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Abstract

We prove a maximum principle for local solutions of quasilinear stochastic PDEs with
obstacle (in short OSPDE). The proofs are based on a version of It6’s formula and
estimates for the positive part of a local solution which is non-positive on the lateral
boundary. Our method is based on a version of Moser’s iteration scheme developed
first by Aronson and Serrin [2] in the context of non-linear parabolic PDEs and re-
cently adapted in the context of quasilinear SPDEs in [5, 7].

Keywords: Stochastic PDEs; Obstacle problems; It6’s formula; L?—estimate; Local solution;
Comparison theorem; Maximum principle; Moser’s iteration.

AMS MSC 2010: Primary 60H15; 35R60; 31B150.
Submitted to EJP on April 2, 2013, final version accepted on February 10, 2014.

1 Introduction

In this paper, we consider an obstacle problem for the following parabolic Stochastic
PDE (SPDE in short)

duy(z) = 0; (a4 j(2)05u(z) + gi(t, z, ue (), Vue(x))) dt + f(t, 2, u(x), Ve (x))dt
+oo )
+;hj(t,:c,ut(x),Vut(x))dBf + v(t, dx), W

utZStv

U(]:f.

Here, S is a given obstacle, a is a matrix defining a symmetric operator on an open
bounded domain O, f, g, h are random coefficients.

In a recent work [9] we have proved existence and uniqueness of the solution of equa-
tion (1.1) under standard Lipschitz hypotheses and L2-type integrability conditions on
the coefficients. Let us recall that the solution is a couple (u,r), where u is a process
with values in the first order Sobolev space and v is a random regular measure forcing
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Maximum principle for quasilinear OSPDE

u to stay above S and satisfying a minimal Skohorod condition.

In order to give a rigorous meaning to the notion of solution, inspired by the works of
M. Pierre in the deterministic case (see [18, 19]), we introduce the notion of parabolic
capacity. The key point is that in [9], we construct a solution which admits a quasi-
continuous version hence defined outside a polar set and that regular measures which
in general are not absolutely continuous w.r.t. the Lebesgue measure, do not charge
polar sets.

There is a huge literature on parabolic SPDEs without obstacle. The study of the
LP—norms w.r.t. the randomness of the space-time uniform norm on the trajectories
of a stochastic PDE was started by N. V. Krylov in [13], for a more complete overview
of existing works on this subject see [7, 8] and the references therein. Concerning the
obstacle problem, there are two approaches, a probabilistic one (see [15, 12]) based on
the Feynman-Kac’s formula via the backward doubly stochastic differential equations
and the analytical one (see [10, 17, 22]) based on the Green function.

To our knowledge, up to now there is no maximum principle result for quasilinear SPDEs
with obstacle and even very few results in the deterministic case. The aim of this paper
is to obtain, under suitable integrability conditions on the coefficients, LP-estimates for
the uniform norm (in time and space) of the solution, a maximum principle for local
solutions of equation (1.1) and comparison theorems similar to those obtained in the
without obstacle case in [5, 7]. This yields for example the following result:

Theorem 1.1. Let (M;);>o be an It6 process satisfying some integrability conditions,
p > 2 and u be a local weak solution of the obstacle problem (1.1). Assume that 00O is
Lipschitz and u < M on 90O, then for allt € [0,T]:

p
EH(u—MﬁH <k (p,t)C(S, f,g,h, M)

00,005t

where C(S, f,g,h, M) depends only on the barrier S, the initial condition &, the coeffi-
cients f, g, h, the boundary condition M and k is a function which only depends on p and
t, || - loo,00:¢ i the uniform norm on [0,t] x O.

Let us point out that, due to the presence of the barrier random field S, the study of
the maximum principle for the weak solution of the obstacle problem is not an obvious
extension of the previous works [5, 7, 6] on quasilinear SPDEs (without obstacle). First
of all, in order to get such a result, we define the notion of local solutions to the obsta-
cle problem (1.1) and so introduce what we call local regular measures. Then, the main
difficulty consists in implementing a stochastic version of Moser’s iteration scheme in
our case. This Moser iteration is based on a version of It6’s formula and estimates for
the positive part of a local solution for the obstacle problem (1.1), involving local time
terms coming from the reflection on the barrier. Finally, another difficulty comes from
the fact that we do not make any regularity assumption on the barrier S.

The paper is organized as follows: in section 2 we introduce notations and hypotheses.
In section 3, we establish the LP—estimate for uniform norm of the solution with null
Dirichlet boundary condition. Section 4 is devoted to the main result: the maximum
principle for local solutions whose proof is based on an It6 formula satisfied by the
positive part of any local solution with lateral boundary condition, M. The last section
is an Appendix in which we give the proofs of several lemmas.
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2 Preliminaries

2.1 LP?—space

Let O C RY be an open bounded domain and L?(0) the set of square integrable func-
tions with respect to the Lebesgue measure on O, it is an Hilbert space equipped with
the usual scalar product and norm as follows

u,v) = ulxr)vixr)axr u (|= U2$ 1?1/2.
(u,0) /o””d’ | (/@ (2)dz)

In general, we shall extend the notation
(u,v) = / u(z)v(x)de,
o

where u, v are measurable functions defined on O such that uv € L'(0).
The first order Sobolev space of functions vanishing at the boundary will be denoted by
H}(0), its natural scalar product and norm are

d 1
(1, 0) gy 0) = (1,0) + /0 >~ (0 (@) (Guv (@) day ull gy 0y = (Il + IVul) "
i=1

As usual we shall denote H1(0) its dual space.

We shall denote by H}, .(O) the space of functions which are locally square integrable
in O and which admit first order derivatives that are also locally square integrable.
For each ¢ > 0 and for all real numbers p, ¢ > 1, we denote by LP([0,¢] x O) the space
of (classes of) measurable functions « : [0,¢] x O — R such that

ullp,q;¢ == (/Ot (/O (s, )P dx) a/p ds) 1/q

is finite. The limiting cases with p or ¢ taking the value oo are also considered with the
use of the essential sup norm.

Now we introduce some other spaces of functions and discuss a certain duality between
them. Like in [5] and [7], for self-containeness, we recall the following definitions:

Let (p1,q1), (p2,q2) € [1,0]? be fixed and set

I=1(a.p2 ) = {(pa) € 1o /I pe0,1] st

1 1 11 1 1
=p+(1—p),:p+(1—p)}-
p P P2 q q1 q2

This means that the set of inverse pairs ( , (p,q) belonging to I, is a segment

11
r’q
contained in the square [0, 1], with the extremities (i, i) and (i, i) .

P11’ q1 P2’ q2
We introduce:

Lia= () LM ([0,t] x 0).
(p,q)€rl

We know that this space coincides with the intersection of the extreme spaces,
Ly = LP% ([0,¢] x O) N LP>% ([0,t] x O)
and that it is a Banach space with the following norm

[l = Ml gy V llullpy gose -
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The other space of interest is the algebraic sum
Lbt= 3" 17([0,t] x 0),
(p@)el

which represents the vector space generated by the same family of spaces. This is a
normed vector space with the norm

||u||1;t := Inf {Z Hul Pidist /U = Zui,ui S L;ﬁ“@ ([Oat] X O)a (ﬁlqu) € I7 t=1,.n;ne€ ]N*} .

i=1 i=1

Clearly one has L ¢ L' ([0,t] x O) and ||, ;,, < c|lul|"™", for each u € L%, with a
certain constant ¢ > 0.

We also remark that if (p, ¢) € I, then the conjugate pair (p', ¢’) , with ;1)4— ﬁ =
belongs to another set, I’, of the same type. This set may be described by

1 1
E—F*/—L

1 1 1 1
I'=T (p1,q1,p2, 02 IZ{p/,q’ d(p,q) €l st. —+— = +:1}

( )= 1)/ 3(.0) b=t
and it is not difficult to check that r (pl, q, p2, q2) =
q; are defined by _- + pi =t +

q/
Moreover, by Holder S 1nequal1ty, 1t follows that one has

t
/ / w (s, 2) v (s, ) dads < ul, o] @1
0 O

foranyuw € Ly, and v € L' This inequality shows that the scalar product of L2 ([0,t] x O)
extends to a duality relation for the spaces L;,; and L',
Now let us recall that the Sobolev inequality states that

[|w gr S Cs ||VUH27 (2.2)

for each u € H} (O), where cg > 0 is a constant that depends on the dimension and
2% = (ffdz if d > 2, while 2* may be any number in |2,00[ if d = 2 and 2* = c0 if d = 1.
Therefore one has

[l g+ 0 < esVully oy,
foreacht > 0and eachu € L}, (Ry; HY (0)) . Ifu € L§S, (Ry; L2 (0) ) N L, (Ry; HY (0)),
one has

1
2 2 2
ol V 0l 3 < €1 (Jull e + IV0l3 5)

with ¢; = cg V 1.
Let @ € [0, 1] be some fixed parameter. For d > 3 and we set:

d 1 d
r9{<p,q>e[1,oo]2, p++9},

FZ={(p,q)€[1,OO]2/;;+1=1—9}.

