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Strong approximation of the empirical distribution
function for absolutely regular sequences in R’
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Abstract

We prove a strong approximation result with rates for the empirical process asso-
ciated to an absolutely regular stationary sequence of random variables with val-
ues in R?. As soon as the absolute regular coefficients of the sequence decrease
more rapidly than n'~? for some p €]2, 3], we show that the error of approximation
between the empirical process and a two-parameter Gaussian process is of order
n'/?(logn)*?® for some positive \(d) depending on d, both in I and almost surely.
The power of n being independent of the dimension, our results are even new in the
independent setting, and improve earlier results. In addition, for absolutely regular
sequences, we show that the rate of approximation is optimal up to the logarithmic
term.
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1 Introduction

Let (X;);cz be a strictly stationary sequence of random variables in R¢ equipped
with the usual product order, with common distribution function F'. Define the empirical
process of (X;);cz by

Rx(s,t)= Y (lx,<s—F(s)),s€R? teR". (1.1)

1<k<t

In this paper we are interested in extensions of the results of Kiefer for the process
Rx to absolutely regular processes. Let us start by recalling the known results in
the case of independent and identically distributed (iid) random variables X;. Kiefer
(1972) obtained the first result in the case d = 1. He constructed a continuous centered
Gaussian process K x with covariance function

E(Kx(s,t)Kx(s',t")) = ¢ At')(F(sAs") = F(s)F(s"))
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Strong approximation for the empirical process

in such a way that

sup  |Rx(s,[nt]) — Kx(s,[nt])| = O(a,) almost surely, (1.2)
(s,t)ERX[0,1]

with a, = n'/3(logn)?/3. The two-parameter Gaussian process Kx is known in the
literature as the Kiefer process. Csorgo and Révész (1975a) extended Kiefer’s result
to the multivariate case. For iid random variables with the uniform distribution over
[0,1]%, they obtained (1.2) with a,, = n(**1/(4+4)(logn)?. Next they extended this result
to iid random variables in R? with a density satisfying some smoothness conditions (see
Csorgo and Révész (1975b)).

In the univariate case, a major advance was made by Komlds, Major and Tusnady
(1975): they obtained (1.2) with a,, = (logn)? (we refer to Castelle and Laurent-Bonvalot
(1998) for a detailed proof) via a new method of construction of the Gaussian process.
Concerning the strong approximation by a sequence of Gaussian processes in the case
d = 2, Tusnady (1977) proved that when the random variables X; are iid with uni-
form distribution over [0, 1]?, then one can construct a sequence of centered continuous
Gaussian processes (G,,),>1 in R? with covariance function

Cov(Gn(s),Gn(s")) = n((s1 Asy)(s2 A sy) — 81828785),
with s = (s1, $2) and s’ = (s, s5), such that

sup |Rx(s,n) — Gn(s)] = O(log*n) almost surely. (1.3)
s€[0,1]2

Adapting the dyadic method of Komlds, Major and Tusnady (sometimes called Hun-
garian construction), several authors obtained new results in the multivariate case. For
iid random variables in R? with distribution with dependent components (without regu-
larity conditions on the distribution), Borisov (1982) obtained the almost sure rate of ap-
proximation O(n(?~1)/(24=1)]ogn) in the Tusnady strong approximation. Next, starting
from the result of Borisov (1982), Csorgo and Horvath (1988) obtained the almost sure
rate O(n(2¢=1/(44)(1ogn)3/?) for the strong approximation by a Kiefer process. Up to our
knowledge, this result has not yet been improved in the case of general distributions
with dependent components. For d > 3 and Tusnady’s type results, Rio (1994) obtained
the rate O(n(?~1/(49)(logn)!/?) for random variables with the uniform distribution or
more generally with smooth positive density on the unit cube (see also Massart (1989)
in the uniform case). Still in the uniform case, concerning the strong approximation by
a Kiefer process, Massart (1989) obtained the almost sure rate O (n®/(2¢+2)(logn)?) for
any d > 2, which improves the results of Csérgé and Révész (1975a). In fact the results
of Massart (1989) and Rio (1994) also apply to Vapnik-Chervonenkis classes of sets with
uniformly bounded perimeters, such as the class of Euclidean balls. In that case, Beck
(1985) proved that the error term cannot be better than n(¢~1/(29)  Consequently the
result of Rio (1994) for Euclidean balls is optimal, up to the factor v/logn. However,
there is a gap in the lower bounds between the class of Euclidean balls and the class of
orthants, which corresponds to the empirical distribution function. Indeed, concerning
the lower bounds in Tusnady’s type results, Beck (1985) showed that the rate of approx-
imation cannot be less than c¢4(log n)(dfl)/ 2 where ¢y is a positive constant depending on
d. To be precise, he proved (see his Theorem 2) that when the random variables X; are
iid with the uniform distribution over [0, 1], then for any sequence of Brownian bridges
(Gn)n21 in Rd,

P( sup |Rx(s,n) = Gn(s)| < callogn)/2) <o

s€[0,1]¢
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Beck’s result implies in particular that, for any n > 2,

(1ogn)<1*d>/2E( sup \Rx(s,n)—Gn(sﬂ) > ca)2. (1.4)

s€[0,1]¢

The results of Beck (1985) motivated new research in the multivariate case. For the
empirical distribution function and Tusnady type results, Rio (1996) obtained the rate
O(n®/12(logn)*?) for random variables with the uniform distribution, where c(d) is a
positive constant depending on the dimension d, without the help of Hungarian con-
struction. Here the power of n does not depend on the dimension: consequently this
result is better than the previous results if d > 7. It is worth noticing that, although this
subject has been treated intensively, up to now, the best known rates for the strong ap-
proximation by a Kiefer process in the multivariate case are of the order nt/3 for d = 2,
up to some power of logn, even in the uniform case. Furthermore these rates depend
on the dimension, contrary to the result of Rio (1996) for Tusnady type approximations.

We now come to the weakly dependent case. Contrary to the iid case, there are
only few results concerning the rate of approximation. Up to our knowledge, when
(X;)iez is a geometrically strongly mixing (in the sense of Rosenblatt (1956)) strictly
stationary sequence of random variables in R¢, the best known result concerning rates
of convergence, is due to Doukhan and Portal (1987) stating that one can construct
a sequence of centered continuous Gaussian processes (G,),>1 in R? with common
covariance function

Als,s') = Cov(lxy<s, Ix,<o),
kEZ
such that the Ky-Fan distance between {n~'/2Rx(s,n),s € R%} and {G,(s),s € R%} is
o(n~®) for any a < 1/(15d + 12). In their paper, they also give some rates in case of
polynomial decay of the mixing coefficients. Concerning the strong approximation by a
Kiefer process in the stationary and strongly mixing case, Theorem 3 in Dhompongsa
(1984) yields the rate O(n'/?(logn)~*) for some positive )\, under the strong mixing
condition «,, = O(n~%) for some a > 2 + d, improving slightly previous results of Phillip
and Pinzur (1980) (here A\ depends on a and d).

Strong mixing conditions seem to be too poor to get optimal rates of convergence.
Now recall that, for irreducible, aperiodic and positively recurrent Markov chains, the
coefficients of strong mixing and the coefficients of absolute regularity are of the same
order (see for example Rio (2000), chap. 9). Since absolute regularity is a stronger
condition, it is more convenient to consider absolute regularity, at least in the case of
irreducible Markov chains. Let

BAB) = Jsp { 33 [P(A; 1 By) ~ P(4)R(B,)]},

il jeJ

the maximum being taken over all finite partitions (4;);cr and (B;);cs of Q respectively
with elements in .4 and B. For a strictly stationary sequence (X )rez, let Fo = o(X;,4 <
0) and Gy = o(X;,t > k). The sequence (Xi)rez is said to be absolutely regular in the
sense of Rozanov and Volkonskii (1959) or f-mixing if

Bn = B(Fo,Gn) = 0, asn — co.

Concerning the strong approximation by a Kiefer process in the stationary and g-mixing
case, Theorem 1 in Dhompongsa (1984) yields the rate O(n(l/z)*A) for some positive A,
under the assumption 8, = O(n~%) for some a > 2 + d. Nevertheless this mixing
condition is clearly too restrictive and )\ is not explicit.
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We now come to our results. For absolutely regular sequences, the finite dimen-
sional convergence of {n"'/2Rx(s,n) : s € R?} to a Gaussian process holds under the
summability condition },.,/r < oo, and this condition is sharp. Rio (1998) proved
that this summability condition also implies the functional central limit theorem for
{n=Y2Rx(s,n) : s € R%} in the sense of Dudley (1978) for any d > 1. Assume now that
the stronger -mixing condition

Bn = O(nl_p) for some p > 2 (1.5)

holds true. In Section 2, we shall prove that, in the case d = 1, one can construct a
stationary absolutely regular Markov chain satisfying (1.5), whose marginals are uni-
formly distributed over [0, 1], and such that, for any construction of a sequence (G,)n>0
of continuous Gaussian processes on [0, 1],

liminf(nlogn)_l/pE< sup [Rx(s,n)— Gn(5)|) >0.

n—oo 86(071]

Concerning the upper bound, Dedecker, Merlevede and Rio (2013) obtain a strong ap-
proximation by a Kiefer process under a weak dependence condition which is implied
by the above condition, with a power-type rate O(n(l/ 2)‘5) for some positive § depend-
ing on p. Nevertheless their result holds only for d = 1 and the value of § is far from
the optimal value (1/2) — (1/p). This gap motivates the present work. In Section 3, we
prove that, if (X;);cz is a strictly stationary sequence of random variables in R? sat-
isfying (1.5) for p €]2, 3], there exists a two-parameter continuous (with respect to the
pseudo metric defined by (3.1)) Kiefer type process K x such that

B( sup  |Rx(s,[nt)) - Kx(s, [nt])]) = O(n'/*(logn)*®).
seR4,t€(0,1]

We also prove that, for another Kiefer process K,

sup |Rx (s, k) — Kx(s, k)| = O(n'/P(logn)¥+=+1/P)  almost surely, for any ¢ > 0.

seRd
k<n

More precisely, the covariance function I'x of Kx is given by

Ix(s,s',t,t') = min(¢t,t')Ax(s,s") where Ax(s,s') = Z Cov(lx,<s,1x,<s). (1.6)
kEZ

Our proofs can be adapted to iid random variables with values in R? and arbitrary
distribution function, for any d > 2, yielding the error term in the strong approximation
O(n'/3(logn)=+(2¢+4)/3) in the almost sure strong approximation by a Kiefer process.
This result improves the results of Csérgo and Horvath (1988) for general distributions
as soon as d > 2 and the result of Massart (1989) concerning the specific case of the
uniform law as soon as d > 3 (recall that Massart’s rate is O(n'/?(logn)?) for d = 2 and
O(n®/%(logn)?) for d = 3).

We now describe our methods of proofs. We shall apply the conditional version of
the transport theorem of Kantorovich and Rubinstein (1958) to the trajectories to get
a bound on the error. However, in the dependence setting, we do not apply the trans-
port theorem directly. Indeed, we start by approximating the initial process Rx by
a Gaussian process with the same covariance structure as Rx, using the conditional
Kantorovich-Rubinstein theorem applied in the space of trajectories, together with the
Lindeberg method. Next, we use a martingale method to approximate the Gaussian pro-
cess by the Kiefer process. This step is due to the fact that the Lindeberg method in the
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space of trajectories applies only to processes with the same covariance structure. In
all these steps the error terms can be bounded by n!/? up to some power of log n, which
leads to the (nearly) optimal rates of convergence for absolutely regular sequences.
Note that the Lindeberg method in the space of trajectories was introduced by Sakha-
nenko (1988) in the real case to bound up the Prokhorov distance between the partial
sum process and the Brownian motion. This result was then extended to random vec-
tors in Banach spaces by Bentkus and Lyubinskas (1987) using smoothing techniques
introduced by the first author in his doctoral dissertation. Later, Sakhanenko (2000)
improved the results of Bentkus and Lyubinskas (1987) in the specific case of the IL.*>°-
norm, yielding efficient estimates under some assumptions on the moments of order
two and three of the Euclidean norms of the random vectors. Sakhanenko (1988, 2000)
also gives some results for martingale differences under very restrictive assumptions
on the conditional moments of order two. In our opinion, the smoothing technique used
in Sakhanenko (2000) is not suitable in the dependent case. Indeed the assumption
on the conditional moments cannot be relaxed. It is noteworthy to indicate that Gotze
(1986) and Borisov (1988) used the Lindeberg’s operators method to derive rates of
convergence in the central limit theorem for smooth functionals (at least three times
Fréchet differentiable) of the partial sum process associated with independent Banach-
space-valued random elements.

Our paper is organized as follows. In Section 2 we give an example of absolutely
regular process for which we can derive lower bounds for the rates of approximation
by any continuous Gaussian processes. In Section 3 we formulate our main results
concerning the upper bounds for the rates of approximation both in the dependent
setting and in the independent one. The proofs of these results are given in Sections
4 and 5. Section 6 is devoted to the very technical proofs of key intermediate lemmas
leading to our main results. Finally, in Section 7 we collect some auxiliary assertions
and general facts.

2 Lower bounds for the rate of approximation

In this section, we give an example of a stationary absolutely regular Markov chain
with state space [0,1] and absolute regularity coefficients f; of the order of k'~ for
p > 2 which has the following property: with probability one, the error in the strong
approximation by Gaussian processes is bounded from below by (nlog n)l/ P, for any
construction of a sequence of continuous Gaussian processes, whereas the LL!-error is
bounded from below by n!/?.

Theorem 2.1. For any p > 2, there exists a stationary Markov chain (X;);cz of random
variables with uniform distribution over [0,1] and S-mixing coefficients (8, )n>0, such
that:

(i) 0 <liminf, ,;onP™'f, <limsup,_, P16, < occ.

(ii) There exists a positive constant C' such that, for any construction of a sequence
(Gn)n>o of continuous Gaussian processes on [0, 1]

(a) lim infnf””]E( sup |Rx(s,n) — Gn(s)|> > 0.
n—00 5€(0,1]
Furthermore
() limsup(nlogn)~Y? sup |Rx(s,n) — Gn(s)| > 0 almost surely.
n— 00 s€(0,1]
EJP 19 (2014), paper 9. ejp.ejpecp.org
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Before proving this result, we give a second theorem, which proves that the strong
approximation of partial sums of functionals of the chain holds with the same error
term.

Theorem 2.2. Let (X;);cz be the stationary Markov chain defined in Theorem 2.1 and
let f be a map from [0,1] to R, with continuous and strictly positive derivative f' on
[0,1]. Let

Su(f) =D F(Xk) —n/ ft)dt.
k=1 0

Then the series Var f(Xo) +23 .., Cov(f(Xo), f(Xy)) is absolutely convergent to some
nonnegative o2(f). Furthermore, for 2 < p < 3 and any positive ¢, one can construct a
sequence of iid Gaussian random variables (g},)r~0 with law N (0,02(f)) such that

(a) Sn(f) — Z g5, = o(n*'?y/logn(loglog n)1+2)/P) almost surely.
k=1

In addition, for any p > 2 and any stationary and Gaussian centered sequence (gi)kcz
with convergent series of covariances,

Sn(f) — ng’ > 0 almost surely.
k=1

(b) lim sup(n logn)~1/?

n—oo

Note that Part (a) of this theorem was proved in Merlevede and Rio (2012). Part
(b) proves that the result in Merleveéde and Rio (2012) is optimal up to the factor
(logn)(1/2=(1/P)(loglogn)1+)/P, 1t is worth noticing that the power of the logarithm
in the loss tends to 0 as p tends to 2.

Proof of Theorem 2.1. The sequence (X,);cz is defined from a strictly stationary
Markov chain (&;);cz on [0,1] as in Rio (2000), Section 9.7. Let A be the Lebesgue
measure, ¢ = p — 1 and v = (1 4 a)xz%1 ;;\. The conditional distribution I1(x,.) of &, 1,
given (&, = z), is defined by

M(z,.) =1(,.) = (1 — )0, + 2V,

where ¢, is the Dirac measure at point 2. Then the S-mixing coefficients (8,)n>0 of
the stationary chain (;);cz with transition probability II(z, .) satisfy (i) of Theorem 2.1
(see Rio (2000), Section 9.7). Moreover, the stationary distribution 7 has distribution
function F(z) = x*, and consequently setting X; = (¢ we obtain a stationary Markov
chain (X;);ez of random variables with uniform distribution over [0, 1] and adequate
rate of S-mixing. Define then the empirical measure P, by

P, = nt zn:(le .
i=1

The regeneration times (7})x of the Markov chain (;);cz are defined by induction
as follows: Ty = inf{n > 0 : &, # & -1} and Ty, = inf{n > Ty_1 : & # &.—1}. Let
Tk = Tx4+1 — Ty It follows that the empirical measure at time T}, — 1 satisfies the equality

k—1
(T}C—l)PTk,1 = (T0_1)5X0+ZTj6XTj . 2.1)
§=0
Consequently, for n > T}, — 1 the maximal jump of Rx (s,n) is greater than

A= max Tj.
Jj€[0,k—1]
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Next, from the continuity of G,,, forn > T}, — 1,

D,, := sup |Rx(s,n)— Gnp(s)| > Ax/2. (2.2)
s€(0,1]

Now the sequence (Ay)y is a nondecreasing sequence of positive integers. Notice that
the random variables (¢{1,,7x) are independent and identically distributed. Moreover
&7, has the distribution v and the conditional distribution of 7, given ({7, = x) is the
geometric distribution G(z). Hence,

P(A <m) = (P(ro <m))*,

and
P(ro >m) = (1 Jra)m*l*“/ (1—y/m)™y*dy ~ (14+a)['(1+a)m™ '~ asm 1 oo. (2.3)
0

From the above facts, it follows that
E(Ap) = Y P(Ap >m) > kP (2.4)
m>0

In the same way, one can prove that
1Ak ]| 24ay/2 < Cpk*™. (2.5)

Here ¢, and C,, are positive constants depending only on p.
Now, by the strong law of large numbers 7}, /k converges to IE(7y) almost surely, and

therefore in probability. Consequently, for k& = k,, = [n/(2E(7))],
lim P(n < Ty, —1)=0.

n—oo

Now
2E(Dy,) > E(Ak, Lo>1,, 1) = E(Ay,) = 1Ak, | 250 (P(n < Ty, — 1)) .

