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Free infinite divisibility for beta distributions
and related ones*
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Abstract

We prove that many of beta, beta prime, gamma, inverse gamma, Student t- and
ultraspherical distributions are freely infinitely divisible, but some of them are not.
The latter negative result follows from a local property of probability density func-
tions. Moreover, we show that the Gaussian, many of ultraspherical and Student
t-distributions have free divisibility indicator 1.
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1 Introduction

1.1 Beta and beta prime distributions

Wigner’s semicircle law w and the Marchenko-Pastur law (or free Poisson law) m,
defined by

N o
2@ dr, m(de) = o/ —

w(dzx) = Lio,4) () d,

are the most important distributions in free probability because they are respectively
the limit distributions of the free central limit theorem and free Poisson’s law of small
numbers. In the context of random matrices, w and m are the large N limit of the
eigenvalue distributions of Xy and X% respectively, where X is an N x N normalized
Wigner matrix.

Those measures belong to the class of freely infinitely divisible (or FID for short)
distributions, the main subject of this paper. This class appears as the spectral distri-
butions of large random matrices [BG05, C05]. Research on free probability or more
specifically FID distributions has motivated some new directions in classical probabil-
ity: the upsilon transformation (see [BT06]), type A distributions [ABP09, MPS12] and
matrix-valued Lévy processes [AM12]. Handa [H12] found a connection of branching
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processes and generalized gamma convolutions (GGCs) to Boolean convolution (see
Section 7), a convolution related to free probability.
Up to affine transformations, w and m are special cases of beta distributions:

Bp.q(dx) ==

B xp_l(l — x)q_l loqy(z) dz, p,q >0,
where B(p, q) is the beta function fol 2P~ (1 —2)?" " dx. Moreover, (315 12 is the arcsine
law which appears in the monotone central limit theorem [M01] and plays a central role
in free type A distributions [ABP09]. If p = ¢, the beta distribution 3, , can be shifted
to a symmetric measure which is called the ultraspherical distribution essentially. This
family contains Wigner’s semicircle law and a symmetric arcsine law. If we take the
limit p — 0, a Bernoulli law appears, which is known as the limit distribution of Boolean
central limit theorem [SW97]. In the case p+q = 2, the measure 3, , has explicit Cauchy
and Voiculescu transforms [AH13a]. Moreover, if we let B, := 814,144, —1 < a < 1, it
holds that

(DpBa) > By = Bas, a,b € (—1,1). (1.1)
The binary operation > is monotone convolution [M00, F09] and D, u is the dilation of
a probability measure p by a: (Dop)(A) := (2 A) for Borel sets A C R and a # 0. Dop
is defined to be dy.

Beta prime distributions (or beta distributions of the second kind)

1 Pt
B(p,q) (1 +z)rta

also appear related to free probability. The measure 3, /2,1/2 is a one-sided free stable
law with stability index 1/2; see p. 1054 of [BP99]. The same measure also appears as
the law of an affine transformation of X ~! when X follows the free Poisson law m. If X
follows the semicircle law w, then ﬁ follows the beta prime distribution 3 /2,372 UP to
an affine transformation. If X follows a Cauchy distribution, i.e. a free stable law with
stability index 1, then X? follows the beta prime distribution B, /2.1/2°

Thus various beta and beta prime distributions appear in noncommutative proba-
bility. One motivation of this paper is to understand free infinite divisibility for these
distributions.

B4 (dx) =

1[0,m)($)d$, paq>07

1.2 Gamma, inverse gamma, ultraspherical and t-distributions

Related to beta and beta prime distributions are gamma distributions -y,, inverse
gamma distributions ~; !, ultraspherical distributions u, and (up to scaling) Student’s
t-distributions t,:

ds) o= gt e Lo (a) o p>0
'yp_l(d:c) = ﬁx_p_le_l/” 110,00 () dzz, p >0,
%)= +1§’p i PPy (2)de, p> —3,
ty(dz) = ! ! (x) dx, q> 1.

170000
B(L,q— 1) (1 +a2)a ()

Note that 7;/12 coincides with a classical 1/2-stable law, called the Lévy distribution.

If a random variable X follows a distribution u, we write X ~ p. If X ~ p, the
measure D,p coincides with the distribution of aX. The measures 3, 4, B;Lq,'yp,'y; L tg
satisfy the following relations:
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X 1
(1) If X ~ B4, then ;=5 ~ ;uq' v 1~ ;p

(2) limg—oo DyBp,q = 7p in the sense of weak convergence.
(3) limg— oo Dl/qﬁfw = 'yp_l in the sense of weak convergence.
(4) If X ~ ~,, then X! ~ ~ 1.

(5) If X ~ Byy1/2,p+1/2, then 2X — 1 ~ u,,.

(6) If X ~ t,, then X2 ~ /6/1/2,q—1/2‘

The infinite divisibility of many of these measures as well as ﬁ;yq is known in classical
probability, but proofs of some of them are not trivial. Bondesson’s approach provides
us with proofs of the above facts from a more general viewpoint (see [B92], p. 59 and
p. 117), which heavily depends on complex analysis.

Theorem 1.1. The probability measures ﬁ;z, o Yoo Vp L t, are infinitely divisible in clas-
sical probability for all parameters. The probability measures 3, 4, u, are not infinitely
divisible.

The latter statement comes from the fact that infinitely divisible distributions except
Dirac measures have unbounded supports.
A motivation of this paper is to understand the free infinite divisibility for 8, , and
1’,’ , s mentioned. Another motivation is the following simple question:

e What kind of infinitely divisible distributions in classical probability are FID?

Belinschi et al. [BBLS11] showed that the Gaussian is FID, which was quite unexpected
because no apparent reason exists to expect this result. Other examples are also known
in [AHS13, AH14, BH14]. In this paper we add more examples from ﬂz’j’qup,'yp‘l, tg.

The proof of [BBLS11] is based on a first-order differential equation of the Cauchy
transform of the Gaussian. The other motivation of the present paper is to understand
the result of [BBLS11] better, i.e. to understand the relationship between a first-order
differential equation of the Cauchy transform and free infinite divisibility. In fact the
Cauchy transforms of distributions 3, 4, ﬁ;,q, Uy, Yps Yy !.t, are all Gauss hypergeomet-
ric functions or limits of such and thus satisfy first-order differential equations. We will
clarify what property of the Cauchy transform in addition to a first-order differential
equation guarantees free infinite divisibility.

1.3 Main results

We summarize the known results. It is well known that Wigner’s semicircle law and
the free Poisson law are FID. The law 3, = 31_4,14, is FID if (and only if) 1 < |a| < 1
[AH13a]. The free infinite divisibility for ultraspherical distributions u, was conjectured
for p > 1 in [AP10, Remark 4.4], and Arizmendi and Belinschi [AB13] showed that
the ultraspherical distribution u, (and also the beta distribution 81 ,,1) is FID for
n = 1,2,3,---. For beta prime distributions, 3, /3,1/2 is a free stable law and so is FID
[BP99, p. 1054]. The law 6’1/2,1/2 is also known to be FID because it is the square of
a Cauchy distribution [AHS13]. The t-distribution t, is FID for ¢ = 1,2,3,--- [H]. The
chi-square distribution \/%e‘”’l[o’oo)(a:) dz coincides with ~,,, and it is FID [AHS13],
while the exponential distribution is not FID.!

The main theorem of this paper is the following, which is proved through Sections
3-6.

IF. Lehner found a negative Hankel determinant of free cumulants of the exponential distribution. See also
Section 5.
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Theorem 1.2. (1) The beta distribution 3, , is FID in the following cases: (i) p,q > %;
(MO0<p<g, p+q>2({)0<qg<g, ptqg>2.

(2) The beta distribution B, 4 is not FID in the following cases: (i) 0 < p,q < 1; (ii)p € Z;
(iii) ¢ € Z, where

< /on—1 2n (om+2 2n+1 13
7= - - U i
<nL_J1< 2n ’2n+1>> <7LL_J1<2TL+1, 2n )) C<2’2)

(3) The beta prime distribution 3, , is FID ifp € (0, 3] U[3, 00).

(4) The beta prime distribution ﬁ]’g’q isnot FID ifp € T.

(5) The t-distribution t, is FID if

€ 12 UG 2 +12 +2
q 27 n 4,7’7/ .

n=1

L L L L L L I L L L L L L L I
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 1: The region for free infinite Figure 2: The region for free infinite
divisibility of 3, , divisibility of 3, ,

The assertions (2) and (4) follow from Theorem 5.1, a general criterion for a proba-
bility measure not to be FID. It roughly says, if a probability measure has a local density
function p(z) around a point xg, and if p(x)|(,—s.,+5) iS close to the power function

c(a = 20)* L ag o +s) ()
for some ¢,d > 0 and « € Z, then that measure is not FID.
Theorem 1.2 has the following consequences.
Corollary 1.3. (1) The gamma distribution =, is FID if p € (0, %] U [%,oo), and is not
FID ifp € T.

(2) The inverse gamma distribution -y, L is FID for any p > 0. In particular, the classical
positive stable law with stability index 1/2 is FID.

(3) The ultraspherical distribution u,, is FID forp € [1,00) and is not FID forp € (—1,1).
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Corollary 1.3(1), (2) follow from limits of 3, ; and 5;,7(1 respectively. The assertion on
non free infinite divisibility of +, is not a consequence of Theorem 1.2, but of Theorem
5.1. Corollary 1.3(3) for p € [1,00) is proved via an affine transformation of BH%’H%,
and non free infinite divisibility is known in [AP10, Corollary 4.1]. This result is a
positive solution of the conjecture of Arizmendi and Pérez-Abreu [AP10, Remark 4.4].

This paper is organized as follows. In Section 2, new sufficient conditions for free
infinite divisibility are given, as well as the exposition of basic complex analysis in free
probability.

In Section 3, we express the Cauchy transforms of beta and beta prime distributions
in terms of the Gauss hypergeometric function. We gather explicit Cauchy transforms of
beta and beta prime distributions. The measures Ba = Bq,1—q and B&(dz) =Bl _aaldz—
1) are shown to satisfy

B{L bgb = Baba EIQDBI/) = B;Iw O < a7b < 1a

where (> is multiplicative monotone convolution [B05].

In Section 4, we prove the free infinite divisibility of beta and beta prime distribu-
tions as mentioned in Theorem 1.2. For that purpose, we establish first-order differen-
tial equations for the Cauchy transforms which enable us to use the sufficient conditions
introduced in Section 2.

In Section 5, the general result for non free infinite divisibility (explained after The-
orem 1.2) is shown, and it is applied to 3, 4, ﬁ;’q, Yp-

In Section 6, the free infinite divisibility for the Student distribution is proved. We
also mention an easy proof of the free infinite divisibility of the Gaussian distribution in
Remark 6.5.

In Section 7, we will provide a method for computing the free divisibility indicator
of a symmetric measure and show that ultraspherical distributions and t-distributions
mostly have free divisibility indicators equal to 1. Also the Gaussian distribution has
the value 1.

