u) = (S(t)− u)− − (S(0)− u)− +

∫ t

0

1(−∞,u)(S(s)) dS(s)

is valid for all (t, u) ∈ [0,∞)×R, with the notation (·−u)− := max{0, u−·}. The analogous
formulas for 1[u,∞)(·) and sgn(· − u) hold as well.

At this point we see a picture emerge: the more regularity the local time has, the
larger the space of functions is to which we can extend our pathwise stochastic integral.
Indeed, the previous examples are all based on duality between the derivative of the
integrand and the occupation measure. In the classical Föllmer-Itô case and for fixed
time T ≥ 0, the occupation measure is just a finite measure on a compact interval [a, b],
and certainly the continuous functions belong to the dual space of the finite measures on
[a, b]. In the Wuermli setting, the occupation measure has a density in L2 and therefore
defines a bounded functional on L2. If the local time is continuous, then we can even
integrate Radon measures against it.

So if we can quantify the continuity of the local time, then the dual space further
increases and we can extend the pathwise Itô formula to a bigger class of functions.
To this end we introduce for a given sequence of partitions (πn) and p ≥ 1 the set
Lc,p(πn) ⊆ Lc(πn) consisting of those S ∈ Lc(πn) for which the discrete local times (Lπ

n

t )

have uniformly bounded p-variation, uniformly in t ∈ [0, T ] for all T > 0, i.e. for which

sup
n∈N
‖Lπ

n

‖CTVp := sup
n∈N

sup
t∈[0,T ]

‖Lπ
n

t (·)‖p-var <∞

for all T > 0, where we write for any f : R→ R

‖f‖p-var := sup

{( n∑
k=1

|f(uk)− f(uk−1)|p
)1/p

: −∞ < u0 < . . . < un <∞, n ∈ N
}
.

We also write Vp for the space of right-continuous functions of finite p-variation, equipped
with the maximum of the p-variation seminorm and the supremum norm.
For S ∈ Lc,p(πn) and using the Young integral it is possible to extend the pathwise
Tanaka formula to an even larger class of integrands, allowing us to integrate

∫
g(S) dS

provided that g has finite q-variation for some q with 1/p + 1/q > 1. This is similar in
spirit to the Bouleau-Yor [2] extension of the classical Tanaka formula. Such an extension
was previously derived by Feng and Zhao [8], Theorem 2.2. But Feng and Zhao stay in a
semimartingale setting, and they interpret the stochastic integral appearing in (2.5) as a
usual Itô integral. Here we obtain a pathwise integral, which is given very naturally as a
limit of Riemann sums.
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Let us briefly recall the main concepts of Young integration. In [24], Young showed
that if −∞ < a < b <∞, if f and g are two functions on [a, b] of finite p- and q-variation
respectively with 1/p+1/q > 1, and if π is a partition of [a, b], then there exists a universal
constant C(p, q) > 0 such that∣∣∣ ∑

tj ,tj+1∈π
f(tj)(g(tj+1)− g(tj))

∣∣∣ ≤ C(p, q)‖f‖p-var,[a,b]‖g‖q-var,[a,b],

where we wrote ‖f‖p-var,[a,b] for the p-variation of f on [a, b] and similarly for g. In
particular, if there exists a sequence of partitions (πn) and if the Riemann sums of f

against g along (πn) converge to a limit which we denote by
∫ b
a
f(s) dg(s), then∣∣∣ ∫ b

a

f(s) dg(s)
∣∣∣ ≤ C(p, q)(|f(a)|+ ‖f‖p-var,[a,b])‖g‖q-var,[a,b]. (2.4)

Moreover, Young showed that if f and g have no common points of discontinuity, then the
Riemann sums along any sequence of partitions with mesh size going to zero converge
to the same limit

∫ t
0
f(s) dg(s), independently of the specific sequence of partitions.

We therefore easily obtain the following theorem.