From (2.5), (2.4) and the above inequality, we get that, there exists some positive con-
stant C' (depending on p) such that, for n large enough, E(D,,) > Cn'/?, which com-
pletes the proof of (a) of Theorem 2.1.

To prove (b), we note that, by (2.3),
P(rp > (kInk)P) ~ ¢,/ (klogk). (2.6)

Since the regeneration times 7, are independent, by the converse Borel-Cantelli lemma,
it follows that
P(7, > (klog k)Y infinitely often ) = 1. (2.7)

Hence, by (2.2),
limsup(nlnn)~Y?Dy 1 > (1/2) almost surely.

Both this inequality and the strong law of large numbers for 7;, then imply (b) of Theo-
rem 2.1.

Proof of Theorem 2.2. Letbbe arealin]0,1]suchthat f(b) < fol f(t)dt (note that such
a positive b exists). With the same notations as in the proof of the previous theorem, the
random variables (X7, , 1) are independent and identically distributed, and
mb/®
P(rg > m, X1, <b)=(1+ a)mfl*“/ (1 —y/m)™y*dy
0
~(1+a)(1+a)m ' asm 1 co.
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Consequently, by the converse Borel-Cantelli lemma,
P(7, > (klog k)P and X7, < b infinitely often ) = 1. (2.8)

Since T,,/n converges to [E(7y) almost surely, it follows that, for some positive constant
¢ depending on E(7),

n+[c(nlogn)t/?]
lim sup > (f(b) — f(X;)) > 0 almost surely. (2.9)
n i=n+1

Consider now a stationary and Gaussian centered sequence (gx)recz With convergent
series of covariances. If follows from both the Borel-Cantelli lemma and the usual tail
inequality for Gaussian random variables that, for any positive 6,

n+[c(nlogn)t/?]
lim inf Z (g; +60) > 0 almost surely.
1=n-+1

Taking 6 = ( fol f(t)dt — f(b))/2 in the above inequality, we then infer from the two above
inequalities that

n+[c(nlogn)t/?

] 1
1
lim sup (gi +/ f(t)dt — f(Xi)) > 0 almost surely,
0

oo [c(nlogn)!/7] 2

1=n+1

which implies Theorem 2.2.

3 Upper bounds for the rate of approximation

In this section, we state the main result of this paper, which is a Kiefer type ap-
proximation theorem for absolutely regular sequences. In all this section, we assume
that the underlying probability space (2,.A,P), is rich enough to contain a sequence
(Ui)iez = (mi, i, vi, €;)icz of iid random variables with uniform distribution over [0, 1],
independent of (X;)icz.

Theorem 3.1. Let (X;);cz be a strictly stationary sequence of random variables in R¢.
Let F; be the distribution function of the j-th marginal of Xy. Assume that the absolutely
regular coefficients of (X;);cz are such that 3, = O(n'~P) for some p €]2,3]. Then

1. for all (s, s') in R??, the series Ax(s,s’) defined by (1.6) converges absolutely.

2. For any (s,s') € R*? and (t,t') in R x R, let I'x(s,s’,t,t') = min(¢,t")Ax (s, s').
There exists a centered Gaussian process K x with covariance function I' x, whose
sample paths are almost surely uniformly continuous with respect to the pseudo

metric d
A(s,1),(,£0) = |t = #1+ 3 |Fy(s) = F(55). @)
j=1
and such that !
(a) E<sel}§}ll,rl)c§n |Rx (s, k) — Kx(s, k)\) O (logm) @) |

Furthermore, one can construct another centered Gaussian process Kx with the
above covariance function in such a way that

(b)  sup |Rx(s, k) — Kx(s,k)| = O(n*P(logn)MD+e+1/P) as, foranye >0
s€R?, k<n

In both items A(d) = (41 +2 = 2E4) 105 50+ (2+ %) 1.

EJP 19 (2014), paper 9. ejp.ejpecp.org
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From the above theorem, in the independent setting, the error in the I.' approxima-
tion is bounded up by n'/3(logn)?+4%/3, whereas the almost sure error is bounded up by
n'/3(logn)=tO+4)/3  for any ¢ > 0. However, in that case, the powers of logn can be
improved as follows.

Theorem 3.2. Let (X;);cz be a sequence of independent and identically distributed
random variables in R?. Then one can construct a centered Gaussian process Kx with
covariance function

[x(s,s',t,t') = min(t,t')(F(sAs’)—F(s)F(s")) where s A s’ = (min(sy, s}),...,min(sq4, s5)),

whose sample paths are almost surely uniformly continuous with respect to the pseudo
metric d defined in (3.1), and such that

(a) B( sup  [Rx(s,k) = Kx(s,k)]) = O(n'/*(logn) 273,
s€ER?, k<n

Furthermore, one can construct another centered Gaussian process K x with the above
covariance function in such a way that
(0)

sup  |Rx (s, k) — Kx(s, k)| = O(n*/3(logn)+(24+9/3) almost surely, for any e > 0.

s€R?, k<n

Recently, Merlevede and Rio (2012) obtained efficient strong approximation results
for partial sums of real-valued random variables. In the bounded case, under the mixing
condition 3, = O(nl‘p), they obtain in their Theorem 2.1 (see Item 1(b)) the rate of
almost sure approximation O(n'/?(logn)(1/2)%¢), According to the results of Section 2,
the power of n cannot be improved, contrary to the previous papers on the same subject.
Starting from Theorem 3.1, we can derive an extension of this result to partial sums of
random vectors in R¢, in the same way as Borisov (1983) derives strong approximation
of partial sums from the strong Kiefer approximation of Komlés, Major and Tusnady.

Corollary 3.1. Let (X;);cz be a strictly stationary and absolutely regular sequence
of bounded random vectors in R?. Assume that its absolutely regular coefficients are
such that 8, = O(n'~P) for some p €]2,3]. Then the series of covariance matrices
> rez Cov(Xo, Xy) is convergent to a non-negative definite symmetric matrix I'. Fur-
thermore, there exists a sequence (Z;);>1 of iid random vectors with law N(0,I") such
that, setting Ay, = Zle(Xi -E(X;)—Z;),

(a) E(sup | Ax]]) = O(n'/?(logn)*?).

k<n
In addition, there exists another sequence (Z;);>1 of iid random vectors with law N (0,T")
such that, for any positive ¢,

() sup |Ag| = o(n'/?(log ) D++1/P) almost surely.
k<n
In both items, \(d) is defined in Theorem 3.1.

Proof of Corollary 3.1. Adding some constant vector to the initial random vectors
if necessary, we may assume that the components of the random vectors X; are non-
positive. For each integer ¢, we set X; = (Xi(l), Xi(Q)7 .. ,Xi(d)). From our assumptions,

there exists some positive constant M such that, for any integer i and any X; belongs
to [~ M, 0]¢. Then, for any j in [1,d],

‘ 0
Xi(]) = */ 1X?”<tdt'
-M i =
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Let then Kgg)(t,k) = Kx((1,...,1,¢1,...,1), k), where t is the j-th component. Define
the random vectors Z; for any positive integer k by

. () . .
20) — _/ (K@t k) ~ KLtk 1))dt for any j € [1,d].
—M

Then the so defined sequence (Z;)r>o is a Gaussian sequence (this means that, for any
positive integer n, (Z1,...,7,) is a Gaussian vector) and, from the definition of the
covariance of Kx, the random vectors Z;, are not correlated. It follows that (Zj)r>o is
a sequence of independent Gaussian random vectors. Now, from the definition of Z,

. ) 0 0
COV(ZIEJ)’ Z](Cl)) = Z ‘/1u / . COV(].X(gq‘,)St, ]'X,(,Z)gs)dtds'
mez” ~V 7T

Hence, interverting the summation and the integral in the above formula, we get that
Cov(z), ) = 3 Cov(xy”, X{)) =T
meEZ

which implies that Z; has the prescribed covariance. Next

XD —EB(xV) -z = / (KQ (k) - K@ (k- 1) +P(XY) <) -1
—M

X]Ej)gt)dt.

Let then A,(Cj ) denote the j-th component of Ay and

RO (t, k) = Rx((1,...,1,6,1,...,1),k),

where t is the j-th component. From the above identity,

AP = [ (&) - R (e k).
M
It follows that, for any integer j in [1,d],

sup |AY)| < M sup |Rx (s, k) — Kx(s,k)| .
k<n s€Rd
k<n
Part (a) (resp. Part (b)) of Corollary 3.1 follows then from both these inequalities and
Part (a) (resp. Part (b)) of Theorem 3.1.

4 Proof of Theorem 3.1

In this section we shall sometimes use the notation a,, < b,, to mean that there exists
a numerical constant C not depending on n such that a,, < Cb,, for all positive integers
n. We shall also use the notations Fj = o(X;,j < k) and Foo = /).y, Fi-

For any (s,s') € R%, by using Lemma 7.4 with U = 1x,<5, V = 1x,<s, 7 = 1 and
s = 0o, we get that
|Cov(1xy<s, Ix<s)| < 2Bk -
Since ).~ fr < 0o, Item 1 of Theorem 3.1 follows.
To prove Item 2, we first transform the random variables X;. With this aim, for any

kin Z and any j in {1,...,d}, we denote by X,Ej) the j-th marginal of X;. By Lemma 7.4
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applied with p = 1 and ¢ = oo, there exists some non-negative random variable b(z, k)
with values in [0, 1] such that, for any functions f : R? -+ Rand g : RY — [-1,1],

Cov(f(Xo), 9( X)) < 2E(b(Xo, k)| f(Xo)|) and E(b(Xo, k) < By . 4.1)

Let then 4
b;(Xo, k) = E(b(Xo, k) | X)) .

We now introduce another probability on (2. Let IPj ; be the probability on 2 whose
density with respect to P is

CiH(L+4) bj(Xo. k) with O =144 E(b;(Xo. k). (4.2)
k=1 k=1

Let P; be the law of X(()j). Notice then that the image measure P of IPj ; by Xéj) is
absolutely continuous with respect to P; with density

CH(1+4) bj(a,k)). 4.3)
k=1

Let Fp: be the distribution function of P, and let Fp: (x—0) = sup, ., Fp: (2). Let (1:)icz
be a sequence of iid random variables with uniform distribution over [0, 1], independent
of the initial sequence (X;);cz. Define then

Y = Fpe (X1 = 0) + mi(Fps (X)) = Fp: (X = 0)) and ¥; = (VY. v[)'. 4.4

Note that (Y;);cz forms a strictly stationary sequence of random variables with values
in [0,1]¢ whose B-mixing coefficients are also of order 3, = O(n'~P). In addition, it
follows from Lemma F.1. in Rio (2000) that Xi(j ) = F;_}(Yi(j )) almost surely, where FIS_,}
is the generalized inverse of the cadlag function Fp;. Hence ’

Rx(-,-) = Ry ((Fp;(),..., Fp:(-)),-) almost surely ,

where
Ry(s;t)= Y (ly,ce —E(ly,<)), s€[0,1]%, t e RT.
1<k<t
Furthermore
P(Y,y? € [a,b]) < ;P (Vs € [a,0]) = C;(b — a) (4.5)

where the last inequality comes from the fact that the random variables Yo(j ) are uni-
formly distributed on [0, 1] under g ; (see Item 1 of Lemma 5.1 in Dedecker, Merlevede
and Rio (2013)). Hence Yo(j ) has a density with respect to the Lebesgue measure uni-
formly bounded by C;.

For a strictly stationary sequence (Z;);cz of random variables with values in R¢,

let Gz be a two parameters Gaussian process with covariance function I'; defined as
follows: for any (s,s’) € R®*? and (t,t') € (R*)?

Tz(s,s',t,t') = min(t,t')Az(s,s’) where Az(s,s') = Z Cov(lz,<s,1z,<s), (4.6)
kEZ

provided that Ay is well defined.
Let us now give an upper bound on the variance of Gy. Below, we prove that, for
any u = (uy,...,uq) and v = (v1,...,vq) in [0, 1]¢ and any positive integer n,

d
Var(Gy (u,n) — Gy (v,n)) < nC(8) Z |u; — v;|, where C(8) =1+ 4Zﬂk . (4.7)
i=1

k>0
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If (u1, ... ua) = (Fpp(s1), ..., Fpz(sa)) and (vi,...,vq) = (Fpy(81), -, Fp:(sy)), then
the following equalities hold in distribution: Gy (u,n) = Gx(s,n) and Gy (v,n) = Gx(s',n).
Hence

Var(Gy (u,n) — Gy (v,n)) = Var(Gx(s,n) — Gx(s',n)).

Now, by definition of the covariance of Gx,

n~'Var(Gx(s,n) — Gx(s',n)) = lim N~'Var(Rx(s,N) — Rx(s',N)).

N—oc0

Hence, by (4.1) and Corollary 1.4 in Rio (2000),

n~"Var(Gx(s,n) — Gx(s',n)) <E(|1x,<s — Lx,<s|(1+ 4Zb(X0,k)) .

k>0

Now

d

1x,<sr — 1x<s| < 21 |1X(<]j>§55_ —lyoc,,l
=
Taking into account the definition of IPa o it follows that
d
Var(GX(s,n) - Gx (s, n)) < nz CjIPaj(|1Xéj)§S; — ].X(()j)gsj |) }
j=1

Now, by definition of ]P;f,

Pg,j( ‘1Xéj)§8} — 1X(gj)§5j |) = IPjG IIliIl(Sj7 S;), max(sj, S;)]) = |UL — Vi,
whence
d d
Var(Gx(s,n) — Gx(s',n)) < nZC’j|uj —v;| <nC(B) Z |u; — vg],
j=1 i=1

which completes the proof of (4.7) .

We shall prove in what follows that the conclusion of Theorem 3.1 holds for the
stationary sequence (Y;);cz and the associated continuous Gaussian process Ky with
covariance function I'y defined by (4.6). This will imply Theorem 3.1 by taking for
S = (81,...,5(1),

Kx<8, t) = Ky((Fpl* (Sl>7 e ,de* (Sd)), t) y

since for any (s,s') = ((s1,...,8a), (s},...,5})) € R*,
Tx(s,s',t,t") =Ty ((Fpy(s1), -, Fpr(sa)), (Fpy(s1), - Fpi(sq), t,t') -

We start by a reduction to a grid and a discretization.

4.1 Reduction to a grid

In this section, we consider a strictly stationary sequence of random variables Z;
in R? with marginal distributions with support included in [0,1] and bounded densi-
ties. Our aim is to compare the maximal deviation over the unit cube with the maximal
deviation over a grid. Let A, denote the set of x in [0, 1]¢ such that nz is a multivari-
ate integer. The main result of the section is that, if the marginal densities are each
bounded by M, then, for any integer k£ < n,

sup |Rz(s,k) — Gz(s,k)| < sup |Rz(s, k) — Gz(s, k)| +dM
se0,1]4 seA,
+ sup  |Gz(s, k) —Gz(s' k)|, (4.8)

lls—=s"lloc<1/m.
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where we recall that G is a two parameters Gaussian process with covariance function
I'z defined by (4.6).

We now prove the above inequality. For each s = (s1,...,84), we set 7_(s) =
n~1([ns1],...,[nsq]) and 7y (s) = 7_(s) + n~%(1,...,1). From the monotonicity of the
multivariate distribution function F' and the empirical distribution function Fj,

kEy(v_(s)) — kF(m4(s)) < Ra(s, k) < kEy (w4 (s)) — kF(m_(s))..

Next let F; denote the distribution function of the i-th coordinate of Z,. From our
assumption
Fi(t) — Fl(S) S M|t — S| .

Now, for any s = (s1,...84) and t = (t1,...,tq) with s <,

d
0<F(t)— F(s) <> (Filt:) — Fi(s:)),
i=1

which, together with the above inequality, ensures that
0 < kF(m4(s)) — kF(m_(s)) < k(Md/n) < Md
since k < n. Hence
Rz(m_(s),k) —dM < Rz(s,k) < Rz(my(s),k) +dM .

Let then
Dz(k,n) = sup |Gz (s, k) — Gz(s',k)|.

lls—s"llc<1/m
Clearly

—Gz(m—(s),k) — Dz(k,n) < =Gz(s, k) < =Gz(m4(s), k) + Dz(k,n).
Let Ay = Rz — Gz. Adding the two above inequalities, we now get that
Az(’f(,(s),k) —dM — Dz(k,n) < Az(s, k) < Az(ﬂ+(8),k) +dM + Dz(k,n) R

which implies immediately (4.8).

4.2 Discretization

We now apply the inequality (4.8) to our problem. Let N € IN* and let k£ €]1, onN +1,
We first notice that for any construction of a Kiefer process Gy with covariance function
I'y defined by (4.6),

N
sup sup |Ry(s7 k)—Gy (s, k)| < sup |Ry(8, 1) — Gy (s, 1)| + Z Dr(Gy), (4.9)

1<k<2N+1 5¢[0,1]¢ s€lo,1]¢ L=0
where
Dr(Gy):= sup sup |(Ry (s, €) — Ry (s,2%)) = (Gy (s,0) — Gy(s,QL))| . (4.10)
2L <¢<2L+1 5¢[0,1]4
Let then
D;(Gy)= sup  sup |Ry(s,f) — Ry(s,2%) — (Gy(s,) — Gy (s,2"))],  (4.11)

2L <f<2L+1 sEA,L

where we recall that A,. is the set of x in [0, 1]¢ such that 2Xz is a multivariate integer.
Applying Inequality (4.8) with n = 2% to the variables Z; = Y; .. and taking into account
(4.5), we get that

Dr(Gy) < D(Gy)+dC(B)+ sup |Gy (s,0)=Gy(s,2")) = (Gy(s', ()~ Gy (s',27))].