On the space Lg; := Lr,;;, we define

4V =
e Lt e = SIP [l

L;;t = Z Lp,q ([O7t} X O) )

(p,9)€ly

l[ullg,, == lull pait
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Iﬂ%ﬁﬂﬁ{zﬂmpmm/u=§)%weH”%Mﬂxo%

i=1 i=1
(pi,qi) €Ty, i=1,.n;n € N*}
We remark that p
1
I'y=1 _—
6 C&l—ﬂ’ﬂl—ﬂ’m)

and that the norm ||ul|,., coincides with Jul| "ot = Hu||1(°°’1f19’2(1i9>’°°);t.
Ifd=1,2 we put

2* 1 1 2%
fo= {0 € o/ g+ 2 = 5 o).

2* 1 1
I = 1,00 S4Z=1-9
0 {@ﬂﬂﬂvm]/%_2p+q }
with the convention 22—i = 1if d = 1 and similar definitions hold.

Moreover we have the following duality relation:

t
/ / u(s,z)v(s,z)deds < |lullg, vl (2.3)
o Jo

for any u € Ly, and v € Ly, and the following inequality:
1/2
2 2
lullg < 1 (Il e + IVul320) - (2.4)

2.2 Hypotheses

We consider a sequence ((B(t));>0)ien+ of independent Brownian motions defined on a
standard filtered probability space (2, F, (F;):>0, P) satisfying the usual conditions.
Let A be a symmetric second order differential operator defined on the open bounded
subset O C R?, with domain D(A), given by

d
A=—-L=-— Z 8i(ai,j8j).

i,5=1

We assume that a = (a; ;);; is @ measurable symmetric matrix defined on O which
satisfies the uniform ellipticity condition

d
NP <) ai(0)6' < A[EP, Vo€ 0, £ RY,

ij=1

where A and A are positive constants. The energy associated with the matrix a will be
denoted by

d
E(w,v) = Z / a; ;(x)0;w(x)0;v(x) d. (2.5)
ij=1"9
It’s defined for functions w, v € H}(O), or for w € H} (O) and v € H}(O) with compact
support.
We assume that we have predictable random functions
F Ry xQxOxRxRY— R,
g=1(91,-92) Ry x 2x O xR xR = R,
h=(h,.hi,.) i Rex 2 x O xR xR = RN,
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We define
f('7'7'1070) = foﬂ g('7'7'7070) = go = (9(1)’ agg) and h(a ) '5070) = ho = (h(l)a "'ah?a )

In the sequel, | - | will always denote the underlying Euclidean or [2—norm. For example

—+oo
Bt w, @,y,2)* = Y [hilt,w, 2,9, 2)[.
=1

Remark 2.1. Let us note that this general setting of SPDE (1.1) we consider, encom-
passes the case of an SPDE driven by a space-time noise, colored in space and white in
time as in [21] for example (see also Example 1 in [9]).

Assumption (H): There exist non-negative constants C, «, [ such that for almost all
w, the following inequalities hold for all (¢, z,y,2) € Ry x O x R x R%:

1. |f(taw7x7y7z) - f(t7wa33>y/,2/)| < C(ly - y/‘ + |Z - ZI|)7
2. |g(t»wa$7y72) - g(t7w7w7y/7zl)| < C|y - yl| + OZ|Z - Z/‘7
3. |h(t,w,z,y,2) — h(t,w,z,y,2")| < Cly — /| + Blz — /|,
4. the contraction property: 2a + 52 < 2)\.

Moreover we introduce some integrability conditions on the coefficients f°, ¢°, R and
the initial data £. Along this article, we fix a terminal time 7" > 0.

Assumption (HI2)

B (Iel3 + 1715 2.z + N9l o+ IIA°IIE ) < oo

Assumption (HIL)

T
B[ le@Pdor B [ [ (2@ + I + 1) )dads < o,
K 0 JK
for any compact set K C O.

2.3 Weak solutions

We now introduce Hr, the space of H{(O)-valued predictable processes (ut)tefo, ) such

that

T 1/2

(E sup ||u5||§+E/ E(us)ds> < 00.
0<s<T 0

We define Hjoe = Hioe(O) to be the set of Hll()c((?)-valued predictable processes defined
on [0, 7] such that for any compact subset K in O:

- 1/2
(E sup /us(x)de—i—E/ / |Vus(x)2da:ds> < 00.
0<s<T J K 0o JK

The space of test functions is the algebraic tensor product D = C°(R*) ® C?(0), where
C>°(R™) denotes the space of all real infinite differentiable functions with compact sup-
port in R and C?(O) the set of C?-functions with compact support in O.
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Now we recall the definition of the regular measure which has been defined in [9].
K denotes L>([0,T]; L2(0)) N L*([0,T); Hi (0)) equipped with the norm:

| v ||21c = v H%x([o,T];m(o)) + v ||%2([0,T];Hg(0))
T
= sup u P [ +E) d
te[0, 7] 0

C denotes the space of continuous functions with compact support in [0, 7[xO and fi-
nally:

W= {p € 120, T H)(0); 5 L2<[o,T1;H-1<0>>},

endowed with the norm| ¢ [|3,=| ¢ HLQ( o.7):H o) T || ||L2 0,7]:H-1(0))"

It is known (see [14]) that W is continuously embedded in C([0,T); L?(0)), the set of
L?(0)-valued continuous functions on [0, T]. So without ambiguity, we will also consider
Wr = {p € W;o(T) =0}, WH = {p € W;p >0}, Wi = WrnWt.

Definition 2.2. An element v € K is said to be a parabolic potential if it satisfies:

T aspt T

VQOGW;:, / (7 ’Ut dt+/ 5(§0t,7}t)dt20
0 ot’ 0

We denote by P the set of all parabolic potentials.

The next representation property is crucial:

Proposition 2.3. (Proposition 1.1 in [19]) Letv € P, then there exists a unique positive
Radon measure on [0, T[xO, denoted by v, such that:

vgoeWTmc/ “Dt dt—i—/é'got,vtdt // (t,2)d

Moreover, v admits a right-continuous (resp. left-continuous) version ¥ (resp. v) :
[0,T] — L?(0) .
Such a Radon measure, V" is called a regular measure and we write:

V=4 A
v 8t+ v.

Definition 2.4. Let K C [0,T[xO be compact, v € P is said to be v—superior than 1 on
K, if there exists a sequence v,, € P withv,, > 1 a.e. on a neighborhood of K converging
to v in L*([0,T); H}(O)).

We denote:
Sk ={v e P; visv— superiortolon K}.

Proposition 2.5. (Proposition 2.1 in [19]) Let K C [0,T[xO compact, then S admits
a smallest v € P and the measure v whose support is in K satisfies

T
/ /du}’{—mf{/ /du“ v € Sk}
0o Jo

Definition 2.6. (Parabolic Capacity)

e Let K C [0,T[xO be compact, we define cap(K) = fOT Jo dvi;
e let O C [0, T[xO be open, we define cap(O) = sup{cap(K); K C O compact};
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e for any borelian E C [0,T[xO, we define cap(E) = inf{cap(O); O D E open}.

Definition 2.7. A property is said to hold quasi-everywhere (in short q.e.) if it holds
outside a set of null capacity.

Definition 2.8. (Quasi-continuous)
A function u : [0,T[xO — R is called quasi-continuous, if there exists a decreasing
sequence of open subsets O,, of [0, T[xO with:

1. for all n, the restriction of u to the complement of O,, is continuous;

2. limy,— 4o cap (O,) = 0.

We say that v admits a quasi-continuous version, if there exists 1 quasi-continuous such
that @ = u a.e.

The next proposition, whose proof may be found in [18] or [19] shall play an important
role in the sequel:

Proposition 2.9. Let K C O a compact set, then Vt € [0, T,
cap({t} x K) = A\(K),

where )\, is the Lebesgue measure on O.

As a consequence, ifu : [0,T[xO — R is a map defined quasi-everywhere then it defines
uniquely a map from [0,7T] into L?(O). In other words, for any t € [0,T[, u; is defined
without any ambiguity as an element in L?(O). Moreover, if u € P, it admits version u
which is left continuous on [0, T'| with values in L?(QO) so that ur = up- is also defined
without ambiguity.

Remark 2.10. The previous proposition applies if for example u is quasi-continuous.

To establish a maximum principle for local solutions we need to define the notion of
local regular measures:

Definition 2.11. We say that a Radon measure v on [0, T[xO is a local regular measure
if for any non-negative ¢ in C°(0), ¢v is a regular measure.

Proposition 2.12. Local regular measures do not charge polar sets (i.e. sets of capac-
ity 0).

Proof. Let A be a polar set and consider a sequence (¢,) in C°(0), 0 < ¢, < 1, con-
verging to 1 everywhere on 0. By Fatou’s lemma,

0< / Tadv(z,t) < liminf/ Tpdndv(x,t) =0.
[0,T[xO n=o0 J10,T[xO
O

We end this part by a convergence lemma which plays an important role in our approach
(Lemma 3.8 in [19]):

Lemma 2.13. If v™ € P is a bounded sequence in K and converges weakly to v in
L3([0,T); H}(0)); if u is a quasi-continuous function and |u| is bounded by a element in

‘P. Then
T . T
lim / /udu” :/ /udu“.
n—=+ Jo Jo o Jo
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We now give the assumptions on the obstacle that we shall need in the different cases
that we shall consider.