2 Free infinite divisibility
2.1 Preliminaries

1. Tools from complex analysis. Let C*, C~, H" and HH~ be the upper half-
plane, lower half-plane, right half-plane and left half-plane, respectively. Given a Borel
probability measure p on R, let G, be its Cauchy transform defined by

Z—T

G.(z) ::/]R ! u(dr), z€Ct.

Its reciprocal F,(z) := is called the reciprocal Cauchy transform of p. When the

1
Gu(z)
Cauchy transform is defined in C \ R, it is denoted as

éu(z) ::/]R ! wu(dx), z€ C\R.

2=

For a random variable X ~ u, we may write Gy, G instead of G s é“ respectively.

A measure y can be recovered from G, or G, by using the Stieltjes inversion for-
mula [A65, Page 124]:

b b

1 1 -
b)) = ——li ImG y)de = = 1i Im G, (z — iy)d 2.1
w(la, b)) = —— lim m ple +iy)de = — lim Im (@ —iy)de (2.1
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for all continuity points a, b of x. In particular, if the functions f}(x) := —%Im G,z +1iy)
converge uniformly to a continuous function f,(x) as y \, 0 on an interval [a, b], then
p is absolutely continuous on [a, b] with density f,(z). Atoms can be identified by the
formula p({z}) = lim,~ o iyG,(x + dy) for any z € R.

Basic properties of G, and F), are collected below; see [M92] for (2) and [BV93] for
(3), (4).

Proposition 2.1. (1) The reciprocal Cauchy transform F,, is an analytic map of C* to
C™.
(2) F, satisfies Im F,(z) > Imz for = € C". If there exists z € C* such that Im F),(z) =

Im z, then u must be a delta measure §,.

(3) Foranye, A > 0, there exists M > 0 such that |G, (z) — 1| < 1o and |Fu(z) — 2| < elz]
for z € I'y v, where

Daai={2€C":Imz> M, |Rez| < AImz}.

(4) For any 0 < ¢ < ), there exists M > 0 such that F), is univalent in I'y s and
Fu(Ca ) O Ta—c (14e)m, and so the inverse map F; " : Tx_. 4o m — C7T exists
such that Fll« o Fll«_l =1d in F)\*E,(l#*&)ﬂ['

(5) If p is symmetric, then
ImG,(z+iy) =ImG,(—z + iy), Re G, (z +iy) = —Re G, (—x + iy)
forx € R, y > 0. In particular, G,,(i(0,00)) C i(—00,0).
In addition, the following property is used in Section 6.

Lemma 2.2 ([BH14], Lemma 3.2). If a probability measure p has a density p(x) such
that p(z) = p(—z), p'(x) <0 fora.e. z > 0 andlim, ., p(z) logz = 0, then Re G, (z+yi) >
0 forz,y > 0.

Note that some symmetric probability measures do not satisfy the property Re G, (z+
yi) > 0 for z,y > 0. The Bernoulli law b = 1(6_; + &;) has the Cauchy transform

Gp(2) = =25 and so Gy (Le™/h) = Y2(—3 — 4).

2. Free convolution and freely infinitely divisible distributions. If X;, X, are
free random variables following probability distributions uq, e respectively, then the
probability distribution of X; + X, is denoted by u; B po and is called the free additive
convolution of u; and pe. Free additive convolution is characterized as follows [BV93].
From Proposition 2.1(4), for any A > 0, there is M > 0 such that the right compositional
inverse map F) Uexists in 'y s. Let ¢, (z) be the Voiculescu transform of y defined by

bu(2) = F; (2) =2, z€T\um. (2.2)
The free convolution i H v is the unique probability measure such that

P (2) = Ou(2) + ¢u(2)

in a common domain of the form I'y: 5.

Free convolution associates a basic class of probability measures, called freely in-
finitely divisible distributions introduced in [V86] for compactly supported probability
measures and in [BV93] for all probability measures.
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Definition 2.3. A probability measure i on R is said to be freely infinitely divisible (or
FID for short) if for each n € {1,2,3,---} there exists a probability measure p,, such
that

po= " = i B B g
—_——
n times

The set of FID distributions is closed with respect to weak convergence [BT06, Theo-
rem 5.13]. FID distributions appear as the limits of infinitesimal arrays as in classical
probability theory; see [CGO08].

FID distributions are characterized in terms of a complex analytic property of the
Voiculescu transform.

Theorem 2.4 ([BV93]). For a probability measure i on R, the following are equivalent.
(1) p is FID.
(2) —¢,, extends to a Pick function, i.e. an analytic map from C* into C* UR.

(3) For any t > 0, there exists a probability measure uﬁt

t$,(z) in some T’y a;.

with the property ¢ ,m:(2) =

Note that Pick functions are also crucial to characterize generalized gamma convo-
lutions (GGCs) in classical probability [B92].

2.2 Sufficient conditions for free infinite divisibility

When the Voiculescu transform does not have an explicit expression, the conditions
in Theorem 2.4 are difficult to check. In such a case, a subclass UZ of FID measures
has been exploited in the literature [BBLS11, ABBL10, AB13, AH14, AH13a, BH14, H].
We also introduce a variant of it.

Definition 2.5. (1) A probability measure u is said to be in class UZ if F;1, defined in
some I'y js, analytically extends to a univalent map in C™*. u € UT if and only if there
is an open set 2 C C, QN T\ ar # 0 such that F,, extends to an analytic bijection of

Q onto CT.

(2) A symmetric probability measure y is said to be in classUZ, if: (a) there is ¢ < 0 such
that F,, extends to a univalent map around i(c, o) and maps i(c,00) onto i(0,00); (b)
there is an open set Q c €~ UH™ such that QN I'xam # 0, where Ty p is the cone
defined in the paragraph prior to (2.2), and that I, extends to an analytic bijection
of Q onto C+ NH*.

Remark 2.6. In [AH13a] we required F), to be univalent in C™ in the definition of
jt € UZ, but this automatically follows. If F,,* is analytic in C*, then F, ' o F},(z) = z for
z € CT by analyticity, so that F), should be univalent in C*.

Lemma 2.7. If y € UT or ju € UL, then p is FID.

Proof. The proof for U7 is found in [AH13a, BBLS11]. Assume u € UZ;. We are able to
define
Ful5'(2), z€ CTNHY,
F ' (2):= FH\;(;OO)(Z), z € i(0,00), (2.3)
Fu\él(z), zeCtNH,
where Q* := {—z+iy : z+iy € 0} and F,| 4 is the restriction of F), to a set A. This is well

defined because each of Q, i(c,00) and Q* has nonempty intersection with I'y »s, and so
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each of El\él(z),]ﬂlﬁ(im)(z) and F#|51(z) coincides with the original inverse (2.2) in
the common domain. Note that, as explained in Remark 2.6, F}, is univalent in C*.

The remaining proof is similar to the case 4 € UZ. Take z € CT NH*. If z € F,,(CT),
then taking the preimage w € C* of z and we see Im ¢,,(2) = Im(F,; *(2) — 2) = Imw —
Im F),(w) is not positive. If z ¢ F,(C*), the preimage w € Q must be in C~ U R since
F,|¢+ is univalent, so that Im ¢,,(z) = Im(w—z) < 0. Therefore, ¢, maps C* into C~ UR.
The other two cases z € i(0,00) and z € C™ NH™ are similar. 0

Remark 2.8. It holds that UZ N {p : symmetric} C UZ,. For general u € UZ,, the map
F, ' may not be univalent in C*, but it is 2-valent, i.e., for each z € C*, f{w € C* :

Fu_l(w) = Fﬂ_l(z)} =1or2.

The following conditions on a Cauchy transform are quite useful to prove the free
infinite divisibility of a probability measure.

(A) There is a connected open set Ct C D C C such that:

(Al) G, extends to a meromorphic function in D;
(A2) If G,(2) € C and z € D, then G:L(z) #£0;

(A3) If a sequence (z,),>1 C D converges to a point of 9D U {oo}, then the limit
lim;, 00 G (2y) exists in Ct UR U {oo}.

Condition (A2) is useful to define an inverse map Fu_ Lin C*. This condition was crucial
in the proof of free infinite divisibility of the normal distribution [BBLS11]. Condition
(A3) is used to show the map FH‘ I is univalent in C*. (A3) is important as well as (A1)
and (A2) because the exponential distribution satisfies (A1) and (A2) for D = C\ (—o0, 0],
but does not satisfy (A3). It is known that the exponential distribution is not FID, see
Section 5.3.

For symmetric distributions, the following variant can be more useful.

(B) There is ¢ < 0 such that G, extends to a univalent map around i(c, co) and maps
i(c,00) onto i(—o0,0). Moreover, there is a connected open set CT NTHT C D C
C~ UHT such that:

(B1) G, extends to a meromorphic function in D;

(B2) If G,(2) € C” and z € D, then G, (2) # 0;

(B3) If a sequence (z,),>1 C D converges to a point of 9D U {oo}, then the limit
limy, 00 G (25) exists in H- U C+ U {oo}.

Proposition 2.9. (1) If the Cauchy transform G, of a probability measure (. satisfies
(A), then p € UT.

(2) If the Cauchy transform of a symmetric probability measure p satisfies (B), then
1 € UZ,. If, moreover, the domain D can be taken as a subset of HT, then y € UT.

Proof. (1) Let ¢; C C* be the curve defined by
e ={x+vyi:ty=|z|+1, x eR}, t>0.

Note that Ut>0 ¢; = CT. From Proposition 2.1(2), for each ¢t > 0, if we take a large
R > 0, there exists a simple curve 1 such that F,(7/') = ¢, N {z € C* : Rez > R}
and F, maps a neighborhood of 4{* onto a neighborhood of ¢; N {z € C* : Rez > R}
bijectively. Take a sequence z, € 7% converging to the edge of v/ which we denote
by 2, then F,(z,) converges to F,(z") € ¢;. Condition (A2) implies that F},(z%) # 0,
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so that there is an open neighborhood V% of 2# such that F,, maps V' bijectively onto
a neighborhood of F,(z%). Hence we obtain a curve v/~¢ > ~F for some ¢ > 0 such
that F,(7/7°) = ¢, N {2z € C* : Rez > R — ¢}. Repeating this argument, we can
prolong ~{* to obtain a maximal curve 7; C D such that F,, maps 7; into ¢;. We show
that F,(v:) = ¢, and for this purpose we assume F),(v;) is a proper subset of ¢;. Let
zo :=inf{z € R:z+ L(|z| +1) € Fu(v)} € Rand z := zo + (|zg| + 1) € ¢;. For a point
z € ¢, Re z > x, let w € v, denote the preimage of z. The following cases are possible:

(i) When z converges to zy, the preimages w have an accumulative point wq in D;

(ii) When z converges to zy, the preimages w have an accumulative point w; in 9D U

{00}

In the case (i), we can still extend the curve +; more because of condition (A2) and the
obvious fact F,(wy) = zp; a contradiction to the maximality of ;. The point wy might
be a pole of F),, but in that case 2y has to be infinity, which is again a contradiction.
In the case (ii), condition (A3) implies zy = limy s, ,wep Fu(w) € C~ UR U {oo}, while
20 € ¢ C CT, again a contradiction. Thus we conclude that F,(v) = ¢;. Note that F),
maps an open neighborhood U; of 7; onto a neighborhood of c; bijectively. Hence the
set Q :=J,., Us C D is open and F, maps 2 bijectively onto C*. This implies that F),|"
exists as a univalent map in C'. Since ) has intersection with the original domain I" AM
of the right inverse F)~ !, the map F |§1 extends F) L analytically, and hence p € UT.