2L <p<2L+1
ls—s’lloo<2— L

(4.12)
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4.3 Construction of the Kiefer process

We shall construct in this section a Kiefer process Ky with covariance function I'y
defined by (4.6) in such a way that for Gy = Ky, the terms involved in (4.12) can be
suitably handled.

We start with some notations and definitions.

Definition 4.1. For two positive integers m and n, let M,, ,(R) be the set of real
matrices with m lines and n columns. The Kronecker product (or Tensor product) of
A =la; ;] € My n(R) and B = [b; ;| € M, 4(R) is denoted by A ® B and is defined to be
the block matrix

a17lB aLnB
A®B= € Minp,ng(R).

ama1B - amaB

For any positive integer k, the k-th Kronecker power A®* is defined inductively by:
_ k k

A®t = Aand A% = AQ A®*Y, and @;_; A = A1 ® (®is Ai).

We denote by A the transposed matrix of A.

Let L € IN. For any k € Z and any ¢ € {1,...,d}, let Z'M,L be the column vector of
R2" defined by

— t
Zior = <(1Yk+2L€[071]E_1X[O,‘7’2_L]><[071]d'_/')j:1}m’2L) . (4.13)

Let now Tj'k  and U ]ioz be the column vectors of R2"" defined by

d
[jk,L = ®Zﬂk’g_’L and ﬁé% = ﬁk:,L — E(ﬁk’L). (4.14)
(=1

Forany k € {1,...,2L}, let &, be the column vector of R?” defined by

t
gk’L = ((1k§m)nL:1,...,2L) ’ (415)

and let S_”’L,d the column vector of ]RZMH)L defined by

2k 2L
Sta=Y arelf) = Vir. (4.16)
k=1 k=1

Let Cf 4 be the covariance matrix of g'L,d. It is then the matrix of M+ g+1z (R)
defined by
Cra=¥(5045%4)- (4.17)

Let us now continue with some other definitions.

Definition 4.2. Let m be a positive integer. Let P, and P, be two probabilities on
(R™, B(R™)). Let ¢ be a distance on R™ associated to a norm. The Kantorovich dis-
tance (1942) between P, and P, with respect to the distance ¢, also called Wasserstein
distance of order 1, is defined by

W(Py, P;) = inf{E(c(X,Y)), (X,Y) suchthat X ~ P, Y ~ P,} = sup (Pi(f)—Pa2(f)),
fe€Lip(c)

where Lip(c) is the set of functions from R™ into R that are Lipschitz with respect to c;
namely for any x and y of R™, |f(z) — f(y)| < ¢(x,y).
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Definition 4.3. Let m be a positive integer. For two vectors z = (z1), ... ,33(2"”)t and
y=(yV,... ,y(zm))t of R?", we define the following distance

em(my) = sup |2 —yU)].
je{1,...,2m}

Let K € {0,..., L} and define the following set of integers
E(LK)={1,....2" Ky n (2N + 1), (4.18)

meaning that if k¥ € £(L, K) then k is an odd integer in [1, 2L~ X].
For K € {0,...,L} and k € £(L, K), define

Bi = | (k — 1)25 k257 .

Notice that for any m € {1,...,2%},

L
1]0,m] = Z Z bKka (m)]‘BK,k ) (4.19)

K=0kyxe&(L,K)

with bg k. (m) = 0 or 1. This representation is unique in the sense that, for m fixed,
there exists only one vector (b(x j,.)(m),kx € 5(L,K))K€{O .1y satisfying (4.19). In
addition, for any K € {0,...,L}, > yce(r i) br,k(m) < 1. More precisely, b ,(m) = 1
if and only if k = [m2~%] and [m2~X] is odd. Let b(m, L) be the column vector of R2"
defined by

- t
Bm, L) = (b () i € E(LK)) ey 1) and

P, — (5(1,L),b(2,L),...75(2L7L))t. (4.20)

P; has the following property: it is a square matrix of R2" with determinant equal
to 1. Let us denote by le its inverse. Notice also that for any positive integer m,
(PP™)~1 = (P;')®™ (see Corollary 4.2.11 in Horn and Johnson (1991)).

Let P§L,d\sz

law. Let now (ar)r>0 be a sequence of positive reals and (G}, )r>0 be a sequence

be the conditional law of S, 4 given F,. and N, , denote the N'(0,Cr 4)-

of independent random vectors in R2“™" with respective laws N(0,a? Iya+1)2) (here
I5@+1)z is the identity matrix on ]RQ(dH)L), and independent of F, V o(1n;,i € Z). Let

éaL = P%(dﬂ)éj;L. Recall that the probability space is assumed to be large enough
to contain a sequence (4;);cz of iid random variables uniformly distributed on [0, 1],
independent of the sequences (X;);cz and (7;);cz. According to Riischendorf (1985)

(see also Theorem 2 in Dedecker, Prieur and Raynaud de Fitte (2006)), there exists a
2 (1) (2FE+YE o(d+1)L . .
random vector Wy 4 = (W, ..., W, ) in R with law N¢, , * P5  that is
, , , ag,

measurable with respect to o(dz) V o(gL,d + G,,) V For, independent of Fyz and such
that
E(C(d+1)L(§L,d + CjaL ) WL,d)) = E(W

C(d+1)L

(Pg, 17, * Pa, NewaxPg, ) (421)

sup (E(f(Sp.a+ Gap)|Far) — E(f(Wr.a))) -
feLip(cat1yr)

Here and in what follows * stands for the usual convolution product. Recall that the
probability space is assumed to be large enough to contain a sequence (v;);cz of iid
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random variables uniformly distributed on [0, 1], independent of the sequences (X;)icz
and (7;,0;)icz. By the Skorohod lemma (1976), there exists a measurable function h
from R2“""" x [0,1] into R2V" S R2“YY” such that h(VT/L,d,vL) = (@’

t.+Tr.q) satisfies

G, +Tra=Wraas. and £(G,,,Tra) = Pg, @ Ne,,. (4.22)

Hence we have constructed a sequence of centered Gaussian random variables
= d+1)L = =
(Tr.d)ren in R2“""" such that E(TL’dT}J’d) = O, 4, and that are mutually independent.
The approximating Kiefer process is then constructed from this Gaussian process as we
explain in what follows.
Let us write
7 1) (2 (1) (24%) (1) (21
Tra= (TLL,...,TLL oDy N Ty s Tor ) ,
so that for k € {1,...,2F} and i € {1,...,2}, T,E”L is the ((k — 1)2?F 4 i)-th coordinate
of the vector T}, 4. Now, for any k € {1,...,2"} and any i € {1,...,2%"}, we set Té% =0,

i i i 5 aL
g =T — T, and Gir = (94,00, ) (4.23)

Notice that since E(Ty 47% ;) = E(S1.45% ;). one can easily verify that for any (k, ) €
{1,...,2%}? and any (i, ;) € {1,...,29L}2

Cov(giy.9¢1) = Cov () u)) (4.24)

where ug)L is the i-th coordinate of the vector Uak,L defined in (4.14). For any k €

{1,...,2L}, we define now the following Gaussian vectors in R2“""”,
Grr = €t @ GrL s (4.25)
where we recall that €}, 1, is defined in (4.15). We observe that
2L
TL,d = Z C_jk,L . (4.26)
k=1
, - ) (2
We want to extend now the Gaussian vector (gk’L)ke{L.__,QL} = (9515 N Jke{1,... 20}
2(d+DL . . 2Lz, - @ (2%%)
of R into a Gaussian vector of (R® )” denoted by (g 1 )kez = (9.1, -+ p.. ~Ikez

in such a way that (gﬁ,ﬁy 1 )kez is independent of F,. and that for any (k,¢) € Z* and any
(i,5) € {1,...,2%12, the property (4.24) holds. With this aim, we first notice that by the
Kolmogorov extension theorem, there exists a sequence denoted by (B,(Cl), ceey B,(de))k.eZ
of centered Gaussian random variables such that Cov(B,(j), Béj)) = Cov (ug)L, ué@) and
we recall that the probability space is assumed to be large enough to contain a se-
quence (¢;);cz of iid random variables uniformly distributed on [0, 1], independent of
the sequences (X;);cz and (n;,d;, v;)icz introduced before. By the Skorohod lemma
(1976) (see also Lemma 2.11 of Dudley and Philipp (1983) and its proof), since (IR2dL)Z

is a Polish space, there exists a measurable function  from R2“""" x [0, 1] into (]RQdL)Z
such that
h((Gk,0)keqr,...20y- €L) = (G 1) kez(L.... 25} (4.27)
d
satisfies (B,(Cl),...,B,(f L))kEZ = (ﬁ;ﬁ’L)keZ in law. Therefore the vector (ﬁ,ﬁ’L)kGZ of

(IRQdL)Z constructed by the relation (4.27) has the desired property and is such that
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the random variables ((g’,;t ) keZ) Len are mutually independent.
We use now the following notations: for any k € Z,

Gr=0((F/r)e<k) » Goo = \/ Gr and Py() = B(-|Gr) —E(-|Gr-1)-

kEZ

Let us prove that, for any k € Z and any i € {1,...,2%"}, the random variable

Ay =" Pilgf]) (4.28)
>k

is well defined in L?. Note first that by stationarity, Y, ||Pk(gél)L)||2 =3 0 llPo (ge L)||2.
Next using the computations page 1615 in Peligrad and Utev (2006), we get that, for
any integer m > 0,

e

1/2
S €+1 e+ D)2

We denote now H; = span(1, (§/ )e<x) (Where the closure is taken in IL?) and J =
dL -

span(1, (@ 1 )e<r) where i, = (u,(i)L, . ,u,(fL ))t, with u,(j)L the i-th coordinate of the

vector UkyL defined in (4.14). We denote by Ily, (-) the orthogonal projection on H; and

by II7 () the orthogonal projection on Jj. Since (g,g’L)keZ is a Gaussian process, for

any ¢ > 0,

)

E(gél)ﬂgo) =TIy, (gél)L) a.s. and in L2
Since the property (4.24) holds for any (k,¢) €

7?2, we observe that

T2, (957 ll2 = T (uf'), — E(ul))) 2 -

)

Moreover, for any ¢ > 0, we have

T, (u), = E@{)) 2 < [B(ul), = Eul))|For) 2

)

So, overall, for any ¢ > 0,

1B (g5, 1G0) 12 < 1B (uf), — E(u’))[Far) 2 - (4.30)

) )

Next, notice that HE(U@L ]E(ué L)|}'2L)H2 < Supzepe(x,,) Cov(Z, WL) where B?(F,e.)
is the set of F,.-measurable random variables such that ||Z]|; < 1. Observe that ufg )L is

0 (Y, oz )-measurable and such that |ugz)L| < 1. Therefore, by applying Lemma 7.4 with
r = oo and s = 1, we get that there exists a J,.-measurable random variable b, , (¢ +25)
such that

IE(u{), - Eu{])|Foc)ls <2 sup  E(ZJbg, (£+2%))
ZeB?(F,L)

1/
2<E(b;2L (£+2L))) =282 (4.31)

Hence, starting from (4.30) and considering (4.31), we get, for any ¢ > 0,
IE (9", 1G0)ll2 < 28,72 (4.32)

Therefore, starting from (4.29) and taking into account (4.32), it follows that

1/2

(l)

>0
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implying that the series in (4.28) is well defined in IL.? since by our condition on (f}),
> s ¢1/28}"% < 50. We define now

2L

— dL — - — —

dip = (d),....d7, ), Drp=ér@di and Mpg=Y Dy (4.33)
k=1

Since the random vectors (ﬁk,L)kzl are orthogonal, ]E(ML@MZ’L{) = Zz; E(ﬁkLﬁzL)
and then, by the property of the tensor product (see for instance Lemma 4.2.10 in Horn
and Johnson (1991)),

2L
E(MpaM} 4) =Y 06l ® B(dkdi 1) - (4.34)
k=1
Let us prove now that for any integer k and any (i, j) € {1,...,2%}2,
B, d)) =" Cov(us),ufl)) (4.35)
ez

which, together with (4.34), will imply that

2L
B(Mp.aMf, 3) = > Axra, (4.36)
k=1

(0) 0 0
where Az = Y ez sl © BUSLUD)) = Sper E((@rr @ US)) (@ @ (T)Y))
(by the property of the tensor product). .
To prove (4.35), we first notice that the following decomposition is valid gffl) =

Yo Py (gm 1) (to see this, it suffices to notice that (4.32) implies that ]E(g 11G-)
0 a.s.). Hence, using the fact that the property (4.24) holds for any (k, ¢) € ZQ we derive
by orthogonality followed by stationarity that

ONL
Cov(uyr,ufy) = BlgoLog2) = > B(Pulgy)Prlgr))
k=—o00
0(9,2)Po(9rsr,1)) -
k=0V(—¥£)
Whence )

> Cov(uiy,uf)) = > S E(Po(gt) ) Pola))) - (4.37)
Lez m>0k>0

On the other hand, by the definition (4.28) of d,(J)L and stationarity, we have

B(dy ) =Y S B(Pe(gl)Pel9S)) = D0 D B(Polgy ) )Polay))) . (4.38)
>km>k >0 m>0
Considering the equalities (4.37) and (4.38), (4.35) follows.
- d+1)L
Hence we have constructed Gaussian random variables (M, 4)ren in R2“"™" that
are mutually independent and such that, according to (4.36), for {,m € {1,..., 2L} and
SL,j = (j127L, . ,jd27L) withj = (j1,...,74) € {1,..., 2L}d and sy, = (k127L, ey de*L)
with k = (ky,...,kg) € {1,...,2E}4,

COV((ML,d)(£—1)2dL+Z;l:1(j,;—1)2<df'i>L+17 (ML7d)(m—1)2dL+Z§:1(k,;—1)2<dfi>L+1)

= inf(f, m) Z COV(lYUSSL,j7 1}/t§5L‘k) = Py(SL7j7 5L,k7£7 m) . (439)
teZ
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Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer
process Ky with covariance function I'y defined by (4.6) such that

Ky (spj 0 +28) — Ky (spj,2%) = (Myp.q) (4.40)

(E=1)29L 458 (js—1)20a=DL 41"

Thus our construction is now complete. In addition recalling the notation (4.11) and the
definition 4.3, we have, for any L € IN,

D} (Ky) = C(d+1)L(§L,d7 M, )

< ey (Sp.atGay, Tr.a+ Gl ) +earnyn(Tr.as Mra)+c(arnn (0, Gay ) Fearnn(0,Gh, ) -
(4.41)

4.4 Gaussian approximation
Proposition 4.1. Let L € N, Ky defined by (4.40) and D} (Ky) by (4.11). Under
the assumptions of Theorem 3.1 the following inequality holds: there exists a positive
constant C' depending on p and d but not depending on L, such that

3d

2

E(D},(Ky)) < C(L+1)*D 1 0ol (L 4+ 1) F427 551, g 5+ C22/3(L 4+ 1)1,

Proposition 4.2. Let L € IN*, Ky defined by (4.40) and D} (Ky) by (4.11). As-
sume that the assumptions of Theorem 3.1 holds. Then there exists a positive con-
stant C(d, p) depending on d and p such that for any L > C(d,p) and any positive real
xp € [20G-p)/(4=p) [243d/2 9L [~d/2] the following inequality holds:

P(Dy(Ky) > zr) <exp(—r1L) + roay (L +1)4H!
Lp(Sd/2+2)

3oL 74d+6
L(+d)/2 2"L 1p

+kox "2 +Koxp —3,

where k1 and ko depend on p and d but not on L.

Proof of Proposition 4.1. We shall bound up E(D/ (Ky)) with the help of Inequality
(4.41). So, for any sequence of positive reals (arz)r>0,

E(D7(Ky)) < QE(C(d—H)L(éaLvG)) + E(C(d+1)L(fL,d, ML,d))

+ E(c(arny(Spa + Gay Tra+Gl,)) . (4.42)

We start by giving an upper bound for ]E(c(d+1)L(éQL , 6)) With this aim we first recall
- (@+1L

that G,, = (GglL), ceey GEIQL ))t is a centered Gaussian vector with covariance matrix
a? (PLPtL)@)(dH) where P, is defined in (4.20) (indeed, notice that by Lemma 4.2.10
in Horn and Johnson (1991), P%(dﬂ)(P%(dH))t = (PLPtL)®(d+1)). Therefore, for each
m € {1,...,2@*DLY if we denote by v2, ,, the variance of GY™ | it follows from the
definition of the tensor product that there exists j = (j1,...,jay1) in {1,...,2F}@+D

such that
o= T X brweli) (4.43)

where we recall that the notations bk 1, (j;) and £(L, K) have been respectively intro-
duced in (4.19) and (4.18). According to the inequality (3.6) in Ledoux and Talagrand
(1991),

E(c(d+1)L(éaL76)) = E( max ‘GSLT)D

m=1,...,2(d+ 1)L

< (2+3(1og(2<d+1>L))1/2) MAX  Vay,.m-

m=1,...,2(d+1)L
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Since v2_ . < a2 (L + 1)%*!, we then get that

ar,,m
E(c(ar)n(Gay,0)) < 5ap(d+1)Y2 (L +1)1F92. (4.44)

To bound up now the second and third terms in the right hand side of (4.42), we shall
use the two following lemmas. The proof of the second lemma being very technical, it
is postponed to Appendix A.