Assumption (0): The obstacle S : [0,7] x 2 x O — R is an adapted random field almost
surely quasi-continuous, in the sense that for P-almost all w € , the map (t,z) —
S¢(w,x) is quasi-continuous. Moreover, Sy < ¢ P-almost surely and S is controlled by
the solution of an SPDE, i.e. V¢ € [0, T],

Sy <8, dP®dt®dr — a.e. (2.6)
where S’ is the solution of the linear SPDE

{ dS; = LSt + fidt+ Y0, gl dt + Y15 1, dB] 2

5'(0) = S,
with null boundary Dirichlet conditions.

Assumption (OL): The obstacle S : [0,7] x 2 x O — R is an adapted random field,
almost surely quasi-continuous, such that Sy < ¢ P-almost surely and S is controlled by
a local solution of an SPDE, i.e. Vt € [0, T,

Sy < S}, dP®@dt®dz — a.e.
where S’ is a local solution of the linear SPDE

dS; = LSidt+ fldt+ L, 0ig),dt + Y15 b, dB]
S0) = S

Remark 2.14. For the definition of local solution of SPDESs, one can see, for example,

[7].
Assumption (HO2)

2
B (€13 + 1713 210+ g

2 2
22,7 T |Hh/|||2,2;T) < 0.

Assumption (HOL)

T
/2 /! 2 / 2 / 2
E/K\so| dx+E/0 /K<|ft<x>| T 1g)(@) [ + [k ()2 )dedt < oo

for any compact set K C O.

Remark 2.15. It is well-known that under (HO2) S’ belongs to Hr, is unique and
satisfies the following estimate:

T T
E sup | Sy +E/ E(Spdt < CE ||| S |I? +/ (A e AN s VAR A
tc[0,7] 0 0
(2.8)
see for example Theorem 8 in [4]. Moreover, as a consequence of Theorem 3 in [9], we

know that S’ admits a quasi-continuous version.

Definition 2.16. A pair (u,v) is said to be a solution of problem (1.1) if

1. w e Hrp, u(t,x) > S(t,z), dP ® dt ® dz — a.e. and ug(x) =&, dP @ dx — a.e.;
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2. v is a random regular measure defined on [0, T[xO;
3. the following relation holds almost surely, for allt € [0,T] and all ¢ € D,

(ut o) =(€,0) + / (11, Ducps)ds — / E (s, p2)ds

d t t
72/0 (gé(usavus),aiSDs)der/o (fs(us, Vus), ps)ds (2.9)
i=1

oot t
+ Z/ (h (us, V), s )dBI —|—/ / ps(x)v(de,ds);
j=170 0o Jo
4. u admits a quasi-continuous version, 4, and we have
T
/ / (u(s,x) —S(s,x))v(dr,ds) =0, P—a.s.
o Jo
We denote by R(&, f, g, h,S) the solution of the obstacle problem when it exists and is
unique.

Definition 2.17. A pair (u,v) is said to be a local solution of problem (1.1) if

1. uw € Hipe, u(t,z) > S(t,x), dP @ dt @ dx — a.e. and ug(x) =&, dP @ dx — a.e.;
2. v is a local random regular measure defined on [0, T[xO;
3. the following relation holds almost surely, for allt € [0,T] and all ¢ € D,

t t
(urs 1) =(€,0) + / (112, Oucps)ds — / (e, p2)ds

d t t
-3 [ V). de0ds+ [ (1 Tu)pdds 210
i=1

—+oo t t
'y / (b (s, V), ) dBI + / / s (2)0(da, ds);
=Jo 0 Jo

4. u admits a quasi-continuous version, u, and we have
T
/ / (u(s,x) — S(s,x))v(dr,ds) =0, P—a.s.
o Jo

We denote by Rioc(&, f, g, h, S) the set of all the local solutions (u, v).
Finally, in the sequel, we introduce some constants ¢, 4 > 0, we shall denote by C.,
Cs some constants depending only on ¢, §, typically those appearing in the kind of
inequality

lab| < ea® + C.b2. (2.11)

3 [P—estimate for the uniform norm of solutions with null Dirich-
let boundary condition

In this section, we want to study, for some p > 2, the LP— estimate for the uniform norm
of the solution of (1.1). To get such estimate, we need stronger integrability conditions
on the coefficients and the initial condition. To this end, we consider the following as-
sumptions: for § € [0, 1] and p > 2:
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Assumption (HI2p)
B (1% + 1720 i+ a1 g+ 101 ) < oo
Assumption (HOcop)
S6.€ L=(2 % 0) and B ((1f e oeir)” + (119 Pl| g oz’ + (IR s o)) < 00

To get the estimates that we need, we apply Ité’s formula to v — S/, in order to take
advantage of the fact that S — .5’ is non-positive and that as u is the solution of (1.1) and
S’ satisfies (2.7), u — S’ satisfies

s — 1) = Ou(a 5 (2)0; (e () — L))t + (F(t, 2, ), Vua(a)) — £(t, )t

+ 0;(gi(t, z, ut(z), Vue(x)) — gi(t, x))dt + (hj(t, z, ut(z), Vue(z)) — h;(t,x))ng

+ v(z,dt), (3.1)
(u—=58%=¢-5,

u—98>8-5".

that is why we introduce the following functions:

f(t)w’x)y7z) :f(t7w)x7y+S£7Z+vS£)_f/<t’w7x)’

g(t7w7x7y’z) :g(t7w7x7y+sé7z+vsé) _g/(t7w7x)7

h(t,w,z,y,2) = h(t,w,z,y + S}, 2 + VS;) — h'(t,w,z).

Let us remark that the Skohorod condition for v — S’ is satisfied since

/ ' [ @) = S1(0) = (Sufe) = i@, i) = | ' [ () = Su(@)wids.d) =

It is obvious that f, § and h satisfy the Lipschitz conditions with the same Lipschitz
coefficients as f, g and h and || — Sj||, € LP(2, P). Nevertheless, we need a supple-
mentary hypothesis:

Assumption (HDAp)

E(([[Fllo2)" + (NG lg.0)"2 + (1R 15,772 < oo

This assumption is fulfilled in the following case:

*

Example 3.1. If |[VS' |5, ||f° J ||g°||;;T and ||h°
sumptions (H) and (HOocop) hold, then:

;;T belong to L?(2, P), and as-

f satisfies the integrability condition:

17l 170", VS") = Fllgr < 1F(S", VSV gz + 11 g7

1752 + C IS o + C VS g + 1 o ooy -

A

And the same for § and h, which proves that (HD#p) holds.

We now give the main result of this section, which is a version of the maximum principle
in the case of a solution vanishing on the boundary of O:
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Theorem 3.2. Suppose that assumptions (H), (0), (HI2p), (HOcop) and (HD6p) hold,
for some 6 € [0, 1] and p > 2 and that the constants of Lipschitz conditions satisfy

B 2
a+7+726 <A

Let (u, v) be the solution of OSPDE (1.1) with null boundary condition, then for all
€[0, 71,

Eull% sere < c@EOENEIT, + ISHIZ, + 1155 + 19/ BI157 + 10|57

o i DR 1 A [l H*m),

where c(p) is a constant which depends on p and k(t) is a constant which depends on
the structure constants and t € [0, 7).

Remark 3.3. The relations ||f']|g}, < ([f'llo.00:)"
2% < e

9P < (9P|, o)/ and

)?/? and assumption (HOocop)) yield

00,00 t
1)1*P *p /2 11211*P/2
E (I gz + Mg Pz~ + APl ™) < +oo
As the proof of this theorem is quite long, we split it into several steps.

3.1 The case where ¢, f°, j° and /" are uniformly bounded

In this subsection, we assume that the hypotheses (H), (0), (HI2p), (HOocop) hold and
we add the following stronger ones:

£e L= x0),
and
72, 3% W e L®(Ry x Q x O).

Then it is obviously that £ — S € L>(Q x O).