(2) The proof is quite similar. Let ¢; := ¢; N HT. One can prolong the above ~{*, to
obtain 7; C D such that F,(¥;) = ¢;. Denoting by U, an open neighborhood of 5, where
F,, is univalent, F,, maps Q= Uiso U, C D bijectively onto C* N H*, so that u € UZ,.
Moreover, if D C Ht, then the map FM|§221 defined in (2.3) is univalent in C™. O

Remark 2.10. Condition (A2) enables us to construct the curve ., but +; can enter
another Riemannian sheet of F), beyond 0D. Condition (A3) becomes a “barrier” which
prevents such a phenomenon. If F, is a rational function in C as in the case of Student
distributions for q integers, there is no other branch of F), and we can take D = C and
condition (A3) is easily verified. This will give a simple proof of free infinite divisibility
of Gaussian (see Section 6).

3 Cauchy transforms of beta, beta prime and t-distributions

Let F(a, b; c; z) be the Gauss hypergeometric series:

= (@)n(b)n z"
n!’

F(a,b;c;z)zz

n=0

C¢{07713727733”'}

with the conventional notation (a),, := a(a +1)---(a + n — 1), (a)o := 1. This series is
absolutely convergent for |z| < 1. There is an integral representation

1
F(a,b;c;2) = ﬁ/{) 2711 — 2)°7 "Y1 — 22)"%dz, Re(c) > Re(b) >0, (3.1)

which continues F(a,b; ¢; z) analytically to C \ [1,00). The normalizing constant B(p, q)

is the beta function which is related to the gamma function as B(p,q) = Fr(f’;ig).
We note some formulas required in this paper [AS70, Chapter 15].
c(l —2)F(a,b;c;2) — cF(a—1,b;¢;2) + (¢ — b)zF(a,b;c+ 1;2) =0, (3.2)
F(a,b;c;2) = (1 —2) "% "F(c—a,c—bic;2)  (Jarg(l — 2)| < ), (3.3)
EJP 19 (2014), paper 81. ejp.ejpecp.org
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F(a,b;c;z) = ?Eg;?gi : Z; (—2)"°F (a,l —c+a;l—-0b+aq; i)
+ ?EZ);((CZ : z; (—2)7°F (b, l1—c+0b1—a-+b; i)

(b—a¢Z, |arg(—2)| <), (3.4)

. _F(C>F(C_a_b) —a . . _ . _1

F(a,b,c,z)—mz F a,a C+1,a+b C“rl,l ;
F(C)F(a+b_c) _ \c—a—b_a—c _ ey . _1
W(l z) 27 °Flc—al—a;c—a—-b+1;1 .

(a+b—c¢Z, |argz|,|arg(l — 2)| < 7). (3.5)

The branch of every z? is the principal value. When b —a € Z, all terms in (3.4) diverge,
but an alternative formula is available [AS70, 15.3.14]. The formula (3.4), however, is
sufficient for our purpose. Similarly, we do not use an alternative formula for (3.5).

The following properties are useful for calculating the Cauchy transforms of beta
prime and t-distributions.

Lemma 3.1. (1) Let X be a R-valued random variable such that X # 0 a.s. Then

~ 1 1~ 1
Gl/X(Z) = ; - ZjGX <Z

), z € C\R.

(2) Let X be a R-valued random variable. Then, fora # 0 and b € R,

~ 1~ —b
GaXer(Z):*GX (Z ), ZEC\R
a a
(3) If X is a R-valued symmetric random variable, then

Gx(2) = 2Gx2(2?), z e Ct.

Proof. Let u be the distribution of X.

(1) él/X(Z):/]szll/x u(dgc)zl/Rx_l/z_Fl/ZM(dx)

z x—1/z

1 1 1 1 1 ~ 1
—;‘;/Rl/z_xmdx)—;‘zzGX ()

(2) is easy to prove.

@ axta= [ Auan+ [ Awan = [T (e ) e

< 2z o~ 9
:/0 Zz_mQM(dx):zGXz(z ). O

Now we are going to compute the Cauchy transforms of 3, 4, ﬂz’% q and t; in terms of
hypergeometric series.

1
Proposition 3.2. (1) Gg, (2) = -F(1,p;p+¢;2~ ") forz € C*.
’ V4

~ 1 1 ~ z
@ Gy 0= o+ Qe (1)

q 1
=——F(1p1 14— .
bt e <,p, +p+q +Z), z € C\ [0,00)

EJP 19 (2014), paper 81. ejp.ejpecp.org
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=3

Q) G =
tq(Z) q

1 1 1
~F(1,51+ql1+— | forzeC™.
z 2 22

Proof. (1) This is easy from the integral representation (3.1) of the hypergeometric
series.

1 1 z
X —
@) IEX ~ By, then 155 ~ B, s0 that G, (2) = 73 + 77O <z+1>

from Lemma 3.1(1), (2). Hence

1,
14z z(142)

1
Gg, ,(2) F (Lp;p +q;1+ Z) . (3.6)

The formula (3.2) can increase the parameter p + g by 1:

1 1
F (17P%P+q%1+ ) =L (1+2)F (Lp;1+p+q;1+ ) — 2.
z pP+q z
This, together with (3.6), leads to the conclusion.
(3) We can use Lemma 3.1(3) because X ~ t, implies X? ~ 51/2&_1/2_ 0

Example 3.3. Some hypergeometric functions and hence the corresponding Cauchy
transforms Gg, ,, GB;‘Q have explicit forms. Examples are presented here.

(1) F(1,a;1;2) = (1 — 2)~“ from the formula (3.3), and hence

1 IR
G, .(2) = 2 (1 - z) , 0<a<1, |arg(—2)| <.
(2) From (3.2), we have (1 — 2)F(1,a;1;2) — 1 + (1 — a)zF(1,a;2;2) = 0, and hence
l1—a
2F(1,a;2;2) = % The Cauchy transform of 31_,,1+4 is given by

1 1\
GBiianra(?) =~ <1 - <1 - z) > , —l<a<1, |arg(—2)| <.

a

2((2—a)z—14+(1-2)>"*)
(2—a)(1—a)z

(3) Similarly, we can calculate zF'(1,a;3;2) = and hence

2(a—z+2(1-1)9)
a(a—1)

GBaanra(2) = , —l<a<?2, |arg(—2)| <.

For beta prime distributions, the formula Gg, (2) = 47 — ﬁ(lgpﬁq(ﬁ) holds be-

cause of Lemma 3.1 and of the fact that X ~ 3, , implies % -1~ ,6:171,. Explicit formulas
are therefore easy to calculate.

_1—(=2)
(4:) Gﬁi—a,a (Z) = 1_'—72, O <a< ]., ‘arg( Z)| < T.
1 1—(—2)
(5) Ggy,,, . (2)= T el —l<a<l, |arg(—2)| <.
1 2(az+a—1+4(—2)%
/ = — -1 2 — .
(6) G,@Ha’gia(z) T2 aa—Da+27 <a<?2, |arg(—z2)| <

Note. The measure (31_,,1+, appeared in [AH13a] and 3,,:1-, appeared in [M10].
Demni computed explicitly generalized Cauchy-Stieltjes transforms of beta distribu-
tions [D09].
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Remark 3.4. There is a relation (1.1) involving monotone convolution and beta distri-
butions. We will find more, replacing monotone convolution by multiplicative monotone
convolution. The multiplicative monotone convolution u > v of probability measures
w, v on [0,00) is the distribution of VXY X, where X,Y are positive random variables,
respectively following the distributions u,v, and X — 1 and Y — 1 are monotonically
independent [B05, F09]. It is characterized by

e v(2) = nu(mu(2)), 2 € (=00,0),
where 1,,(z) := 1 — zF, (1) is called the n-transform.
Let By = Ba1—a and B} (dz) := Bi_, ,(dz — 1). Then G, (2) = *=U2— and
(=2)
a—(1—2)e’

= (2)=1—-(1-2)% nz(2)= z <0,
15, =1-(1=2)" ng(2) = =
which entail
B, © g, = 3.y "3, B, T gy,
or equivalently
Ba® Bo = Bav, B> B, = Buy
for 0 < a,b < 1. Hence the measures (3; := (3.-+1_.-+ and (3;(dz) := Bi_e_tﬂ_t(d;v -1
both form i>-convolution semigroups with initial measure §; att = 0.

4 Free infinite divisibility for beta and beta prime distributions

In order to find a good domain D such that condition (A) holds, the following alter-
native condition is useful.

(C) There is a connected open set C* C £ C C such that:

(C1) G, extends to an analytic function in &;

(C2) IfG,(2) € Rand 2z € &, then G, (2) # 0.

The usage of this condition becomes clear in Theorem 4.4, 4.7. Remark 4.6 also explains
why this condition is important.

We are going to prove conditions (A) and (C) for beta and beta prime distributions.
The following result shows conditions (A1) and (C1), and moreover explicit formulas of
the analytic continuation of Cauchy transforms.

Proposition 4.1. (1) The Cauchy transform Gg, , analytically extends to D’ = £ :=
C\ ((—00,0] U [1,00)). Denoting the analytic continuation by the same symbol G, _,
we obtain

211

p—1(1 _ ,\q—1 -
B(p,q)z (1-2)097" zeC . (4.1)

Gp,.(z) = Cp,,(2) -

(2) The Cauchy transform Gg, analytically extends to D" = £ := C\ (—oc,0], and
we denote the analytic continuation by the same symbol G,g;w. Then

~ 21 P _
Gg;yq(z) = Gﬁ;),q (Z) - B(p q) (1 —|—Z)p+q’ ze C. (4.2)

All the powers w — w" are the principal values in the above statements.
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Proof. (1) Note that the density function B(; D wP~1(1 — w)?! extends analytically to

DP. Therefore for any z € C*, the Cauchy transform Gpg, , can be written as

1 1
—_— wP™H1 — w)i L dw,
rr N et

where v is any simple arc contained in C~ except its endpoints 0, 1. This gives the ana-
lytic continuation of G, , to the domain containing C*, surrounded by ~ and (—oo, 0] U
[1,00). Since 7 is arbitrary, we obtain the analytic continuation to the domain D".

For any z € C~, take a simple arc v contained in C~ with endpoints 0,1 such that
the simple closed curve ¥ := v U [0, 1] surrounds z. Then from the residue theorem, we
have

1 / 1, ) omi ., .
—_— wP™TH (1 —w)? dw = P71 —2)4 0,
B(p,q) J5 2z —w ( ) B(p,q) ( )

showing (4.1) since the left hand side is equal to é[gm(z) — Gp, ,(2). The proof of (2) is
similar. O

Differential equations for Cauchy transforms are crucial to show (A2) and (C2).

