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A forest-fire model on the upper half-plane∗
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Abstract

We consider a discrete forest-fire model on the upper half-plane of the
two-dimensional square lattice. Each site can have one of the following two states:
“vacant” or “occupied by a tree”. At the starting time all sites are vacant. Then the
process is governed by the following random dynamics: Trees grow at rate 1,
independently for all sites. If an occupied cluster reaches the boundary of the
upper half-plane or if it is about to become infinite, the cluster is instantaneously
destroyed, i.e. all of its sites turn vacant. Additionally, we demand that the model is
invariant under translations along the x-axis.

We prove that such a model exists and arises naturally as a subsequential limit of
forest-fire processes in finite boxes when the box size tends to infinity.

Moreover, the model exhibits a phase transition in the following sense: There
exists a critical time tc (which corresponds with the critical probability pc in ordinary
site percolation by 1− e−tc = pc) such that before tc, only sites close to the boundary
have been affected by destruction, whereas after tc, sites on the entire half-plane
have been affected by destruction.
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1 Introduction and statement of the main results

Forest-fire models were first introduced in the physics literature by B. Drossel and
F. Schwabl in [6] and subsequently studied by various mathematicians, e.g. by J. van
den Berg and R. Brouwer (see [17], [18]), by M. Dürre (see [7], [8], [9]), by A. Stahl (see
[16]), by B. Ráth and B. Tóth (see [14]), and by X. Bressaud and N. Fournier (see [3],
[4]). They were devised as an example of self-organized criticality, a concept brought
up by P. Bak, C. Tang and K. Wiesenfeld in their seminal paper [2]. Let us begin with a
brief description of critical states and self-organized criticality. Models in equilibrium
statistical mechanics such as independent site percolation or the Ising model usually
have a model parameter which greatly influences their behaviour (the density p of open
sites in the case of percolation and the inverse temperature β in the case of the Ising
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model). As the parameter varies, the system experiences a phase transition at the
critical value of the parameter (the critical probability pc for percolation and the critical
temperature βc for the Ising model). Formally, the critical value can be defined as the
threshold between the regime with no infinite cluster and the regime with one infinite
cluster. The critical state is typically characterized by a power law behaviour of the
cluster size distribution and fractal structures in the scaling limit. These phenomena
are frequently observed in nature, which seems strange in the context of equilibrium
statistical mechanics because this would require the model parameter to be tuned at
exactly the right value. To explain this paradoxon, the authors of [2] predicted the
existence of dynamical systems which are governed by local interactions and which are
inherently driven towards an unstable critical state. This critical state shows properties
similar to the equilibrium case. What is more, at the critical state the local interactions
build up to trigger global “catastrophic” events and thus possibly return the system
back into a more stable state. These kinds of systems are said to exhibit self-organized
criticality. A detailed introduction to this concept with many examples of dynamical
systems can be found in [1] and [12].

The forest-fire models we consider in this paper will all be defined on subsets of the
square lattice Z2. We always assume the vertex set Z2 to be equipped with the standard
lattice edge set, where two sites in Z2 are connected by an edge if and only if they have
Euclidean distance 1. For practical purposes we will identify Z2 ⊂ R2 with Z + iZ ⊂ C
(where i :=

√
−1 = (0, 1)) and mostly use the complex number notation even though we

do not use the multiplicative structure of C. The finite volume versions of the model
will be defined on boxes

Bn(w) := w + [−n, n]2 ∩Z2

with centre w ∈ Z2 and radius n ∈ N. To begin with, we endow the vertex setBn(w) with
the standard edges inherited from the square lattice Z2 and we denote this by writing
Bs
n(w) instead of Bn(w). Later on, for each k ∈ {−n,−n + 1, . . . , n}, we will insert an

additional edge between the vertex w − n + ik on the left and the vertex w + n + ik on
the right in order to make the setup periodic in the x-direction; in this case we write
Bp
n(w) instead of Bn(w). The graph Bp

n(w) is best visualized as a cylinder. The infinite
volume version of the forest-fire model will be defined on the “closed” upper half-plane

H := {x+ iy ∈ Z+ iZ : y ≥ 0} ,

which we endow with the edges inherited from the square lattice Z2. We will also
denote by

H := {x+ iy ∈ Z+ iZ : y > 0}

the “open” upper half-plane.
In order to explain some more notation, let us for a moment consider an arbitrary

connected graph with vertex set V . (In practice, this will usually be one of the graphs
Bs
n(w), Z2, Bp

n(w) or H.) For a subset S ⊂ V , we write

∂S := {v ∈ V \ S : (∃w ∈ S : v and w are neighbours)}

for the (outer) boundary of S in V . For the subset H ⊂ H, for instance, we simply
have ∂H = Z. At any given time, the forest-fire model will be described by a random
configuration (αv)v∈V ∈ {0, 1}V , which induces a subgraph of V on the vertex set {v ∈
V : αv = 1}. For z ∈ V the maximal connected component of this subgraph containing
z is called the cluster of z in the configuration (αv)v∈V . If αz = 0, then the cluster of z
is just the empty set.
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We are now ready to describe the forest-fire model on the box Bs
n(0) (n ∈ N) which

is the starting point of our work. It is a continuous-time Markov process on the state
space {0, 1}Bs

n(0), where a site with “1” is said to be “occupied by a tree” and a site with
“0” is said to be “vacant”. At the starting time all sites are vacant. Then the process is
governed by the following two conflicting mechanisms:

[GROWTH] Sites turn from “vacant” to “occupied” according to independent
rate 1 Poisson processes.

[DESTRUCTION] If an occupied cluster reaches the inner boundary Bn(0) \ Bn−1(0)

of the box1, it is instantaneously destroyed, i.e. all of its sites turn
vacant.

The most interesting aspect about this model is the question of what happens in
the limit n → ∞ (provided that it exists in a suitable sense). It is in this limit that the
model is expected to exhibit self-organized criticality, and the intuitive reasoning goes
as follows: For large n, small clusters are unlikely to get destroyed but sufficiently large
clusters are still vulnerable to destruction. So a hypothetical limit process on Z2 might
have the following dynamics: At the starting time all sites are vacant. Then the process
is governed by the following two conflicting mechanisms:

[GROWTH] Sites turn from “vacant” to “occupied” according to independent
rate 1 Poisson processes.

[DESTRUCTION] If an occupied cluster becomes infinite, it is instantaneously de-
stroyed, i.e. all of its sites turn vacant.

In such a process the states with an emergent infinite cluster could be dubbed self-
organized critical, and the destruction of the infinite cluster would correspond to the
global “catastrophic” events mentioned above. However, it is not even clear that such
a process exists at all (see [17] for a discussion of that question), and a mathematically
rigorous treatment of the question of convergence for n → ∞ currently seems hard to
achieve.

A first step towards a better understanding of the n → ∞ limit probably lies in the
analysis of the behaviour of the sites close to the inner boundary when n is large. We
therefore change our perspective in the following way:

• Instead of keeping the centre of the box fixed and letting the box tend to infinity
in all four directions, we keep the bottom side fixed and let the box tend to infinity
in the remaining three directions. In other words, we consider the process on the
box Bn(in) instead of the box Bn(0). In the (subsequential) limit n → ∞ we thus
get a process on the upper half-plane H.

Additionally, we make the following changes, which are natural for the new setting:

• We restrict the destruction mechanism [DESTRUCTION] to clusters which reach
the fixed bottom side instead of destroying clusters at all four sides.

• We use periodic boundary conditions in the x-direction, i.e. we work on Bp
n(in)

instead of Bs
n(in).

Let us define this new process more formally, in a fashion similar to the definition
of the Max Dürre forest-fire model in [7]. We include the underlying Poisson growth
processes into our notation and thus obtain a continuous-time process on the state
space ({0, 1} × N0)B

p
n(in). For convenience we henceforth abbreviate Bn := Bp

n(in).
Figure 1 depicts the box Bn and its edges, embedded into the upper half-plane H. In

1where we set B0(0) := {0}
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Figure 1: The box Bn := Bp
n(in) for n = 3 (black) and the upper half-plane H (grey)

accordance with the periodic boundary conditions of Bn, for z ∈ Bn and x ∈ Z we define
“periodic addition” by

z ⊕ x := [((Re z + x) + n) mod (2n+ 1)]− n+ i Im z ∈ Bn.