Lemma 4.1. Let L € N. Under the assumptions of Theorem 3.1 and the notations
of Section 4.3, the following inequality holds: there exists a positive constant C| not
depending on (L, d), such that

E(c(aryn(Tr.a, Myp.q)) < Crd*/?(L + 1)Y/2(LV? 4 26-PL/2) (4.45)

Lemma 4.2. Let L € IN. Under the assumptions of Theorem 3.1 and the notations of
Section 4.3, the following inequality holds: for any ay, € [(L+ 1)**!,2E(L + 1)+, there
exists a positive constant Cy depending on p but not on (L, d), such that

E(c(i11)L 1(Spa+Gap, Tra+ G )
< Co((L+ 1) 4 ap P(L+ DPEV2E 4o (L4 1) HD28 (25677 4 (L 4 1)1,2)
+ay P(L+ 1) P D4 1283y e (D4 1)%7T4251,0,) . (4.46)

Starting from (4.42) and considering the upper bound (4.44) and the two above
lemmas, the proof of Proposition 4.1 is then achieved by selecting

ay = (L 4 1)d+1 vV (2L/p(L + 1)d+1—(2+d)/(2p)1p€]2’3[ + 2L/3(L + 1)1+5d/61p:3)

in the bounds (4.44) and (4.46). O

Proof of Lemma 4.1. Notice that by construction, TL@ - M .4 is a Gaussian vector of

RQ(dH)L. Therefore, according to the inequality (3.6) in Ledoux and Talagrand (1991),

E(cqs e (Tt Mra)) < (24 3(og(2E)12)  sup ||Zgb — )l

Using stationarity and Theorem 1(ii) in Wu (2007) followed by Inequality (4.29), we
derive that

RPN - D N2 (g, 1Go) 12\
||Z(gl,L _dZ,L)H2 <<Z (Z||P0(957L)”2) <<Z Z T
=1 J=t4zg J=1\ex[j/2]

Next using (4.32), followed by the fact that 3, = O(k'~P) for p €]2, 3], we get that

B

18— dEp)IE = O(nk + k> 71,43) . (4.47)
=1

So overall, (4.45) follows. This ends the proof of the lemma. [

Proof of Proposition 4.2. Let y;, = x/7. Starting from the inequality (4.41), we
derive that for any sequence of positive reals (ar)r>0,

P(Dy(Ky)>ap) < P<C(d+1)L(fL,d7ML,d) > 2yL)

+P(carnyn(Sra+ Gay, Tra+ Gl ) > yr) +2P(cas1)n(Gay,0) > 2y1) . (4.48)
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Recalling Inequality (4.44), we then derive that if we select

xr

_ 4.49
LT 35(d+ 1)2(L + 1)1+ (4.49)

then

-,

IP(C(d+1)L(éaL,6) >2y;) < P(C(d-',-l)L(éaLvO) - E(C(d+1)L(éaL,6)) > yL) -

Applying the often-called Cirel’son-Ibragimov-Sudakov inequality (1976), we then infer
that for any sequence of positive reals (ar,)ren satisfying (4.49),

2

Pl 82 n) < (2L
JCLL,d

2 _ 2 2 ; ; 2
where 0, ;= Sup <;,<o@tnr Vg, n, @and v is defined in (4.43). Since we have v <

ar,m ar,m —
a? (L + 1)1, it follows that for any sequence of positive reals (a1,) e satisfying (4.49),
IP(c(d+1)L(éaL,6) > 2yL) < exp ( - dL) ) (4.50)

Let now C; be the constant defined in Lemma 4.1. Due to the restriction on xj, there
exists a positive constant C (d, p) depending only on p and d, such that for L > C;(d, p),
yr, > C1d"/?(L +1)Y/?(L 4 2-P)L/2) Whence, for L > C1(d,p),

P(C(dﬂ)L(fL,d, Mpq) > 2yr) < P(C(d+1)L(fL,d7 Mpq) — E(C(d+1)L(fL,d7J\7[L,d))) >yL).

By construction, T'L_d -M 1.4 is a Gaussian vector of R2(4+DL Therefore, applying again
the Cirel’son-Ibragimov-Sudakov inequality (1976), we then infer that

a2
P(c(ar1yr (T, Mp,q) > 2yr) < exp (2 gL ) ,

U7, .4
where
k ) ) )
wia= sw D (e -l
i=1,...,2(d+1)L =1
k<2L

Using (4.47), it follows that u%,d = O(L + 2FG-P1,,,3). Hence, there exists a positive
constant x(d) depending on d such that, for L > Cs(d,p) where Cs(d,p) is a positive
constant depending only on p and d,

]P(C(d+1)L(TL,d7ML,d) > 2yL) < exp ( — K;(d)L) . (4.51)

Notice now that by the conditions on x, the choice of a; given in (4.49) implies that
ar, belongs to [(L +1)4*1 2L(L 4 1)4*+1] for L larger than a constant depending on d and
p. Therefore applying Lemma 4.2, it follows that there exists a positive constant ko not
depending on L, such that, for L > C(d, p),

P(C(d+1)L(§L,d + éaqu,d + éQL) > yr)

L Lp(3d/2+2) oL

< hoyp L4+ D)+ ko yy ~—Taraz y 22b L0, 5. (4.52)

Starting from (4.48) and considering the upper bounds (4.50), (4.51) and (4.52), the
proposition follows. []
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4.5 End of the proof of Theorem 3.1

We start by proving Item 1. Let Ky defined by (4.40). Starting from (4.9) with
Gy = Ky, we get

]E( sup sup ’RY(SJC)—KY(SJC)D

1<k<2N+1 s¢[0,1]4

N
<E( sup |Ry(s,1) = Ky(s,1)|) + Y _E(DL(Ky)), (4.53)
s€[0,1]4 I—0

where Dy, (Ky) is defined by (4.10).
Notice first that

sup |Ry(s,1) — Ky(s,1)| <1+ sup |Ky(s,1).
s€[0,1]4 s€[0,1]4

Now, from (4.7), the Gaussian process Ky (.,1) has a continuous version. Therefore,
according to Theorem 11.17 in Ledoux and Talagrand (1991), there exists a positive
constant ¢(d) depending on d, such that

E( sup [Ky(s,1)]) < c(d),
s€[0,1]¢

implying that
E( sup |Ry(s,1)— Ky(s,1)|) <c(d)+1. (4.54)
s€[0,1]¢
We bound now the terms E(D(Ky)) in (4.53). With this aim, we start with the in-
equality (4.12) with Gy = Ky. By definition of Ay, the Gaussian processes Bj defined
by
Bk(s) = Ky(s, k + 1) — Ky(SJﬂ)

are independent and identically distributed, with common covariance function Ay.
Hence, by (4.7), for any integers k and ¢ with & </,

Var(Ky (s,0) — Ky (s,k)) — (Ky (s',0) — Ky (s',k)) < (L = k)C(B)|ls — |1 -

Therefrom, starting from Theorem 11.17 in Ledoux and Talagrand (1991), one can prove
that there exists a positive constant C(d) depending on d, such that

E(  sup [(Ky (s,0) — Ky (s,2%)) — (Ky (s',£) — Ky(s',21))]) < C(d)VL. (4.55)
2L <p<2L+1
lls—slloo<2—L
Hence starting from Inequality (4.12) with Gy = Ky, we derive that there exists some
positive constant ¢’(d) such that

E(Dy(Ky)) < E(D}(Ky))+ ¢ (d)VL, (4.56)

where D (Ky) is defined by (4.11). Starting from (4.53) and considering (4.54) and
(4.56) together with the upper bound given in Proposition 4.1, Item 1 of Theorem 3.1
then follows.

We turn now to the proof of Item 2. Starting from (4.9) with Gy = Ky, and consider-
ing the upper bound (4.54), we infer that Item 2 of Theorem 3.1 will hold true provided
that we can show that for L large enough,

Dr(Ky) = O2F/PMD++1/P) - almost surely, for any ¢ > 0, (4.57)
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where A(d) = (¥ +2 - 251,030 + (2 + %)1,=3 and Dr(Ky) is defined by (4.10).
Starting from Inequality (4.12) with Gy = Ky and considering the upper bound (4.55),

we infer that (4.57) will hold true provided that one can prove that for L large enough,
D} (Ky) = O2F/P AN D+=+1/P)  glmost surely, for any & > 0, (4.58)

where D’ (Ky) is defined by (4.10). But by using Proposition 4.2, we derive that for L
large enough, there exist two positive constants x; and x5 depending on p and d but not
on L, such that

1
IP(D/L(Ky) > 2L/PL>\(d)+E+1/p) <K exp ( — IilL) + Ko m s

which proves (4.58) by using Borel-Cantelli Lemma. This ends the proof of Item 2 and
then of the theorem. [

5 Proof of Theorem 3.2

As at the beginning of the proof of Theorem 3.1, we first transform the random
variables X,;. The transformation in the iid case is more direct since we do not need
to introduce another probability. So, for any k in Z and any j in {1,...,d}, we still
denote by X ,E,j ) the j-th marginal of X, and by P; the law of Xéj ). Let Fp, be the
distribution function of P;, and let F'p, (z —0) = sup,_, Fp,(2). Let (1;)icz be a sequence
of iid random variables with uniform distribution over [0, 1], independent of the initial
sequence (X;);cz. Define then

VP = Fp (X9 = 0) + 0;(Fp, (X)) = Fp,(X") —0)) and Vi = (v,'V,...,;\))". (5.1)

Note that (Y;);cz forms a sequence of iid random variables with values in [0, 1]%.

addition the marginals of Y; are uniformly distributed on [0, 1] and Xi(j ) = F;,j I(Yi(j ))
almost surely, where F;j ! is the generalized inverse of the cadlag function Fp, (see

Lemma F.1. in Rio (2000)). Hence
Rx(-,-) = Ry ((Fp,(-),..., Fp,(-)),-) almost surely,

where

Ry(87t) = Z (]_ykgs — E(]_Ykgs)) , 8 € [0, 1}d, t e R+.
1<k<t

Therefore to prove Theorem 3.2, it suffices to prove that its conclusions hold for the
iid sequence (Y;);cz defined above and the associated continuous Gaussian process Ky

with covariance function I'y defined as follows: for any (s,s’) € [0,1]?¢ and (¢,t') €
(R+)2d

Ty (s,s',t,t') = min(¢,t')Ay (s,s") where Ay(s,s’) = Cov(ly,<s,ly,<s')- (5.2)
This will clearly imply Theorem 3.2 by taking for s = (s1,..., S4),
Kx(s,t) = Ky ((Fp,(s1),--.,Fp,(54)),t) ,
since for any (s,s') = ((s1,...,84), (s},...,5})) € R*,

FX(Svs/atvt/) = PY((FPI (81)’ cee 7FPd<8d))7 (FPI (8/1)’ e 'aFPd(Sél))atvtl) .

According to the proof of Theorem 3.1, the crucial point is to construct a Kiefer
process Ky with covariance function I'y defined by (5.2) in such a way that one can
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handle both the expectation and the deviation probability of the quantity D’ (Ky) with
(Y;)icz defined by (5.1).

Construction of the Kiefer process. We shall use the same notations and definitions
as in Section 4.3. Therefore S 1,4 denotes the column vector of ]RQWM defined by (4.16)
with (Y;);ez defined by (5.1), and C/, 4 the covariance matrix of §L,d. It is then the matrix
of Mya+1)r 5+ (R) defined by (4.17). Notice that by independence and the properties
of the tensor product (see Lemma 4.2.10 in Horn and Johnson (1991)),

2L
Cra=Y_ el @ BT (5.3)

k=1
As in Section 4.3, to construct the Kiefer process, we consider a sequence (ar)r>o0
of positive reals and a sequence (éZL) >0 of independent random vectors in R2“"
with respective laws N(0, a Iyt ) (I being the identity matrix on IRQ(d“)L), and
independent of F, V o(1;,i € Z). Moreover we set @aL = P%(d+1)@;L where Py, has
been defined in (4.20). Since the probability space has been assumed to be large enough

to contain a sequence (4;);cz of iid random variables uniformly distributed on [0, 1],

independent of the sequences (X;);cz and (7);):cz, according to Rischendorf (1985),
2L<d+l>))t in ]RQ(CH»I)L

there exists a random vector WL,d = (WE;, ce é d

Ps  that is measurable with respect to o(d)V o(Sp.a+ Ga, )V For, independent of Fyr,
ar

and such that

with law NCL,d *

* P@{IL ’NCL,d * P@aL) (54)

-,

= sup (B(f(Sp.a+ Gay)) = B(f(Wra)) ,
feLip(cat1yr)

E(C(d+1)L(§L,d+éaL7WL,d)) = W

C(d+1)L(P§L1d

where P§L ., and and NCL,d respectively denote the law of §L7d and the MV (0,Cy 4)-law.

As in Section 4.3, using the Skorohod Lemma (1976), we infer that there exists a mea-
surable function A from R2“""" x [0,1] into R2“™" % R2“"™" such that h(Wr,g,vL) =
(et

L. TL.q) satisfies

é;L + fL,d = WL,d a.s. and E(é;L,de) = P@GL ®NCL,d . (5.5)

Hence we have constructed a sequence of centered Gaussian random variables (fL,d) LeN
in RZ(HI)L that are mutually independent and such that E(TL’dfﬂ d) = (' 4. In particu-
lar, they satisfy for ¢,m € {1,...,2L and s; ; = (j127%, ..., ja2 L) with j = (j1,...,j4) €
{1,...,28 and sy, = (k127 .. kg27F) with k = (k1,...,kq) € {1,...,2F}9,

COV((TL,d)(e—l)zdL+E;‘=1(ji—1)2(dﬂ')L+1v (TL,d)(m—1)2dL+E§=1(ki—1)2<dfi>L+1)
= iIlf(f, m) COV(lyOSsL‘j, ]'YOSSL,k) = Fy(SL,j, SL.k> f, m) . (56)

Hence, according to Lemma 2.11 of Dudley and Philipp (1983), there exists a Kiefer
process Ky with covariance function I'y defined by (5.2) such that

Ky (sp,j,0+25) — Ky (s ;,2") = (T1.0) (5.7)

(e=1)24L 4374 | (ji—1)2(d=DL 41~
Thus our construction is now complete.

End of the proof. Following the proof of Theorem 3.1 (see Section 4.5), to complete
the proof of Theorem 3.2, it suffices to prove the following two propositions.
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Proposition 5.1. Let L € N, Ky defined by (5.7) and D’ (Ky) by (4.11). Under the
assumptions of Theorem 3.2, the following inequality holds: there exists a positive con-
stant C not depending on (L, d), such that

E(D}(Ky)) < C(d+ 1)Y/3(L + 1) +24/32L/3

Proposition 5.2. Let L € N, Ky defined by (5.7) and D) (Ky) by (4.11). Assume that
the assumptions of Theorem 3.2 holds. Then, for any z;, > (L + 1)%t3/2, the following
inequality holds:

P(DL(Ky)>zp) <exp(—riL) + k2 xp (L + 1)24H32k
where «1 and ko depend on d but not on L.
Proof of Proposition 5.1. Recalling the definition 4.3, we have that for any L € NN,
D (Ky) = ctat1yr(Sp.a, Tr.a)
< sy (Spa+ Gap s Troa + Gl ) + capnyn(0,Gay) + carnyn(0.GL,), (5.8)
where fL,d and @;L have been defined in (5.5).
To bound up the expectation of the first term in the right hand side of (5.8), we shall

use the following lemma whose proof is postponed to Appendix A. The expectation of
the two last terms is handled by using (4.44).

Lemma 5.1. Let L € IN. Under the assumptions of Theorem 3.2 the following inequality
holds: For any sequence (ar,)r>0 of positive reals, there exists a positive constant C' not
depending on (L,d), such that

E(cas1)n (St + Gapy Tra+Gh)) < Cap?(L+ 1) 128 4 Cap3(L + 1)2@D/22L | (5.9)
Starting from (5.8), taking the expectation and considering the upper bounds (4.44)
and (5.9) by selecting ay, = (d 4+ 1)"'/6(L + 1)4/62L/3, the proposition follows. ]

Proof of Proposition 5.2. The proof of this proposition follows the lines of the one’s
of Proposition 4.2 with obvious modifications. The term c(q41).(Tr,4, ML,4) is obvi-
ously equal to zero, Lemma 5.1 is used instead of Lemma 4.2 and we select a; =
O

T
25(d+1)1/2(L+1)iFd/z

6 Appendix A

This section is devoted to the proofs of Lemmas 4.1 and 5.1. We keep the same
notations as those given in Section 4, and use sometimes the notation a,, < b, to mean
that there exists a numerical constant C not depending on n such that a,, < Cb,, for all
positive integers n.

6.1 Proof of Lemma 4.2
According to (4.21) and (4.22), we first recall that

E(C(dH)L(gLvd + éauff?»d + é:zL)) = E(W0<d+1>L (P§L,d\sz * Péa’NCL,d * Péa)) . (6.1)

—

— L — —
where Mg, , isthelaw of T}, ¢ = Zle Gipand (G} ,...,Gb. L)t is a Gaussian vector of
R2“"" such that E(ézLézL) = ]E(V;LV?L) where the random vectors XZ,L have been
defined in (4.16). We consider now a Gaussian vector (N ,,..., N, ) of R2“"”" such

that B B . B
(Nt Lo Ni ) = (G Gl y) inlaw, (6.2)
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and
(]\7{7L, o ]V;L’L)t is independent of F, V o(n;,i € 7). (6.3)

Define
Npa=Nip+Nop+---+Naov .