Under these hypotheses, we know that OSPDE (1.1) admits a unique weak solution
(u,v) = R, f,g,h, S) (see [9]) and that (u — S, v) = R(¢ — S, f,G,h, S — S'). We start
by proving the following L' —estimate:

Lemma 3.4. The solution u of problem (1.1) belongs to ﬁlszl([O, T]x O x§)). Moreover
there exist constants ¢, ¢’ > 0 which only depend on C, «, (3 and on the quantity

= ”f - S(/)HLOO(QXO) v ’|fOHL°°(]R+><Q><O) v |‘gOHL°°(]R+><Q><O) v HBOHLOO(]R+><Q><O)

such that, for all real |l > 2,

/ |ug (2 (x)|'de < eK21(1 — 1)et U=t (3.2)
/ / lug(z) — S(2) 12|V (us(z) — S%(x))|2dads < ¢/ K2e =Dt (3.3)
and
E/ / lus(z) — S (x) " v (deds) < +oo. (3.4)
EJP 19 (2014), paper 44. ejp.ejpecp.org
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Proof. Notice first that if (u — S’,v) = R(¢ — S}, f,§,h, S — S’), then
flu=5,V(u—-25)),5(u—58,V(u—-=5),hi (u—5,V(u-25")) e L*([0,T]; L* (2 x 0))

and consequently we can apply [t6’s formula to (u — S’,v) (see Theorem 5 in [9]).
We fix areal [ > 2, T > 0 and introduce the sequence (¢, ),cn+ of functions such that
for all n € IN*:

x |l if |z]|<n
22D (12| — n)? + in(jz| —n) +n2] i |z|>n
One can easily verify that for fixed n, ¢, is twice differentiable with bounded second

derivative, ¢/ (z) > 0, and as n — oo one has ¢, () Lol (z) — 1 sgn(z)|z['~1,
@!'(x) — (I — 1)|2|'~2. Moreover, the following relations hold, for all x € R and n > I:

Vr e R, p,(z) =

L | zp, () [< lpn (),
I<

2. | g (@) [<| wpi(2) |,

3. [ 2% (2) [< Ul = Dn(),

4. (@) < Upn(z) +1),

5. ln(@)] < U1 = 1)(on(x) +1).

Applying Itd’s formula to ¢, (u — S’), we have P-a.s. forall ¢ € [0,T],

/o on(ue(z) — Si(x)) dz + / E (! (s — 1), uy — S1) ds = /@ onl€(x) — S)(x)) du

/ o (us (@) = Si())0i (us(x) — S(2)) Gi(s, 2, us — S, V(us — 55)) d ds

— 8L,V (us — S.)) drdB?

+
\
g

S

=

2

5

\

wn

A

S

=

<

w

8

£

+ = Z/ / o (ug(z S;(x))l_zg(s,:r,us - SL V(us — S%))dz ds

T / [ utuste) = Sy@)wdaas).

Since the support of v is {u = S}, the last term is equal to

/Ot /O P (Ss(x) — S(2))v(dads)

and it is non-positive, thanks to Lemma III.1 p.210 in [19] which ensures that P-almost
surely, S < 5, v(dzx,dt)-a.e

(3.5)

//gpn Sl(x ))]I{|S S/|<n}l/(dx ds) fl/ / sgn(S—S") |Ss(x) — S;(x)|lflu(d:17ds)§0
/ / Fo(Ss(@) —  SU@)Ts—ssmv(duds)
0 O

// 1l =1)(|S = §'| = n)sgn(S — §') + nlsgn(S — §)]v(dzds) < 0
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By the uniform ellipticity of the operator A we get

(e~ 8. wa = 81) 2 A [ s~ SDIT(w, - S do.
o

Let € > 0 be fixed. Using the Lipschitz condition on f and the properties of the functions
(n)n we get

n(us = SOL(If(s,2)| + C (Jus = S| + [V (us = S)I))

n(us = SOIF (s, )] + |us — Sl (us = SO (Clus = Si] + CIV (us = SI))
Upn(us = 8O + D) [f(s,2)] + Clus — Se?n (us — SO+ Clus — SV (us — S9) Iy (us — S7)]
Upn(us = S9) + D [F(s,2)] + (C + ) Jus — Sl (us — 85) + ey (us — S9)[V (us — S|,

ln, (s — S| f (s, 2,us — SL, V(us — S7))|
<y
[2

I/\ I/\ IN A

Now using Cauchy-Schwarz’s inequality and the Lipschitz condition on g we get

Z‘p _S/ ( S_S;)gi(svxvus_ngv(us_sg))

< %(Us — S [V(us — S| (18°(s, 2)| + Clus — S| + |V (us — 57)| )
< E@Z(us - S;)|V(us - S;)P =+ QCe‘PZ(us - S;) (K2 + C2|us - S;|2) + O“Pg(us - S;)|V(Us - S;)|2
<I(- 1)CEK2 + 205(K2 + Cg)l(l = Dlen(us — S;)| + (a+e) ‘Px(us - Sg)|V(uS - S;)|2-

In the same way as before
Z om(us — Sh3(s,us — SL, V(us — SY))

< on(us = 89) (c(|h’(s, )| + Clus — Si)? + (1 + €)% [V(us — S1)[?)
< i(us — SL) (2. K* + 2c.C%|us — SLP 4+ (1+€)B% |V (us — S)?)
< 2011 = 1)K? + 2 (K2 + C?)I(l — D)o (us — L) + (1 4+ €) B2 ¢! (us — S2)|V (us — S2)|2.

Thus taking the expectation, we deduce
1
E/ () — Si(@) dz + (8~ (14 )5 — o+ 26)) E/ / s — S1) |V (s — S| da ds
o

<1 -1d'K* + (- 1)(K2+C2+C+CE)E/ / on(us(z) — Si(z)) dz ds.
0o Jo

(3.6)

On account of the contraction condition, one can choose € > 0 small enough such that

)\—%(1+e)ﬁ2—(a+26)>0

and then

E /O n(u(x) — Sj(x))de < cK21(1—1) + c(l—1)E /0 /o on(us(z) — Si(x))dzds.

We obtain by Gronwall’s Lemma, that
E / on(uy(z) — Si(z)) dz < ¢ K1(1 — 1) exp (cl(l— 1)) (3.7)
1)
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and so it is now easy from (3.6) to get

/ / o (us(z) — Si(2)) |V(us — SL)[Pdrds < ¢ K?1(1—1) exp (cl(l—1)t). (3.8)

Finally, letting n — oo by Fatou’s lemma we deduce (3.2) and (3.3).
Then with (3.5), we know that

//@n — S!)v(dzds) //cpn Y (dxds) < C.

This yields (3.4) by Fatou’s lemma. O

With the help of Lemma 3.4, we are able to prove the following It6 formula:

Proposition 3.5. Assume the hypotheses of the previous lemma. Let (u,v) be the

solution of problem (1.1). Then for | > 2, we get the following It6’s formula, P-almost
surely, for allt € [0,T):

t
/|ut (@) dx+/ € (I (us — S')'sgn(us — 1), us — S ds—/ €(2) — S| de
+l//sgn — ) us(z) = Si(@)| " F(s, 2 us — S, V(ug — SL)) dads

[(1—1) Z//lus — 81(2)|"? 93 (ug(x) — SL(x)) Gils, x,us — S, V(ug — SL)) da ds

+1 Z/ / sgn(us — S1) |us(z) — S.(x)' " hi(s, 2, us — 5%, V(us — S)) ded B

(@) B3 (s, 2, us — S5, V(us — S%)) da ds

+z/ / sgn(usfS;)|us(:17)fS;(z)|l711/(d9:d5).
0o JO
(3.9)

Proof. From It0’s formula (see Theorem 5 in [9]), with the same notations as in the
previous lemma, we have P-almost surely, and for all ¢ € [0,7] and all n € IN*,

té%w@%&uww+ASWA%ﬂQWrﬁJ%=A%@@—%@Mw

+f o (10s(2) — S(2))F(5, 2, ws — ' F(usy — S)) dods
0 O

_ ;/0 /O on(us(x) — SL(x))0; (us(x) — SL(x)) gi(s, z,us — S%, V(us — S%)) dx ds
- Z/o | Phlus(@) = S,(@)) By (5,2, us = 53,V (us = 1) ded ]
+ % Z/o /O o (us(x) — S;(x))ﬁg(s,x,us — 8, V(us — S%)) dads
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Therefore, passing to the limit as n — oo, all the terms converge thanks to Lemma 3.4
and the dominated convergence theorem. The last term converges to

l/o /(9 sgn(us — S Jus(z) — SL(x)| " v(dads), a.s.

which is equal to
//sgn Vlus(z) — (@) v(dwds)
= l//sgn(SS—Sg)\SS(a:)fS;(z)|l71V(da:ds)

—z//|s (@) w(dads) < 0

since v acts on {u = S} and S < S’ v-a.e. by Lemma III.1 in [19]. O

From now on, we assume the following stronger hypothesis:
1
a+§52+72ﬂ2 <A (3.10)

At this stage, the idea is to adapt the Moser iteration technics to our setting. To this
end, in order to control uniformly the L' —norms and make [ tend to 400, we introduce
for each [ > 2, the processes v and v’ given by

vy 1 = sup (/ \us—Sg\ldz+7l (- 1)/ / | fS;|l72|V(uT—SL)|2 dxdr),
s<t \Jo 0o Jo

- — S da 12 H —s’l] LIl —S'HH
Lle=sill da e Jlu=st| |+l -5t

12 (o [lg P+ e 1R, ) [l =51

;
0;t

where the constants are given by

o _ 2

'y_)‘ « l—]. 2 ﬁ7
C C\ 342 , .l+e ,

= — — 11

c1 2<1+4e>+ 2€C+3 E20, (3.11)
1 ) (1

Cy = — and C3_w7
2e €

where € is chosen small enough in order to have v > 0.
The main difficulty in the stochastic case is to control the martingale part. We start by
estimating the bracket of the local martingale in (3.9)

lZ / [ s9nte = ) fuae) = 81 ™ By, — 5L,V s — ) o

Lemma 3.6. For arbitrary € > 0, small enough, one has

1 2 (1+¢ -2 1 +e
0h seue R e
< >t Sevet 2¢e ( H| |u s ‘ 0;t — ¢ | 1,15t
5 (3.12)
+ V 1 + € —Ut .
l -1
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The proof is the same as Lemma 12 in [5] replacing u by u — S’ and also h by h.
In what follows we will use the notion of domination, which is essential to handle the
martingale part. We recall the definition from Revuz and Yor [20].