Lemma 4.2. The Cauchy transforms C:‘gm, CNJ%Q satisfy the following differential equa-
tions:

da (Pl a1\ (,_pte-l "

dZG;ap,q(z)—< . +Z_1)Ggp,q(z) oD z€eCH, (4.3)

4G ()= (P=L_PE0) g _a

dZGﬂ;,Az)( . ZH)Gﬁg,,q(zHZ(zH) (4.4)
_det) ((_ p-1\ g5 N
_(P-i-Q)z(( Z+q+1)Gﬁp,q+l<Z>+1>v zeCh. (4.5)

Proof. Suppose first p,q > 1. Then, by integration by parts,

d ~ 1 R |
—G z) = / 2?71 — )9 e
G, (%) x (1-a)

B(p,q z—x)?
1 b p—1 q¢g—1Y\ , 4 1
_ _ “1(1 = )91 da.
e ) R
By using the identities =52 = 2(;3; + 3) and 5= = 103 (55 — 1), We have

d ~ 1 p—1 '/ 1 1\ —1
—_ — - 1 — )4
F8a. 0= ot [ (41 ) a0

1 qg—1 (! 1 1 - B
_ 1 pya-1g
+B(p,q)zfl/o (Zx 1:5)36 ( x) T

_(r=t a-1\& , @-1Bp-191 (¢-1)Bpg-1) 1

_( z +Z—1>G”()+ B(p.q) z B(p,q) z—1
p—1 q—1)\ pt+qg—1

( z +z—1>Gﬁp'q()z(z—1)'

Since égm and its derivative depend analytically on p,q > 0, the above differential
equation holds for any p, ¢ > 0.
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A similar argument is possible for ,61’7_’(1. Suppose first that p > 1 and then we have

d ~ 1 p—1 [/ 1 1\ 4 o
_ / = — 1 p—q
dZG,@p,q(z) B(p,q) 2 /0 (ZI +I’>x ( +x) dx
1 p+q/°° 1 1 -1 e
— 1 4 Qd
B(p,q) z+1 J, (z—x+1—|—m>x (L+2) v
(p—=1 p+q\ 5 (p—1)Bp-1q9+1) (+qgB(pg+1)
= - 8, ,(2) + -
2 z+1 2B(p, q) (z+1)B(p,q)
_(p—1 pta\x q
_( z z—i—l)GBP"f(Z)_'—z(z—l—l)'

The above equation holds for p, g > 0 too because of the analytic dependence on p > 0.
The second equality (4.5) follows from the recursive relation

éﬁalz):;fég(ﬂ4<@@ﬂ@HJZ)*1), (4.6)

which is justified by the following calculation:

~ 1 “l1+z+x—2 2Pt
Gg = d
5= B ) e e
B(p,q+1) 1 /w 1 Pl
= (1 . . d
(1+2) B(p,q) B(p,q+1) Jy z—x(1+z)ptatl v
B(p.q+1) 1 aP~!

_ . d
B(p7 Q) B(p7 q+ 1) /(; (1 + x)P+q+1 x

:}fia(u4<@56;ﬁﬂz)_l)'

O

Lemma 4.3. (1) The Cauchy transform of 3, , satisfies conditions (A2) and (C2) for the
domain Db = £V ifp + ¢ > 2.2

(2) The Cauchy transform Ofﬁz’w satisfies conditions (A2) and (C2) for the domain D% =
& for any p,q > 0.

Proof. (1) By analyticity, the differential equation (4.3) holds for Ggm in D°. Assume

that z € DY, Gbp ,(2)=0and Gg, ,(z) € C” at the same time. The differential equation

in Lemma 4.2 implies

ptq—1

G z) = .
Br.a(?) (p+q—2)z—p+1

If z € CF, then Fg, () = Z%::fz - pi;il, which contradicts Proposition 2.1(2). If
z € C7U(0,1), then Gg, ,(z) € CTURU{oo} from (4.7), a contradiction to the assumption.
This argument verifies condition (A2).

Condition (C2) is similar. Assume that z € £ and %Ggm(z) =0. ) Ifze (0,1),
then Gﬁp,q(z) € C~ from the Stieltjes inversion formula (2.1). This contradicts (4.7), so
2 € (0,1) never happens. (ii) If 2 € C*, then Gp,,(z) € C. (iii) If z € C7, then Gg, ,(2)
belongs to C* from (4.7). Therefore the assumption %Gﬁp‘q(z) =0,z € £ implies that
Gp,,(2) ¢ R

(2) A similar reasoning applies to Gg;_q. Now assume that z € Db, G[;;‘q(z) e C™
and %Gﬁ;_q(z) = 0. It follows that

(4.7)

. q . qg+1
G%”@%_@+Dz—p+f G@MJ@_Kq+nz—p+r

2Condition (C2) holds under the weaker assumption p + ¢ # 1,2, but we do not need this result.
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If z € CT, then FB;MH(Z) =z— 5% a contradiction to Proposition 2.1(2), since 3, ;.4
is not a delta measure. If z € C~ U (0,00), then Gg, (z) = € CTURU {oo}
which again contradicts the assumption.

Condition (C2) is also similar. O

q
(g+1)z—p+1

Theorem 1.2(1) follows from the following stronger fact.

Theorem 4.4. The beta distribution 3, 4 is in UZ in the following cases: (i) p,q > %; (ii)
0<p<3 p+qg>2;(i)0<qg<i pt+g>2.

Proof. Assume moreover that p,q ¢ Z, p,q ¢ {3,3,5,---} and p+ q > 2, because these

assumptions simplify the proof. We can recover these exceptions by using the fact that
the class UZ is closed with respect to weak convergence [AH13a].

Step 1. In order to construct a domain D satisfying condition (A), we show the
following as preparation:

Gg,,(z—i0) ¢ R, z€R\{0,1}, (4.8)
00, D<p<i

lim G = 2 4.9

Ol 7] 49
00 0<qg< i

lim G 2) = ’ 2 4.10

ot zees ) {pZEIl, g> 3, (£.10)

lim  Gg, (2) = oo. (4.11)

z—00,2€C—

(4.8) From the Stieltjes inversion formula (2.1), we have Im Gﬁm(x —10) < 0 for
x € (0,1). From Proposition 4.1 and the Stieltjes inversion formula, it follows that

27 -1 —1
cos(mp)|z[P~H(1 —2)T7, 2 <0,
ImGp, (z—i0) ={ "7 (4.12)
' % cos(mq)aP~(xz — 1), x> 1.

Hence ImGg, (z — i0) # 0 for z € (—00,0) U (1,00) since we have assumed p,q ¢
%7 %7 %7 e }'
(4.9) From (3.4) and (3.3) one has

1 ~
G@A@:;F@mp+m25

1 <r<p +q)T(p—1)

171
WMF@+q—U<_Z> F(1,2=p—-¢;2-p;2)

Y (4.13)
+F@+®F“_m<}i> F@J—mpmg

I(1)r(q)

p+qg—1 ™
P 19— p—a:2—piy) — —
p—1 L2=p-a p;Z) B(p,q)sinmp

(2P (1= 2)1,

which is valid in CT. By using the integral representation (3.1), the RHS of (4.13) is an-
alytic in £ and hence gives the analytic continuation of Gp, , as claimed in Proposition
4.1. Eq. (4.9) easily follows from (4.13).

(4.10) We now use formula (3.5) to obtain

_ptag-—1

Gp,,(2) = = - FL2-p-g2-gl-2)+ Pz -1 (4.14)

B(p, q)sinmq

which is valid in C*. Since the RHS is analytic in £, it gives the analytic continuation
of Ggm as claimed in Proposition 4.1. Eq. (4.10) follows from (4.14).
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(4.11) Finally, (4.11) follows from Proposition 4.1. Note that lim,_, o, ,c¢- C:‘BM (z) =
0 because 3, , is compactly supported.
From (4.13), the asymptotics of Ggm as z — 0 is as follows:

o (2P o(l2PTh), O<p<i
Gp,.0(2) = _p-;gzl B B(p,q;rsimr:u(_Z)pi1 +o(|z[P71), % <p<2, (4.15)
—pdagl (R et 5 4 o(J2]), p>2.

Step 2. We are going to find a simple curve C C R U C~ such that Gg, A maps
C U {00} into R U {oo}. If such a curve exists, then the Jordan domain C* C D(C) C &°
surrounded by C’ U {oo} satisfies condition (A), so that we can use Proposition 2.9.

Case p, q > 5. From elementary calculus, Gg, ,(z+i0) is injective on (—o0, 0]U[1, c0),
taking real Values and we have G,  ((—o0 O]—HO) [— %, 0) and Gpg, ,([1,00)+1i0) =
(0, p+q11].

q

First we consider the case 3 < p < 2. Let S;(R) be the sector {z € C\ {0} :
argz € J,|2| < R} and S; be {z € C\ {0} : argz € J} for J C (—m,x).> The function

fm(fz)p*1 maps the sector S(fz;p ) bijectively onto C~, mapping the half
; =,

line e_ii%’f”(O,oo) onto (—o0,0). Even under the perturbation o(|z|P~!), for any small
n > 0 satisfying ]23 r 7127 P +mn < 0, we can find ,§ > 0 such that
Gpg,,, maps the boundary of S( 2op . 2op . +n)( €) to a curve surrounding each point of

/o

_pta—1 _ p+q 1
(=54 — 6, -2 4~) just once. Hence we can find a curve ¢{ C S( 2-p ’{w—n,—f,%’{wwz)(g)

such that G, q(c‘ls) = (-t _ 5, —2taly By letting ¢, smaller, we know that an
: P p
endpoint of ¢} is 0. For p > 2, we can find a curve ¢} similarly
As in Proposition 2.9, we can prolong the curve ¢} by using property (C2), to obtain

a maximal curve ¢; that is mapped into (—oo, — %) injectively by Gg,,. Suppose

Gg,,(c1) = (wo, — p+q 1) for some 7 € (—o0, p;g%

let u € ¢; denote the preimage of x. The following cases are possible:

). For each point z € (z, —p;EII),

(i) When z converges to xg, the preimages u have an accumulative point u, in £?;

(ii) When x converges to xg, the preimages u have an accumulative point u; in OEL U

{0}

In the case (i), we can extend the curve c¢; more because of condition (C2) and the
obvious fact Gg, ,(uo) = 7o; a contradiction to the maximality of c;.

In the case (ii), property (4.8) implies that ¢; cannot approach R \ {0,1} and so
uy ¢ (—00,0) U (1, 00). Moreover, from (4.9) and (4.10), u; never be 0 or 1 because Gg,
is injective in c¢;. Thus we conclude that u; = oo and so xp = —oo, a contradiction to

the assumption z¢ > —oo. Consequently, Gg,  (c1) coincides with (—oo, p+q 1) and ¢;

connects 0 and co.*

Similarly, starting from 1, we get a curve c; connecting 1 and co such that Gg,
maps ¢ bijectively onto (pzﬂf ,00). Therefore, Gz, , maps C := ((—00,0] +i0)Uc; Uca U
([1,00) 4+ i0) U {oo} bijectively onto R U {oo} and so 3, , € UZ.