Moreover, for a function [0,∞) 3 t 7→ ft ∈ R we write ft− := lims↑t fs for the left-sided
limit at t > 0, provided the limit exists.

Definition 1.1. Let n ∈ N. Let (ηnt,z, G
n
t,z)t≥0,z∈Bn be a process2 with values in ({0, 1} ×

N0)[0,∞)×Bn , initial condition ηn0,z = 0 for z ∈ Bn and boundary condition ηnt,x = 0 for
t ≥ 0, x ∈ ∂H ∩ Bn. Suppose that for all z ∈ Bn the process (ηnt,z, G

n
t,z)t≥0 is càdlàg, i.e.

right-continuous with left limits. For z ∈ Bn and t > 0, let Cnt−,z denote the cluster of z
in the configuration (ηnt−,w)w∈Bn .

Then (ηnt,z, G
n
t,z)t≥0,z∈Bn is called a Bn-forest-fire process if the following conditions

are satisfied:

[POISSON] The processes (Gnt,z)t≥0, z ∈ Bn, are independent Poisson pro-
cesses with rate 1.

[ROT-INV] The distribution of (ηnt,z, G
n
t,z)t≥0,z∈Bn

is invariant under rotations
of the cylinder Bn, i.e. the processes (ηnt,z, G

n
t,z)t≥0,z∈Bn

and
(ηnt,z⊕1, G

n
t,z⊕1)t≥0,z∈Bn

have the same distribution.

[GROWTH] For all t > 0 and all z ∈ H ∩Bn the following implications hold:

(i) Gnt−,z < Gnt,z ⇒ ηnt,z = 1,
i.e. the growth of a tree at the site z at time t implies that the
site z is occupied at time t;

(ii) ηnt−,z < ηnt,z ⇒ Gnt−,z < Gnt,z,
i.e. if the site z gets occupied at time t, there must have been
the growth of a tree at the site z at time t.

2A more precise but more cumbersome notation would be
(
(ηnt,z , G

n
t,z)z∈Bn

)
t≥0

.
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[DESTRUCTION] For all t > 0 and all x ∈ ∂H ∩Bn, z ∈ H ∩Bn the following implica-
tions hold:

(i) Gnt−,x < Gnt,x ⇒ ∀w ∈ Cnt−,x+i : ηnt,w = 0,
i.e. if the cluster at x + i grows to the boundary ∂H ∩ Bn at
time t, it is destroyed at time t;

(ii) ηnt−,z > ηnt,z ⇒ ∃u ∈ ∂Cnt−,z ∩ ∂H : Gnt−,u < Gnt,u,
i.e. if the site z is destroyed at time t, its cluster must have
grown to the boundary ∂H ∩Bn at time t.

Due to the finiteness of the box Bn, the existence and uniqueness (in distribution) of
a Bn-forest-fire process is clear: Given independent rate 1 Poisson processes (Gnt,z)t≥0,
z ∈ Bn, a unique corresponding càdlàg process (ηnt,z)t≥0, z ∈ Bn, which has the re-
quired initial and boundary conditions and satisfies [GROWTH] and [DESTRUCTION]
can be obtained by a so-called graphical construction, and [ROT-INV] then follows au-
tomatically by the rotation-invariance of the cylinder Bn. For more details on graphical
constructions, the reader is referred to [13].

Above, we raised the question of what happens with forest-fire processes on boxes
of size n when n → ∞. As far as the dynamics are concerned, this question is partially
answered for Bn-forest-fire processes by the following result, where Q+

0 := Q ∩ [0,∞)

denotes the set of non-negative rational numbers:

Theorem 1.2. For n ∈ N let (ηnt,z, G
n
t,z)t≥0,z∈Bn

be a Bn-forest-fire process. Embed

this process into the upper half-plane H by setting (ηnt,z, G
n
t,z) := (0, 0) for z ∈ H \ Bn

and all t ≥ 0. Then for any strictly increasing sequence (nk)k∈N of natural numbers,
there exists a subsequence (nkl)l∈N such that (η

nkl
t,z , G

nkl
t,z )t∈Q+

0 ,z∈H converges weakly

to some random variable (ηQt,z, G
Q
t,z)t∈Q+

0 ,z∈H, where convergence is understood in the

space ({0, 1} ×N0)Q
+
0 ×H endowed with the product topology. Moreover, the right-sided

limit

(ηt,z, Gt,z) := lim
s↓t,s∈Q+

0

(ηQs,z, G
Q
s,z), t ≥ 0, z ∈ H,

exists a.s., and restricted to the complement of a null set, the resulting process
(ηt,z, Gt,z)t≥0,z∈H is an H-forest-fire process in the sense of Definition 1.3 below.

Definition 1.3. Let (ηt,z, Gt,z)t≥0,z∈H be a process3 with values in ({0, 1} ×N0)[0,∞)×H,

initial condition η0,z = 0 for z ∈ H and boundary condition ηt,x = 0 for t ≥ 0, x ∈ ∂H.
Suppose that for all z ∈ H the process (ηt,z, Gt,z)t≥0 is càdlàg. For z ∈ H and t > 0, let
Ct−,z denote the cluster of z in the configuration (ηt−,w)w∈H.

Then (ηt,z, Gt,z)t≥0,z∈H is called an H-forest-fire process if the following conditions
are satisfied:

[POISSON] The processes (Gt,z)t≥0, z ∈ H, are independent Poisson processes
with rate 1.

[TRANSL-INV] The distribution of (ηt,z, Gt,z)t≥0,z∈H is invariant under
translations along the real line, i.e. the processes (ηt,z, Gt,z)t≥0,z∈H
and (ηt,z+1, Gt,z+1)t≥0,z∈H have the same distribution.

[GROWTH] For all t > 0 and all z ∈ H the following implications hold:

3Again, a more precise but more cumbersome notation would be
(
(ηt,z , Gt,z)z∈H

)
t≥0

.

EJP 19 (2014), paper 8.
Page 5/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2625
http://ejp.ejpecp.org/


A forest-fire model on the upper half-plane

(i) Gt−,z < Gt,z ⇒ ηt,z = 1,
i.e. the growth of a tree at the site z at time t implies that the
site z is occupied at time t;

(ii) ηt−,z < ηt,z ⇒ Gt−,z < Gt,z,
i.e. if the site z gets occupied at time t, there must have been
the growth of a tree at the site z at time t.

[DESTRUCTION] For all t > 0 and all x ∈ ∂H, z ∈ H the following implications hold:

(i)
(
Gt−,x < Gt,x ⇒ ∀w ∈ Ct−,x+i : ηt,w = 0

)
∧(

|Ct−,z| =∞⇒ ∀w ∈ Ct−,z : ηt,w = 0
)
,

i.e. if the cluster at x + i grows to the boundary ∂H at time
t, it is destroyed at time t, and if the cluster at z is about to
become infinite at time t, it is destroyed at time t;

(ii) ηt−,z > ηt,z
⇒
((
∃u ∈ ∂Ct−,z ∩ ∂H : Gt−,u < Gt,u

)
∨ |Ct−,z| =∞

)
,

i.e. if the site z is destroyed at time t, its cluster either must
have grown to the boundary ∂H at time t or it must have been
about to become infinite at time t.

For the remainder of this section, let (ηt,z, Gt,z)t≥0,z∈H be any H-forest-fire process
(not necessarily the specific process constructed in Theorem 1.2). A closely related
auxiliary process is the pure growth process (σt,z)t≥0,z∈H, which is obtained when
the destruction mechanism [DESTRUCTION] in Definition 1.3 is omitted, and which is
formally defined by

σt,z := 1{Gt,z>0}, t ≥ 0, z ∈ H, (1.1)

where we write 1A for the indicator function of an event A. Obviously, (σt,z)t≥0,z∈H is
monotone increasing in t and dominates (ηt,z)t≥0,z∈H in the sense that

σt,z ≥ σs,z ≥ ηs,z, 0 ≤ s ≤ t, z ∈ H, (1.2)

holds. For a fixed time t, the configuration (σt,z)z∈H is simply independent site percola-
tion on H, where each site is open with probability 1 − e−t. In particular, if pc denotes
the critical probability of independent site percolation on H (or equivalently Z2), then
the critical time tc, defined by 1 − e−tc = pc, has the property that a.s. for t ≤ tc, there
exists no infinite cluster in the configuration (σt,z)z∈H, while for t > tc, there exists
exactly one infinite cluster in the configuration (σt,z)z∈H.