Notice that we have in particular
E(NLLN;,L) = E(‘_/;,L‘?;L) and E(NL,sz,d) = E(S”L’ds:i_’d) . (64)

Let now W;L be a random vector in R2“™"" with law N(0,a%Iya41)2) independent of
Foo Vo(Nip,1 <i<2L)yVvo(n,iecZ). Let W,, = P%(d+1)V_[7;L where P, is defined in
(4.20). With these notations, we can write

E(Wc(d+1)L (P§L1d\]:2L * Pé‘avNCL,d * Pé‘a))

—E  swp (B((Spa+ Wa )l For) ~ B(f(Nia+Wa,))) . (65)
feLip(cay1yr)

We introduce now the following additional notations and definitions:
Notation 6.1. For any K = (Ky,...,Ky) € {0,..., L}t we shall denote

d
e =Tlew K,

i=0
where the £(L, K;)’s are defined in (4.18). Therefore the notation kx € Sg’iltl) means

kx = (kky,---,kK,) € H?:o E(L, K;). In addition, we also denote

¢ = {o,..., L}\@tD.

L L
So the notation ZKte“ kaesg‘f;” means Z Z Z Z and

Ko=0  Kq=0kx,€E(L,Ko) kr, eE(L,Ka)

L L
ZKGIngl SUD, ¢ £(d4D) means ) rc o+ x,—0 SUDL . €8(LKo) -+ - WPk, €6 (L Ky)-

Definition 6.1. Let x and y be two vectors of R2“"™"" with coordinates

t
(100 s ),

and .
d+1
y = ((y(K,kK)7k.K e el ))KGIZ+1> _
Let ¢,y be the following distance on R2V",

C>(kd+1)L(x7y) = Z sup  |pUFRe) — y(K’kK)|-

(d+1)
KGI%+1 ki€ gL.K

* o(d+1)L

Let also Lip(c{;, ;) be the set of functions from R

§ K
f(ﬂ?) - f(y)| < ZKGIZ“ Supy . ¢ eg;ﬁ;’(l) |a:(

into R that are Lipschitz with
7kK) — y(KﬁkK)L

respect to czﬂd+1)L" namely,

Letz = (2, ... ,a:(Q(dH)L))t and y = (yY,... ,y(2(d+l)L))t be two column vectors of
R2""". Let now u = (P%(dﬂ))_lx and v = (P%(dﬂ))_ly (recall that P has been
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defined in (4.20), and since P, is non singular so is P%(dﬂ)). The vectors « and v of

t
R2“™" can be rewritten u — ((U(K,kk),kK c gé‘i}l))xezd“) and v = ((U(KJGK),ICK €
’ L

t
5%?}1))[(61?1) . Notice now that if f € Lip(c(q11)z,), then

1f(@) = fW) < carprl@y) = sup |z -yl
me{l,...,2(d+1L}
In addition, for any m € {1,...,2(@*tDE} there exists an unique (jo, ..., jq) € {1,...,2L}4+!
such that .
m=> (ji—1)2¢ " 1.
i=0
Therefore,

2 — ] = | (@ (i, L)) "u — (2q b(jis L) 0]

So overall,

|f(x) = f(y)]
L L
< sup > > > broks, (o) by ks, (Ga)

; ; L1d+1
(Jo,--nJa) €{1,...,.2L 4+ Ko=0k,€E(L,Ko)  Ka=0kx, (LK)

L L
< sup Z Z T Z Z bKo kg (J0) Oy ks, (Ja)

(Josmsda) €{1,.. 2B }4FT "y kicy €E(L,Ko) Ka=0ky ,€E(L,Kq)
X Sup |u((KO;‘-'7Kd)7(i0:~~~7id)) _ U((KO»'"7Kd)7(i07'~~)id))| .
(60, ia) €[ Ti—o E(L,Ke)

Since for any K € {0,...,L} and any j € {0,...,2%}, ree(r, ) brk(j) < 1, it follows
that if f € Lip(C(d+1)L),

1f(z) = fy)] = f o PV (w) — fo PV ()]
L L
< Z sup |u((K0 ,,,,, Ka)s(ioy-ia)) _ ) (Koo s Ka) (G0, id))|.

Ko=0  Kg=0(t0,-ia)€lli_o E(L,Ky)

Whence, if f € Lip(c(a+1)z),

|f(x) = f(y)] < C?dﬂ)L(”»”) ‘ (6.6)
Starting from (6.5), considering (6.6), recalling that WaL = P%(dH)W;L, and using the
notations . L
Sia=PF) S g and Np ;= (PYHY) TN, (6.7)
we get

E(Wc(d+1)L (P§L1d\]:2L * Pé‘avNCL,d a))

* P
<E_ sw (B(f(Sta+ Wi, )lF) — BN+ 72,))) . (6.8)
FELip(clyyy),)

Let now Lip(cz‘dH)L, F,r) be the set of measurable functions g : R2“™" xQ — R wrt the

o-fields B(R*"™"") @ Fy. and B(R), such that f(-,w) € Lip(c,, ,),) and f(0,w) = 0 for
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any w € (). For the sake of brevity, we shall write g(z) in place of g(z,w). From Point 2
of Theorem 1 in Dedecker, Prieur and Raynaud de Fitte (2006), the following inequality
holds:

B sup (B(F(Sfq+ Wi,)Fae) = B(F(NT o+ W)
FeLip(ef L)

= sup E(g(S; .4+ W) —E(9(N;,+W7)). (6.9

g€Lip(cyy 1y Far)

To bound up the right-hand side term of the above equality, we shall use the Lindeberg
method. Before developing it, let us make some useful comments.

Recall that since P, is nonsingular, then so is P$?, and (P$4) ™" = (P;1)®’ (see e.q.
Corollary 2.2.11 in Horn and ]ohnson (1991)). Therefore, for any ¢ € Z, we can define
the column vectors €/, ﬁi*, ;, and U (L by

&= (Pr) ‘e, Uiy = (PEY) 0, and U7 = (P29) 0. (6.10)

With these notations, we have

2L
SLd_ZeLL@) ©=3"V (6.11)
=1

Clearly V; = (P%(dﬂ))*lVi’L where V; 1 is defined in (4.16). The vector V;*, can be
written as follows:

~

= ~(K,k d+1 t
ViL= ((ViEL ki € &% ))Kezg“) ’

L7

where
(K kx) _
‘/Z L "= 1Z€BK0 kK (1Y+2L€BK1 % X"'XBRd,kK E(1Y+2L€BK1 kg X"'XBRd,de)) )
(6.12)
where N p
N (k—1)2"% k2
Bri=](k— 1)2K,k2K} and By ; = ] YA 27/3}
Notice now that
Nig= Z +, where Nf, = (P T'N, ;. (6.13)
In addition, the vector ]\77* 1, can be written as follows:
o t
Nip= (N e € E5) egars)
and we have
]E(Ni(’lzykK)N;%J)Q)) — E(Kffykk)‘ésgp@)) , (614)
where V(K #1) is defined in (6.12).

Let us now introduce some notations useful to develop the Lindeberg method.

Notation 6.2. Let ¢,, be the density of W;L and let for z in R2“""",
9% $ay (1,w) = /g(x +y,w)Pa, (y)dy -
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For the sake of brevity, we shall write g * ¢,, (x) instead of g * ¢,, (x,w) (the partial
derivatives will be taken wrt x). Let also

J
So=0 andforj>1, S; :ZV:L’
i=1
where the _’iTL ‘s are defined in (6.11), and

2L
Ty =0 andforje{l,...,2"}, T, =Y N/,
i=j

where the N;L ‘s are defined in (6.13).

Let a € [(L + 1)(4+D 2F(L + 1)(@*+D]. Starting from (6.1) and considering (6.5),
(6.8) and (6.9), we see Ehat toﬂprove (4.46)Hit sufﬁg:es to prove the same bound for
SUPgeLip(cr, 1), For) E(g(S} 4+ W;,)) — E(g(N} 4, + W;,)). With this aim, we shall use
the Lindeberg method combined with the so-called Stein’s identity, as it is described
and done in what follows (see also Neumann (2013) for the case of the partial sums of
real-valued random variables).

With the above notations, we write that

sup  B(g(S7 4+ We,)) — Blg(N] o+ W)
g€Lip(cE‘d+l)L,]:2L)
2L
< sup E(Q*@aL (gi—1+‘7;TL+Ti+l) — 9 * Pay, (gi—1+N¢fL+'fi+1)) .

96Lip(c?d+1)L Far) =1

Foranyi € {1,...,2L}, let

A1in(9) = 9% @ay, (gi—l + ‘Z*L + T‘i-i-l) — g% Pa;, (gi—l + 'f‘i+1) ) (6.15)
and . . . B B
Aoin(9) = 9% ¢ay (Si—1 + N + Tig1) — g% pa, (Si—1 + Tig1) - (6.16)
With these notations, it follows that
. sup E(g(gz,d + W;L)) - E(Q(Nz,d + W;L))
geLip(elyy1y For
2L
< sup Z (E(AI,Z,L(g)) — E(A271)L(g))) . (617)

> geLip(cE‘d+1)L,f2L) i—1
Let us introduce the following definition:

Definition 6.2. Let m be a positive integer. If V denotes the differentiation operator
given by V = (8%1, ceey a%m)t acting on the differentiable functions f : R™ — R, we de-
fine V®* in the same way as in Definition 4.1. If f : R™ — R is k-times differentiable, for
any x € R™, let D¥ f(x) = V®* f(z), and for any vector A of R™, we define D* f(z).A%*
as the usual scalar product in R™" between D f(z) and A®*. We write D f(x) in place
of D f(z).

We start by analyzing the term E(A;; (g)). By Taylor’s integral formula,
. . ., 1 _ . .y
|E(A1,i7L(g)) — E(Dg * Pay (Si,l + Ti+1).‘/;fL) — iE(ng * Oay (Si71 + Tz‘+1).VZ-f)2) ’
! (1 B t)2 3 o T 7k TTx®3
< 'E/O DYk gy (St + Tuer + 1771,). Vi ‘
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Applying Lemma 7.2 and using the following bounds: SUD, ¢ git |‘71_(£<,k;<)| < 2 and
LK >
2hge 52@(‘2‘%5’“))2 < 2, we get

]E(AM,L(Q)) - E(DQ * Par, (Sz 1+ T7,+1) ) - *E(DQQ * Par, (Sifl + Ti+1)-‘7:§2) ’

< ap?(L 4 1)@, (6.18)

Let
A(i,§)(g9) = D*g * a, (Si—j + Tit1) — D*g * @ay, (Si—j—1 + Tit1) (6.19)

and
ur, = [ag(L+1)~@D]. (6.20)

Clearly with the notation X(©) = X — E(X),
D29 * Qay, (gi—l + Ti+1)-(‘7*®2)(0)

Z A, §)(9)- (VPO + D2g 0o, (Sizupniy + Tiga)-(VEH @ (6.21)

In the rest of the proof, to weaken the notations and when no confusion is possible, we
write

KeTit' kxeefty Iokx
For any j < (ur, A4) — 1, notice that

) a4 7 * 829 * SDG/L = =2
A(’a])(g)'(v;,gz)(o) = Z Z (&U(K’kK)ax(P’pP) (Sifj + Ti+1)—

K,kx Ppp

9’9 * ¢a (0)
a:lj(K’kK)az(I};’pp) (Sz j—1 + T1+1)) (V(K kK)V(PPP)) )

Using Lemma 7.4 with

829 * SDaL
Ou(K:ki) 9z (Popp)

829 * SDGL

U= 5e®rm guPrm

(S'z;j + ’fiJrl) - (S‘@;jq + 'f‘i+1) )

V =V ROV Y = o (Ye, 6 < i425 — ), Tis1), V= 0(Yiyor), r = coand s = 1, we
get that there exists a V-measurable random variable by (i + 2 — j) such that
E(AG, ) (9)-(VE) @)

9%g * a, = - 9%g * a,, = -
Ox(K:kx) 9y (Ppp) (Si_j +Ti+1) T 9K kK) 5 (Ppp) (Si_j_l +Ti+1) Hoo}

x S0 S E(bvi+ 28 = TV

K.kx P,pp

SQ{ sup sup
(K ki) (Ppp)

: S (K k . . .
Since - ezttt Dopy e i) |Vi(7L ©)| < 2(L + 1)%+! and E(by (i + 2L — j)) < B;, it follows
that

[B(AGD@-(VE) “”)\ < (L+ 1),

99 * ay
ax(KﬁkK)ax(Pva)

9 Par

’8;3 (K.kx) 9y (Ppr) (Si—j +Tiy1) —

X sup sup
(K,kk) (P,pp)

(gi—j—l + ’f‘i+1) HOO

(6.22)
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Next, using the property of the convolution product and Lemma 7.3, we derive

0%g * pa,
8m(Kka 8$(P7PP

|secrnac
Oz (K:kx) 9 (Ppp)

(§i—j + 'f‘i+1) — ) (§i—j—1 + 'fm-l) H

|eren:
— || 9x (K kx) 9 (Popp)

il g, b+ —owl]

]R(d+1)L

< aZQH sup |g(V Lty — {H
yERE+DL

But, since g € Lip(c?dH)L,}'QL),
s = (K,k
Vi +y) —gw < Y sup VPO <L +1)0 (6.23)
Kezitt ke gl
So overall, we get that
IE(A>, §)(9)-(V;E%) )| < ap?(L+1)2@ D, (6.24)
On the other hand, using the same arguments as to get (6.22), we infer that
[E(D?g * pa, (Si—(upni) + Tira) (VE) )]

0%g * pa,

2(d Q T
< (L + 1) ( +1)ﬂuL/\i sup  sup ’8x(Kka)8x(P»pP) (Si—(uL/\i) + TH_l)Hoo

(KrkK) (P,pp)

Therefore using Lemma 7.3,
[E(D?g * ¢a,, (Siupniy + Tix1)-(VEH) )| < ag (L + 12D, 0 (6.25)

Hence, starting from (6.21) and taking into account (6.24), (6.25), the choice of u, the
fact that a;, < 2F(L + 1)4*! and using that ), < k'~P for some p €]2, 3], we derive

D B(D’gx pay, (Sic1 + Tipr)-(VF) )

(L +1)p=D0+D) ([, 4 1)+
_|_

p—1

< 2L (L 4 1)2(d+1)(
ay, ar

) . (6.26)

We give now an estimate of the expectation of Dg* ¢, (§i_1 + ’f‘iH) XZ*L With this aim,
we write

Dg *¢q, (§i71 + ’fi+1)
i—1

= Dg * Pay, (Ti+1) + Z (Dg * Pay, (§i—j + Ti+1) — Dg * Pay, (gi—j—l + rfi+1)) .
j=1

Hence

]E(Dg * Pay, (§i71 + Tiﬂ)-‘?:L) = E(DQ * Qay, (’fi+1>-‘7iTL)

i—1
+ Y E((Dg * ¢a,, (Si—j + Tis1) = Dg*¢a,, (Sij—1 + Tiza1)).Vip) . (6.27)
j=1

Notice that

0 ar ([ K
E(Dg*(paL(Terl Z Z (azt(i )( z+1)V(Kk )

KeId+1 ki€ £d+1
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Since %(’fiﬂ) is a For V U(’f‘iﬂ)-measurable random variable, and 'fz'+1 is in-
dependent of IN/(K””(), applying Lemma 7.4 with U = %(’EH), V = IN/iEf”“K),

U = For Vo(Tiy1), V = 0(Yier), 7 = 1 and s = oo, we get that there exists a U-
measurable random variable by (i + 2¥) such that

a a 2 .
]IE(DQ * <PaL 7,+1 ‘ < Z Z (‘ ai(ﬂ;{iKL) i+1) ’bz,{(l + QL)) .
KeT{t kxe ety

Notice now that by the inequality (7.1), for any K in Z¢',

0g * Ya, /=
Z ax(K,kKL) (T”l)’ <1

ki€ &Ll
In addition E(by (i + 2%)) < ;. Therefore,

|E(Dg * ¢a, (Tit1)-Vip)| < (L+ 1), (6.28)
i—1
We give now an estimate of Z E((Dg*¢a, (§i,j +Ti+1) ~Dg*@a, (§i,j,1 —&-T‘ZH))XZ*L)
=1
Forany: > 5+ 1, we first w]rite that
(Dg * Qa (§i—j + Ti+1) — Dg * Par (§i—j—1 + Ti+1))-‘7;*L

ag*@a = - ag*@a .
= 2 (Gatrny (Sims + Fosn) = iy (Simsmn + Toa) JHEH
K,k

Using Lemma 7.4 with

09 * P, (& = g * pa,

U= gumae Sims + Tivt) = 5 ek

(§i7j71 + Ti+1) ,

V= ‘N/z(fkk) U=0(Ye,l <i+28 —j)Vo(Tis1), V=0 iae), r=o00ands =1, we get
that there exists a V-measurable random variable by (i + 2 — j) such that

[E((Dg * @a, (Sizj + Tis1) = Dg* gay (Siejo1 + Tign)). Vi)

09 * Pay (g = 09 * Pay (g =
<2 swp || 5icees (8 + Ton) = Gl iy + L)
x 3 B(bvi+ 2 = DIV
Ppp

Since ZK€Id+1 Zkkegd+1 |V(K kK)| < 2(L+1)4 and E(by (i + 2& — j)) < B;, it follows
that

|E((Dg * @a, (§z‘—j + T,»+1) — Dg*¢q, (gi—j—l + 'fi+1))-‘7iTL) |

a — - a * Qg — —
< (L+1)M18; sup 92 Py (Si—j+ Ti1) — %(SF]’A + Tit1)

(K,kx HaI(Kk ) Hoo

Next, using as the property of the convolution product, Lemma 7.3 and the upper bound
(6.23), we derive that

9g * pa = 09 * Pay, (g =
H 5 (K. kKL) i+ Ti) — 78 ® k.KL) (Sz’—j—l + Tis1) H
pa, H H -1 d+1
+ H <a;'(L+ 14,
< H gecta || s 1o+ -9 < a4
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It follows that for any i > j + 1,
[E((Dg#pay (Sij+ Tis1) = Dgxpa, (Sivjmr+Tir)) Vi) | < ar (L4155 (6.29)
From now on, we assume that j < i A uy. Notice that
(DQ * Pay, (gi—j + Ti+1) —Dg*@q, (§i—j—1 + Tz-ﬁ-l))‘_/;*L

— D?g % @a, (Si—j—1 + Tit1)-(Vi" ;L @ Vi)

1
- /O (1—t)D3g %, (SZ i1+ Tip1 + V) " L) (V*®2L @V )dt.
We first write

|E(D%g * ¢a, (§z‘—j—1 + T + ﬂztj,L)-‘_/;i%?L ® ‘_/;*L) |

839 * g, o i =
= ]E( > D . ga@as Simi-1 + Tin V1)
K,kx Ppp Q,qq

y ‘72_(71;:12;()‘71_(71?’:7;)‘72.5%(1@)) .
Let

Q ‘IQ) g Par (K kK) (PPP)
z;; PZ ST e P @y (St T + 0V 1) x VPOV
K PP

Using Lemma 7.4 with U = W(QJQLQ), V= V(Q 99) 1 = o(Vl < i+ 28 — §) V o (Tipa),
V =0(Y;0c), r =00 and s = 1, we get that we get that there exists a V-measurable
random variable bV(i +2F — j) such that

> [EWERVE)

QGId+1 Q68d+1
=2 Z Z HW(Q 0c) ]E(bv(i +of _j)|‘7ifg-,q@)‘) .