Case 0 < p < %, p+ q > 2. From elementary calculus, the map =z — Glgmq(l‘ + i0)
is injective on (—o0,0] U [1,00), taking real values, and we have Gg, ((—o0,0] 4 i0) =

(—00,0], G, ,([1,00) +1i0) = (0, EELL].

3This definition will be generalized in Section 5.
4Here we also need the fact that Gﬁp, P is analytic in £?, not only meromorphic.

EJP 19 (2014), paper 81. ejp.ejpecp.org
Page 16/33


http://dx.doi.org/10.1214/EJP.v19-3448
http://ejp.ejpecp.org/

Free infinite divisibility for beta distributions and related ones

o0l "

00

=002+

-05

=0.04

C, C,

=0.06 -

—008 I I I I I I I I
-02 00 02 04 06 038 10 12

-20p L L L L L
-05 00 05 10 15

Figure 3: A curve for 32 4. Figures
are drawn by Mathematica Figure 4: Curves for 8456
8.0 and Illustrator CS6.

N S
B(p,q) sinmp

C~, mapping the half line e_%(O, o) onto (0, 00). Similarly to ¢}, for any n > 0 such
that -7 < —Z-7—1n < —z27 +n < 0, there exist ¢, R > 0 and a curve 7' C

1-p 1-p
S(_Lﬂ_q7 i) (¢), starting from 0, such that Gg, ,(71') = (R, 0). We can prolong
-p E — ,

the curve 7{* by using property (C2), to obtain a maximal curve v; which is mapped by
Gp,, into (—oo, 00) injectively, and it has an endpoint 0. The other endpoint, denoted by
v1, is 0, 1 or oo.

The case v; = 0 means ~; starts from 0 and goes back to 0 again. This never happens
because the dominating term — B T (—z)P~! defined in £’ takes real values only

< B(p,q) sinmp
on the half line e~ 17 (0, 00).

If v; = 1, then the curve C := ((—00,0] 4 i0) U1 U ([1,00) + i0) is simple and Gg, ,
bijectively maps C U {oo} onto R U {o0} as in Fig. 3.

If v; = 00,° then Gg, ,(71) = (—00,00) from (4.11). In this case, we will construct
another curve v, starting from 1 such that Gg, ,(72) C (& ;rf;l ,00). If the other endpoint
of v, is 0, then the curve ((—o0, 0]+:0) U2 U([1, 00)+140) is enough for our purpose. If the
other endpoint is oo, then Gpg,  (72) = (p;’ﬁ;l ,00) and Gpg, , is not injective on v; U 7».
Let v := 71 U if v, and v, are disjoint. If v, and ~» cross, then we define a simple curve
v starting from 0, going along ~; until the first crossing point, and then along v, to
arrive at 1. Now the Jordan domain surrounded by I'" := ((—o0, 0] +0) U~y U ([1, 00) + 40)
satisfies condition (A), and hence 3, , € UZ from Proposition 2.9.

The case 0 < ¢ < 1,p + ¢ > 2 is similar by symmetry. O

The function — (—2)P~! now maps the sector S(_ ) bijectively onto

P
T T

Remark 4.5. LetT be a Jordan closed curve in C and f be analytic in d(T"), the bounded
Jordan domain surrounded by I', and suppose f is continuous on d(I"). If f is injective

on I, then f maps d(I') bijectively onto the image f(d(I')) and f(d(T")) is the domain
surrounded by the Jordan curve f(T'); see [B79], p. 309, 310. However, this result does
not hold for unbounded domains. Take f(z) := 2? for instance. Now f maps i(—o0, 0] U
[0, 00) U {oo} bijectively onto R U {oc}, but f does not map {z € C : argz € (0, 2%)} onto
C™ bijectively. In case p,q > % we have constructed simple curves cy, co, starting from 0

5Numerical computation indicates that this case never happens (see Fig. 3).
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and 1 respectively, such that Gg, , maps the curve(s) C = (—o0,0]Uc; Ucz U[1,00) U{oo}
bijectively onto R U {oo}. This however is not sufficient to conclude that G, , maps
D(C) bijectively onto C*. So we need to use Proposition 2.9.

Remark 4.6. The computation (4.12) shows that the domain DY satisfies condition (A3)
if (p,q) € R == ((0,3) U, (2n—3,2n+ %))2 Hence, if (p,q) is in the closure of
RN{(z,y) : = +y > 2}, the proof is much shorter because one does not need Step
2. However, if (p,q) ¢ R, the domain D® does not satisfy (A3). In this case, we need
condition (C) to find an alternative domain D for condition (A). Such a domain D was
realized as D(C).

A similar proof applies for beta prime distributions too.
Theorem 4.7. The beta prime distribution 3, , belongs to class U if p € (0, 3]U[3, o0).

Proof. Assume moreover thatp ¢ Z, p,q ¢ {3,3,3,---} and take £ = C\ (—o0,0]. As in
the proof for beta distributions, we will construct a good domain D to apply Proposition
2.9(1).

Step 1. We are going to show that

G, (z—i0) € C\R, =R\ {-1,0}, (4.16)

L im_ G, (2) = oo, 4.17)
lim  Gg (2) = {OO’ 0 =b= 2 (4.18)

z2—0,zegbp P 7p%17 p>3,

Gay, () = (14 o(1)), (@.19)

where o(1) means that, for any ¢ > 0, there exists R > 0 such that |o(1)] < ¢ for
z € (C\ (—00,0])N{z:|z| > R}.
(4.16) The first identity in Proposition 3.2(2) leads to

ImGpg, (¢~ i0) = ﬁIm Gs,, <xi1> : (4.20)
showing the claim because of the previous computation (4.8).
(4.17) follows from Proposition 4.1(2).
(4.18) follows from (4.9) and Proposition 3.2(2) with elementary calculus.
(4.19) The contour (0, c0) of the integral éﬁé ,(#) can be displaced to e'% (0, 00) for
any 6y € (0,7): ’

~ 1 ! —
Gg, (2) = /ewo(om) P B, 4(dx), z€C.

Hence ég;\q(z) = (1 + 0(1)) uniformly as z — oo, argz € (—, 360), and so G, (z) =

1(1+0(1)) as z — oo, argz € (—m, £6,) from Proposition 4.1(2). The estimate in C* is
similar.
Step 2. From (4.15) and Proposition 3.2(2), we can write

B~ Fo(l2PTh), 0<p<i,

Gp, (2) = =35 — o (a7 Ho(lPTh), §<p<2 (4.21)

+1
—74 — etz + o(lz), p>2.
Case p > % For small ¢ > 0, we can find a curve cj starting from 0 as in the proof

of Theorem 4.4, such that Gg, maps cf into (— ;%3 — ¢, — ;%) injectively. The curve cf
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extends to a maximal curve c¢; such that Gg, (c1) C (—o0, —3%7). An endpoint of ¢ is
0. The other endpoint cannot be in (—oc, 0) because of (4.16), nor be in £ because c;
is maximal and Gg,  is analytic in £, and so the other endpoint is 0, —1 or co. Since
Gﬁ;'q is analytic in £ and injective on ¢;, we conclude that the other endpoint must be
—1. Hence Gg; (c1) = (—00, —5%7) from (4.17).
The point of the next step is to find a curve starting from co. From (4.19), there
; 1 ) 1
exists § > 0 such that [Gg (2) — 1 < ap7 for z € 8(7%7%) N{z : |z| > 55}. Hence
G maps the boundary of S(_1 ) N{z:|z| > %} to a curve surrounding each point
p.q 474

of (0,6) just once, and so there is a curve ¢} C 8(71 ) N {z : |2| > 35} such that
404

Gga, q(cg) = (0,6). Following the argument of Theorem 4.4, we can extend ¢ to a curve
¢s so that G%q maps cp into (0, 00) injectively, thanks to property (C). The endpoint of
o is in (—o0,0] U {oo}, but it cannot be in (—oo, —1) U (—1,0) because of (4.16), nor be
0 or oo since GB; Y is analytic and injective in cs. Therefore, ¢y connects oo and —1, and
hence Gg; (c2) = (0, 00).

From (4 21), it follows that Gg,  ((—00,0) +1i0) = (—5;%3,0). Now we know that Gg, |
maps C := ((—00,0] +i0) Ucy Uy U {—1, 00} bijectively onto R U {oc} and it is analytlc
in the Jordan domain surrounded by C'. We can now use Proposition 2.9.

Case 0 <p< % For large R > 0 and small § > 0, we can construct curves v{* and 3
respectively starting from 0 and oo, such that G,%q bijectively maps v{* onto (R, c0) and
73 onto (0, 6); the construction of 4/ is similar to the case 0 < p < 1, p+¢ > 2 in Theorem
4.4, and the construction of 73 is the same as that of ¢} in the case p > 3. The extension
v, of vft starts at 0 and the other endpoint is —1, 0 or oo, but 0 is impossible from the
same reasoning as in Theorem 4.4, and so Gg; (71) = (—00,00) or Gg; (11) = (0,00).
The extension 7, of 73 starts from oo and the other endpoint is —1 or 0. If 4, connects
0, oo or if 75 connects oo, 0, one can take C := ((—o0, 0] +40) U~; U{0, 0o} by choosing the
corresponding ~;, to apply Proposition 2.9(1) for the domain D(C). Otherwise, one can
still apply Proposition 2.9(1) similarly to the last part of the proof of Theorem 4.4.5 O

00 T T T T T | P Y O T R R S N B AR B B R R SR A B

-05f . —ost

G

-10f g _10k

kg

-30F, -30F

Figure 5: A curve for ﬁ6.4,0,5 Figure 6: Curves for 6372

S5Numerical computation indicates that ; always connects 0 and oo, and 71 = 72 as shown in Fig. 5.
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5 Criteria for non free infinite divisibility

We have seen that beta and beta prime distributions are FID if the parameters (p, q)
belong to specific regions. By contrast, many distributions outside those regions are
not FID as shown in this section.

5.1 Method based on a local property of probability density function

Given a FID measure p, the following properties are known thanks to Belinschi and
Bercovici: the absolutely continuous part of p is real analytic wherever it is strictly
positive [BB04, Theorem 3.4]; u has no singular continuous part [BB04, Theorem 3.4];
w1 has at most one atom [BB04, Theorem 3.1].

Now, we will deeply study the real analyticity of the density function of a FID mea-
sure. Basic concepts and notations are defined below. Let S™) (n € Z) denote the open
set C\ [0, 00) whose element z is endowed with the argument arg z € (2n7, 2n7 4 27). By
identifying the slit lim, ([0, 00) + iy) of S and the slit lim,~ ([0, 00) — iy) of S~V
for each n, we define a helix-like Riemannian surface S. We express an element z € S
uniquely by z = |z[e? = re?, |z| = r > 0,0 € R. The functions 2* = r**? (a € C) and
log z = logr + if can be regarded as analytic maps in S. Let S;(R) denote the subset
{zeS:argze J 0<|z|] <R} for J CR, and also Sy := Ug=0Ss(R). We understand
that C* = Sy ) and (0, 00) is the half line corresponding to arg z = 0.

We are ready to state the main theorem of this section, which contributes to Theorem
1.2.