However, [DESTRUCTION] in Definition 1.3 and the fact that the paths of
(ηt,z, Gt,z)t≥0,z∈H are càdlàg imply that for all t ≥ 0 there exists no infinite cluster in
the configuration (ηt,z)z∈H. This gives rise to the question to what extent the processes
(ηt,z)t≥0,z∈H and (σt,z)t≥0,z∈H differ, which motivates the following definition:

Definition 1.4. For t ≥ 0, x ∈ ∂H let

Yt,x := sup {y ∈ N : (∃0 < t′ < t′′ ≤ t : ηt′,x+iy = 1, ηt′′,x+iy = 0)} ∨ 0 ∈ N0 ∪ {∞}

be the height up to which points with real part x have been destroyed up to time t. We
call Yt,x the height of destruction at the point x up to time t.

Note that for t ≥ 0 and x ∈ ∂H

{Yt,x <∞} ⊂ {∀0 ≤ s ≤ t∀y ≥ Yt,x + 1 : σs,x+iy = ηs,x+iy} (1.3)

holds. It turns out that as a function of time, the height of destruction experiences a
phase transition:
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Theorem 1.5. Let (ηt,z, Gt,z)t≥0,z∈H be an H-forest-fire process and let (Yt,x)t≥0,x∈∂H
be the corresponding heights of destruction. Then for all x ∈ ∂H, the following holds
a.s.: Yt,x <∞ for t < tc and Yt,x =∞ for t > tc.

Informally speaking, this means that after the critical time tc, the influence of the
destruction mechanism [DESTRUCTION] in Definition 1.3 is not just confined to areas
close to the boundary ∂H but is global on all of H.

We will prove Theorems 1.2 and 1.5 in Sections 3 and 4, respectively. In Section 2
we draw the reader’s attention to some obvious but open questions about H-forest-fire
processes.

2 Open problems

The following natural questions about H-forest-fire processes (ηt,z, Gt,z)t≥0,z∈H and
the corresponding heights of destruction (Yt,x)t≥0,x∈∂H remain open:

• Are H-forest-fire processes unique in distribution? Is (ηt,z, Gt,z)t≥0,z∈H adapted to
the filtration generated by the growth processes (Gt,z)t≥0,z∈H?

• Does there exist z ∈ H such that the event
{
∃t > 0 : |Ct−,z| =∞

}
has positive

probability (where Ct−,z is defined as in Definition 1.3), i.e. do infinite clusters in
the left-sided limit occur with positive probability?

• How does the height of destruction behave at the critical time tc? For instance,
does Ytc,x <∞ a.s. hold for x ∈ ∂H?

3 Proof of Theorem 1.2

The construction of the limit process in Theorem 1.2 is partly analogous to the con-
struction of the infinite volume Max Dürre forest-fire model in [7]. However, a new
strategy is needed when it comes to infinite clusters in the process. This is where we
will make use of the translation-invariance property [TRANSL-INV] of the process. We
will only give a brief sketch of the parts that are similar to [7] in Sections 3.1, 3.2 and
3.3 and then focus on the issue of infinite clusters in Sections 3.4 and 3.5.

For the remainder of this section, consider the following setup: For n ∈ N let
(ηnt,z, G

n
t,z)t≥0,z∈Bn

be a Bn-forest-fire process. Embed this process into the upper half-

plane H by setting (ηnt,z, G
n
t,z) := (0, 0) for z ∈ H \ Bn and all t ≥ 0. Let (nk)k∈N be a

strictly increasing sequence of natural numbers.

3.1 Construction of the limit process and easy properties

Lemma 3.1. (i) The sequence (ηnt,z, G
n
t,z)t∈Q+

0 ,z∈H, n ∈ N, is tight in the space ({0, 1}×
N0)Q

+
0 ×H endowed with the product topology.

(ii) There exists a subsequence (nkl)l∈N of natural numbers such that
(η
nkl
t,z , G

nkl
t,z )t∈Q+

0 ,z∈H converges weakly to some random variable

(ηQt,z, G
Q
t,z)t∈Q+

0 ,z∈H.

Proof. First note that since the index set Q+
0 × H is countable, the product spaces

{0, 1}Q+
0 ×H, N

Q
+
0 ×H

0 and ({0, 1}×N0)Q
+
0 ×H are metrizable and, in fact, are Polish spaces.

By Tychonoff’s theorem, the space {0, 1}Q+
0 ×H is compact and hence the sequence

(ηnt,z)t∈Q+
0 ,z∈H, n ∈ N, is trivially tight. Moreover, the sequence (Gnt,z)t∈Q+

0 ,z∈H, n ∈ N, is
clearly convergent and therefore tight by Prokhorov’s theorem. As we work in the prod-
uct topology, we conclude that the joint sequence (ηnt,z, G

n
t,z)t∈Q+

0 ,z∈H, n ∈ N, is tight, as
well. This proves (i). Part (ii) then follows from (i) by another application of Prokhorov’s
theorem (in the opposite direction).
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It is easy to see that the limit random variable (ηQt,z, G
Q
t,z)t∈Q+

0 ,z∈H can be extended

to a process (ηt,z, Gt,z)t≥0,z∈H, which we henceforth call the limit process:

Lemma 3.2. A.s. the right-sided limit

(ηt,z, Gt,z) := lim
s↓t,s∈Q+

0

(ηQs,z, G
Q
s,z), t ≥ 0, z ∈ H,

exists.

Proof. This is proved analogously to Lemma 7 in [7].

We now realize the processes (ηnt,z, G
n
t,z)t≥0,z∈H, n ∈ N, and (ηt,z, Gt,z)t≥0,z∈H on a

joint probability space (Ω,A,P), where A is the completion of the σ-field

σ
(
ηnt,z, G

n
t,z; ηt,z, Gt,z : t ≥ 0, z ∈ H, n ∈ N

)
.

There is a very useful relation between the limit process (ηt,z, Gt,z)t≥0,z∈H and the Bn-
forest-fire processes (ηnt,z, G

n
t,z)t≥0,z∈H, which allows to transfer properties from the Bn-

forest-fire processes to the limit process:

Lemma 3.3. Let A be an event which is described by the configuration of finitely many
sites and finitely many points in time, i.e. there exist h ∈ N and a finite set S ⊂ H

such that A ∈ P(({0, 1} ×N0)[h]×S), where P(X) denotes the power set of a set X and
[h] := {1, 2, . . . , h}. If there exists N ∈ N such that for all 0 ≤ t1 < t2 < . . . < th and all
n ≥ N

P
[
(ηntj ,z, G

n
tj ,z)j∈[h],z∈S ∈ A

]
= 0

holds, then

P
[
∃0 ≤ t1 < t2 < . . . < th : (ηtj ,z, Gtj ,z)j∈[h],z∈S ∈ A

]
= 0

also holds.

Proof. This is proved analogously to Lemma 9 in [7].

The construction of the limit process in Lemma 3.2 immediately implies that a.s. for
all z ∈ H the process (ηt,z, Gt,z)t≥0 is càdlàg. For z ∈ H and t ≥ 0, let Ct,z denote the
cluster of z in the configuration (ηt,w)w∈H, and for z ∈ H and t > 0, let Ct−,z denote the
cluster of z in the configuration (ηt−,w)w∈H. Then the following properties of the limit
process are straightforward:

Lemma 3.4. A.s. the process (ηt,z, Gt,z)t≥0,z∈H satisfies the initial condition η0,z = 0 for

z ∈ H and the boundary condition ηt,x = 0 for t ≥ 0, x ∈ ∂H. Moreover, it a.s. has the
properties [POISSON] and [GROWTH] (ii) of Definition 1.3 and satisfies [TRANSL-INV].

Proof. The proofs for the initial condition and the property [GROWTH] (ii) are easy
consequences of Lemma 3.3 above and are analogous to the proofs of Lemmas 26 and
10 in [7]. The proof of the property [POISSON] is identical to the proof of Lemma 5
in [7]. The zero boundary condition for the limit process is trivial since the same
boundary condition is satisfied by the Bn-forest-fire processes for all n. Finally, the
translation-invariance [TRANSL-INV] of the limit process is a consequence of the
rotation-invariance [ROT-INV] of the Bn-forest-fire processes for all n.
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3.2 Some auxiliary lemmas

It thus remains to show that the process (ηt,z, Gt,z)t≥0,z∈H also a.s. has the properties
[GROWTH] (i) and [DESTRUCTION] (i), (ii) of Definition 1.3. In this section we state
some auxiliary lemmas, which are in a sense weaker versions of these properties.