QeI qoe ety

Using Lemma 7.3 and the fact that ZK ke ZPpp |V(K kK)VZ(PpP ’ < 4(L+1) 2(d+1) e
get
|W(Q QQ)| <aj (L + 1)2(d+1) )

Hence,

S>> [EWEE VL)

Qel-d+1 qugdfrl
(L+ 2(d+1) Z Z (bv Z+2L \‘ng’m)‘)
QGI(Hl qugd.ﬂ

Using the facts that 35, rt1 ) v qQ)| < 2(L+1)4 and E(by(i+25—j)) < 8,
L

we get overall

qQ € 5d+1 |

1
‘]E(/ (L= D% pa, (Sijor + Ty + 477, 1)V @ Vgt )| < ap(L+1)% 05,
0
(6.30)

EJP 19 (2014), paper 9. ejp.ejpecp.org
Page 33/56


http://dx.doi.org/10.1214/EJP.v19-2658
http://ejp.ejpecp.org/

Strong approximation for the empirical process

In order to estimate the term E(D?g * ¢, (§i_j_1 + Ti+1).(‘7;tj7L ® ‘_/;*L)) we use the
following decomposition:
D?g Par, (§i—j—1 + 'f‘m-l) = D%gx* Par, (§(i—2j)v0 + Ti+1)
(G-DA(i—j-1)

+ Z (D%g * ¢a, (S’ifjfl + TiJrl) — D?g % ¢, (gifjflq + ’fi+1)) .
=1

Foranyle {1,...,(j —1) A (¢ —j — 1)}, we notice that
[E((D%g * @ay (Simjmt + Ti1) = D29 %, (Sicjmimr + Tia)). Vi, L © Vi) |

1
= ‘E</o D3g 5 pay (Sicjoi+Tipr +tV ) Vi @V, © ViTLdt) )

whence, using the same arguments as to get (6.30), we obtain that

[E((D%g * ¢a,, (Si—ji + Tis1) — D29 % a, (Sicjoi1+ Tis1)). Vi L @ Vi)
< ap*(L+1)%@tg, 0 (6.31)
As a second step, we bound up |[E(D?g * ¢a, (Si—zj)vo + Tizx1)-(V;, , ® Vi) @)).
Assume first that j < [i/2]. Clearly, using the notation (6.19),

~ (urL=1)A(i—j-1)
D?gx g, (Si—2j + Tit1) = Z A(d, L+ §)(9) + D9 % 0ay, (Sti—j—uryvo + Tiv1) -
1=

Now forany! € {j,...,(ur —1)A(i—j—1)}, by using similar arguments as to get (6.24),
we infer that

[E(AG L+ 7).V, @ Vi) D) < ag?(L+ 13, (6.32)
If 5 <14 — up, with similar arguments,
|E(D?g  @a, (Sicjouy, + Tit1). (Vi @ Vi) ) < ap (L +1)20Y8,, . (6.33)
Now if 5 > ¢ — ur, we infer that

|E(D?g * @a, (Tit1). (Vi @ Vi) )| < ap (L + 1285 < ap (L +1)X D8 0,

(6.34)
where we have used the fact that j < [i/2], for the last inequality. Assume now that
J > [i/2] + 1. We then get that

[E(D?g*@a, (Tir1). Vi, L @ Vi <ap (L+ 1208 < ap (L +1)2 D8y, 0. (6.35)

Starting from (6.27), adding the inequalities (6.28)-(6.35) and summing on j and [, we
then obtain:

ur,—1

|E(Dg#pay (Sie1+Tit1). Z E(D?g%@ay (Si—2;+Ti1))-B(Vi; 1 @VIL) Li<pi/a]

< (L4168 +ap (L +1)2HD Z B +a; (L +1)2 4y, 8,

J=iAur,

(L+1)2(d+1)uLﬁ[Z/2]+aL L+41)36+D Z]ﬁ
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Next summing on i and taking into account the fact that 3, < k'~P for some p €]2,3],
and the choice of uy, we get

ok ur—1
> ‘E(Dg*%L (Si-14Ti1)Vip) = D B(D grpa, (Sivaj+Tis) ) B(V; 10V )1
i=1 j=1

< (L4 D) 4 a) (L + 1)PAD2L o 2L+ 1)3 @ D2k log(up)1,—3.  (6.36)

Hence, starting from (6.18) and considering the upper bounds (6.26) and (6.36) to-
gether with the fact that a;, > (L + 1)?*!, we get

2l wup—1
Z E(A1z(g Z Z D?gxpq, (Si—2j + Tit1)) BE(ViL, L ® Vi) Li<iis2
1 & S 7 %
-3 Z E(D?g * ¢,, (Si—1 + Tz‘+1))-E(V¢T§2)
i=1

< (L4 1M 4] P(L + 1P+l 4 o 72(L 4 1)34+4201 5 (6.37)

We analyze now the “Gaussian part" in (6.17), namely, the term ]E(Ag,i’L(g)). By
Taylor’s integral formula,

. . 1 . . .
E(Asz,,.(9)) — E(Dg * SOaL( i—1+Tip1).NSp) — iE(DQQ * 0y (Sic1 + Ti+1)-Nz%2)
1

E(D?’g * Qap, (§i71 + Ti+1).]\7i*’%3)
_ 1/
=3 ;

Applying Lemma 7.2, we derive that, for any i € {1,...,2%} and any ¢ € [0, 1],

AHcm

1—1)°E(D*g * ¢a, (Si—1 + Ti1 +tN7).N;$*)dt. (6.38)

[E(D*g * ¢a, (Si-1 + Tir1 + tﬁz‘fL)-ﬁ:%LL) |

<aj ]E(( S sw |]\~]i(,IL()kK)|>< Y% (N;’zg,kx))g)sm)

(d+1)
Kerdt k€& KeT{t pregldth

<a?(®( X s WES))(E( T X @)

(d+1)
€L, KeT{™ kel

3/4

KGIZ+1 krke&p
(6.39)

Notice that

> s NGl @ap@e(oy 3 (fo’kmf)m, (6.40)

(a+1)
Kerdtl kr€&y i KeIy™ kel th

and
S (Kk 2 ~(K.k 1/2\2
(Y X @) < (XX ®EETHT)
KeTy™ kel th KeZ{*' kreel il
2
<3( Y Y E@EM)) . 6an
KeT{t kpegldth
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Moreover by using (6.14), we get

Z Z E(([\V]l(fg,kx))Q) _ Z Z E(("}iff,kK)F) < 2(L + 1)d+1. (6.42)

)

KGIZ‘H kKEEédZD KGIZ‘H kKEEédZU

Therefore, starting from (6.39), taking into account (6.40), (6.41) and (6.42), we derive
that, for any ¢ € [0, 1],

[E(D*g % ¢a, (Si—1 + Tip1 + tﬁifL).ﬁif%4)] < ap?(L+1)3d+0/2, (6.43)
We deal now with the term E(D3g * ¢, (§1~,1 + ’f‘iﬂ) ]\71*%3) With this aim, we write

E(Dgg * Pay, (gi—l + Ti+1).]\7;%3)

0°9 * Pa, S - SO k) R (Popp) Qi)
= Z Z Z E(ax(K,kx)aw(P,pp)ax(Q,qQ) (Sifl +Ti+1) X Nz‘,L Ni,L Ni,L )
K.,kx Ppp Q.,qq

We shall now use the so-called Stein’s identity for Gaussian vectors (see e.g. Lemma 1
in Liu (1994)): for G = (G4, ..., Gk)t a centered Gaussian vector of R* and any function
h: R¥ — R such that its partial derivatives exist almost everywhere and E|;2-h(G)| <
oo forany ¢ =1,...,k, the following equality holds true:

k
B(G; h(G)) = ZE(GiGZ)E(S—h(G)) foranyie {1,...,k}. (6.44)
=1 Te

Therefore using (6.44) and the fact that (Y}, j € Z) is independent of (Ni*,l <i<2b),
we derive

E(DBQ * Qap (§i71 -+ 'f‘i+1).]vi":%3)

g * Pay, & Sk \ o (R (Popr) 3(Qua0)
=2 Z Z Z E(3I(K,kk)ax(p,pp)ax(Q,qQ) (Si—1+Ti+1)XNi,L )E(Ni,L Ni,L )
K,kx Ppp Q,qq

9'g * a,, g = (K k) 5 (Ppp)
+ Z Z Z Z ]E(ax(K,kK)ax(P,pp)ax(Q,qQ)ax(R,’r'R) (Si*1+Ti+1) x Ni,L Ni,L )
K.kx Ppp Q,qq R,rr

2L
< S E(NTINSG) . (6.45)
t=it1

Using again (6.44) and the fact that (Y;,j € Z) is independent of (]\71»*, 1<i<2b), we
have

639 * Pay, 3 T N (K k)
]E(agC(K,kK)az(P,pp)am(Q,qQ) (Sim1 + Tir) x Nip )
849 * Qay, I “ - A (R,mr) A7 (K ki)
-2 E(Gmmergaon on gt (o1 + Te) ) x L, BN,
TR =1

(6.46)

On the other hand, applying twice (6.44) and taking into account that (Y;,j € Z) is
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independent of (N, 1 < i < 2L), we derive
E( 0'g * Pay,
Ox(K k) 9z (Ppr) §x(Q:4Q) Y (R.TR)

9'g * a,, g o (K .kic) X7 (Popp)
= E(8;p(K’kK)8x(PvPP)8x(quQ)8x(Rvm) (Si—l + Ti+1)>E(N'L,L N;p )

859 * Pap 3 = S(K,kk)
+ Z E(am(K,kmam(P,pp)ag;(cz,q@)axm,rR)ax(M,mM) (Sim1 + Tir) X Ny )

(gm + "fm) % Ni(’lf,kK) Ni(’lz,m)

M,’n’lzu

2L
~ Z E(ﬁ{(f\gvmmﬁilz’p?))
1=it+1

849 * Pap, S T (K k) A7(Ppp)
E(8x(Kka)8x(PvPP)Bag(quQ)ax(R”R) (Si—l + Ti"‘l))E(Ni,L N )

0%g x Pay, - N
+ Z Z E(ax(K kx) 9z (Prpr) 9z(Q:9Q) 9z (R R) 9 (M mint) 9o (F.fF) (SFI * THl))

M,mp; F, fF
( Z E N(FfF N(K kK) )( Z E N(M mar N(PPP))> (6.47)
k=i+1 l=i+1

Therefore gathering (6.45)-(6.47), using (6.14) and the definition of the tensor product
to shorten the notations, we derive

E(Dgg * Pay, (Sz 1+ Tz+1) N*®3)

2L
=53 B(DYgx g, (Sir + Ton) ) (BT, © Vi) @ B(T52))
l=i+1

2L 2L oL

+ Z Z Z E(DGQ*@M(S}A +'f'i+1)).

O=i+1 k=i+1j=i+1
(E(VQ*L Vi) @BV, Vi) o E(Vi eV, L)) - (6.48)
Using now Lemma 7.5, we get

2L

2k 3
E(D3g * ¢, (81 1+ T1+1) N %) <ap’(L+ 1)ty Z Be+ap®(L+ 1)y ( Z ﬂé)

Taking into account the condition on the 3-coefficients and the fact that ay, > (L+1)4+1,
it follows that

E(D% # ¢a, (Si—1 + Tig1).N7T?) < ap(L+ 1), (6.49)

We analyze now the second and third term in the left-hand side of equality (6.38).
This will be done by using similar decompositions as done when analyzing the corre-
sponding terms to deal with E(A1; .(g)).

Let us first analyze E(D?g * ¢, (§i,1 + ’f‘iﬂ) ]\72*%2) Let
R(i,§)(9) = D*g % ¢a, (Si—1 + Titj) — D*g % ay (Sic1 + Tigji1) (6.50)
and write
D29 * Pay (§i—1 —+ ’fi+1).]\7:%2

up AN(2F =)

= Y RG)@NF2+ D% ¢a, (Sic1 + Tiptupnr—ins) N>, (6.51)
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where we recall that u, as been defined in (6.20). We shall use now several times (6.44)
together with (6.14) as we did to get (6.48). Therefore, for any 1 < j < uy A (2L —1),

E(R(i,)(9)-N;$?) = E(R(i,5)(9))-E(V;'$?)
+ E<D39 * QVar (gi,1 + 'f‘i+j)-]\7i>tL & E(Viij,L ® ‘_/;TL)>

=+ Z E((D?’g * Pap, (§i—1 + rfi—&-j) — Dgg * Qay (§1_1 + rfi—&-j—&—l))-]\_;;L ® E(‘_/ZL (24 ‘_/':L)) .
(6.52)
Next,
E(D39 * Qqp, (S‘ifl + THJ‘)-NZL ® ]E(‘/':I»] L® ‘Z*L)>
=E(D*g*¢a, (Sic1 + Tirj)). BV, @ Vi) @ BV, L@ Vi) -
(6.53)
Writing
(D% 0o, (Sica + Ting) = D20 % g (Sics + Tirjn))-Nip @ BV, © Vi)
1
= | DU pun (B2 0) N 0 Ny @ BV @ Vi)

where

—

Ri,j7L(t) = §i—1 + Ti+j+1 + t]\_f:_,_j’L s (6.54)

we get
E((D39 * Par (gifl + TiJrj) — D%g % ¢u,, (gifl + Ti+j+1))-]\7;L ® E(VZ*L ® V;*L))
1
= [ Bt (R 0))- BT 0 Vi) BT 02

1
+/0 tE(D5g* Yar (Rij,L(t)) N+]L ®E(VigL Vi) @ B(Vy, ®V2L))

+ Z / D°g % @q, ( Ri,j,L(t))-Ni*ﬂ,L ® E(VI:,L ® ‘Z*L) ® E(VE*L ® ‘Z*L)) .
k=i+j+1
Whence,

E((DSQ * Pay, (gz‘—l + 'f‘z‘+j) —D3gx g, (gi—l + rf‘i+j+1))‘ﬁ:L ® E(VZL ® ‘Z‘TL))
1
= [ B(Dg (o 0)- BV © Vi) © B (Vi @ Vi)

1
+/0 EE(DCg % pa, (Rign (1)) B(VEL) @ B(V, L @ Vi) @ BV @ V)
oL 1 . .
+ Z /0tE(D69*<PaL(Ri,j,L(t)))'E(VI:,L(gV-{—JL)®E(Vz+jL®V1L)®E(VZL®VTL)
k=i+tj+1
2L

1
w3 [ B(D e, (B 0) B(VE) 9 B @ Vi) 9 BV, © V)
k=it+j+1
+ > / D°gxpa,, (Rigr(t)))- (Vi 1@Vis, ) OE(V L0V ) OB (VL@ Viy) .
(k,m)€i+j+1,2L]2
(6.55)
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Gathering (6.52)-(6.55), using Lemma 7.5 and taking into account the condition on the
[ coefficients, we then derive

ur A(2Y —i)
Y ERG6)-(VF - BEE)|
j=1

up A2V —i) oL _; 9

CapP L+ DM £ a? (L4 1)) o () S (Y B
j=1 e=j+1

up A(2Y—i) oL _;

<ap®(L+ D) 4o 5(L 4 1) Y ( > Be) , (6.56)

where for the last inequality we used the fact that a;, > (L + 1)¢*1. On the other hand,
using once again several times (6.44) together with (6.14) as we did to get (6.48), we
derive, for i < 2% —uy,

E(Dgg * Pap (§i71 + Ti+uL+1).]\7;:%2) = E(DQQ * Qg (51;1 + ’fiJr(uL/\(zL,i)))). E(VZT?2)
oL
+ Z E(D39 * Pap, (§¢—1 + Ti-‘ruL"rl)']\_f;:L & E(%*L ® V;*L)>
t=it(up A(2E—1))

= E(D?g % @a, (Si-1 + Tiyu, 1)) E(V7F?)