Theorem 5.1. Let i be a probability measure on R whose restriction to an interval
(xo — 8,20 + 9) has a local density function p(x) of the form

p() = {c(mmo)al(lJrf(x)), 2y < x < w0+ 6, 5.1)

0, xo— 0 <z < xg,

la=1]

where ¢,6 > 0 and xp € R. Let () := ( 1 1) m, and assume the following:

W o eZ= (U, (3 22) U (Ui (G2 25) < . 3

(i) f(-+wo) is real analytic in (0, ), and it extends to an analytic map in S(_g(a)—a,,0,)(0)
for some 0y € (0, 7);

(iii) there is a continuous function g : [0,0) — [0,00) such that g(0) = 0 and |f(z¢ +
re??)| < g(r) forr € (0,6), 6 € (—6(a) — 6o, 6p).

Then p is not FID.

Remark 5.2. A typical function f satisfying the assumptions (ii), (iii) is
(z — 20)? (—log(z — 20))" (B> 0,7 € R,z <z < o+ 1)

and absolutely convergent series of such functions. More restrictively, any real analytic
function in a neighborhood of x(, vanishing at x(, satisfies those assumptions.

Corollary 5.3. The beta distribution 3, 4 is not FID if p € T or ¢ € Z. The beta prime
distribution ﬁ;ﬂ and the gamma distribution -y, are not FID ifp € 1.

Proof of Theorem 5.1. For simplicity we assume that xy = 0. Divide p into three finite
measures as ;= p + p’ + p”, where

a—ll

pi=cx® e (x)de, pi=cx® " f(x)los (@) dz, p" = plr\(-s)-
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Step 1: Analytic continuation of G,. Since the function cz®~! is proportional to

the density function of the beta distribution 3,1, the Cauchy transform G, is equal to
S LP(1,a,a+1,2), and so

et 2 e
G, (2) = F(l,lf 2 ,f)f )l 5.2
o(2) 11—« “ “s sin T 2 (5-2)
where the formulas (3.4) and I'(a)I'(1 — a) = ;— were utilized. This expression con-

tinues G, analytically from C* N {|z] < §} to S(_sc.x)(9).

Let P : S — C\ {0} be the analytic map defined by P(re?) := re'(=277) for re? ¢
S, We show that the Cauchy transform G also analytically extends from C* N {|z| <
0} to S(—oo,r)(0), and we have the formula

n|—1
Gy(z) = (N?p,(P(z)) — 2mciz® ! Z e2mok f(peil0+2mk)) (5.3)
k=0

for z = re’’ € ("), n < —1. This is proved by the iterative application of the residue
theorem as in Proposition 4.1. In the case n = —1, for z € S(_()(0), we have the
formula

Gy (2) = Gy (P(z)) — 2mciz® L f(ret?) (5.4)

along the same line as (4.1). Note now that P(z) = z since S(_, )(d) C C. Clearly the
expression (5.4) analytically extends from S(_ 1)(d) to S(_2,0) () since G (%) is analytic
in S(_2x,0)(0). Next we extend it from S(_x0)(0) to S(_3x,0)(0). This is done by taking
a simple arc as in the proof of Proposition 4.1, and then we may extend G o (P(z)) from
S(—27,0)(0) to S(_37,0)(0). For z € S§_3. _2.)(4), this analytic continuation of ép/ (P(2)) is
expressed by

Gy (P(2)) = 2mci(P(2))* ' f(P(2)) (5.5)
along the same line as (4.1). Since now P(z) = rei@+2m) combining (5.4) and (5.5) we
get (5.3) for n = —2. Iterating this argument, we get the general case (5.3).
Step 2: Asymptotic behavior of G, at 0. We show that, as |z| — 0,
a—1 a—1
_~(— 4 , € S_o(a)— o), 0<a<l,
Gu(z) = ¥(=2) a710(‘2| a)fl z (—6(a)—00/2, )( ) Q (5.6)
B +’7(7Z) + 0(‘Z| )7 S S(—O(a)—HO/Q,ﬂ)(5)7 1<a< 27
where: 3 € R,v > 0 are real constants depending on «; the function (—z)*~! is extended
to S so that it takes real values for arg z = 7; Landau’s symbol o(|z|*~!) here means the
uniform estimate in S_g(a)—g,/2,x), that is, for any ¢ > 0, there exists ¢’ € (0,5) such
that |o(|z]*71)| < e|z|*! for 2z € S(_g(a)—0y/2,7)(8')-
This problem reduces to the study of p’ and p” because G, is of the form (5.2). We
will show that the contribution of p’ + p” is the following:

@) Gyrapr(2) = ol|1°) if o € (0,1);
() Gyipr(z) = B+ o(|z|*1) for some 3 € Rif a € (1,2).

Because G, is analytic around 0, the above estimates are easy for G,-. Hence we
only have to estimate G,,. The summation part in (5.3) is clearly of the form o(|z|*"1)
because of the assumption (iii), and so it suffices to estimate G, in S(,gmg) for some
&> 0.
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Case a € (0,1). We divide the estimate into two cases z € S|_yg,/2) and z €
S(—2r,—x]- Take 6 € (%90,90) arbitrarily. In Eq. (5.3), displacing the contour [0, ] of
G, to €%]0,6] U {8e' : 6 € [0,0)]}, one can write the Cauchy transform G, as’

(N}'p/(z) = c/(o ! w* ™ f(w) dw — c/ ! w* ™t f(w) dw (5.7)

et Z2 —w {5ei%:0€[0,04]} # — W

for z € S[,mgo/g)(%). The second term is bounded for z in a neighborhood of 0, so it is
o(|z|*~1). Writing z = |z|e?, § € [—m, 16,), the first integral can be estimated as follows:

) . /

T2T a—1_i(a—1)6] ) )

| e e dy
0 619—629011/

1
fopn =" ) | =
,0)e "0

(5'
a—1 TaT 1 a—1 0,
<o [ oy ey 68)
=] 1
a—1 i a—1 10}
| [ S e ) dy
H
for any 0 < ¢’ < /2. Let C' > 0 be a constant such that ‘m < y—il for any

0 € (—m,00/2) and any y > 0. For an arbitrary ¢ > 0, we can find §’ € (0,0/2) such that
SUPwES _, 47)(8") |f(w)| < €, so that

Iz,\ 1 o
/ my“_lf(\zwe’%)dy < CKe, (5.9)
0 _
where K := [* % dy < oo. Moreover,
= )
et p(apyethyay| < om [T g (5.10)
T T — zlye < ’ .
’ i (0—05) _yy Y Y » T v

where M :=sup,es__,, (5 |f(w)]. If 6" € (0, ") is sufficiently small so that
—

)

12T ya_l 1
dy <e for|z| <",
s 14y

=

we finally obtain

1
/ o T f(w)dw| < C(K + M)e, |2 <", (51D
(0,6)e0 < —

which, together with (5.7), shows that ép/ (z) is of order o(|z|*~!) for arg z € [, 36}).
The case z € S(_%,_,r](%& is similar; we only have to displace the contour (0,¢) of

ép, toa curvein C~.
Case « € (1,2). The second term of (5.7) is analytic around 0, so that one finds a
constant d € C such that

1
c/ w* ! f(w)dw = d+ O(2) = d+ o(|z|*™ 1) (5.12)
{3ei®:0¢c[0,04]} # — W

7The minus sign of the second term is due to the direction of the curve.

EJP 19 (2014), paper 81. ejp.ejpecp.org
Page 22/33


http://dx.doi.org/10.1214/EJP.v19-3448
http://ejp.ejpecp.org/

Free infinite divisibility for beta distributions and related ones

for z € S[_m%go)(%é). By using the notation as in (5.8), we have

1
/ ——w*  f(w)dw = d' + / Lw‘l_2f(w) dw
(0,6)e™ Z — W (0,6)e™% Z — W
o) . ’
- i(a— 0 a— T=T 61(0760) o— 0},
= d' +ie' " D%]z] 1/ S0y — Y 2 f(lzlye™®) dy,
0 Y

(5.13)
where d' := — f(o 5)e% w2 f(w) dw. The second term in (5.13) is of order o(|z|*~!) from

estimates like (5.9)-(5.11). Therefore, we have obtained
Gy(2) =8 +o(z]°7Y), g eC (5.14)

uniformly in the sector z € S|_ ¢,/2). The case z € S(_Q,,_’_,T](%é) is similar and so (5.14)

holds in S(_sr 4,/2). The constant 3’ is real because ' = G (—0).
Step 3: Analysis of the compositional inverse of F,. Assuming p to be FID, we deduce

a contradiction. From Theorem 2.4, the map F) ! analytically extends to C* via
F 1 (z)=¢u(2)+2, z€CT, (5.15)

and hence F), is univalent in C* because F,,'oF;, = Id in C* by identity theorem. So the
map Fljl defined in (5.15) is equal to the inverse map of F,|¢+ in the common domain
F,(CT).

Case o € (1 — 35,1 — 5-45). Note that this assumption is equivalent to (2n — 1)r <
0(a) < 2nm. First we neglect the perturbation o(]z|*~!) to get a rough picture of the
idea. Let n := imin{2n7 — (a), 60} > 0. The map F,(z) := —y ' (—2)'"“ is a bijec-

tion from S(_g(a)—y,r) ONtO S(_(1—-a)y,x), and hence we can define F;1lin S(—(1—a)yn,x)-
Note that Im F,,(re~**(®)) = 0 for r > 0, and that the point 7¢~*(®) (as a point of C) is
contained in C* because —0(a) € (—2nm, —(2n — 1)m). Let ¢4(2) := F;!(2) — 2. Then
b (Fo(re (@) = pe=0(@) _ F (re=#()) ¢ C*.

Next, under the perturbation term o(|z|*~!), we prove the existence of a point z,
with angle close to —f(«a) so that z, € S(_anr,—(2n—1)r). Taking small 7,72,73 > 0, we
consider regions

U:=8_g)-nmm), V:i=8y.mnns).

Thanks to (5.6), for sufficiently small 1,73 > 0, the boundary of U is mapped by F,, to
a closed curve surrounding each point of V' exactly once. This implies that F},|¢ takes
each point of V exactly once, and so we can define F,|;;' in V. Since P is analytic,
Po F,|;' is also analytic in V, not necessarily univalent. Since V intersects F,(C*),
the map P o FM|(}1 coincides with the definition (5.15) in V N C* by the uniqueness of
analytic continuation, and so

pu(z) = P(Ful;'(2)) — 2z, z€V NCT,

which also extends ¢, to V' analytically.

Take a w, € V N (0,00) # 0 and define 2, := F,|;' (ws) € U. If w, is close to 0, then
arg z, is close to —0(a) and so zo € S(_2nr,—(2n—1)r). Since P(z,) € C*,® one finds that
¢u(wa) = P(zq) — wo € CT, a contradiction to Theorem 2.4.

Case « € (1 + 545, 1 + 5 ) is similar. O

8Here the assumption o € Z is used.
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Example 5.4. (i) If X ~ B,, for ¢ € I, then the law of X" is not FID for any r €
R\ {0}. The density function of the law of X" is given by

ptqg—
[l

L

(x7T —1)971 2 >1,r<0,

1 p_ Lyg—
Wﬂ?" 1(171:7'(117 0<$<1,7’>O,
1, 11
[r1B(p,q)
which behaves as c|x — 1|9~! around = = 1.