Theorem 2.8 (see also [8], Theorem 2.2). Let p, q ≥ 1 be such that 1
p + 1

q > 1. Let (πn)

be a sequence of partitions and let S ∈ Lc,p(πn). Let f : R→ R be absolutely continuous
with right-continuous Radon-Nikodym derivative f ′ of locally finite q-variation. Then for
all t ∈ [0,∞) the generalized change of variable formula

f(S(t)) = f(S(0)) +

∫ t

0

f ′(S(s)) dS(s) +

∫ ∞
−∞

Lt(u) df ′(u) (2.5)

holds, where df ′(u) denotes Young integration and where∫ t

0

f ′(S(s)) dS(s) := lim
n→∞

∑
tj∈πn

f ′(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t)), t ∈ [0,∞).

In particular, the integral
∫ ·
0
g(S(s)) dS(s) is defined for all right-continuous g of locally

finite q-variation, and for all T > 0 the map Vq 3 g 7→
∫ ·
0
g(S(s)) dS(s) ∈ C([0, T ],R)

defines a bounded linear operator.

Proof. Observe that for each n ∈ N, the discrete local time Lπ
n

t is piecewise smooth and
of bounded variation. Therefore, formula (2.2) holds for Lπ

n

t and f ′, and the integral
on the right hand side of (2.2) is given as the limit of Riemann sums along an arbitrary
sequence of partitions with mesh size going to zero – provided that every element of
the sequence contains all jump points of Lπ

n

t . Therefore, the integral must satisfy the
bound (2.4). Since the p-variation of (Lπ

n

t ) is uniformly bounded, and the sequence
converges uniformly to Lt, it is easy to see that it must converge in p′-variation for all
p′ > p. Choosing such a p′ with 1/q + 1/p′ > 1 and combining the linearity of the Young
integral with the bound (2.4), the result follows.

Remark 2.9. Theorem 2.2 in [8] states (2.5) under the slightly weaker assumption that
f : R→ R is left-continuous and locally bounded with left-continuous and locally bounded
left derivative D−f of finite q-variation. But absolute continuity of f is clearly necessary:
Consider the path S(t) ≡ t for t ∈ [0,∞), for which 〈S〉 ≡ 0 and thus L ≡ 0. In this case
equation (2.5) would read as

f(t) = f(0) +

∫ t

0

D−f(u) du, t ∈ [0,∞),

a contradiction if f is not absolutely continuous.
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In the following, we will show that any typical price path which might model an
asset price trajectory must be in Lc,p(πn) if (πn) denotes the dyadic Lebesgue partition
generated by S.

3 Local times for model free finance

3.1 Super-hedging and outer measure

In a recent series of papers [20, 21, 22], Vovk introduced a hedging based, model
free approach to mathematical finance. Roughly speaking, Vovk considers the set of
real-valued continuous functions as price paths and introduces an outer measure on this
set which is given by the cheapest super-hedging price. A property (P) is said to hold
for “typical price paths” if it is possible to make an arbitrarily large profit by investing
in the paths where (P) is violated. We will see that in Vovk’s framework it is possible
to construct continuous local times for typical price paths, which gives an axiomatic
justification for the use of our pathwise generalized Itô formulas from Section 2 in model
free finance.

More precisely, we consider the (sample) space Ω = C([0,∞),R) of all continuous
functions ω : [0,∞)→ R. The coordinate process on Ω is denoted by St(ω) := ω(t). For
t ∈ [0,∞) we define Ft := σ(Ss : s ≤ t) and we set F :=

∨
t≥0 Ft. Stopping times τ and

the associated σ-algebras Fτ are defined as usual.
A process H : Ω × [0,∞) → R is called a simple strategy if there exist stopping

times 0 = τ0(ω) < τ1(ω) < . . . such that for every ω ∈ Ω and every T ∈ (0,∞) we have
τn(ω) ≤ T for only finitely many n, and Fτn -measurable bounded functions Fn : Ω→ R

such that Ht(ω) =
∑
n≥0 Fn(ω)1(τn(ω),τn+1(ω)](t). In that case the integral

(H · S)t(ω) =

∞∑
n=0

Fn(ω)[Sτn+1(ω)∧t − Sτn(ω)∧t]

is well defined for every ω ∈ Ω and every t ∈ [0,∞).
For λ > 0 a simple strategy H is called λ-admissible if (H · S)t(ω) ≥ −λ for all

t ∈ [0,∞) and all ω ∈ Ω. The set of λ-admissible simple strategies is denoted by Hλ.