Definition 3.7. A non-negative, adapted right continuous process X is dominated by
an increasing process A, if

K [Xp} <E [Ap]
for any bounded stopping time, p.

One important result related to this notion is the following domination inequality (see
Proposition IV.4.7 in Revuz-Yor, p. 163), for any k €0, 1],

E[(X%)F] < CkE[(Ax)*] (3.13)
where C}, is a positive constant and X} := sup,<, | X,/

We will also use the fact that if A, A’ are increasing processes, then the domination of a
process X by A is equivalent to the domination of X + A’ by A + A’.

Lemma 3.8. The Process v is dominated by the process v’ where

B
T=1—6e—6V1+e¢
-1~

In other words, we have

T E sup (/ lug — S| da++1 (1 — 1)/ / lup — 8472 |V (uy — S0 dxdr)
o 0o Jo

0<s<t
< E/ € — S de + 12, E H|u _ 5 ‘ +E ||, Ik - 5/|HH (3.14)
O 1,158 ’ o;t
+ I’E (c2 1g°1 (15, + s H|iLO|2H;t) H|u — Sl|l_2H0.t’
where v, c1, co and c3 are the constants given above.
Proof. Starting from the relation (3.9):
t

/ g () — Si(a)|" da +/ € (I (us — S')Lsgn(us — 57), us — S1) ds = / €(2) — Sh(@)|! da
0

1 / / san(u, — 81) (@) — S1(2)[' " F(s.,u. — S, V(u, — S0)) dads

-1 Z//Ius — SL(@)]'2 O ) — 810)) 15,210, — Sy Vg — 51)) v
+12/ / sgn(us — ) Jus(z) — Si(@)| " his, 2, us — S, V(ug — S)) dedBl

L) 2R3 (s, ug — SL, YV (ug — S1)) da ds

+l//sgn s (@) — SL@)| " v(deds), as.

The last term is negative: from the condition of minimality, we have the following rela-
tion,

/ | san(u =0 fus (o) = @) wldods
//sgn 8 I8s(x) — S.(@)] "  w(dzds) < 0
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Then we can do the same calculus as in the proof of Lemma 14 in [5], replacing u by
u—S"and f, g, h by f, g, h respectively. O

The proofs of the next 3 lemmas are similar to the proofs of Lemmas 15, 16 and 17 in
[5], just replacing u by © — S’ and replacing f, g and h by f, g and h respectively.

Lemma 3.9. The process v satisfies the estimate

vy >0 H|u el

‘O;t

withd =1 A (20;17) , where cg is the constant in the Sobolev inequality (2.2).

4
0;t
1

_ — €
| V1= SHIE VIl v RIS v AR

Lemma 3.10. The process

1
e

_ 1 —
e T T e T

wy = |:H|u _ S/|Ul

is dominated by the process

wQZM@NQMu—gV

where o = d%fe and k : Ry — R is a function independent of |, depending only on the

structure constants.

Lemma 3.11. There exists a function k1 : Ry x Ry — Ry which involves only the
structure constants of our problem and such that the following estimate holds

L

Boc< b o8 ([ €= sl ar | P1G, + 1B+ 1RP)S).

We are now able to proof the annunciated result.
Proof of Theorem 3.2: the bounded case

Set [ = po™, with some n € IN*. By Lemma 3.10 and the domination inequality (3.13) we
deduce, forn > 1,

ES
o

_arygt £0
S Vil syl Vg

1
L - L\ "
S RS v e

E@m—yﬁ

1
% 0|1 * %L - AN
< Comn (6K (1) )77 E (Hw =1, Ve =Sl v 1 e v N85 v |||h°|2||6f;) ,

where C, -~ is the constant in the domination inequality.

The rest of the proof is similar to the first step of the proof of Theorem 11 in [5], p.
458-459, and based on a stochastic version of Moser iteration ([2]). One just has to
apply the same technics with the following sequence:

1
o7

an = ||l = S| v llE = St v (2Nl v 18 2l v AR
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3.2 Proof of Theorem 3.2 in the general case

We now assume that (H), (0), (HI2p), (HOccp) and (HDfp) hold. We are going to
prove Theorem 3.2 in the general case by using an approximation argument. The same
type of approximation have been used in [7], p. 460-461, nevertheless in the obstacle
problem, we have to deal additionally with the approximation of the regular random
measure and the convergence of such sequence is not obvious in general. For this, for
allme N*,1<i<d,1<j<ooandall (t,w,z,y,2)in Ry x 2x O xR x R?, we set

fn(t7w7xay7z) = f(t7w7xayaz) —fo(t,w,x)+f0(t,w,m) '1{|f°(t,w,w)\§n}

gi,n(tvwaxay7z) = gi(t7w7x7yaz) —g?(t,w,x) —i—g?(t,w,x) ’ 1{|§?(t,w,m)|§n}

Bj,n(tvwa'ray7z) = Bj(taTU,%yaZ) - B?(t,w,a:) +B?(tawa$) : 1{|H8(t,w,z)\§n}
§n(w,x) = E(’me) . 1{‘£(w’m)|§n} (3.15)

One can check that for all n, f,, §n, h, and " — S|, satisfy all the assumptions of the
Step 1 of the proof, and that Lipschitz constants do not depend on n. And the obstacle
S — S’ is controlled by 0, which obviously satisfies (HO2). For each n € IN*, we put
(@™, v"™) = R(¢"—Sp, f, ", h"™, S—S’) and we know that u" satisfies the estimate of Step
1. We are now going to prove that (", ™) converges to (u,v) = R(¢— S}, f,g,h, S—5").
Let us fix n < m in IN* and put @™ := 4" — @ and ™™ := v™ — "™ We first note that
u™™ satisfies the equation

diiy"™ (x) + Au™ (2) dt = frm ¢z, a0 ™ (x), Va ™ (z)) dt

d
- Z aigi,n,m (tv €, ﬂ?}m (x) 9 Vﬁ?m ({,C)) dt
i=1

+ 5" By (t a0, 0™ (), VA" () dB] + v (a, dt)
j=1

where
fom tw,z,y,2) = f(tw, 2,y + )" (2), 2+ Vay (x) — f(t,w,z,a@)" (x), Va" (z))
+ o (tow,2) = f, (tw, @)
and g; n,m, Bj,n,m have similar expressions. Clearly one has
Frm (t,0,2,0,0) = f2 (t,w,2) = f2, (t,w,2) = J2,, (t,w, )

and some similar relations for g; ,, . (t,w,,0,0) and A, ., (t,w,2,0,0). On the other
hand, one can easily verify that

Elgn =€l — 0, Bl = Plly — 0,
Elgh =8l — 0, Blhn =l — 0.
By Lemma 5.4 with [ = 2 (see Appendix) we deduce that
E|[a™ —a™|3% — 0, asn, m — co. (3.16)

Therefore, (@™) has a limit @ in Hr.
We now study the convergence of (¥"). Denote by v" the parabolic potential associated
to v", and 2" = 4™ — o™, so 2" satisfies the following SPDE

d
dzj (z) + Az} (x)dt = f,,(t,x, 4} (x), Vay (z))dt — Z 0iGin(t, x, uy (z), Vag (x))dt

i=1

+ Y byt @, 4y (2), Vay (z)) dBj.
j=1
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We define z!'™ to be the solution of the following SPDE with initial value " — S}, and
zero boundary condition:

d

dzy " (@) + Az " (w)dt = (f(t, 2,07 (@), Vg (z) = Ot 2)dt =Y 0i(gi(t, , ap (), Vg (z))
i=1
O(t, x dt+z (t,x,ul (), Val (z)) — hO(t, z)) dBj.
This is a linear SPDE in 2", its solution uniquely exists and belongs to Hr. Applying
1td’s formula to (21")? and doing a classical calculation, we get:
E||2 = 2| < CE([€" - €73+ |la" — @™||2) = 0, asn, m — oc.
Then, we define 22" to be the solution of the following SPDE with initial value 0 and
zero boundary condition:

dzp" (x) + Azp " (2)dt = [t @)dt — Zazgm (2 dt+zh ) dB;.

This is still a linear SPDE in 22", its solution uniquely exists and from the proof of
Theorem 11 in [5], we know that

E HzQ’” — QmHT <CE (HmeH + H\gﬁ,me;T + H‘h%me;T) —0, asmn, m— oo.

This yields since 2" = zb" + 227
E|z" - zm||?p — 0, as n, m— oo.
Hence, using (3.16) and the fact that @ = z™ + v™, we get:
E|v" — vazT — 0, asn, m— 0.