We first introduce some further notation: For 0 ≤ s ≤ t, z ∈ H and n ∈ N, let

Gs,t,z := {Gs,z < Gt,z} , Gn
s,t,z :=

{
Gns,z < Gnt,z

}
be the events that the growth of a tree occurs at the site z in the time interval (s, t], and
for 0 < s ≤ t, z ∈ H and n ∈ N, let

Gs−,t,z :=
{
Gs−,z < Gt,z

}
, Gn

s−,t,z :=
{
Gns−,z < Gnt,z

}
be the events that the growth of a tree occurs at the site z in the time interval [s, t].
Moreover, if X 3 x 7→ fx ∈ U is any function from a set X to a set U , then for X ′ ⊂ X,
u ∈ U we abbreviate the expression ∀x ∈ X ′ : fx = u by fX′ = u. Finally, if A, B are two
events, we will denote the complement of A by {A, and (in slight abuse of notation) we
will write {A,B} instead of A ∩B.

Lemma 3.5 is a weaker version of [GROWTH] (i):

Lemma 3.5. Suppose that w, z ∈ H are neighbouring sites. Then

P
[
∃t > 0 : ηt,w = 1,Gt−,t,z, ηt,z = 0

]
= 0

holds; in other words: A.s. if there is the growth of a tree at the site z at some time t and
a neighbouring site w is occupied at time t, then the site z is also occupied at time t.

Proof. Let w, z ∈ H be neighbouring sites. Since (Gt,w)t≥0 and (Gt,z)t≥0 are indepen-
dent Poisson processes (see Lemma 3.4), a.s. they do not have jumps at the same
time. Using this and the fact that Poisson process paths are a.s. piecewise constant
and càdlàg, we obtain{
∃t > 0 : ηt,w = 1,Gt−,t,z, ηt,z = 0

} a.s.⊂
{
∃t > 0 : {Gt−,t,w, ηt,w = 1,Gt−,t,z, ηt,z = 0

}
a.s.⊂
{
∃0 ≤ s < t : {Gs,t,w, ηt,w = 1,Gt−,t,z, ηt,z = 0

}
a.s.⊂
{
∃0 ≤ s < t : {Gs,t,w, ηt,w = 1,Gs,t,z, ηt,z = 0

}
.

Now for all sufficiently large n (such that w, z ∈ Bn) and arbitrary 0 ≤ s < t, it is easy
to deduce from [GROWTH] and [DESTRUCTION] in Definition 1.1 that Bn-forest-fire
processes satisfy

P
[
{Gn

s,t,w, η
n
t,w = 1,Gn

s,t,z, η
n
t,z = 0

]
= 0.

The result therefore follows from Lemma 3.3.

Lemmas 3.6 and 3.7 are about the destruction of occupied clusters:

Lemma 3.6. For all w, z ∈ H we have

P
[
∃0 ≤ s < t : w ∈ Cs,z, ηt,w = 0, ηt,z = 1, {Gs,t,z

]
= 0;

in other words: A.s. if a site w was occupied at some time s but is vacant at some later
time t > s, then any other site z which was in the cluster of w at time s must be vacant
at time t unless there is the growth of a tree at that site in the time interval (s, t].
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Proof. This is a consequence of Lemma 3.3 above and is proved analogously to Lemma
12 in [7].

Lemma 3.7 is the first half of [DESTRUCTION] (i) in Definition 1.3:

Lemma 3.7. For all x ∈ ∂H we have

P
[
∃t > 0 : Gt−,t,x,∃w ∈ Ct−,x+i : ηt,w = 1

]
= 0;

in other words: A.s. if the cluster at x+ i grows to the boundary ∂H at some time t, it is
destroyed at time t.

Proof. Let x ∈ ∂H. For z ∈ H, let Cfin
z denote the (countable) set of all finite connected

subsets of H which contain the site z. Due to the equality{
∃t > 0 : Gt−,t,x,∃w ∈ Ct−,x+i : ηt,w = 1

}
=

⋃
S∈Cfin

x+iy

⋃
w∈S

{
∃t > 0 : Gt−,t,x, ηt−,S = 1, ηt,w = 1

}
it suffices to show that for all S ∈ Cfin

x+iy and w ∈ S

P
[
∃t > 0 : Gt−,t,x, ηt−,S = 1, ηt,w = 1

]
= 0

holds. So let S ∈ Cfin
x+iy and w ∈ S be fixed. Since (Gt,x)t≥0 and (Gt,w)t≥0 are indepen-

dent Poisson processes (see Lemma 3.4), a.s. they do not have jumps at the same time.
Using this and the fact that the paths of the limit process are a.s. piecewise constant
and càdlàg, we obtain{
∃t > 0 : Gt−,t,x, ηt−,S = 1, ηt,w = 1

} a.s.⊂
{
∃0 ≤ s < t : Gs,t,x, ηs,S = 1, ηt,w = 1, {Gs,t,w

}
.

Now for all sufficiently large n (such that {x} ∪ S ⊂ Bn) and arbitrary 0 ≤ s < t, it is
easy to deduce from [GROWTH] and [DESTRUCTION] in Definition 1.1 that Bn-forest-
fire processes satisfy

P
[
Gn
s,t,x, η

n
s,S = 1, ηnt,w = 1, {Gn

s,t,w

]
= 0.

The result therefore follows from Lemma 3.3.

3.3 A Markov-type property of the limit process

Let (Ft)t≥0 be the completion of the canonical filtration of the limit process
(ηt,z, Gt,z)t≥0,z∈H, i.e. Ft is the completion of the σ-field

σ
(
(ηs,z, Gs,z) : 0 ≤ s ≤ t, z ∈ H

)
generated up to time t ≥ 0. As is customary, if T is a stopping time with respect to
(Ft)t≥0, we define the σ-field up to time T by

FT := {A ∈ A : (∀t ≥ 0 : A ∩ {T ≤ t} ∈ Ft)} ,

where A is the full σ-field introduced in the paragraph below Lemma 3.2. Then the limit
process satisfies the following Markov-type property:

Lemma 3.8. Let T be a stopping time with respect to (Ft)t≥0. Then for all A ∈ FT

P
[
(GT+t,z −GT,z)t≥0,z∈H ∈ · , T <∞, A

]
= P

[
(Gt,z)t≥0,z∈H ∈ ·

]
P [T <∞, A]

holds; in other words: On the event {T <∞}, the increments (GT+t,z −GT,z)t≥0, z ∈ H,
of the Poisson processes after time T are independent of the σ-field FT and are again
independent Poisson processes.

Proof. This is proved analogously to Lemma 19 in [7].
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3.4 Non-existence of infinite clusters

The aim of this section is to prove Lemma 3.12, which states that a.s. there do not
exist infinite clusters in the process (ηt,z)t≥0,z∈H.

Lemma 3.9. For all t ≥ 0, z ∈ H and R ∈ N we have

P [|{w ∈ Ct,z : Imw = R}| =∞] = 0;

in other words: For any fixed time t there a.s. does not exist a cluster which contains
infinitely many sites with the same distance R from ∂H.

Intuitively, the reason why Lemma 3.9 should hold is the following: Suppose that the
cluster Ct,z contains infinitely many sites w with distance Imw = R from ∂H. Lemma 3.6
and the fact that the paths of the limit process are a.s. piecewise constant and càdlàg
imply that a.s. the cluster Ct,z persists during time [t, t + ε] for some ε > 0. However,
for any ε > 0 there a.s. is a growth sequence within [t, t + ε] from one of the sites w
with Imw = R downto the boundary ∂H, which causes the cluster at z to be destroyed
before time t+ ε - a contradiction. We now make this argument rigorous.

Proof. Let t ≥ 0, z ∈ H and R ∈ N. We abbreviate

Et,z := {|{w ∈ Ct,z : Imw = R}| =∞} .