Definition 3.1. The outer measure P of A ⊆ Ω is defined as the cheapest superhedging
price for 1A, that is

P (A) := inf
{
λ > 0 : ∃(Hn)n∈N ⊆ Hλs.t. lim inf

t→∞
lim inf
n→∞

(λ+ (Hn · S)t(ω)) ≥ 1A(ω)∀ω ∈ Ω
}
.

A set of paths A ⊆ Ω is called a null set if it has outer measure zero. A property (P) holds
for typical price paths if the set A where (P) is violated is a null set.

Of course, it would be more natural to minimize over simple trading strategies rather
than over the limit inferior along sequences of simple strategies. But then P would
not be countably subadditive, and this would make it very difficult to work with. Let
us just remark that in the classical definition of superhedging prices in semimartingale
models we work with general admissible strategies, and the Itô integral against a general
strategy is given as limit of integrals against simple strategies. So in that sense our
definition is analogous to the classical one (apart from the fact that we do not require
convergence and consider the lim inf instead).

For us, the most important property of P is the following arbitrage interpretation for
null sets.

Lemma 3.2 (Lemma 2.4 of [16]). A set A ⊆ Ω is a null set if and only if there exists a
sequence of 1-admissible simple strategies (Hn)n∈N ⊆ H1, such that

lim inf
t→∞

lim inf
n→∞

(1 + (Hn · S)t(ω)) ≥ ∞ · 1A(ω),
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where we set∞ · 0 = 0 and∞ · 1 =∞.

In other words, a null set is essentially a model free arbitrage opportunity of the first
kind, and to only work with typical price paths is analogous to only considering models
which satisfy (NA1) (no arbitrage opportunities of the first kind). The notion (NA1) has
raised a lot of interest in recent years since it is the minimal condition which has to
be satisfied by any reasonable asset price model; see for example [11, 17, 9]. If P is a
probability measure on (Ω,F), we say that S satisfies (NA1) under P if the setW∞1 := {1+∫∞
0
Hs dSs : H ∈ H1} is bounded in probability, that is if limn→∞ supX∈W∞1 P(X ≥ n) = 0.

In the continuous setting this is equivalent to S being a semimartingale of the form
S = M +

∫ ·
0
αs d〈M〉s, where M is a local martingale and

∫∞
0
α2
s d〈M〉s <∞.

In the next proposition we collect further properties of P . For proofs (in finite time)
see [16].

Proposition 3.3. 1. P is an outer measure with P (Ω) = 1, i.e. P is nondecreasing,
countably subadditive, and P (∅) = 0.

2. Let P be a probability measure on (Ω,F) such that the coordinate process S is a
P-local martingale, and let A ∈ F . Then P(A) ≤ P (A).

3. Let A ∈ F be a null set, and let P be a probability measure on (Ω,F) such that the
coordinate process S satisfies (NA1) under P. Then P(A) = 0.

The last statement says that every property which is satisfied by typical price paths
holds quasi-surely for all probability measures which might be of interest in mathematical
finance.

Lemma 3.2 and Proposition 3.3 are originally due to Vovk, but here and in [16] we
consider a small modification of Vovk’s outer measure, which in our opinion has a slightly
more natural financial interpretation and with which it is easier to work.

3.2 Existence of local times for typical price paths

This subsection is devoted to the presentation and the proof of our main result (Theo-
rem 3.5): every typical price path has a local time which satisfies all the requirements
needed to apply our most general Itô-Tanaka formula, Theorem 2.8.
For this purpose recall that for every partition π(ω) = {0 = t0(ω) < t1(ω) < . . . <

tK(ω)(ω) < t(K+1)(ω)(ω) =∞} of [0,∞) a discrete version of the local time is given by

Lπt (S, u)(ω) =

K(ω)∑
j=0

1LStj∧t(ω),Stj+1∧t(ω)K
(u)|Stj+1∧t(ω)− u|, (t, u) ∈ [0,∞)×R.