(ii) The standard semicircle law w, at x = £2, corresponds to o = % which is in the
closure of Z, but w is FID.

(iii) If X ~ w, then |X|P ~ |w|P := Wipa:%_l\/él —zr Ljo,2»)(z) dz. Looking at the density
function around = = 0, the law |w|? is not FID when p~! € Z. Note that |w|P is FID
forp = 2,4 [AHS13, Example 7.4].

5.2 Method based on subordination function

We utilize subordination functions introduced by Voiculescu [V93], in order to show
the following.
Proposition 5.5. 3, , is not FID for 0 < p,q < 1.

Proof. Let ; be FID and j; := . For s < t, a function w, ; : C* — C™ exists so that it
satisfies F),, ow,; = F},,. The map w, is called the subordination function for (u)¢>o.
We can write w,; in terms of F),, :

Fﬂt<z) = t/i/s 1005}15(2) - t/szf 1

(5.16)

It is proved in Theorem 4.6 of [BB05] that w,; and hence F},, extends to a continuous
function from C* U R into itself. Moreover ws,; satisfies the inequality

1
|ws 1(21) — ws 1 (22)] > §|zl—z2|, 21,722 € CTUR.
Taking the limit s — 0 in (5.16), we get
1 +
|th(21)~— }QH(22)|22 §|Zl — 22|, Z1,%2 € C LJEL

so that F},, is injective on C* UR.

For p,q € (0,1], the density of 3, , is not continuous at two points 0, 1, so that its
reciprocal Cauchy transform is zero at z = 0,1, which implies that the measure is not
FID. O

5.3 Hankel determinants of free cumulants forp=1org=1

Instead of the analytic method, one can also compute free cumulants (r,),>1 to show
that a measure is not FID. The reader is referred to [BG06] and [NS06] for information
on free cumulants.

The exponential distribution is the limit of D,3; 4 as ¢ — oo. It is not FID since the

T2 3 ra -0 T17
. T T4 T e T1 . . . .
16th Hankel determinant | ° > 8| of (rn)n>2 is negative. This implies
Tir g Ti9 0 T32

that B, 4 is not FID for large ¢ > 0, because the set of non FID distributions is open with
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respect to weak convergence. For smaller ¢ > 0, 3, 4 is still not FID; they have negative
Hankel determinants forg =1,2,--- ,15.

The beta prime distribution ﬁ’lyq is called the Pareto distribution. With suitable scal-
ing, they also converge to the exponential distribution as ¢ — oo, so that 61) 4 s not FID
for large ¢q. Actually ,Bi’q is not FID for ¢ = 60,61, 62, 70,90, 100, 150 because their 26th,
25th, 24th, 21th, 18th, 18th, 16th Hankel determinants are negative respectively.

Thus 3, 4 and ﬁi,q are not FID for many parameters ¢ > 0. Recalling that 3,2, is
not FID for % <p< % [AH13a, Theorem 5.5] and 3, is not FID for 0 < p < % [AP10,
Corollary 4.1], the author poses the following conjectures.

Conjecture 5.6. (1) 3, , and 3, , are not FID forp € (%, %),q > 0.
(2) By,q is FID if (p,q) € (0, 1] x [2,2] orif (p,q) € [2,2] x (0, 3].

(3) v, is not FID forp € (3, 3).

The conjecture (2) seems to be true from numerical computation. This case however
is not covered by Theorem 4.4 because the assumption p + ¢ > 2 is crucial to prove
Lemma 4.3.

One may expect that the proof of Theorem 5.1 also applies to any « € (%, %), but just
a slight modification seems not sufficient for that purpose.

Problem 5.7. Does Theorem 5.1 extend to arbitrary a € (3,3)?

6 Free infinite divisibility for Student t-distribution

We are going to utilize Proposition 2.9(2) to prove that t-distributions are FID.

Proposition 6.1. The Cauchy transform G, analytically extends to the domain Dst =
(C~ UH") \ i[-1,0]. We denote the analytic continuation by G, too. Then

Gy, (2) = Gy, (2) — (14279, zeC \i[-1,0),

where (1 + 22)79 is defined analytically in D* so that (1 + 22)~7 € R for = > 0.
Proof. The proof is quite similar to that of Proposition 4.1. O

For condition (B2), its proof is based on a recursive differential equation that is quite
similar to Lemma 4.2.

Lemma 6.2. (1) Gy,,,(2) = s (ﬁétq (2) + z) . 2eCH,

@) LGy, (2) = (20— 1) (1 _ Zétq+1(z)> -2 (q,;/g N zé’tq(z)) . zeCt.

Proof. (1) Letc,:= ﬁ. From simple calculations,
2 2
~ 1+22-22(z—2)+(z—12)% 1
G =c d
t,(2) Cq/]R (1 + 22)at! >z x
= C—qétqﬂ(z)(l +2%) -2z % + zc—q
Cq+1 Cq+1 Cq+1
c ~
— 1 ((22 +1)Gy,., (2) — z) .
Cq+1 !
The conclusion then follows since % = #.
q
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(2) By integration by parts,

~ 1 1 2qx 1
G/ = — d = — d
() /]R (1t a2 (z—2)2 ™" /R A+ad)itlz—a

Zz2—r—2z 1 C ~
_9 do =20 (1~ G ).
ch/lR (I1+z2)atl 2z —x . qu+1 2G4 (2)

The second equality follows from (1). O

By using Lemma 6.2, condition (B2) can be proved as in Lemma 4.3.

Lemma 6.3. The Cauchy transform Gy, satisfies condition (B2) for any q > L in the

2
domain D*t.

Proof. Assume that Gy, (2) € €7, G} (2) = 0 and z € D*". If z € C, then Fy ,,(2) = 2
from Lemma 6.2(2), which contradicts Proposition 2.1(2). If z € C~ UR, then Gy, (z) =
% from Lemma 6.2(2), which contradicts the assumption Gt () € C™. O

Moreover, the following property is required in (B).

Lemma 6.4. The Cauchy transform G, extends to a univalent map around i(—1,c0)
and it maps i(—1, c0) onto i(—oc, 0).

Proof. The differential equation of Lemma 6.2(2) implies

332

mtq+1 (dﬂ:) >0

Gi, i) = (20 =1) |

for y # 0 and G¢ (0) = limy\ 0 é;q (t7y) = 2¢ — 1 > 0. From Proposition 6.1, one has

G4 (iy) > 0, y >0,
Gy, (iy) =
q ~ drqy —q—1
Gi, () — w7 (1—¢ >0, ye(-1,0),
tq B(%,q _ %) ( )
and so G, extends to a univalent map around i(—1,00). Since limy\,_1 +Gy, (iy) = —o0
from Proposition 6.1 and lim, . Gt,(iy) = 0, G, maps i(—1,00) onto i(—o0,0). O

Remark 6.5 (Simple proof of the free infinite divisibility of Gaussian). If ¢ = n €
{1,2,3,...}, then the Cauchy transform is a rational function: forn = 1, the measure is a
Cauchy distribution and Gy, (z) = Z}ri, and then from Lemma 6.2(1) one can recursively
show the claim. One can show condition (A2) for the domain C similarly to the proof of
Lemma 6.3. Since the Cauchy transform is rational and lim,_, . iyGy, (iy) = 1, condition
(A3) is easily verified: if z;, € C converge to infinity, then Gy, (z;) — 0 € R as k — oo.
Therefore Gy, satisfies (A) and hence t,, is FID. After taking a limit n — oo with some
scaling, we have that the Gaussian is also FID. For general q, we need much more

computation to verify condition (B3), which is shown in Theorem 6.6 below.

Now we are going to complete the proof of Theorem 1.2. The construction of curves
as in beta and beta prime distributions is now difficult, and instead we more directly
apply Proposition 2.9(2). We utilize two domains H* and D*! to get a better result, but
still the result does not cover some exceptional parameters gq.

Theorem 6.6. (1) The t-distribution t, is in the class UZ provided q € (1,2]UlJ;", [2n+
12n+2]
2 :

(2) The t-distribution t, is in the class UL, provided q € (3,1]UU;" [n+ 3, n + 1].
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Proof. (1) Consider H* as a domain required in condition (B). Conditions (B1) and (B2)
are respectively shown in Proposition 6.1 and Lemma 6.3, and the first part of condition
(B) is proved in Lemma 6.4. To show the remaining condition (B3), the following values
have to belong to H- U C*+ U {o0}:

Gi,(+0+1iy), ye R\ {-1}, (6.1)
lim Gy, (2), (6.2)
z——i,z€HT
lim th (2). (6.3)

z—o00,z€HT

(6.2) Itis easy toseelim, , ; .cpu+ G, (2) = oo from Proposition 6.1.

(6.3) Gy, (z) can be written as fR_% ——t4(dz), and so lim,_,  ,ec+ G, (2) = 0. From
Proposition 6.1, we also deduce that lim,_, o, .cu+ Gy, (2) = 0.

(6.1) Lemma 6.4 implies that G, (+0 + iy) € iR for y > —1. The same proposition
enables us to calculate the boundary values for y < —1 as follows:

. 2mi _ 27 sin(mq)
Re Gy, (4+0 +iy) = —Re ((y2 —1) ‘1@”‘“) -
‘ B(t.q- 1) B(3,q- 5 - 1)

Im th (+0 + Zy) =Im th (Zy) —Im (m(yQ _ 1)qe7'rqz>
B(§?q - 5)

27 cos(mq)
B(3.q—3)y? = 1)1

Note that Gy, (2) € C* for z € €. The condition ¢ € (3,2] U UZ,[2n + 3,2n + 2]
guarantees the inequalities Re G, (40 + iy) < 0 or Im G, (+0 +4y) > 0 in (—o0 —1).
(2) We are going to show condition (B) for D*!. The most important condition is

(B3); the others can be shown similarly to the case (1). We show that the limiting values

= Im Gy, (iy) —

Gy, (x —10), z € (—00,0], (6.4)
G, (£0+1iy), y € (—1,0), (6.5)
lim Gy, (2), (6.6)
z——i,z€Dst
lim G, (2) (6.7)

are all in H- U Ct U {oo}.
(6.6) and (6.7) are computed as in the case (1) and they belong to H- U C* U {c0}.
(6.4) For x <0, the following computation holds:

Rthq(JU—iO) :Reétq(x—iO)—Re (127TZ( +x ) 27rqz>
B(§7q_§)
~ . 27 sin(2mq)
=Re Gy, (z —i0) +
e Gy, (z —i0) BLa— D)1+ a0
i € ) 2ms 27r 1
Im Gy, (z — i0) = Im Gy, (z — i0) — Im | ———~ (1 + 2%) %™
B(3,9—3)
7r 27 cos(2mq) .
:7(1+I2) q_ 7(1+I) q
B30~ 3) B(3,9—3)
7(3 — 4cos?(mq))

T B¢ H )i’
where the Stieltjes inversion formula was used to calculate Im étq (z —40). Note that

Re étq (r —i0) < 0; see Lemma 2.2. We need the inequality Re G, (v — i0) < 0 or
Im G, (z—i0) > 0 on (—o0,0), which is true if ¢ € By := (3, 1JU[Z,2]U[L, 3|U[L2, 4]U
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(6.5) As in the case (1), one easily see that Gy (40 +iy) € iR for y € (—1,0]. The
other limit is computed as follows: for —1 < y <0,

271 )
Re Gy, (—0+iy) = —Re <(1 - y2)qe2mﬂ>
‘ B(3 )

3203
B 27 sin(27q)
B(%#}*%)(l*yz)q’
ImGy, (—0+iy) = Q. (i $ . 2\—q 27qi
£ iy) = Im G, (iy) — ~(1—y7) e
(2 5)
— Im Gy, (iy) — 2“055 m4)

B(3,q4—3)(1—y*)"

We need Re G, (—0 +iy) < 0 or ImGy, (-0 +iy) > 0 for —1 < y < 0, which is true if
q€By:=(31U[3,2]U[3,3]U[1},4]U---. Consequently, condition (B3) holds provided
q€BiNBy = (3, Ul [n+ g, +1]. m

Looking at the component of {z € C : Gy, (z) € C™} containing C* drawn by Mathe-
matica, the following conjecture is likely to hold.