On the event Et,z, let (Wk)k∈Z be a disjoint enumeration of the sites w ∈ Ct,z with
Imw = R. Moreover, for w ∈ H and s ≥ 0, γ > 0 let

V-GROWTH-SEQ(w, s, γ) :=
{
∀j ∈ {1, . . . , Imw} : Gs+ j−1

Imw γ,s+
j

Imw γ,w−ji

}
denote the event that there is a vertical growth sequence from the site w − i to the
boundary ∂H between times s and s + γ (with the jth growth event between times
s+ j−1

Imwγ and s+ j
Imwγ for j = 1, . . . , Imw).

Since the paths of the limit process are a.s. piecewise constant and càdlàg, we have

Et,z
a.s.⊂
{
Et,z,∃ε ∈ Q ∩ (0,∞) : η[t,t+ε],z = 1, {Gt,t+ε,z

}
.

It therefore suffices to show

P
[
Et,z, η[t,t+ε],z = 1, {Gt,t+ε,z

]
= 0 (3.1)

for arbitrary ε > 0.
So pick ε > 0. Lemma 3.8 implies that conditional on Et,z (we can assume P[Et,z] > 0

without loss of generality), the events V-GROWTH-SEQ(Wk, t, ε), k ∈ Z, are indepen-
dent with

P [V-GROWTH-SEQ(Wk, t, ε)|Et,z] = P [V-GROWTH-SEQ(iR, 0, ε)] > 0

for all k ∈ Z. We therefore conclude from the Borel-Cantelli lemma that

Et,z
a.s.⊂ {Et,z,V-GROWTH-SEQ(Wk, t, ε) for infinitely many k} (3.2)

holds.
For the moment, let k ∈ Z be fixed. Considering the first R− 1 growth events (in H)

of the event V-GROWTH-SEQ(Wk, t, ε) and applying Lemmas 3.5 and 3.6 repeatedly,
we see that{

Et,z, η[t,t+ε],z = 1, {Gt,t+ε,z,V-GROWTH-SEQ(Wk, t, ε)
}

a.s.⊂
{
Et,z,∀s ∈ [t+

R− 1

R
ε, t+ ε] : Wk − (R− 1)i︸ ︷︷ ︸

=ReWk+i

∈ Cs,z
}

. (3.3)
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However, considering the last growth event (in ∂H) of the event
V-GROWTH-SEQ(Wk, t, ε) and using (3.3) and Lemma 3.7, it follows that{

Et,z, η[t,t+ε],z = 1, {Gt,t+ε,z,V-GROWTH-SEQ(Wk, t, ε)
}

a.s.⊂
{
Et,z,∃s ∈ [t+

R− 1

R
ε, t+ ε] : ηs,z = 0

}
.

(3.4)

Since the condition ∃s ∈ [t + R−1
R ε, t + ε] : ηs,z = 0 on the right side of (3.4) contradicts

the condition η[t,t+ε],z = 1 on its left side, we conclude that

P
[
Et,z, η[t,t+ε],z = 1, {Gt,t+ε,z,V-GROWTH-SEQ(Wk, t, ε)

]
= 0 (3.5)

for all k ∈ Z.
Equation (3.1) is now a direct consequence of (3.2) and (3.5).

Definition 3.10. For t ≥ 0 let Nt ∈ N0 ∪ {∞} denote the number of infinite clusters in
the configuration (ηt,z)z∈H.

Lemma 3.11. For all t ≥ 0 we have P [Nt = 0] = 1; in other words: For any fixed time t
there a.s. does not exist an infinite cluster in the configuration (ηt,z)z∈H.

Intuitively, the reason why Lemma 3.11 should hold is the following: Due to the
translation-invariance [TRANSL-INV] of the limit process we expect Nt ∈ {0, 1,∞} a.s.
If Nt = 1, then the translation-invariance implies that a.s. there exists R ∈ N such
that there are infinitely many sites w with Imw = R in the unique infinite cluster at
time t, but this is ruled out by Lemma 3.9. On the other hand, if Nt = ∞, then the
translation-invariance implies that a.s. there exists R ∈ N such that there are infinitely
many infinite clusters with distance R from ∂H at time t. But due to the translation-
invariance and the limited amount of space these clusters must be very close to one
another. Using this observation and the fact that the paths of the limit process are a.s.
piecewise constant and càdlàg, we find that a.s. there exists ε > 0 such that by time
t + ε, the above-mentioned clusters have grown together to form one infinite cluster
containing infinitely many sites with distance R from ∂H. Yet once more, this is ruled
out by Lemma 3.9. It should be noted that the classical Burton-Keane argument to rule
out the case Nt = ∞ cannot be applied here because we work on the half-plane H
and not on Z2, and because the translation-invariance [TRANSL-INV] only holds in the
x-direction. We now make the above heuristics rigorous.

Proof. Let t ≥ 0. In the following, for a subset S ⊂ H we write

dist(S, ∂H) := min {Imw : w ∈ S}

for its vertical distance from ∂H. Let us call a site z ∈ H the rightmost lowest point of
its cluster Ct,z (hereinafter abbreviated by z = RLP(Ct,z)) if

• Im z is minimal in Ct,z, i.e. Im z = dist(Ct,z, ∂H), and
• Re z is maximal among all w ∈ Ct,z with Imw = dist(Ct,z, ∂H).

Lemma 3.9 implies that a.s. every non-empty cluster in the configuration (ηt,z)z∈H has
a rightmost lowest point, so that

{Nt ≥ 1} a.s.⊂ {∃x ∈ Z∃y ∈ N : x+ iy = RLP(Ct,x+iy), |Ct,x+iy| =∞} .

Let y ∈ N be fixed, and set

At,x := {x+ iy = RLP(Ct,x+iy), |Ct,x+iy| =∞}
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b
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↑ ∞ ↑ ∞ ↑ ∞

Ct,x+iy

x+ iy
= RLP(Ct,x+iy)

Rh
t,x

Dh
t,x

Figure 2: A visualisation of the event At,x and the associated random variables Rht,x,
Dh
t,x

for all x ∈ Z. Due to the translation-invariance [TRANSL-INV] of the limit process we
have P[At,x] = P[At,0] for all x ∈ Z, and it thus suffices to prove P[At,0] = 0.

Step 1: Using the translation-invariance [TRANSL-INV] of the limit process again,
we see that for all x ∈ Z

At,x
a.s.⊂ {At,u for infinitely many u ∈ N0} (3.6)

holds by the Poincaré recurrence theorem (see e.g. [15], Section V.1, Theorem 1). Since
the rightmost lowest point of a cluster is unique (if it exists), (3.6) in particular implies
that on the event At,x, there a.s. exist infinitely many infinite clusters at time t which
are to the right of the cluster Ct,x+iy and have vertical distance y from ∂H. For x ∈ Z
and integer h ≥ y, on the event At,x, let

Rht,x := max {r ∈ Z : r + ih ∈ Ct,x+iy}+ ih

be the rightmost point of the cluster Ct,x+iy at height h, and let

Dh
t,x := min

{
d ∈ N : |Ct,Rh

t,x+d| =∞,dist(Ct,Rh
t,x+d, ∂H) = y

}
be the horizontal distance from Rht,x to the “next” infinite cluster with vertical distance
y from ∂H. On the event At,x, Rht,x and Dh

t,x are a.s. well-defined because obviously

At,x
a.s.⊂ {At,x,∀h ≥ y ∃r ∈ Z : r + ih ∈ Ct,x+iy}

holds, and because of Lemma 3.9 and the observation below equation (3.6). See Fig-
ure 2 for a visualisation of the event At,x and the associated random variables Rht,x, Dh

t,x.
The aim of Step 1 is to prove that

At,x
a.s.⊂
{
At,x, lim inf

h→∞
Dh
t,x <∞

}
(3.7)
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holds for all x ∈ Z.
Suppose that (3.7) is not true. Then there exist sequences (ch)h≥y and (dh)h≥y of

natural numbers with dh ↑ ∞ as h→∞ such that the events

Bt,x :=
{
At,x,∀h ≥ y :

∣∣ReRht,x − x
∣∣ ≤ ch, Dh

t,x ≥ dh
}

have positive probability for all x ∈ Z. (Of course, the translation-invariance [TRANSL-
INV] of the limit process implies P[Bt,x] = P[Bt,0] for all x ∈ Z.) From the translation-
invariance [TRANSL-INV] of the limit process and the Birkhoff ergodic theorem (see
e.g. [15], Section V.3, Theorem 1) we thus deduce that there exists β > 0 such that

P

[
n−1∑
x=0

1Bt,x
> βn eventually as n→∞

]
> 0.