From (2.2) we get the following discrete version of Tanaka’s formula, which can also be
obtained by direct computation:

Lπt (S, u)(ω) = (St(ω)− u)− − (S0(ω)− u)− +

K(ω)∑
j=0

1(−∞,u)(Stj (ω))[Stj+1∧t(ω)− Stj∧t(ω)]

(3.1)
for all (t, u) ∈ [0,∞)×R and ω ∈ Ω. Taking a sequence of partitions with mesh size con-
verging to zero, we see that at least formally the construction of the stochastic integral∫ ·
0
1(−∞,u)(Ss) dSs(ω) is equivalent to the construction of the local time L(S, u)(ω).
In the following we will work with a very natural sequence of partitions, namely the

dyadic Lebesgue partitions generated by S: For each n ∈ N denote Dn := {k2−n : k ∈ Z}
and define the sequence of stopping times

τn0 (ω) := 0, τnk+1(ω) := inf{t ≥ τnk (ω) : St(ω) ∈ Dn \ Sτn
k (ω)(ω)}, k ∈ N. (3.2)
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We set πn(ω) := {0 = τn0 (ω) < τn1 (ω) < . . . }. Note that the functions τnk (ω) are stopping
times and that (πn(ω)) is increasing, i.e. it holds πn(ω) ⊂ πn+1(ω) for all n ∈ N. From
now on we will mostly omit the ω and just write πn and τnk instead of πn(ω) and τnk (ω),
respectively.

A key ingredient for our construction of the local time is the following analysis of
the number of interval crossings. Let Ut(ω, a, b) be the number of upcrossings of the
closed interval [a, b] ⊆ R by S(ω) during the time interval [0, t], where an upcrossing is
a pair (u, v) ∈ [0, t]2 with u < v such that Su(ω) = a, Sv(ω) = b and Sw(ω) ∈ (a, b) for
all w ∈ (u, v). Downcrossings are defined analogously and we write Dt(ω, a, b) for the
number of downcrossings by ω ∈ Ω during the time interval [0, t].

Lemma 3.4. For typical price paths ω ∈ Ω, there exists C(ω) : (0,∞)→ (0,∞) such that

max
k∈Z

(
UnT (ω, k2−n) +Dn

T (ω, k2−n)
)
≤ CT (ω)n22n

for all n ∈ N, T > 0, where UnT (ω, u) := UT (ω, u, u+ 2−n) for u ∈ R, and similarly for the
number of downcrossings.

Proof. Let K,T > 0. Without loss of generality we may restrict our considerations to
the set AK := {ω ∈ Ω : supt∈[0,T ] |St(ω)| < K}. Let k ∈ (−2nK, 2nK) and write u = k2−n.
The following strategy will make a large profit if UnT (u) := UnT (ω, u) is large: start with
wealth 1, when S first hits u buy 1/(2K) numbers of shares. When S hits −K sell and
stop trading. Otherwise, when S hits u+ 2−n sell. This gives us wealth 1 + 2−n/(2K) on
the set {UnT (u) ≥ 1} ∩AK . Now we repeat this strategy: next time we hit u, we buy our
current wealth times 1/(2K) shares of S, and sell when S hits u+ 2−n or −K. After n22n

upcrossings of [u, u+ 2−n], stop trading. On the set {UnT (u) ≥ n22n} ∩AK we then have
a wealth of (

1 +
2−n

2K

)n22n

≥ exp
( 1

4K
n2
)

for all n that are large enough. Therefore

P̄
(
{UnT (u) ≥ n22n} ∩AK

)
≤ exp

(
− n2

4K

)
for all large n. Summing over all dyadic points u = k2−n in (−K,K), we obtain

P
({

max
k∈Z

UnT (k2−n) ≥ n22n
}
∩AK

)
≤ K2n+1 exp

(
− n2

4K

)
= K exp

(
− n2

8K
+(n+1) log(2)

)
for all large n. Since this is summable in n, the claimed bound for the upcrossings follows
for all typical price paths. To bound the downcrossings, it suffices to note that up- and
downcrossings of a given interval differ by at most 1.