Therefore, (v™) has a limit v in Hr. So, by extracting a subsequence, we can assume
that (v™) converges to v in K almost-surely. Then, it’s clear that v € P, and we denote by
v the random regular measure associated to the potential v. Moreover, we have P-a.s.,

Vo € Wi
t
//go(x,s)y(dxds) = lim// x, s)v" (dxds)
0 O n—oo

—  lim (g,aa‘ps ds +/ (", p5)ds

n— oo 0

! D
- /O_(Usvg)ds""/o E(Usa(ps)ds'

As a consequence of Lemma 5.3 in the Appendix, we know that

E Han - amHgo,oo;T — 0.

Therefore, we can apply Proposition 3.5 to 4™ and pass to the limit and so we obtain that
this proposition remains valid in this case. Then, one can end the proof by repeating
the first part of Step 1 starting from Proposition 3.5.

We conclude thanks to the uniqueness of the solution of the obstacle problem ensuring
that @ is equal tou — 5.
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4 Maximum Principle for local solutions

We now introduce the lateral condition on the boundary that we consider:

Definition 4.1. If u belongs to H;,., we say that u is non-positive on the boundary of
O if u* belongs to Hr and we denote it simply: v < 0 on 0. More generally, if M is a
random field defined on [0,T] x O, we note u < M on 00 ifu — M <0 on 00.

4.1 1Ito’s formula for the positive part of a local solution

The following proposition represents a key technical result which leads to a generaliza-
tion of the estimates of the positive part of a local solution. Let (u,v) € Ric(&, f,9,h,S),
denote by u* its positive part. For this we need the following notations:

0 =1asop % 90 = Lus0yg°, B0 = Lpusoph?,

4.1)
f =150 (FOV0), €T =¢Vo0.

Proposition 4.2. Assume that 9O is Lipschitz and that u™ belongs to Hr, i.e. u is
non-positive on the boundary of O and that the data satisfy the following integrability
conditions

2
Bletl; < oo E(I5*l5,) < oo Ba"°ll3 0 < 000 B[10]3,, < oo,

foreacht > 0.
Let ¢ : R — R be a function of class C?>, which admits a bounded second order derivative
and such that ¢(0) = ¢’ (0) = 0. Then the following relation holds, a.s., for eacht € [0, T],

/Ogo(uzr(x))dx—l—/Oté‘(d(uj),uj)ds:/ (T (z dx—i—/ / (z)dzds
zd:/t/ o (ut (2))But (2)g' (x)dods + = / / ) Mgy, 50y hs(2) *deds
+Z / / )W (2)dwd B! + / / v(dwds). (4.2)

Proof. We consider ¢ € C°(0), 0 < ¢ <1, and put
Vit € [O,T], we = ¢Ut.

A direct calculation yields the following relation:

d )
dw; = Lwydt + fidt + Y 0igiydt + Y hj,dB] + ¢v(x, dt)

i=1 j=1
where
fr=¢fi =Y aij(0:0)(05u) = Y (0id)gis,
it = 0gis —ur Y a; ;050, hji = bl .

Now we prove that ¢v is a regular measure:
We know that:

Vo € Wi, /(—%,vs)ds—i—/g(go&vs)ds = //(p(s,m)du. (4.3)
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We replace ¢ by ¢p in (4.3), where ¢ is the same as before, and we obtain the following

relation: P
/( Q(;Sﬁe ds—|—/5qﬁtps, ds-//gzﬂpsx

Note that ¢ does not depend on ¢ and by a similar calculation as before, we get

/ka%ﬁm@+/ﬂ%¢m@+/Wmm@*/%W@ﬁﬁ://ﬂw%@

where
§ az] z¢ jvt kt—vt§ g, ]¢

We denote by z the solution of the following PDE with Dirichlet boundary condition and
the initial value 0:

dgt + Aitdt = tht + dZUk’tdt

If we set v = ¢v + Z, then v satisfies the following relation:

/Ot(%f,ﬁs)ds+/0t5(aps,ﬁs)d5/Ot/ogo(x’s)ddw'

It is easy to verify that v € P. Thus ¢v is a regular measure associated to v.

Hence, we deduce that (¢u, ¢v) satisfies an OSPDE with ¢¢ as initial data and zero
Dirichlet boundary conditions.

Now, we approximate the function ¢) : y € R — ¢(y*) by a sequence (z,,) of regular
functions. Let ¢ be a C* increasing function such that

Vy E] — 00, 1]7 C(y) =0 and vy € [27 +OO[, C(y) =1

We set for all n:
Yy € R, ¥n(y) = o(y)¢(ny).

It is easy to verify that (i,) converges uniformly to the function v, (3!,) converges
everywhere to the function (y — ¢’(y™)) and (¢/!/) converges everywhere to the function
(y = Tgy>0y¢” (y)). Moreover we have the estimates:

Vy e RY, neN*, 0<vn(y) <v(y), 0<4,(y) <Cy, [¥n(y)|<C, (4.4)

where C' is a constant. Thanks to It6’s formula for the solution of OSPDE (1.1) (see
Theorem 5 in [9]), we have almost surely, for ¢t € [0, T,

/wmmwﬂ-Emm¢mm=/mwmmWwf/mwmwwmw
—Z/ /z//’ (w4 (2)) D5 (2)g75 (& dxds+Z/ /w (1w, (2) . () dwd B2

//wug m4|mwﬁ//wwémwu@

Making n tends to +oo and using the fact that Iy, »o10;ws = O;wl
dominated convergence theorem:

/@mﬂmm+/¥ww9wbw=/<wf+ m+// (o)

B fromsisiona E i

/ / D)L, 50) s (@) dxds—i—/ / 6 (W (2))dv(z, ), as.
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Then we consider a sequence (¢,) in C°(0), 0 < ¢,, < 1, converging to 1 everywhere
on O and such that for any y € H}(0O) the sequence (¢,y) tends to y in H}(O) and

sup 1nyll 10y < Clyllmi o) »

where C is a constant which does not depend on y. Such a sequence (¢,,) exists because
00 is assumed to be Lipschitz (see Lemma 19 in [8]).

One has to remark that if i € {1,...d} and y € H}(O), then (y9;¢,) tends to 0 in L?(0).
Now, we set w,, = ¢,u and

= onfe =Y aij(0i6n)(@5ue) = > (Bidn)gin
92; = PnGit — Ut Zai,jaj¢7u /@Jt = ¢nhjt
Applying the above It6 formula to ¢(w;"), we get

/O ol (@)da+ [ (k). wh)ds = / (@) (1)) + / / Fo(w)dads

0

—Z/Ot/o "(wyy o (x)) 0wy, (2)gis(x d:vds+Z// ho(z)dzd B!

[t o)W oyl Pasds + [ [ ol @)ivte.s), o
0
(4.5)
We have
( Wh, s f;l Z 90 Wy, sglle = /(w:,s)¢nfs - Zai,jw/(w:,s)aj(bnaiu:—
+ Z ai ](P +a w a (bn - Z(@/(w;{s))gz,sa@n + wll(wr—;s)qsngi,saiwrts'
Remarking that for all s € (0,71, (¢n'(w,,)) (resp. (O0ipn¢’(w;!,))) tends to ¢'(uf)
(resp. 0) in H}(O) (resp. L*(O)) we get by the dominated convergence theorem the
convergence of all the terms in equality (4.5) excepted the one involving the measure

v. For this last term, we know that w,, is quasi-continuous and from (4.4) and (4.5) it is
easy to verify

st:lp /Ot/oqbn@’(wis(x))dz/(x,s) <C.

Then, by Fatou’s lemma, we have

// v(dzds) —hmlnf/ / ong' (W, (x))dv(z, 5) < +00, a.s.
n—oo

Hence, the convergence of the last term comes from the dominated convergence theo-
rem. O

4.2 The comparison theorem for local solutions
Firstly, we prove an It6 formula for the difference of local solutions of two OSPDE,
(ul,v') € Rioe(€', f1,9,h,8") and (u?,1?) € Rioc(€% %, g, h, S?), where (¢', f', g, h, ')
satisfy assumptions (H), (HIL), (OL) and (HOL). We denote by @& = u' —u?, ¥ = v! — 12,
§=¢'—¢% and
f(t,w,a:,y,z) = fl (t,w,x,eruf (x),z+Vuf ('L.)) - f (t W, ut ( ) Vut (l‘)),
g (tw,2,y,2) =g (tw,z,y+uf (), 2+ Vui (z)) - )

g(thut Vut
h(t,w,z,y,2) :h(t,w,x,y+uf (z),erVutz(a:)) —h(twx u? (x), Vu? (z

3
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Proposition 4.3. Assume that 00O is Lipschitz and that 4+ belongs to Hr. Let o : R —
R be a function of class C?, which admits a bounded second order derivative and such
that ¢(0) = ¢’ (0) = 0. Then the following relation holds for each t € [0,T],

/w(am»dw /t5<so’<aj>7aj>ds: | o€ @ao+ / [ @ o eydsas

_Z// N0 (@)gi()dwds + 5 // D), w0y s () Pdds

+Z// x)dxdBI + // x))0(dxds) a.s. (4.6)

Proof. We consider ¢ € C°(0), 0 < ¢ <1, and put
Vt € [O,T], 'uA)t == (bﬂt

From the proof of Proposition 4.2, we know that (¢u!, ¢v') and (¢u?, ¢?) are the solu-
tions of problem (1.1) with null Dirichlet boundary conditions. We have the It6 formula
for w, see Theorem 6 in [9]. Then we do the same approximations as in the proof of
Proposition 4.2, we can get the desired formula. O

We have the following comparison theorem:

Theorem 4.4. Assume that (¢, f' g,h,S"), i = 1,2, satisfy assumptions (H), (HIL),
(OL) and (HOL). Let (u',v%) € Riqc (€', f*,g,h, S?) ;i = 1,2 and suppose that the process

(u' — uz)+ belongs to Hr and that one has

E (Hfl (o u?, Vu?) — f2 (.,.,uQ’VUQ)H;t)z < oo, forall tel0,T].