On the event
{∑n−1

x=0 1Bt,x
> βn eventually as n→∞

}
, for large n the sites

iy, 1 + iy, . . . , (n − 1) + iy are part of at least dβne different infinite clusters for which
the following holds: For h ≥ y their rightmost points at height h are all contained in
the interval [−ch, (n − 1) + ch] + ih and have at least horizontal distance dh from one
another. Hence the horizontal distance between the right-most points at height h
of the first and the dβneth cluster is less than n + 2ch but greater than or equal to
(dβne − 1)dh. In particular, it holds that

dβne − 1

n
dh ≤ 1 +

2ch
n

.

Letting n → ∞, we obtain βdh ≤ 1 for all h ≥ y. But since β > 0, this contradicts the
condition that dh ↑ ∞ for h→∞. We have thus proven (3.7).

Step 2: We now prove P[At,0] = 0. Let ε > 0 be arbitrary; since the paths of the limit
process are a.s. piecewise constant and càdlàg, it suffices to show

P
[
At,0, η[t,t+ε],iy = 1, {Gt,t+ε,iy

]
= 0.

In fact, we will prove{
At,0, η[t,t+ε],iy = 1, {Gt,t+ε,iy

} a.s.⊂ {|{w ∈ Ct+ε,iy : Imw = y}| =∞} , (3.8)

and the latter is a null set by Lemma 3.9. Let K ∈ N be arbitrary; the inclusion (3.8)
then follows if we can show{

At,0, η[t,t+ε],iy = 1, {Gt,t+ε,iy

} a.s.⊂ {|{w ∈ Ct+ε,iy : Imw = y}| > K} . (3.9)

On the event At,0, we recursively define

X1 := 0, Z1 := iy

and for k ≥ 2

Xk := min
{
x > Xk−1 : 1At,x

= 1
}

, Zk := Xk + iy,

which is a.s. well-defined by (3.6). Informally speaking, for k ∈ N, Ct,Zk
is “the kth

infinite cluster with distance y from ∂H”, where we count clusters from left to right,
starting with the cluster at iy. Since the paths of the limit process are a.s. piecewise
constant and càdlàg, and because of (3.7), we have

At,0
a.s.⊂
{
At,0,∃ε̃ ∈ Q ∩ (0, ε),∃d ∈ N∀k ∈ {1, . . . ,K} : η[t,t+ε̃],Zk+1

= 1, {Gt,t+ε̃,Zk+1
,

lim inf
h→∞

Dh
t,Xk
≤ d
}

.
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So let 0 < ε̃ < ε and d ∈ N be arbitrary. For the proof of (3.9) it then suffices to show{
At,0, η[t,t+ε],iy = 1, {Gt,t+ε,iy,∀k ∈ {1, . . . ,K} : η[t,t+ε̃],Zk+1

= 1, {Gt,t+ε̃,Zk+1
,

lim inf
h→∞

Dh
t,Xk
≤ d
}

a.s.⊂ {|{w ∈ Ct+ε,iy : Imw = y}| > K} .

(3.10)

During the next two paragraphs, let k ∈ {1, . . . ,K} be fixed. On the event{
At,0, lim inf

h→∞
Dh
t,Xk
≤ d
}

, we recursively define

Hk,1 := min
{
h ≥ y : Dh

t,Xk
≤ d
}

and for l ≥ 2

Hk,l := min
{
h > Hk,l−1 : Dh

t,Xk
≤ d
}

.

(This is well-defined since Dh
t,Xk

is integer-valued.) Then for l ∈ N, R
Hk,l

t,Xk
is the “lth

rightmost point of the cluster Ct,Zk
whose horizontal distance to the cluster Ct,Zk+1

is
less than or equal to d”, where we count these points from bottom to top. Moreover, for
w ∈ H, c ∈ N and s ≥ 0, γ > 0 let

H-GROWTH-SEQ(w, c, s, γ) :=
{
∀j ∈ {1, . . . , c} : Gs+ j−1

c γ,s+ j
cγ,w+j

}
denote the event that there is a horizontal growth sequence from the site w + 1 to the
site w+ c between times s and s+ γ (with the jth growth event between times s+ j−1

c γ

and s+ j
cγ for j = 1, . . . , c).

Lemma 3.8 implies that conditional on At,0 (we can assume P[At,0] > 0 without loss

of generality), the events H-GROWTH-SEQ(R
Hk,l

t,Xk
, d, t, ε̃), l ∈ N, are independent with

P
[

H-GROWTH-SEQ(R
Hk,l

t,Xk
, d, t, ε̃)

∣∣∣At,0] = P [H-GROWTH-SEQ(i, d, 0, ε̃)] > 0

for all l ∈ N. We therefore conclude from the Borel-Cantelli lemma that

At,0
a.s.⊂
{
At,0,H-GROWTH-SEQ(R

Hk,l

t,Xk
, d, t, ε̃) for infinitely many l

}
(3.11)

holds.
But for any fixed numbers l1, . . . , lK ∈ N repeated applications of Lemmas 3.5 and

3.6 yield{
At,0, η[t,t+ε],iy = 1, {Gt,t+ε,iy,∀k ∈ {1, . . . ,K} : η[t,t+ε̃],Zk+1

= 1, {Gt,t+ε̃,Zk+1
,

lim inf
h→∞

Dh
t,Xk
≤ d,H-GROWTH-SEQ(R

Hk,lk

t,Xk
, d, t, ε̃)

}
a.s.⊂
{
At,0, Ct+ε,iy ⊃

K+1⋃
k=1

Ct,Zk

}
a.s.⊂ {|{w ∈ Ct+ε,iy : Imw = y}| ≥ K + 1} .

(3.12)

Equation (3.10) is now a direct consequence of (3.11) and (3.12).

Lemma 3.12. We have P [∀t ≥ 0 : Nt = 0] = 1; in other words: A.s. there does not exist
an infinite cluster in the configuration (ηt,z)z∈H for any time t ≥ 0.
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Proof. Using the fact that the paths of the limit process are a.s. piecewise constant and
càdlàg, and then applying Lemma 3.6, we obtain

{∃t ≥ 0 : Nt ≥ 1} a.s.⊂
{
∃t ≥ 0 ∃z ∈ H ∃ε > 0 : |Ct,z| =∞, η[t,t+ε],z = 1, {Gt,t+ε,z

}
a.s.⊂
{
∃t ≥ 0 ∃z ∈ H ∃ε > 0 : |Ct,z| =∞,∀w ∈ Ct,z : η[t,t+ε],w = 1

}
⊂
{
∃t ∈ Q+

0 : Nt ≥ 1
}

.

Since the set Q+
0 is countable, the last event is a null set by Lemma 3.11.

3.5 Infinite clusters in the left-sided limit

The aim of this section is to prove Lemma 3.18, which states that a.s. clusters in the
process (ηt,z)t≥0,z∈H are destroyed if they are about to become infinite. We start with
the following weaker version of this statement:

Lemma 3.13. For all z ∈ H we have

P
[
∃t > 0 : |Ct−,z| =∞, {Gt−,t,z, ηt,z = 1

]
= 0;

in other words: A.s. if the left-sided limit of the cluster at z is infinite at some time t,
then the site z gets destroyed at time t unless there is the growth of a tree at z at time t.

Proof. Let z ∈ H. Since a.s. |Ct,z| <∞ holds for any time t ≥ 0 (Lemma 3.12) and since
the paths of the limit process are a.s. piecewise constant and càdlàg, it follows that{

∃t > 0 : |Ct−,z| =∞, {Gt−,t,z, ηt,z = 1
}

a.s.⊂
{
∃t > 0 : |Ct−,z| =∞, {Gt−,t,z, ηt,z = 1,∃w ∈ Ct−,z : ηt,w = 0

}
a.s.⊂
{
∃0 ≤ s < t : {Gs,t,z, ηt,z = 1,∃w ∈ Cs,z : ηt,w = 0

}
.

But the latter is a null set by Lemma 3.6.