The following construction is partly inspired by [15], Chapter 6.2.

Theorem 3.5. Let T > 0, α ∈ (0, 1/2) and (πn) as defined in (3.2). For typical price
paths ω ∈ Ω, the discrete local time Lπ

n

(S, ·) converges uniformly in (t, u) ∈ [0, T ]×R to
a limit L(S, ·) ∈ C([0, T ], Cα(R)), and there exists C = C(ω) > 0 such that

sup
n

{
2nα||Lπ

n

(S, ·)− L(S, ·)||L∞([0,T ]×R)

}
≤ C. (3.3)

Moreover, for all p > 2 we have supn∈N ||Lπ
n ||CTVp <∞ for typical price paths.
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Proof. By the identity (3.1) it suffices to prove the corresponding statements with the
stochastic integrals

∫ t
0

1(−∞,u)(Ss) dSs replacing Lt(S, u). Using Lemma 3.4, we may fix
K > 0 and restrict our attention to the set

AK :=

{
ω ∈ Ω : sup

t∈[0,T ]

|St(ω)| < K and max
k∈Z

(
UnT (ω, k2−n) +DT (ω, k2−n)

)
≤ Kn22n ∀n

}
.

Let u ∈ (−K,K). For every n ∈ N we approximate 1(−∞,u)(S) by the process

Fnt (u) :=

∞∑
k=0

1(−∞,u)(Sτn
k

)1[τn
k ,τ

n
k+1)

(t), t ≥ 0.

Then we write for the corresponding integral process

Iπ
n

t (u) :=

∞∑
k=0

1(−∞,u)(Sτn
k

(ω))[Sτn
k+1∧t(ω)− Sτn

k ∧t(ω)], t ≥ 0,

and since (πn) is increasing, we get

Iπ
n

t (u)− Iπ
n−1

t (u) =

∞∑
k=0

[Fnτn
k

(u)− Fn−1τn
k

(u)][Sτn
k+1∧t − Sτn

k ∧t].

By the construction of our stopping times (τnk ), we have

sup
t≥0

∣∣[Fnτn
k

(u)− Fn−1τn
k

(u)][Sτn
k+1∧t(ω)− Sτn

k ∧t(ω)]
∣∣ ≤ 2−n+2.

Hence, the pathwise Hoeffding inequality, Theorem 3 in [22] or Lemma A.1 in [16],
implies for every λ ∈ R the existence of a 1-admissible simple strategy Hλ ∈ H1, such
that

1 + (Hλ · S)t(ω) ≥ exp

(
λ(Iπ

n

t (u)− Iπ
n−1

t (u))− λ2

2
Nn
t (u, ω)2−2n+4

)
=: Eλ,nt (ω)

for all t ∈ [0, T ] and all ω ∈ Ω, where Nn
t (u) := Nn

t (u, ω) denotes the number of stopping
times τnk ≤ t with Fnτn

k
(u) − Fn−1τn

k
(u) 6= 0. Now observe that Fnt and Fn−1t are constant

on dyadic intervals of length 2−n, which means that we may suppose without loss
of generality that u = k2−n is a dyadic number. But we can estimate Nn

T (k2−n) by
the number of upcrossings of the interval [(k − 1)2−n, k2−n] plus the number of the
downcrossings of the interval [k2−n, (k + 1)2−n], which means that on AK we have
Nn
T (u) ≤ 2K2nn2. So considering (Hλ +H−λ)/2 for λ > 0, we get

P

({
sup
t∈[0,T ]

|Iπ
n

t (u)− Iπ
n−1

t (u)| ≥ 2−nα
}
∩AK

)
≤ 2 exp(−λ2−nα + λ2K2−n+4n2)

for all λ, α > 0. Choose now λ = 2n/2 and α ∈ (0, 1/2). Then we get the estimate

P

({
sup
t∈[0,T ]

|Iπ
n

t (u)− Iπ
n−1

t (u)| ≥ 2−nα
}
∩AK

)
≤ 2 exp(−2n(1/2−α) + 16Kn2).