2L 2L
+ D Y E(D'9x¢a, (S + Tivupn1) BV L © Vi) @ BV, © ‘ZTL)) :
l=i+up+1 k=14+ur+1

Hence, using Lemma 7.5, we obtain, for ¢ < oL —wp,

{=ur+1
(6.57)
Assume now that ¢ > 2% — ;. Using the independence between S;_; and N;L, and the
relation (6.14), we then notice that
E(D2g # pu, (Si1)-N/52) = B(D?g + 0a, (Si1))- B(VE2). (6.58)
Therefore, starting from (6.51), considering (6.56), (6.57) and (6.58), and using that
B = O(k'~=P) with p €]2, 3], we get
2L
| S B(D%0 5 g (Sicr + T (N2~ BV
i=1

Whence, taking into account the choice of u;, we get overall

2L
S [B(D x s (8 + o) (5357 - BT
i=1

< a7 (L + 1)l 4 o 27P(L 4 1)B+d+ DL (6 59)
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We analyze now the term E(Dg * ¢4, (§i_1 + Tz+1)NL*L) in the left-hand side of
equality (6.38). With this aim, we write

Dg* @q, (gi—l + 'fm-l) = Dg* Qq, (gi—l)
2l
+ Z (Dg * @ay, (Si—1 + Tirj) — Dg* @a, (Sic1 + Tiyjs1)) -
j=1
Using the independence between Sl 1 and N "L, we first notice that
E(Dg * ¢ay (Si—1)-N;1) = E(Dg * ¢a, (Si—1)).E(N;,) = 0.
Hence

(Dg*@uL( i— 1+T1+1)N )

((Dg * @ay ( S i—1+ Tiﬂ‘) —Dg* @q, (§i71 + Ti+j+1))-ﬁ:[,) . (6.60)

HMN

Notice now that

E((Dg * ¢ay, (Si-1 + Tiry) = Dg # ay (Sic1 + Tisji1))-Ni 1)

1
:/ E(D?g x ¢a, (Rij(t)) NﬂL@N;jL)dt, (6.61)
0

where we recall that f{iJ,L(t) as been defined in (6.54). We use now several times (6.44)
together with (6.14) as we did to get (6.48). Hence,

E(D?g * ¢q, (ﬁi7.j,L(t))'A7i*+j,L ® NZL)
= B(D%g* ¢a,, (Sic1 + Tijr + N7 1)) BV, L @ Vi)
+ t]E(D3g * Qay, (ﬁi,j7L< )) NJrj L ® ]E(‘/;r‘rj L & V;*L))

2L
+ Y B(Dgx g, (Risn ()N ©B(ViL 0 Vi)
l=i+j+1

Next,
E(D?g * ¢a, (ﬁ'i,j,L( )- N+J L ® N 1) =E(D*gxpq, (Rij L(t))). (V+j L ® VJL)
(DY ¢, (R 0)) B(TA) 9 B (V0 0 V)

> B(DYgx pa, (Risn ) B(ViL @ Vi) @ BV, @ Vi)
l=itj+1

> E(Dgxpa, (R (1)) B(V5) 9 B, 0 V) )
l=i+j+1

+ Y Y E(DYgrea, (Rijr))E(Vi, @V, ) @BV e ‘Z'TL)) :
k=it +1L=itj+1
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Hence, starting from (6.61), considering the above equalities and using Lemma 7.5, we
obtain, for 1 < j < 2F — 4,

‘E((Dg % Pay (Sic1 + Tirj) — Dg* @a, (Sic1 + Tz‘+j+1))-ﬁifL)‘

2k 2f 1 2k
< ap (L+ 128 4+ ap® (L 4+ 1) 3 " 8+ a *(L+ DY N 8> "
=1 l=j+1 k=1

L

27 -1
< ap (L+ 126 +ap® (L+ 14D N 8, (6.62)
t=j+1

where for the last inequality we have used that a; > (L + 1)9*! and EkZI B < oo.

From now on we assume that j < (2% — i) A (ur — 1). Recalling the notation (6.54),
we first write

(Dg * ¢ay (Si-1 + Tisj)
— Dg*pq, (§i71 + ’fi+j+1))']\7;L — D9 % ¢q, (gifl + ’f‘i+j+1)'(]\7i*+j,L ® N:L)
- /0 1(1 —)D%g * ¢a, (Rij,0().(N;E?, @ N7 )dt.  (6.63)
Applying (6.44) together with (6.14), we derive
B(D%g + pu, (Riy (). (N2, @ Nip)
= 21E(D3g 5 Qay (Rign(0).Nfy, L @BV, L @ XZ’;))

—

+ tE(D49 * Pay, (ﬁi,j,L(t»)-Ni*ffL ® E(V;ij,L ® HiTL))

2L
+ Y B(Digra, (Rige)-NiEL @ BV @ V).
C=itj+1

Next, applying again (6.44) together with (6.14), we get

—
*

E(D3g #a; (Rijn (1) Niyj @B(Vi L @ ‘Z*L))
= tE(D"g # ¢a, (R, (1)))-E(V5) @ B(Vi, L @ Viip)
and
E<D4g * Pay (ﬁi,j,L(t)))-ﬁiﬁ?L ® E(V;L ® ‘Z*L)>

= E(D*g* ¢a, (Rij (1)) E(Vi5%) @ BV, @ Vi)
+ 2 E(Dg x g, (Ri (1) BV @ B(V;E%) @ BV, @ Vi)

2L
+2t Z E(D69 * Pay, (ﬁi,ji(t)))' E(‘Zi%QL)E(Vk*L ® _iz:-j,L) ® E(%*L Y ‘Z*L)
k=i+j+1

1
Y Y B0 B ) B 0 V0w

k=itj+1m=itjtl
E(Vk*,L ® :?;L) ® E(vf*L ® ‘Z*L) :
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Gathering the previous equalities and using Lemma 7.5, we derive
1 —
E( [ (1= 0D g, (Rayu0) (N2, N:,L>dt)
0

ot s e ()

l=j+1 k>1

2L
ar¥(L+ 1Y "5, (6.64)
=

where for the last inequality we have used that a;, > (L + 1)9*! and Zkzl B < 0.

In order to estimate the term E(D?g  ¢,, (Si—1 + Ti+j+1)-(]\7ﬁj,L ® N;p)) in the
right-hand side of (6.63), we use the following decomposition:

E(D?g  ¢ay, (Si1 + Tigj1)-(N7y, 0 © Nip))
JnE@r—i—j) . . . . . .
= Z E((D29 *@ay (Sic1 + Tivjat) = D*g% ay (Sic1 + Tisjyig1)) Ny L ® NZL)
+ E(D29 * Pap, (gz‘fl + ’f(i+2j+1)A(2L+1))-(Nflj,L ® Ni*,L)) .

Forany!l e {1,...,7 A (2L —i—j)}, we write

‘E<(D2g * Oay (§i71 + 'f‘i+j+l) —D?gx g, (§i71 + 'fi+j+l+1))-]\7i*+j,L ® NfﬁL) ‘

1
0

where
Rijir(t):=Si—1+Tipjpi + tN* L

Applying (6.44) together with (6.14), we derive

E(D39 * Oay (ﬁi,j,l,L(t))-ﬁi*ﬂH,L ® Nz*+] L® ﬁf,L
= E<D39 * Pay (ﬁi,j,l,L(t))-Ni*HH,L ® E(V+g L® Vi:kL))
+E(D% % 0, (R (0) N © B0, © Vi)

+ tE(D49 * Pay, (Rijun(t)) N © Nerj L® E(VHJH L® VifL))

2L
+ Z E<D49 * Pap (ﬁi,j,l,L(t))'Ni*+j+l,L ® N+] L® E(Vk L®V )) .
ke=i+j+i+1

Next, applying again (6.44) together with (6.14), we get

E(D3g #0a, (Rija.n(0) Ny ®E(Vi, 1 ® ))
=tE(D*g * ¢a, (Riju(t))). (V;’;@;il ) @BV, V)
2L
" Z E(D*g % ¢ay (Rijur () E(ViL ® Vi) @ E(Vi L@ Vi),
k=itj+1+1
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E<D39 * Pay, (ﬁi,j,l,L(t)) N1+] L ® E(Vz+j+l L ® ViTL))

= tB(D*g* @a, (Riji,(1)) B(Vijprr © Vin) @ BV @ Vi)

2L
+ Z E(D49 * Pap, (ﬁi,j,l,L(t)))E(Vk*,L ® _’z:-]L) ® E(Vz+g+l L® Vz ) s
k=itj+i+1

and
E(D4g # @ay (R, o (8) - Nipy © Nt @ E(Vi L ® ‘ZTL))
=E(D"g * ¢a, (ﬁi,j,l,L(t)))-E(‘Zin,L ® :i;L) ® E(Vk*,L ® ‘Z*L))

(D% * g, (Ripa (D) N0 © BV, ® Vi) @ BV @ Vi) )

2L
+ Z E(D59 * Pap, (ﬁi,j,l,L(t)) NerjJrl L® E(Vm L ® iij,L) ® E(Vk*L ® V;*L>) .
m=itj+i+1

Next,
]E<D5g f Pay (Rijin()Nivy o @ B(VE L @ Vi, ) @ B(Vi, @ Vi )

= tB(D°g * o, (Rijun (1) BV 1) @ B(Vy L @ Vi) @ B(ViL @ Vi)

+ > B(D grpa, (Rijur(t)E(Vi@Viy ) RF (Vi 10V ) RE(VELoV) .
r=i+j+1+1

So, gathering the previous equalities, using Lemma 7.5 and the fact that ), ., 8x < oo,
we get overall that, forany [ € {1,...,j A (2L —i — )},

‘E((D2g * Pq, (§i,1 + ’f‘i+j+l) — D%g% ¢, (§i71 + rfi+j+l+1))']\7i*+j L® Nz’*L) ‘

2l g PR 2l _i—j
a (LA DM B+ar (L4 1) N Beta (L4156, Z Bon -
k=j+l k=j+1

Therefore, using again that ), -, fr < oo,

in@t—i—j)

> ‘E((D29 % @ay (Sic1+ Tipjt) = D20 @ay (Sic1+ Tigjiiin))-Niyy 0 © ﬁiL) ‘
=1

2Ll
<ap(L+D)M58; + a3 (L 4+ 1)) N By
k=j
G=DA QL*I j) 2k —i L_i— g
+az®(L+ 1)@+ Z > B Z Bm . (6.65)
k=j+1

We analyze now |E(D2gx @, (Si—1+Tisajr1)ace41))- (Vi ®N;p))|. Assume first
that j < [(2¥ —4)/2]. Clearly, using the notation (6.50),

(ur—1A(2F =i—j)

D?gxpq, (§i71+’fi+2j+l) = Z R(i,1+5)(9)+D*gxpa,, (§i71+’f(i+j+uL)/\(2L+l)) -
I=j+1
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Now forany ! € {j+1,...,(ur —1) A (2¥ —i —j)}, by (6.44) together with (6.14), we get

E(R(i,1 +j)(g)‘(ﬁi*+j,L ® NZ*L)) =E(R(i,! +j)(9))-E(‘7¢ij,L ® V;*L)

2L
+ Z E(D39 % Pay (Sic1 + Tigjur) Ny @ B(Vy L @ VI:,L))
k=itj+l
2L
- Z E<D39 * Pay, (§i—1 + Ti+j+l+1)']\7;L ® E(‘Z:—]L ® V}:L)) .
k=itj+i+1
Therefore,
(up—1)A(2F —i—j) = . . .
S (BRGI+ 19N @ N7 ) = B(RG,L+5)(9) BV L © Vi)
1=j+1
2L
= Z E<D39 * Pay, (gi—l + Ti+2j+1)-]\7ifL ® IE(V;:-]L ® Vk*L))
k=it2j+1
2L
- > E(D39 # ay (Sic1 + Tiatjrunneein )N @ B(Vi ;L © V,QjL)) :

k=(i+j+ur)A(2L+1)
Whence, using again (6.44) together with (6.14),
(ur—1)A(2" —i—j)

S (BRGI+1)9)-(N7p © N7p)) = E(RG U+ 5)(9) E(V 0 © Vi)
I=j+1

2L 2L
= Z Z E(D49 * Pay (gz‘fl + Ti+2j+1))-E(V$,L ® Hi:kL) ® E(Vz:gL ® Vk*L)
k=i+2j+1 m=i+2j+1
2L 2L
- > > E(D*g¢a,, (Sic1+ T (g jrurinorin)) E(Vin 10V
k=(i+j+ur)A2L+1) m=(i+j+ur)A(2L+1)

OBV, Vi)
Next, using Lemma 7.5 and the fact that >, -, B < oo, we get
(ur=1)A2" —i—j)

> (B(RGI+)(9)- (N @ N7 ) = B(RG U+ 5)(9) BV L © Vi) )|
I=j+1

< 623(L+1)4(d+1)2ﬁk+GZ3(L+1)4(dH) Z 8. (6.66)
k>j k>ur

Still assuming that j < [(2¥ — i)/2], let us analyze the following term:
E(D?g* ¢ay (Si—1 + Tt jrun)n@es)-(Nivj L ® Nip)) -
Let us first consider the case where j < 2L 4 —wup. By (6.44) together with (6.14), we
get
E(D?g  ¢ay, (Sic1 + Titjyur)-(Nij @ Ni7p))
=E(D?g* @a, (Sic1 + Tigjsus)) BV L @ Vip)

2L
+ Z E(D39 *Qap, (Sic1 + Tigjrus ) Nivjp OB(ViL @ ‘_/;*L)) .
k=i+j+ur
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Therefore using again (6.44) together with (6.14),

E(D?g * oy (Sic1 + Ticjius )-(Nius L © Nip))
— B(D%g* ga, (Sic1 + Tisju,)) BV L © Vi)

2k 2k
= > Y EDgrva S+ Tigea) BV L8V, L) @BV eV))
k=i+j+ur m=i+j+tur

Hence using Lemma 7.5 and the fact that 3, -, Bx < oo, it follows that

’E(ng * Py (gi—l + Ti+j+uL)'(Ni*+j,L ® N;L))

~B(D?9 % i, (S + Tirjin)) BTy © V)|
2L
<ap(L4+ 1M 3" 8, (6.67)

k=ur,

Consider now the case where j > 2/ — i — u;, + 1. Notice then that by independence

between S;_; and the random variables ]\77* 7, and Ni’; ;.- (6.14) entails that

E(D%g* a, (Sic1).(Nfy; L ® Nip)) = B(D?g % 9a, (Siz1)) E(Viy, L © Vi) . (6.68)
Assume now that j > [(2L° —i)/2] + 1. Starting from (6.68) and using Lemma 7.5, we get

[E(D?g % pa,, (Sic1)-(Niyjr @ Nip)| < ap (L + 1285 < ap ' (L+ D)X Bion oy

(6.69)

Starting from (6.60), summing the inequalities (6.62), (6.64), (6.65), (6.66), (6.67)

and (6.69) in j, adding them, and taking into account that 3, = O(k'~P) with p €]2,3],
we then infer that

’E(Dg * Pa, (S_';i,l + 'fi+1)-]\7¢*,L)
’U.Lfl

= Y E(D?g#@ay, (Sic1 + Tigj1))- BV, L © Vi) L<2e—iy 2|
j=1

2l —i
< G/Zl(L+ 1)2(d+1) Z jl—p +a;3(L+ 1)4(d+1)2L(3—p) +az3(L+ 1)4d+51p:3

J=2L=i)AuL
+ aZS(L + 1)6(d+1)ui—2p + GZS(L + 1)6(d+1)(10g(uL))21p:3 + (IZ3(L + 1)4(d+1)u?£—17
+ CLZB(L + ].)4(d+1) IOg(UL)].ng + a;l(L + 1)2(d+1)uLﬁ[(2L,i)/2] .

Next summing on i and taking into account the choice of uy and that ay > (L + 1)%*!,
we get

2L
Z ’E(DQ *Pag, (3171 + Ti+1)-N:L)
i=1
uL—l
- Z E(D29 * Pay, (Sifl + Ti+2j+1))°E(V;ij’L & ‘/;TL)]'J'S[@L*Z')/Q]’
j=1
< (liﬁp(L + 1)p(d+1)2L 4 ai3(L + 1)4(d+1)2L (2L(37p) + Llng) . (6.70)
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Hence, starting from (6.38) and considering the upper bounds (6.43) and (6.49) to-
gether with the fact that a;, > (L + 1)?*!, we get

Z E(A2;,1(9) — Z

’U,Lfl
E(D?g % @a, (Si—1 + Tiv2j+1))-B(Vi L @ ViL)Li<ier—i /2
j=1

L
12 . . .
-3 E E(DQg * ap (Si—1 + Ti+1))'E(ViTi®2)
i=1

< ay P(L+ 1Pl 4 o7 3(L 4 1)t 2l (LGP 17, _4). (6.71)
Gathering (6.37) and (6.71), it follows that
ok 2k
Z (E(A1i,L(9) —E(A2:L(9))) — Z Ri L
i=1 i=1
< (L4 D) 4 ap P(L+ 1)PEADL o 2(L 4 1)34 4420,
+ap3(L+ 1)l (oGP 4 114 (6.72)
where
uL—l

Rip =Y B(D*g%@a, (Si—2j + Tis1)) (V"L ® Vi) 1<z
=1

’IJ,Lfl

= > B(D?gxpa, (Sic1 + Tigaj1))-E(Vi L © ViL) Lo iy - (6.73)
j=1

We get now an upper bound of Zf; R; 1. We first write that
E(D%g % ¢a, (Si—1 + Tiz1) — D29 * ¢ay (Siaj + Tit1)).B(V, L @ Vi)

1—1 1
= Y / E(D3g*<ﬂaL (Si—2j +Tit1 +t(Si1—Si—2)). Vi L OE(V,E 1 ®Vz‘TL)>dt'
0

m=i—2j+1
Next

—

E(Dgg * Qap, (§i72j + rfiJrl + t(g‘ifl - §i72j))"7n*1,L ® ]E(V;-*,j’L & _;TL))

g * Qa,, g 2 S & = (K ki)
= Z Z Z E(5$(K,kK)ax(P,pp)3x(Q,qQ) (Si—2j + Tis1 +t(Si—1 — Si—2j)) x Vil )
K,kx Ppp Q,9Q

(P, (@,
x E(V o)y

: ; >(Ppp)
Using Lemma 7.4 with U = V;" 7",
V =
Z Z v (@R DP9 pa, (§ AT+ 1(Sio1 S, )) S UGk
4L O (K.kr)§p(Prpr) §r(Q.90) i—2j i+l i—1 =27 m,L )
K,kx Q,qq

U=0cY,t<i+2—35),V=0(Yiee), r=1and s = oo, we get that we get that there
exists a U/-measurable random variable b (i + 2¥) such that

‘E<D39 * Va, (§i72j + 'f‘i+1 + t(§i71 — §i72j))-‘7¢2’[‘ ® E(V{ij,L ® ‘Z*L))‘
<2 Y Y xB(VE b+ 2") Vi

Pezit ppeefty
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Using Lemma 7.3 and the fact that Y-, > o v, g QQ)V(K S| < AL+ 1)), we
derive that

IVllse < az®(L +1)% 0.