Lemma 3.14. (i) For all z ∈ H we have

P
[
∃0 < s < t : |Cs−,z| =∞, |Ct−,z| =∞, {Gs−,t,z

]
= 0; (3.13)

in other words: A.s. if the left-sided limit of the cluster at z is infinite at some
time s, the left-sided limit of the cluster cannot be infinite at some later time t > s

unless there is the growth of a tree at z in the time interval [s, t].
(ii) For all z ∈ H the set

{
t > 0 : |Ct−,z| =∞

}
of times at which the left-sided limit of

the cluster at z is infinite a.s. has no accumulation points.

Proof. Let z ∈ H. Lemma 3.13 and the property [GROWTH] (ii) of the limit process (see
Lemma 3.4) imply{

∃0 < s < t : |Cs−,z| =∞, |Ct−,z| =∞, {Gs−,t,z

}
a.s.⊂
{
∃0 < s < t : ηs,z = 0, {Gs,t,z, |Ct−,z| =∞

}
a.s.⊂
{
∃0 < s < t : η[s,t],z = 0, |Ct−,z| =∞

}
.

But since the conditions η[s,t],z = 0 and |Ct−,z| =∞ in the last event obviously contradict
each other, we conclude that (3.13) holds indeed.

It now follows from (3.13) that a.s. if the set
{
t > 0 : |Ct−,z| =∞

}
has an accumula-

tion point, then the set
{
t > 0 : Gt−,t,z

}
of times at which a tree grows at the site z also

has an accumulation point. But since (Gt,z)t≥0 is a Poisson process, this happens with
probability zero.
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For z ∈ H, we recursively define T0,z := 0 and for k ∈ N

Tk,z := inf
{
t > Tk−1,z : |Ct−,z| =∞

}
∈ (0,∞].

Lemma 3.14 (ii) implies that a.s. the inclusion{
t > 0 : |Ct−,z| =∞

}
⊂ {Tk,z : k ∈ N} (3.14)

holds. This allows us to treat the issue of infinite left-sided clusters at z by considering
the countable sequence of random times Tk,z, k ∈ N. In fact, these random times are
predictable stopping times with respect to the filtration (Ft)t≥0 introduced in Section
3.3, where predictability is defined as follows:

Definition 3.15. A stopping time T with respect to (Ft)t≥0 is called predictable if
there exists an increasing sequence (Tn)n∈N of stopping times with respect to (Ft)t≥0

which a.s. satisfy Tn ↑ T for n→∞ and Tn < T for all n ∈ N. In this case, the sequence
(Tn)n∈N is said to announce the stopping time T .

Lemma 3.16. For all z ∈ H and k ∈ N, Tk,z is a predictable stopping time with respect
to (Ft)t≥0.

Proof. Let z ∈ H and k ∈ N. Then Tk,z is obviously a stopping time with respect to
(Ft)t≥0. We now prove that Tk,z is announced by the sequence

Tk,z,n := inf {t > Tk−1,z : |Ct,z| ≥ n} ∧ n, n ∈ N.

Clearly, for each n ∈ N, Tk,z,n is a stopping time with respect to (Ft)t≥0, which a.s.
satisfies Tk,z,n < Tk,z and Tk,z,n ≤ Tk,z,n+1. Consequently, the limit T̃k,z := limn→∞ Tk,z,n
exists a.s. and satisfies T̃k,z ≤ Tk,z a.s. From the latter we deduce that

T̃k,z = Tk,z a.s. on the event
{
T̃k,z =∞

}
holds. On the other hand, the definition of Tk,z,n and the fact that the paths of the limit
process are a.s. piecewise constant and càdlàg imply that for all n ∈ N{

T̃k,z <∞
}

a.s.⊂
{
T̃k,z <∞,∃s ∈ [0, T̃k,z) : |Cs,z| ≥ n, ∀t ∈ [s, T̃k,z)∀w ∈ Hn(z) : ηt,w = ηs,w

}
holds, where Hn(z) := z + [−n, n]2 ∩H. Since n is arbitrary, this yields{

T̃k,z <∞
}

a.s.⊂
{
T̃k,z <∞, |CT̃−k,z,z

| =∞
}

. (3.15)

Moreover, since a.s. no two growth events occur at the same time, Lemma 3.13 in

particular shows that on the event
{
T̃k,z <∞

}
, we a.s. have |CTk−1,z,z| ≤ 1 and hence

T̃k,z > Tk−1,z. We can therefore conclude from (3.15) that

T̃k,z = Tk,z a.s. on the event
{
T̃k,z <∞

}
holds, which completes the proof of the lemma.

The Markov-type property stated in Lemma 3.8 now implies the following:

Lemma 3.17. (i) Let T be a predictable stopping time with respect to (Ft)t≥0. Then
for all z ∈ H we have

P
[
T <∞,GT−,T,z

]
= 0. (3.16)
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(ii) For any w ∈ H, z ∈ H it holds that

P
[
∃t > 0 : |Ct−,w| =∞,Gt−,t,z

]
= 0.

Proof. Part (i): Let T be a predictable stopping time which is announced by some se-
quence (Tn)n∈N of stopping times. Let z ∈ H. Pick ε > 0 arbitrary. Then the definition
of predictability yields

P
[
T <∞,GT−,T,z

]
= lim
n→∞

P
[
T <∞, T − Tn < ε,GT−,T,z

]
.

Fixing n ∈ N, we obtain

P
[
T <∞, T − Tn < ε,GT−,T,z

]
≤ P [T <∞, T − Tn < ε,GTn,Tn+ε,z]

≤ P [GTn,Tn+ε,z]

= P [G0,ε,z] = 1− e−ε,
where we used Lemma 3.8 for the penultimate equality. It thus follows that

P
[
T <∞,GT−,T,z

]
≤ 1− e−ε.

Since ε > 0 is arbitrary, this proves equation (3.16).
Part (ii): Let w ∈ H, z ∈ H. Equation (3.14) implies{

∃t > 0 : |Ct−,w| =∞,Gt−,t,z

} a.s.⊂
{
∃k ∈ N : Tk,w <∞,GT−k,w,Tk,w,z

}
.

But the latter is a null set by part (i) because Tk,w is a predictable stopping time for all
k ∈ N by Lemma 3.16.

We have thus proved that the limit process a.s. satisfies the second half of [DE-
STRUCTION] (i) in Definition 1.3:

Lemma 3.18. For all z ∈ H we have

P
[
∃t > 0 : |Ct−,z| =∞, ηt,z = 1

]
= 0;

in other words: A.s. if the left-sided limit of the cluster at z is infinite at some time t,
the site z becomes vacant at time t.

Proof. This is an immediate consequence of Lemma 3.13 and Lemma 3.17 (ii).

3.6 Completion of the proof of Theorem 1.2

We next prove that the limit process (ηt,z, Gt,z)t≥0,z∈H a.s. satisfies [DESTRUCTION]
(ii) in Definition 1.3:

Lemma 3.19. For all z ∈ H we have

P
[
∃t > 0 : ηt−,z > ηt,z, |Ct−,z| <∞,∀u ∈ ∂Ct−,z ∩ ∂H : {Gt−,t,u

]
= 0;

in other words: A.s. if the site z becomes vacant at some time t and its cluster was not
about to become infinite at time t, its cluster must have grown to the boundary at time t.

Proof. The following argument is similar to the proof of Lemma 23 in [7]. Let z ∈ H.
As in Lemma 3.7, let Cfin

z denote the (countable) set of all finite connected subsets of H
which contain the site z. Then the relation{

∃t > 0 : ηt−,z > ηt,z, |Ct−,z| <∞,∀u ∈ ∂Ct−,z ∩ ∂H : {Gt−,t,u

}
=

⋃
S∈Cfin

z

{
∃t > 0 : ηt−,z > ηt,z, Ct−,z = S, ∀u ∈ ∂S ∩ ∂H : {Gt−,t,u

}
⊂

⋃
S∈Cfin

z

{∃t > 0 : DS,t,z}
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holds, where we abbreviate

DS,t,z :=
{
ηt−,z > ηt,z,∀w ∈ ∂S : ηt−,w = 0,∀u ∈ ∂S ∩ ∂H : {Gt−,t,u

}
.

So let S ∈ Cfin
z ; it then suffices to show P [∃t > 0 : DS,t,z] = 0. We distinguish whether

or not at time t there is the growth of a tree at some site in ∂S ∩H and thus obtain

{∃t > 0 : DS,t,z} = AS,z ∪BS,z

with

AS,z :=
{
∃t > 0 : DS,t,z,∀v ∈ ∂S ∩H : {Gt−,t,v

}
,

BS,z :=
{
∃t > 0 : DS,t,z,∃v ∈ ∂S ∩H : Gt−,t,v

}
.