Moreover, noting that for all t > 0 the maps u 7→ Iπ
n

t (u) and u 7→ Iπ
n−1

t (u) are constant
on dyadic intervals of length 2−n and that there are 2K2n such intervals in [−K,K], we
can simply estimate

P

({
sup

(t,u)∈[0,T ]×R
|Iπ

n

t (u)− Iπ
n−1

t (u)| ≥ 2−nα
}
∩AK

)
≤ 2K2n × 2 exp(−2n(1/2−α) + 16Kn2)

= exp(−2n(1/2−α) + 16Kn2 + (n+ 2) log 2 + logK).
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Obviously, this is summable in n and thus the proof of the uniform convergence and of
the speed of convergence is complete.

It remains to prove the uniform bound on the p-variation norm of Iπ
n

and the Hölder
continuity of the limit. Let p > 2 and write α = 1/p, so that α ∈ (0, 1/2). First let
u = k2−n ∈ (−K,K) and write v = (k + 1)2−n. Then

Iπ
n

t (v)− Iπ
n

t (u) =

∞∑
k=0

(Fnτn
k

(v)− Fnτn
k

(u))(Sτn
k ∧t − Sτn

k−1∧t),

and similarly as before we have supt≥0 |(Fnτn
k

(v)− Fnτn
k

(u))(Sτn
k ∧t − Sτn

k−1∧t)| ≤ 2−n+1. On
AK , the number of stopping times (τnk )k with Fnτn

k
(u) 6= Fnτn

k
(v) is bounded from above by

2K2nn2 + 1, and therefore we can estimate as before

P

({
sup
t∈[0,T ]

sup
u,v∈R:|u−v|≤2−n

|Iπ
n

t (v)− Iπ
n

t (u)| ≥ 2−nα
}
∩AK

)
≤ exp(−2n(1/2−α) + Cn2),

for some appropriate constant C = C(K) > 0.
We conclude that for typical price paths ω ∈ Ω there exists C = C(ω) > 0 such that

sup
t∈[0,T ]

sup
|u−v|≤2−n

|Iπ
n

t (v)− Iπ
n

t (u)|+ sup
t∈[0,T ]

sup
u∈R
|Iπ

n

t (u)− Iπ
n−1

t (u)| ≤ C2−nα

for all n ∈ N. Let now n ∈ N and let u, v ∈ R with 1 ≥ |u− v| ≥ 2−n. Let m ≤ n be such
that 2−m−1 < |u− v| ≤ 2−m. Then

||Iπ
n

(v)− Iπ
n

(u)||∞
≤ ||Iπ

n

(v)− Iπ
m

(v)||∞ + ||Iπ
m

(v)− Iπ
m

(u)||∞ + ||Iπ
m

(u)− Iπ
n

(u)||∞

≤ C

(
n∑

k=m+1

2−kα + 2−mα +

n∑
k=m+1

2−kα

)
≤ C2−mα ≤ C|v − u|α,

possibly adapting the value of C > 0 in every step. Since Iπ
n

t is constant on dyadic
intervals of length 2−n, this proves that supt∈[0,T ] ||Iπ

n

t ||p-var ≤ C. The α-Hölder continuity
of the limit is shown in the same way.

We reduced the problem of constructing L to the problem of constructing certain
integrals. In [16], Corollary 3.6, we gave a general pathwise construction of stochastic
integrals. But this result does not apply here, because in general 1(−∞,u)(S) is not
càdlàg.

Remark 3.6. Theorem 3.5 gives a simple, model free proof that local times exist and
have nice properties. Let us stress again that by Proposition 3.3, all the statements
of Theorem 3.5 hold quasi-surely for all probability measures on (Ω,F) under which S
satisfies (NA1).