On the other hand, ZPEZzH pregzﬂ |V(P7pp | < 2(L+ 1)+ and B(by(i + 2L)) < B;.
Therefore, for any ¢ € [0, 1], “

‘E<D39*<PaL (§i—2j+rfi+1+t(§i—1—§i—2j)) v L®E(V " L®VTL))‘ <ap (L4103,

So overall,
uL—l R . N . . .
S [B(D%0 % g, (Sic1 + Tian) = D2, (Sioay + Tiin)) BV, @ V)|
j=1

ur
ap?(L+ 1D N 58, (6.74)
j=1

On the other hand, setting 4; ; = §i+j,1 + ’f‘iﬂ-ﬂ — §¢71 — T‘HQJ-H, we write

E(D%g % ¢a, (Sivj—1 + Titji1) — D% @a, (Sic1 + Tisoji1)). E(Vi, L @ Vip)
i+j—1
Z / Dgxpa, (Sio14+Tivojra+tAi ). (Vi =N, mri1,n) OBV L@V, L))dt'

By using the arguments leading to (6.74), we infer that, for any ¢ € [0, 1],
7,+] 1
‘E(D3g * Par, (Sz 1+ Tz+2]+1 + tAz ]) m, L ®E( i+5,L & i L))’

ap?(L+1)3+ 58,

On the other hand, using (6.44) together with (6.14), we derive that

E(Dgg*%L(Sl 1+ Tigojon + 1A 5). mﬂHL@E(VﬂL@v;L))

oL
= (1—t> Z ]E(D4g*<paL (§i—1 +Ti+2j+1 +tAi7j))’E(‘77:;+j+l,L®‘7€fL)
f=it2j+1
(Vij L® V* )
oL
+t > E(D'gxpa, (Sici+ Tivoj +14i5)) E(Vi i 1 © Vi) @B(Vi, Lo Vi) .
f=itj+1

Hence by Lemma 7.5, it follows that

1+j—1
Z ’E( g*soaL<Sz 1+T1+2j+1 +tA7,]) m+]+1L®E(V;+jL®V )’

< ap’ (L4 1)*H58,3 "8,
£>0

EJP 19 (2014), paper 9. ejp.ejpecp.org
Page 47/56


http://dx.doi.org/10.1214/EJP.v19-2658
http://ejp.ejpecp.org/

Strong approximation for the empirical process

So overall, since Y, 8¢ < o0 and ay, > (L +1)%+1,

ur—1

Z ’E 2% Qay, (Serj 1+ Tz+]+1) D%gx ¢, (Sz 1+ Tz+2y+1)) ]E(‘_/:’LZ'JL ® ‘Z*L)’
j=1

ur
CLZQ(L + 1)3(d+1) Zjﬁj . (6.75)
j=1

Starting from (6.73) and considering the upper bounds (6.74) and (6.75) together with
the assumption that 3; = O(k!~P) for p €]2, 3] and the choice of uy, we derive that

2L
’ > (Rir— E,L)’ < ayp P(L+ 1Pl 4 2(L 4 1)3dH420 o (6.76)
=1
where
" wr,—1
Rip:=Y B(D*¢%@a, (Si1+Ti1))E(Vi, 1 @ Vi) i<y
j=1

’lLL—l

— > B(D?g % pay (Sivjr + Tinjn))-E(Viey L © Vip) Lo iy - (6.77)

Simple algebra together with the Schwarz lemma for cross derivatives entail that

’U.Ll

ZR’L - Z Z E(DQQ*%L (éifl +Ti+1))°E(ﬁtj,L®‘7z‘TL>

j=1 §=2L—j42

ur—1 25—-1 B B ) )
- Z Z E(D?g % @a, (Si—1 + Tiv1)).E(V; ;L @ V7).
j=1 i=j+1

Hence by Lemma 7.5, the assumption that 8, = O(k'~P) for p €]2,3] and the choice of
ur, it follows that

2L

‘ZR,L’ <a7l(L+1 2(d+1)2j6 < a2 P(L+1)E DA 4 ool ([41)243] . (6.78)

Starting from (6.17) and considering the upper bounds (6. 72) (6.76) and (6. 78) the
inequality (4.46) follows for sup,cp (. 7, E(g (Sta+Wi)) —E(g(N; ,+ W)

Ca+1)L>
This ends the proof of the lemma. [

6.2 Proof of Lemma 5.1
According to (5.4) and (5.5), recall that

E(C(d+1)L(§L,d + éaLny,d + é;L)) = WC(d+1)L (PS_'L’d * Péa7NCL,d * Péa) .

As in the proof of Lemma 4.2 we shall use the Lindeberg method. With this aim, we

consider a sequence of independent centered Gaussian vectors (Ni,L) 1<i<or Of IRQ(dH)L
independent of F V o(1;,i € Z) such that o
E(N. Nt ) =&, &t ETO (TN — BV, Vi
(Ni,t N ) = €k, @ E(U; (U 1)) = E(Vi,£ Vi) -
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Defining
Npag=Nip+Nop+--+Nor

we notice that £(T% 4) = £(Np.4). Let now W;L be a random vector in R2“""" with

law N (0, a2 Iyas1)2) independent of Foo V o(N; 1,1 < i < 2E)V o(n;,i € Z). Let W,, =
P%(dH)W;L where P, is defined in (4.20). With these notations, we can write that

WC(d+1)L (Png >k])Gﬂa"/\/cL,d *P@a) = sup (E(f(gL,d+WaL)) 7E(f(NL7d+WaL))) .

fe€Lip(cat1yrn)

Using the notations (6.7) and setting

* ®(d+1
fr=foPPUh. (6.79)
we get overall that
B(cne(SeatCGay ToatG,)) = s (B (Sa+ Wi, ) =B (N 0+ 2,)) ) -

feLip(catyr)

Using Notation 6.2, we then write that

]E( d+1 (SLd+GaL7TLd+G ))

= sup ZE( *QOGL i— 1+‘/1L+Tz+1) f**wab(gi—l +N;L+Ti+l))

feLip(ca+1yr) j—1
2L
S s YB(f i S+ VL) e (S N
feLip(ca+nn) j;—1

Recall Definition 6.2 and for any i € {1,...,2%}, let

. . . 1 - .
A nL(f) = f"*¢a, (Sifl + VZ*L) — [ *pay (Sifl) - §D2f* * Pa (&4)-‘@?}?2 )
and

* S Tk o 1 't N
Ao (f) = f"*¢ay (Sz‘—l + Ni,L) " *a, (S ) - §D2f * Pa (S% )'Ni,%2 :
With these notations, it follows that

2L
E(c@ine(Sra+ Gay Tra+ Gy )) < sup D (B(Arin(f) — E(Azin(f)) -
feLip(ca+nyr) =1
(6.80)

By using Taylor’s integral formula, independence and noticing that E(NZ*%?’) =0, we
get

1 2
E(Ari(f) — E(As; 1(f) = E / %

D3 f* s @a, (Sic1 + Vi) ViE?
! (1 B t)3 4 px S NS R4
+ IE/O — D f* % @ay (Sic1 + N/ ).NPH . (6.81)
Notice first that by the properties of the convolution product,
[ED?f* % @ay (Sic1 + Vi) Vi = [E((Df()-Viip * D0ay ()-V7 ) (Sim +1Vi7L)) |
* 7k 2 T xR2
<B(sw Df VLl [, Dou(2).T5%z).
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But

Df*(z).‘?*L = Df(P%(dH)( )) P®(d+1)V < sup |Df(u)1_/;L‘ < c(d+1)L(6,‘_/;7L) <1

T, —
weR2(@HDL

In addition, according to Lemma 5.4 in Dedecker, Merlevéde and Rio (2013), there
exists a constant ¢ not depending on d nor on L such that

/]Rz(d+1)L D?pa, (2). V) 2d2 < ca Vi |30

where

S (K ki
WVel3ar= > SR <o 1yt

Ke{0,...,L}(d+D) kKegidzl)
So overall,
[E(D?f* * ¢, (§i—1 +1 _;*L)V;*i@g’ﬂ < ap?(L+1)%12k 6.82)

We deal now with the second term in the right hand side of (6.81). With this aim, we
notice that (6.79) together with (6.6) imply that if f € Lip(c(441)z) then f* € Lip(cz‘dH)L)

where c( d+1)L is defined in Definition 6.1. Therefore

sup [E(D*f* % @y, (Si—1 + tﬁi*,L)°N;%4) |
feLip(cat1yL)
< sup |E(D4g*<,0aL(Sz 1 +tN*L) Nz*%4)|'
g€Lip(cly 1))

Applying Lemma 7.2 as we did to get (6.43), we infer that, for any i € {1,...,2%} and
any g € Lip(¢{yy1y7.),

|E(D*g * @a, (§¢—1 + tﬁifL)-ﬁ;%élﬂ
< a;3(L+ 1)+ /2< Z Z E((Ni(fkk))z)f' (6.83)

KeZit kxeelth
Since E(N; L N/, ) = E(V;,L V"), we get that

S B@wER) = Y Y B <2+ 1)ttt

KeIi™ kel KeZi™ kel

Therefore, starting from (6.83), we derive that foranyi € {1,...,2%},any g € Lip(cZ‘dH)L)
and any ¢ € [0,1],

[E(D*g * ¢a,, (Sic1 + N7 L) Ni§H | < ag® (L +1)HD/2 < ap(L 4+ 1)3@H0/2 0 (6.84)

Starting from (6.80) and considering (6.81) together with the upper bounds (6.82) and
(6.84), the lemma follows. OJ

7 Appendix B

This section is devoted to various technical lemmas.
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7.1 Upper bounds for the partial derivatives

We gather now some lemmas concerning the upper bounds for partial derivatives.
Their proofs are omitted since they are based on the same arguments as those used in
Appendix A in Dedecker, Merlevede and Rio (2013).

In what follows d and L are nonnegative integers and K = (K, ..., K4) € {0,..., L}(¢+1),
We shall denote for any: =0,...,d,

E(LK;)={1,....2F" K n (2N +1),

and
d
et =Tlew, k).
i=0
Therefore the notation kx € 53}1) means that kx = (kk,,...,kK,) € H?:o E(L,K;).

Let  and y be two column vectors of R(¢*1. with coordinates

t
xr = ((l'(K’kK)v kK € géd,;l))KE{o,...,L}(d+l)) and

t
y = ((y<K,kK)7kK e 5£7?(1))K€{o,...,L}<d+l>> .

Let f be a function from R2“""" into R that is Lipschitz with respect to the distance

cE*dH)L defined in Definition 6.1. This means that

I Z sup  |a(Fokr) g (Kok)|
Ke{0,...,L}(d+1) kKes(szl)

Let @ > 0 and ¢, be the density of a centered Gaussian law of R(+1). with covariance
d+1)L
a®Iya+1e (Iywsnz being the identity matrix on R2““Y"). Let also

[2]loo,a,. = > sup  [#F<)| and
Ke{0,...,L}d+1) kx € 52%;?1)

|zll2.a.2 = ( Z Z (1~(K,kx))2)1/2'

KE{0,..., LI+ e gldtD)

For the statements of the next lemmas, we refer to Definition 6.2.

Lemma 7.1. The partial derivatives of f exist almost everywhere and the following
inequality holds:
sup sup |Df(y).u| <1.

yeR2(d+1)L ueRQ(d+1)L , HuHoo,d,Lfl

In addition of

Ke{0,...,L}(d+1)
{ } kKEE(L(f;U

Lemma 7.2. Let X and Y be two random variables with values in R2“""". For any
positive integer m and any t € [0, 1], there exists a positive constant v,, depending only
on m such that

[E(D™ f 5 a(Y +X).X )

< ! "B (X ez x [ XI521)
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Lemma 7.3. For any integer m > 1, there exists a positive constant k,, depending only
on m such that

sup H —_—
(K () borc sy =1 jJ 356 K“’“‘ )

In addition, for any integer m > 1 and any y € ]RQ((HI)L,

0" f % ¢a 1—
sup ‘ ’ —( ‘ < Bm_1a ™
(K(’L) kK(1) Ji=1,. H ax(K(l)ka(z)) )
The supremum above are taken over all the indexes K (i) € {0,..., L}tV and kg ;) €
5(d+1) £ —
Lk foranyi=1,....,m.

7.2 Covariance inequalities

We first recall the following covariance inequality due to Delyon (1990) (see also
Theorem 1.4 in Rio (2000)).

Lemma 7.4. Letr and s in [1,00] such thatr=' + s™! = 1. Let U and V be real random
variables respectively in I” and IL°, that are respectively U and V measurable. Then
there exist two random variables by, and by with values in [0, 1], measurable respectively
with respect to U and to V, such that E(by) = E(by) = S(U,V) and

cov(v. V)] <2(B(UTw) " (BOVIR))

Notice thatif U = f(X,n) and V = ¢g(Y, ) where X, 7,Y, d are random variables such
that (X,Y) is independent of (7, ) and 7 is independent of §, then the random variables
by and by, satisfy E(by) = E(by) = 8(c(X),o(Y)).

For the next lemma, we refer to Definition 6.2.

Lemma 7.5. Let Z be a random variable with values in R*“""". Let (IZ.TL)i be the

random variables in R2"""" defined in (6.11) and (B¢)¢>0 the sequence of absolutely
regular coefficients associated to the strictly stationary sequence (X;);cz. Let m be
a positive integer, (k;);>1 and ({;);>1 two sequences of integers. Then, there exists a
positive constant v,, depending only on m such that

m

‘E(Dng*gp ) ®E Vi Vi ‘<7m L+ )Qm(dH)Hﬁlk —ti] -

=1
Proof of Lemma 7.5. We use the notation (6.12) and write

E(D2mg * (pa(Z)). ®E(‘7kt,L ® ‘75:7[/)

i=1

0° S N >
=> >.F (V(P’pP ViR (6$(P1PP)6x(quQ)D2m "% pal2)- @Q)E(VQLQ@%L)))'
i

Ppp Q,qq

We apply now Lemma 7.4 with U = Vk(ffp), U=0(Y}, 420),

2 m
(QsQQ a 2m— > ok Tk
V= S VB (g D 02 QB L @ VL))
Q.99 =2
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V= J(YZ1+2L), r = 1 and s = co. Hence, we derive that there exists a U/-measurable
random variable by (¢; + 2%) such that

[B(D2mg « %(2)).®E(VQ7L ® V;;,L)\

Ppp Q.90
82 2m— 7 Vs [ 7
X sup ‘IE(&B D g*gaa(Z). (Vki,L®V1€i,L)>"

(P,pp),(Q,9¢) (Prr)Qg(@aa) i=2

Since E(by (£ +2")) < By, ¢, and 3o |X~/é(l?iq‘9)| < 2(L +1)%*!, we get

[B(D>"g 5 60(Z) ) QB(Ve, o @ Vi 1) | < 8L+ 1V 5, o,
=1

o 2m—2 7 (7 * [ *
< i B G g (O B QWi @ Vi) )|

Next, if m > 2, we write that

(Prp) Hr(Q:9Q)

Z Z ( MmM V(R TR)

MmjuR’l"R

xE(ax ot D* 4y s o, (Z). éE(VQLW@jL))).

(Ppp) 9 (@:4Q) (M mar) §gp(RiTR) <

o o
B D" 2g 5 o, (Z). gm(vggl @V 1))

Applying Lemma 7.4 with U = Vk =0(Y},40L),

V:

Zv(RTR) ( o D2m % (Z) éE(‘_/’* ®‘7* ))
T 02 (Prr) 92(@:4@) 9 (Mmar) 9 (Rorr) JEPalf): ke LB LL) )
sTR i=

V = 0(Yp,4or), 7 = 1 and s = oo, we get that there exists a U/-measurable random
variable by (¢ + 2%) such that

0? 2m—2 -° S = -
sup ’E( D™ 2g % ., (Z) IE Vk*L®‘/[*7L )’
(Ppp),(Q9q) (Ppr) 9g(@:10) ® )

<o BT s +20) | 3 W)

M,mk{
o 2m—4 P e s
m— * *
S o ’]E(axuzpp)ax(Q,qma;ﬂ(M,mmaz(RmR) D™ gpa(Z). @E(Vk@@wii))‘ :
(Q.aQ) (R,rR) i=3
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Since E(by/(l2 +2")) < Bjk,—r,) and X . |X~/Z(Z?L’qQ)| < 2(L + 1)1, we get

9? o~

2m—2 7 7k Tk
(P,pps)l,l(IéLqQ) ‘E(am(l’,pp)ax(@,q@) D 9% Pa(Z). gE(VkL ® VémL)) ’
< 8(L + 1)2(d+1)ﬁ|k2—52|
o 2m—4 SO 7k Yol
<ow - sw (B e D ke ® (Vi Vi) )|
(@) (Rrg) i—

The lemma follows after m — 2 additional steps by using Lemma 7.3 at the end of the
procedure. [J
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