IfFEY < €2 as., f! (t,w,uQ,Vu2) < f? (t w,u?, Vu ) dt ® dr ® dP-a.e. and S' < §2,
dt ® dx ® dP-a.s., then one has u'(t,x) < u?(t,z), dt ® dz ® dP-a.e.

Proof. Applying Itd’s formula (4.6) to (4)?, we have V¢t € [0,7],

/( dx—f—?/ E(( ds-/( dx+2/ / ) fo(, Gs(z), Vil () dads

—QZ/ /a )3 (2, 1y (), Vit (x )dxds+/ / a0 s (. i (2), Vi (2)) *dads

+2Z/ / o) (2, Gy (@ ),ws(x))ddeg'+2/0t/oaj(m)ﬁ(dxds), a.s. (4.7)

Remarking the following relation

//“" D (dxds) // Ht v (dads) // — 8% T12(dxds) <

The Lipschitz conditions in § and h and Cauchy-Schwarz’s inequality lead the following
relations: for 4, € > 0, we have

d t
Z/ /8¢ﬂj($)§i($,ﬂs(x),Vzls(x))da:ds§ (a+o)|[vat|?,, +e|
— Jo Jo -

. a2
“+||§,2;t +Ce | gu"OHz,z;t g
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and

t
J
Moreover, the Lipschitz condition in f the duality relation between elements in Ly ; and
Ly, (2.3) and Young’s inequality (2.11) yield the following relation:

a2
hu,O

2
ds < (B* +¢) HvaJrH;,2;t+CG| ‘2 2t

Mo, >0y hs (s, Vi)

A+H2
u 2,2:t + ce

2
~ 12 A, *
[ [ @ oo as < e[vat [, e 2, + o a1, +es (707
Since £(at) > A ||Vﬂﬂ|§, we deduce from (4.7) that for all ¢ € [0, 7], almost surely,
. g% 5 2 2 2 ca.0+||* 2
laflls + 2(A-a= G - o) Ivarla, < Je, + ollarl, +2es (o]
A1,0112 28 2 N
+ 2ec|[g"0; 0 + 0 || ‘2 gy T S¢e ||u+H§ o T 2My, (4.8)
where M; = ] 1 fo ( hi uS,Vus)) dBJ represents the martingale part. Further,

using a stopping procedure whlle taking the expectation, the martingale part vanishes,
so that

2 “ 2
E |ﬁzr||§ +2 (/\ —a— % - ;6> E ||Vﬁ+||§,2;t <E HngH2 fﬁ“f);t

2 t
h“OH ¥ 5c. / E
2,2t 0

Then we choose € = % ()\ —a— %2) sety =A—a— %2 and apply Gronwall’s lemma
obtaining

E|a

with F(8,6%, f10+, g0, b0, 1) = (JIE¥(|2 +2¢5 (|| 40+ [5,0) " +2¢c]| g%
As a consequence one gets

2
|u+H2,2t = Be, <6E

Now we return to the inequality (4.8) and take the supremum in time, getting

* 2 R
4205 (‘ fﬁmHM) + 2B [|g™|[; 5, + B | i[5 ds.

s HE Vit 5, < (0F

W2, + B[P (5,67 7200, 350,050, 0)]) e, @)

t

1R®113 2.1

E

|A+H9t +E [ (5,5*,f“ﬂgﬁ’o,hﬂ’o,t)]) (eSCEt ~1).  (@4.10)

A+H9t+F(6 §+ fu0+ ~ 10,0 huO )+506

W[5 oy < [+ 2500 M, (41D)

We would like to take the expectation in this relation and for that reason we need to
estimate the bracket of the martingale part,
. 2
|
2,25t

ﬂ+”§,oo;t +c (

with n another small parameter to be properly chosen. Using this estimate and the
inequality of Burkholder-Davis-Gundy we deduce from the inequality (4.11):

ol

(M)? <

Hh(a,va)” <n

2,25t

Vil + |

0 g0

|2,oo;t

(1-2Cppen) E|[at|; , <6E|a*|;, + E [F (5, £+, a0t g0, fzﬁ’o,t)}
(5Ce+2CBDGC77 EHU+HQQt+2CBDGCn HVu*H22t+2CBDGan‘h“O ’22t
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where Cpp¢ is the constant corresponding to the Burkholder-Davis-Gundy inequality.
Further we choose the parameter n = 40 and combine this estimate with (4.9) and
(4.10) to deduce an estimate of the form:

B ([|a* [y e + 98" [3 5, ) < 02 () B [[* |5, + cs (6,0 B [R (8,€F, F20F, 570,20, 1)

~ A - ~ £ 2 - ’
where R (5,§+,f“’0+7§”’0ahu’oat) = <H§+H + (’ 0-t>

and c3(0,t) is a constant that depends on § and ¢, while ¢» (¢) is independent of 4. Domi-
nating the term F |4 IIZ;t by using the estimate (2.4) and then choosing § = ﬁz(t) we
get the following estimate:

w0\ 2 2
o] |2 Fii 7,
B (Jo 196 a,) <200 e (J722) '+ )

This implies the desired result since £ < 0, f < 0 and §° = h° = 0. O

fa,o-i-

730 |

uOH
2,2;t

i 2
gU7OH2,2;t + ‘

4.3 Maximum principle

We first consider the case of a solution u such that « < 0 on 90.

Theorem 4.5. Suppose that Assumptions (H), (OL), (HIL), (HOL),(HI2p), (HOoop)
and (HD6p) hold for some 6 € [0,1[, p > 2 and that the constants of the Lipschitz
conditions satisfy

a+ ; +726% < .
Let (u,v) € Rioe (€, f, 9, b, S) be such that u™ € Hr. Then one has
Bty < kOBl = SolZ + (17 5,07 + (gl F + ([R50 %
+ u<sa>+u; + (| J)

0;t
where k (t) is constant that depends on the structure constants and t € [0,T].

z +(|||hl2

Proof. Set (y,') = R(¢T, f, g, h, S) the solution with zero Dirichlet boundary conditions,
where the function f is defined by f = f+ f%~, with f®~ = 0V (- f°). The assumption on
the Lipschitz constants ensures the application of Section 3, which gives the following
estimate :

Elly = 8% o0 < ROE(IE" = Soll% + (17l + (g Pl ) + (A 6,0%)

where fOt = fO — f/ = O+ _ /. On the boundary, y = 0 and v < 0, hence, u — y < 0
on the boundary, i.e. (u —y)* € Hr. Moreover, the other conditions of Theorem 4.4
are satisfied so that we can apply it and deduce that u — S’ < y — S’. This implies that
(u—S")" < (y—S5")" and the above estimate of y — S’ leads to the following estimate:

B [(w = S* % e < ROBE" = ol + (17 lg)” + (N8 Pllg)® + IR 15,0%)

with the estimate of S’

BI(S) 2, e < OB SO + (| £ )7+ (g Pl E + (IR E 5,05,
Therefore,
Bl o < k@e@E([" = Spl% + (7507 + U Pl50 % + AIRPIG)

+ H(S@ﬂ&ﬂl!f*Hew<|||g'|2u;t>% + (P50 %5).
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Let us generalize the previous result by considering a real It6 process of the form

t F+oo ¢ )
Mt:m—i—/ bsds—i—Z/ 0;..dB7
0 =170

where m is a random variable and b = (b;);>0, ¢ = (01,4,...,0n4,...)t>0 are adapted
processes.

Theorem 4.6. Suppose that Assumptions (H), (OL), (HIL), (HOL),(HI2p), (HOcop)
and (HDOp) hold for some 6 € [0,1[, p > 2 and that the constants of the Lipschitz
conditions satisfy

2
a+7+72[32<)\.