Below, we sketch an alternative proof based on Vovk’s pathwise Dambis Dubins-
Schwarz theorem. While we are interested in a statement for typical price paths, which
a priori is stronger than a quasi-sure result for all measures satisfying (NA1), the quasi-
sure statement may also be obtained by observing that every process satisfying (NA1)
admits a dominating local martingale measure, see [17, 9]. Under the local martingale
measure we can then perform a time change to turn the coordinate process into a
Brownian motion, and then we can invoke standard results for Brownian motion for
which all statements of Theorem 3.5 except one are well known: The only result we
could not find in the literature is the uniform boundedness in p-variation of the discrete
local times.
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Remark 3.7. Note that for u = k2−n with k ∈ Z we have Lπ
n

t (u) = 2−nDt(u− 2−n, u) +

ε(n, t, u) for some ε(n, t, u) ∈ [0, 2−n]. Therefore, our proof also shows that the renormal-
ized downcrossings converge uniformly to the local time, with speed at least 2−nα for
α < 1/2. For the Brownian motion this is well known, see [4]; see also [10] for the exact
speed of convergence. In the Brownian case, we actually know more: Outside of one
fixed null set we have

lim
ε→0

sup
x∈R

sup
t∈[0,T ]

|ε−1Dt(x, x+ ε)− Lt(x)| = 0

for all T > 0. It should be possible to recover this result also in our setting. It follows
from pathwise estimates once we prove Theorem 3.5 for a sequence of partitions (π̃n)

of the following type: Let (cn) be a sequence of strictly positive numbers converging to
0, such that cn+1/cn converges to 1. Define D̃n := {kcn : k ∈ Z}. Now define π̃n as πn,
replacing Dn by D̃n. The only problem is that then we cannot expect the sequence (π̃n)

to be increasing, and this would complicate the presentation, which is why we prefer to
work with the dyadic Lebesgue partition.

Finally, we want to indicate that Theorem 3.5 could also be partially proven by relying
on the pathwise Dambis Dubins-Schwarz type theorem of Vovk [22], which allows to
transfer properties of the one-dimensional Wiener process to typical price paths.
As mentioned above, Vovk’s outer measure Q is defined slightly differently than P but all
results which hold true outside of a Q-null set are also true outside of a P -null set; see
Section 2.4 of [16]. To understand Vovk’s pathwise Dambis Dubins-Schwarz theorem, we
need to recall the definition of time-superinvariant sets.

Definition 3.8. A continuous non-decreasing function f : [0,∞) → [0,∞) satisfying
f(0) = 0 is said to be a time change. A subset A ⊆ Ω is called time-superinvariant if for
each ω ∈ Ω and each time change f it is true that ω ◦ f ∈ A implies ω ∈ A.

Roughly speaking, Vovk proved in Theorem 3.1 of [22] that the Wiener measure of a
time-superinvariant set equals the outer measure Q of this set. It turns out that the sets

Ac := {ω ∈ Ω : S(ω) ∈ Lc} and

Ac,p := {ω ∈ Ac : u 7→ Lt(S, u)(ω) has finite p-variation for all t ∈ [0,∞)}

are time-superinvariant. Based on this, one can rely on classical results for the Wiener
process (see [12], Theorem 3.6.11 or [15], Theorem 6.19) to show that typical price
paths have an absolutely continuous occupation measure Lt(S, u) with jointly continuous
density and that Lt(S, ·) has finite p-variation which is uniformly bounded in t ∈ [0, T ] for
all T > 0 and all p > 2 (see [15], Theorem 6.19).

However, to the best of our knowledge the alternative approach does not give us
the uniform boundedness in p-variation of the approximating sequence (Lπ

n

): we were
not able to find such a result in the literature on Brownian motion. Without this, we
would only be able to prove an abstract version of Theorem 2.8, where the pathwise
stochastic integral

∫ t
0
g(Ss) dSs is defined by approximating g with smooth functions for

which the Föllmer-Itô formula Theorem 2.2 holds (see [8] for similar arguments in a
semimartingale context). Since we are interested in the Riemann sum interpretation
of the pathwise integral, we need Theorem 3.5 to make sure that all requirements of
Theorem 2.8 are satisfied for typical price paths.
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