Conjecture 6.7. The t-distribution t, is FID (and more strongly in class UT) for any
1
q> 3.

7 The free divisibility indicator of symmetric FID distributions

A family of maps {B;};>¢ is defined on the set of Borel probability measures P
[BNOS8]:

1

Bi() = (4B00) T 20, pep,

where W is Boolean convolution [SW97] and the probability measure p®t (t > 0) is
defined by Fe:(2) = (1 — t)z + tF,(2). These maps become a flow: B;;, = B, o B, for
s,t > 0. The free divisibility indicator ¢(u) € [0, o] is defined by

B(1) = sup{t > 0 1 € By(P)}.

A probability measure p is FID if and only if ¢(u) > 1 [BN08]. The following property is
known [AH13b]:

=2 450, é(u) =sup{t > 0: 4 is FID}.

Hence, when ¢(u) < oo, u®t is FID for small ¢ > 0, and the free divisibility indicator

measures the time when the Boolean time evolution breaks the free infinite divisibility.
We will give a method for calculating the quantity ¢(u).

Lemma 7.1. Let i be a symmetric FID distribution satisfying one of the following
conditions:

(1) F, extends to a univalent function around iR and it maps iR onto (0, 00);

(2) F, extends to a univalent function around i(c,c0) for some ¢ € (—o0, 0] and it maps
i(c, 00) onto i(0, 00), and moreover F) (ic +i0) = 0.

Then the free divisibility indicator of p is 1.
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Proof. Fort > 1, let f(y) := 1F,(iy) and fi(y) :== 1 F,e(iy) = (1 — t)y + tf(y). Suppose
(1), then f(—o0) = 0 and f(c0) = oo, and so f;(+oo) = co. Since f{(oc0) = 1, we can
find a point yo € R such that f/(yo) = 0 and f/(y) > 0 for y € (yo,00). Let y; =
fi(yo) = (L — t)yo + tf(yo). If yo < 0, then y; > 0 because f > 0. If yo > 0, then y; >
(1—1%)yo +1tyo = yo > 0 from Proposition 2.1(2). Hence y; > 0 in both cases. The inverse
map F,., analytically extends to a neighborhood of i(y1,00), but (F,u.)'(ig1 + i0) = oc.
From Theorem 2.4, p*¢ is not FID.

Suppose now (2), then f{(¢) =1 —t < 0 and f/(co) = 1 and so we can find a point yo
similarly. The remaining proof is the same as above. O

Proposition 7.2. The free divisibility indicators of Student t- and ultrashperical distri-
butions can be calculated as follows.

(1) ¢(ty) =1forqe (1,2)US,[2n + %, 2n +2].
(2) ¢(u,) =1 forp e [1,00).

Remark 7.3. t; is a Cauchy distribution and its free divisibility indicator is infinity
because t}* is a Cauchy distribution too. The exact value is unknown for q € (%, 1).

The measure uy is a symmetric arcsine law andu_y , := lim,,_, /5 1, is a symmetric
Bernoulli law. It is known that ¢(ug) = 3 and ¢(u_y,2) = 0 [BNO8, Table 1]. The value
¢(uy) is not known forp € (—%,0) U (0,1).

Proof. (1) Fi, is univalent around i(—1,00) and it maps i(—1,00) onto i(0,00) from
Lemma 6.4. From Proposition 6.1, F{ _(iy) is approximately proportional to (1 — y?)at
asy \, —1, so that Féq(*i‘l’iO) = 0if (and only if) ¢ > 1. Now Lemma 7.1(2) is applicable.

(2) Letp > 1. We are going to show that Im Gy, (iy) is strictly increasing in R,

following Lemma 6.4. If X ~ ﬂp+%’p+%, then 2X — 1 ~ u,. From Lemma 3.1(2) and

Proposition 4.1, we have Gy, () = 3G, ., (*3*) and
PR
~ 4=PF3m \
G, (iy) = Gu, (iy) — (L + 4?72, y € (~00,0), (7.1)
Bp+3.p+3)

and so .
47Prar(2p — 1)y

(1+y%)P" %, ye (—00,0). (7.2)
Blp+3,p+3)

Gy, (iy) = Gy (1y)
The second term is positive.
The differential equation in Lemma 4.2 yields

~ 1 -1 . =~
/ .
Gy, (iy) = 1542 + ﬁyz(l —1yGu, (1y))

1 op—1 (1 a2
= dx) > 0, 0,
1+y2+1+y2/_1x2+y2up( x) y#

and also Gy, (0) = 2p > 0. (7.2) and (7.3) entail that G}, (iy) > 0 for y € R. Moreover,
G, (2) maps iR onto i(—o0,0) because Im G, (iy) — 0 as y — oo and Im G, (iy) — —o0
as y — —oo because of (7.1). Now we can apply Lemma 7.1(1). O

(7.3)

The free divisibility indicator is not continuous with respect to weak convergence,
as one can observe from Wigner’s semicircle law w; with mean 0 and variance ¢. In-
deed, ¢(w;) = 1 for any ¢t > 0, while ¢(wg) = oo (see [BNO8] for this computation).
Hence, Proposition 7.2 is not sufficient to calculate the exact value of the free divisibil-
ity indicator of Gaussian which is the weak limit of scaled ultraspherical distributions or
t-distributions. Here we will show that the value is exactly 1 for the Gaussian distribu-
tion. The classical infinite divisibility of the Boolean power of Gaussian is also studied
here.
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Proposition 7.4. Let g be the standard Gaussian.
(1) ¢(g) = 1, or equivalently, g*t is FID if and only if 0 < t < 1.
(2) g* is classically infinitely divisible if and only if t € {0,1}.

Proof. (1) Some properties shown below are known in [BBLS11], but we try to make
this proof self-contained. We are going to check Lemma 7.1(1). Let f(y) denote the
function %Fg(zy) The function F extends to iR analytically and does not have a pole in
iR since Fg(z) = limy o0 Fp_,_(t,) (%) locally uniformly in ¢R. This convergence holds not
only in (0, co) but also in i(—o0c, 0] by changing the contour R of the integral in Gp _,)
to an arc in C~ UR as in Proposition 4.1. Because %Fpm(tq)(iy) > 0 for y € (—v/2q,00)
and it is strictly increasing as proved in Lemma 6.4, one also has f(y) > 0 fory € R.
The function f satisfies the differential equation

Fw)=rfw?—vfly) (7.4)

as proved in [BBLS11, Eq. (3.6)], which also follows from a limit of Lemma 6.2(2). If
y > 0, then f(y) > y from the basic property of a reciprocal Cauchy transform, and
hence f'(y) = f(y)(f(y) —y) > 0. If y < 0, then f'(y) > 0 from the fact f(y) > 0 and
(7.4). Hence, f’(y) > 0 for every y € R.

We know that f(co) = oo from Proposition 2.1(3). Since f is increasing, the limit
a = limy_,_ f(y) exists in [0,00). If a were strictly positive, then f/'(—o0) = oo from
(7.4). However f(y) = f(O)—fy0 f/(z)dzx, implying f(—o0) = —o0, a contradiction. Hence
a=0.

(2) By shifting the contour by —i , one can write

xGg(x 67%(y7i)2dy.

)7 1 / T
CVr g -yt

We divide the integral into two parts. First we find

1 o x 1 \2 1 > 1,2, 1
—3(y—i) 2,-3y°+3
-e” 2 dy| < y“e 2Y Tady — 0as z — oo.
V2T /ﬁ r—y+ ‘ V2T /ﬁ

— 1] — 0 as ¢ — oo and hence

Next, we have sup,c(_ 71 l775

1 Vo N
—/ Le*%(yﬂ)zdyﬁlasx%oo
V2m ) =Y+t
from the dominated convergence theorem. By symmetry, we conclude zGg(z) — 1 as
|x| = oc.
From the Stieltjes inversion formula, the density of g can be written as
t 1 2

T2

(1= 0)2Gyg(z) + L2 Var.

For each ¢t > 0, the above density behaves like ﬁe‘é for large |z| > 0 since Gg(z) —
1. Any classically infinitely divisible distribution with Gaussian-like tail behavior must
be exactly a Gaussian (see Corollary 9.9 of [HS04]). Therefore, g** is not infinitely
divisible for ¢ # 0, 1. O

Finally we show a general result which in particular enables us to compute the free
divisibility indicator of the distribution w B g. This measure appeared as the spectral
distribution of large random Markov matrices [BDJ06].
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Proposition 7.5. ¢(wH pu) =1 for any u € UZ,. In particular, ¢(wH g) = 1.

Proof. The measure w B . is clearly FID if y € UZ,. Since ¢w(z) = 1, one gets the

formula F_g (2) = F;'(2) + 1. Let us define g(y) := }Fym,(iy) = TF, ' (iy) — ; for
y > 0. The assumption p € UZ, implies that the map y — %Fﬂ_ L(iy) has positive deriva-
tive in (0,00), so that ¢’(y) > 0 for y > 0 and g(+0) = —oco. Moreover, g(co) = oo
since lim,_, Fu ;y(zy) = 1 (see [BV93, Corollary 5.5]). Hence there exists a real ana-
lytic compositional inverse of g in R, which extends Fi,m, to a univalent map around
iR, mapping ‘R onto i(0,00). Consequently, w B u satisfies the assumption of Lemma
7.1(1). It is proved in [BBLS11] that g belongs to &4Z and hence to UZ,, so the latter

assertion holds. O

Remark 7.6. The semicircle law can be replaced by a symmetric free a-stable law f,, for
any « € (1,2] without difficulty. The measure f,, is characterized by ¢¢ (2) = —e' %"
for a € (0,2] [BV93, BP99] and so +¢x, (iy) = —y'~*. In this context, it is known in

[AH14] that ¢(f,) = 1 for a € (%,2] and ¢(f,) = oo for o € (0, Z].
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