Assume also that m and the processes b and o satisfy the following integrability condi-
tions

p(1-0)

t . p(1-0) t ) 2
E|m|’ < oo, E(/ |b5|19ds> < 00, E(/ |0’S|19d8> < 00,
0 0

for each t € [0,T)]. Let (u,v) € Rioe (&, f,9,h,S) be such that (u — M)* belongs to Hr.
Then one has

Bl L, < k@B m* - mlE + (17];,)"
= (aerly,) + (herl,) + s =mtlz, @iz
4 A\ ! * 5 ’ * £
(=t l)"+ (NPl " + (= o2[15,) "

where k (t) is the constant from the preceding corollary. The right hand side of this
estimate is dominated by the following quantity which is expressed directly in terms of
the characteristics of the process M,
* g —n2 * g
)+ (Iwrl;,)
0;t 0;t

c@mmmm+mﬁ—w&wMi+mﬂﬂmY+QWW
)"+ ()

. \P )
A
0;t> * <H|g |
t ) p(1-0) t ) 239
—I—(/ bsleds) +</ |0’s|19d5) ]
0 0

Proof. One immediately observes that u — M belongs to Ry (£ —m, f,§,h, S — M),
where

st - my i+ ([l

f(t7w7x7yvz) = f(t7w7$7y+Mt (UJ) 7Z+VMt(OJ)) - bt (OJ),
h(tawaxayaz) = h(t7w71'ay+Mt (w)72+th(W)) — Ot (w)

In order to apply the preceding theorem we only have to estimate the zero terms of the
following functions:

Flt.w,m,y,2) = ft.w,z,y+ 5 = M,z + V(8 = M) = f'(t,w,2) + by (w),

§(t7w7‘r7y7 Z) = g (t7 w7 x’y + S/ - M’Z + V(Sl - M)) - gl(t7w7x)7
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E(taw7xvyaz) = k(tawaxay+ S/ - M,Z + V(S/ - M)) - h’(t,w,a:) +0’t(W)-
So we have:
fO=JiS' = M,V(S' = M) — fi + b, = fu(S'.VS) — fi = [°,
3 =g(S' =M, V(S = M) — g, = (S, VS) — g, = g,
hY = hy(S" — M,V(S8' — M)) — h} +or = hy(S',VS') — h, = h°.

Therefore, applying the preceding theorem to v — M, we obtain (4.12).
On the other hand, one has the following estimates:

—0
(/ |b|19ds> ]
I 2| g n20* % ! ﬁ e
I = allls ) < e | (10 Rll5,) " + (] lool ™ ds .
' 0

This allows us to conclude the proof. O

i b%ﬁc“!f

5 Appendix

In this section, we prove some technical lemmas that we need in the Step 2 of the proof
of Theorem 3.2. For simplicity, we put, for fixed n < m, 4 := 4" — ua"™, f =" =&,
f(t W, T,Y,2) = fnm(t w,z,y,z) and similar for § and h. Note that in this step, the
initial values ¢ and f°, §°, h° are assumed to be uniformly bounded.

The next Lemma ensures the L'-integrability of 4 with respect to both dt ® dx ® dP and
(v™ +1v™) ® dP and will allow us to pass to the limit and therefore get an Ito formula for
al.

Lemma 5.1. Denote

<= e

70

V[l

Then there exist constants ¢, ¢ > 0 which only depend on K, C, «, 3 such that, for all
reall > 2, one has

(]R+><Q><O) v

Vg | .
L>(Qx0) L> (R4 xQ2x0O) L> (R4 xQx0)

E/ iy () |'d < K211 — 1)Ut (5.1)
(@]
t
E/ / i ()2 | Vit () [2dads < ¢ K2eel0-D (5.2)
0o JoO
and .
E/ / s ()"0 + ™) (dzds) < +oo. (5.3)
0o JO

Proof. Beginning from the It6 formula for the difference of solutions of two obstacle
problems which has been proved in [9]: we take the same ¢,, as in the proof of Lemma
3.4,

/@n(ﬁt(fﬂ))dfﬁ + /Ot(cf(tpn(ﬁsLQS) ds:/ d:zc—i—/ / o (@ (s, 2) deds

_Z// ()))gbsxdl‘dS‘FZ//(pn hj(s, x) dezdBI

+;§_; / [ et iEs.a)deds + / [ i) " —vmdzds), e

(5.4)
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The support of v™ is {#" = S} and the support of v is {&™ = S}, so the last term is
equal to

/Ot /0 o (Ss(z) —al(x)) v (dx ds) — /Ot /(9 on (@2 (z) — Ss(x)) v (dx ds)

and the fact that ¢!, (x) < 0, when 2 < 0 and ¢/,(z) > 0, when z > 0, ensure that the last
term is always negative.
By the uniform ellipticity of the operator A, we get

(), i) = A [ ()| Vi do.
@]

Let € > 0 be fixed. Using the Lipschitz condition on f and the properties of the functions
(¢n)n we get

|20, (@) [ 1f (5, 2)] < U (its) + 1) |01+ (O + co) s PPy (ias) + ey (@) V (@)

Now using Cauchy-Schwarz’s inequality and the Lipschitz condition on § we get
Zw ) §(s,2) S U= 1)eek® + 2e (K2 + C*)I( = Dpn ()] + (o + €) ¢ ()| V (1) .
In the same way as before

Z@ ) < 260(1— K2 + 2L (K? 4+ C2I( — Vg (i) + (14 €) B s (1) |V (i) [

Thus taking the expectation, we deduce

E/O@n(ﬁt(x))d:c—k()\—%(l—i—e)ﬂ (a + 2€) E/ / o) |V (i) |* da ds

< U - 1)K + (- 1)(K? + C? +C+c€)E/O /Ogan(ﬂs(x))da: ds.
On account of the contraction condition, one can choose ¢ > 0 small enough such that

)\—%(1+e)627(a+26) >0
and then
E /Ogon(ﬁt(x))dx < cKA(—-1) + cd(l-1)E /Ot/ocpn(ﬁs(x))dxds.
We obtain by Gronwall’s Lemma, that
E /@ on(te(2)) dz < e K21(1— 1) exp (cl(l — 1) ¢),
and so it is easy to get
/ / ) |Vis[*deds < ¢ K*L(1—1) exp (cl(I —1)¢t).

Then, letting n — oo, by Fatou’s lemma we get (5.1) and (5.2).
From (5.4), we know that

[ [ tatenr v < ¢
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Moreover,

- [ [ htaann - vmasas
- -/ t [ uisita) v s + t [ etz = Sufa)) vidnds)
jﬁtj£)¢;<u?<w>—-Ss@»>u”<dxds>+—]€t/;vﬁxuz<x>——5&<x>>um<dxds>

By Fatou’s lemma, we obtain

//|U S(@)" 7" (dods) + //Iu o(@) |7 (dads) < +o0, a.s.

which implies (5.3). O

Lemma 5.2. One has the following formula for u: Vt > 0, almost surely,

L@l o [ & (1) sqnlis), d,) ds = /.
Jrl//sgnus lag(2)]"" f(s,2) dads —1(1 — 1) Z/ / i ()| 2 03 (s (2)) Gi (5, @) da: ds
+ Z/ / sgn(isy) Jits ()]~ (s, ) ddeng% z_:/o /O|ﬁs(x)|l_2 B2 (s,z,) de ds

+l//sgn (is) s ()71 (0! = v?)(d ds) .

S
f(x)’ dx

(5.5)

Proof. From the It0 formula for the difference of two solutions (see Theorem 6 in [9]),
we have P-almost surely for all ¢ € [0,7] and n € IN*:

| ealint@)do + /Ots(san« ), @ )dr/ W(E(2))d

//(p" (t5(2) f(5,) dmds_Z// ©))0is () Gi(s, x) dx ds

+Z//<pnus (s, ) dedBI + Z// " (sx)d:z:ds

//% (! — v2)(dads).

Then, passing to the limit as n — oo, the convergences come from the dominated con-
vergence theorem and the previous lemma. O

Similar as before, we define the processes ¢ and ¢’ by

Dy 1 = sup (/ |is|" da + ~1 (1—1)/ / i, "2 |V, 2 dmdr)
s<t (@] 0 (@]

Al Ak 2 Al 70 * Al—1
Oy 1= &l dx+1%cq ||]4 +1||f U
O 1,15t 0,t 05t
N B * =
o <02| | O|2||9t+c3H|hO|2H6~t> " 2’%’
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where above and below 7, ¢1, c2 and c3 are the constants given by relations (3.11).
We remark first that the last term in (5.5) is non-positive, indeed:

/ / sgn(is) |Ss — u?(:Jc)‘F1 (vt — v?)(dx ds)
0o Jo
= / / sgn(Ss —ul) S — ug(z)|l_1 v!(dx ds)
0o Jo
—/ / sgn(ug — Ss) |ul(z) — Ss(yc)‘F1 v2(dz ds) < 0.
0o Jo

Then applying the same proof as the one of Lemma 3.8, we obtain:

7E sup (/ i dx+vl(l—1)/ / |ar|l_2var|2dxd7")
0<s<t \JO o Jo

Al
< E/ ‘g‘ dm+l2c1E‘ |a|lH |a\l‘1H
O

+lEHfO

*
1,15t 0.t

‘g0|2”;;t + €3 H|BO|2H0;t) ‘

o;t

+ l2E (CQ ’

L 1—2
@] He '

it
and this yields that the process 70 is dominated by ©’.
Starting from here, we can repeat line by line the proofs of Lemmas 15-17 in [5] and ap-
ply the Moser iteration as at the end of Subsection 3.1 to obtain the desired estimations,
namely:

Lemma 5.3. There exists a function ks : R — R4 which involves only the structure
constants of our problem and such that the following estimate holds
<2
2
9;t> '

Lemma 5.4. There exists a function k; : Ry x Ry — R4 which involves only the
structure constants of our problem and such that the following estimate holds

ok
0;t
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