We first consider the event AS,z: Since the paths of the limit process are a.s. piece-
wise constant and càdlàg, and since the set ∂S is finite, it follows that

AS,z
a.s.⊂
{
∃0 ≤ s < t : ηs,z > ηt,z,∀w ∈ ∂S : ηs,w = 0, {Gs,t,w

}
.

Now for all sufficiently large n (such that S ∪ ∂S ⊂ Bn, where the boundary ∂S is taken
inH) and arbitrary 0 ≤ s < t, it is easy to deduce from [GROWTH] and [DESTRUCTION]
in Definition 1.1 that Bn-forest-fire processes satisfy

P
[
ηns,z > ηnt,z,∀w ∈ ∂S : ηns,w = 0, {Gn

s,t,w

]
= 0.

Hence Lemma 3.3 yields P[AS,z] = 0.

We now consider the event BS,z: Resorting to Lemma 3.17 (ii), we obtain

BS,z
a.s.⊂
{
∃t > 0 : DS,t,z,∃v ∈ ∂S ∩H : Gt−,t,v,∀x ∈ H : |Ct−,x| <∞

}
⊂
{
∃t > 0 : DS,t,z,∃v ∈ ∂S ∩H : Gt−,t,v,∃S′ ∈ Cfin

z : S′ = S ∪ {v} ∪
⋃

x∈∂{v}
Ct−,x

}
⊂

⋃
S′∈Cfin

z

{
∃t > 0 : ηt−,z > ηt,z,∀w ∈ ∂S′ : ηt−,w = 0,∃v ∈ S′ : Gt−,t,v

}
a.s.⊂

⋃
S′∈Cfin

z

{
∃t > 0 : ηt−,z > ηt,z,∀w ∈ ∂S′ : ηt−,w = 0, {Gt−,t,w ∃v ∈ S′ : Gt−,t,v

}
⊂

⋃
S′∈Cfin

z

AS′,z,

where in the penultimate step we used that a.s. no two growth events occur at the same
time. So the above implies P[BS,z] = 0.

Finally, we show that the limit process also a.s. satisfies [GROWTH] (i) in Defini-
tion 1.3:

Lemma 3.20. For all z ∈ H we have

P
[
∃t > 0 : Gt−,t,z, ηt,z = 0

]
= 0;

in other words: A.s. if a tree grows at the site z at some time t, then the site z is occupied
at time t.
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Proof. The argument to come is similar to the proof of Lemma 24 in [7]. Let z ∈ H.
Then the following inclusions hold:{

∃t > 0 : Gt−,t,z, ηt,z = 0
}

a.s.⊂
{
∃t > 0 : Gt−,t,z, ηt,z = 0,∀w ∈ H \ {z} : {Gt−,t,w, |Ct−,w| <∞

}
a.s.⊂
{
∃t > 0 : Gt−,t,z, ηt,z = 0,∀w ∈ ∂{z} : ηt−,w = ηt,w, {Gt−,t,w

}
a.s.⊂
{
∃0 ≤ s < t : Gs,t,z, ηt,z = 0,∀w ∈ ∂{z} : ηs,w = ηt,w, {Gs,t,w

}
.

Indeed, the first inclusion follows from Lemma 3.17 (ii) and the fact that a.s. no two
growth events occur at the same time, the second inclusion is a consequence of the
properties [GROWTH] (ii) and [DESTRUCTION] (ii) in Definition 1.3 (which have al-
ready been proved for the limit process in Lemmas 3.4 and 3.19), and the third inclu-
sion is due to the fact that the paths of the limit process are a.s. piecewise constant
and càdlàg. (The case w ∈ ∂H in these events is somewhat separate but trivial due
to the zero boundary condition proved in Lemma 3.4.) Now for all sufficiently large
n (such that {z} ∪ ∂{z} ⊂ Bn, where the boundary ∂{z} is taken in H) and arbitrary
0 ≤ s < t, it is easy to deduce from [GROWTH] and [DESTRUCTION] in Definition 1.1
that Bn-forest-fire processes satisfy

P
[
Gn
s,t,z, η

n
t,z = 0,∀w ∈ ∂{z} : ηns,w = ηnt,w, {Gn

s,t,w

]
= 0.

The result therefore follows from Lemma 3.3.

Lemmas 3.1, 3.2, 3.4, 3.7, 3.18, 3.19 and 3.20 combined thus provide the proof of
Theorem 1.2.

4 Proof of Theorem 1.5

Throughout this section, let (ηt,z, Gt,z)t≥0,z∈H be an H-forest-fire process (see Defi-
nition 1.3), let (σt,z)t≥0,z∈H be the associated pure growth process defined by equation
(1.1), and let (Yt,x)t≥0,x∈∂H be the heights of destruction of the process (ηt,z, Gt,z)t≥0,z∈H
(see Definition 1.4). As we already noted in Section 1, for fixed t ≥ 0 the distribution
of σt := (σt,z)z∈H is independent site percolation on H, where each site is open with
probability 1− e−t.

In the following, it will also be convenient to consider independent site percolation
on the whole lattice Z2. So for t ≥ 0, let ξt := (ξt,z)z∈Z2 be distributed according to
independent site percolation on Z2, where each site is open with probability 1−e−t. We
realize both (ηt,z, Gt,z)t≥0,z∈H and ξt, t ≥ 0, on a probability space (Ω,A,P).

A key concept for the treatment of site percolation on the square lattice Z2 is the
so-called matching lattice Z2∗, which is obtained from the square lattice Z2 by adding
diagonal edges to all faces in Z2. In this way, certain statements about open sites on the
square lattice Z2 can be reformulated as statements about closed sites on the matching
lattice Z2∗; see [11], Section 3.1, for more details. We therefore extend our terminology
as follows: LetW be a subset of Z2 and let α := (αw)w∈W ∈ {0, 1}W be any configuration
on W . Let Z2|α,1 denote the subgraph of the square lattice Z2 induced by the vertex set
{w ∈W : αw = 1}. Then by a 1-path in the configuration α we simply mean any path on
the graph Z2|α,1. Similarly, let Z2∗|α,0 denote the subgraph of the matching lattice Z2∗

induced by the vertex set {w ∈ W : αw = 0}. Then a 0∗-path in the configuration α is
simply any path on the graph Z2∗|α,0.

For w ∈ Z2 and n ∈ N, let

Bn(w) := w + [−n, n]2 ∩Z2 =
{
z ∈ Z2 : |Re(z − w)| ≤ n, | Im(z − w)| ≤ n

}
(4.1)
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denote the box with centre w and radius n, and let

Sn(w) :=
{
z ∈ Z2 : |Re(z − w)| = n, | Im(z − w)| ≤ n

}
∪
{
z ∈ Z2 : |Re(z − w)| ≤ n, | Im(z − w)| = n

}
denote the inner boundary of that box. For later reference we also define the left side

Ln(w) :=
{
z ∈ Z2 : Re(z − w) = −n, | Im(z − w)| ≤ n

}
(4.2)

and the right side

Rn(w) :=
{
z ∈ Z2 : Re(z − w) = n, | Im(z − w)| ≤ n

}
(4.3)

of the box Bn(w).

We will need the following two well-known results from percolation theory:

Correlation length. For all t > tc the “inverse correlation length”

c(t) := lim
n→∞

logP [ξt contains a 0∗-path from 0 to Sn(0)]

−n

is well-defined, and there exist universal constants ρ, σ > 0 such that

ρn−1e−c(t)n ≤ P [ξt contains a 0∗-path from 0 to Sn(0)] ≤ σne−c(t)n (4.4)

holds for all t > tc and all n ∈ N (see [11], Section 6.1, for instance4). We will only use
the left inequality in (4.4).

Percolation on subsets of the half-plane. Let t > tc. Define the bijective function
ht : [e,∞)→ [ 1

c(t) ,∞) by

ht(y) :=
1

c(t)
(log y + 3 log log y) , y ≥ e, (4.5)

and let gt : [ 1
c(t) ,∞)→ [e,∞) be its inverse function. Extend gt continuously to [0,∞) by

setting

gt(x) := e, 0 ≤ x < 1

c(t)
.

(The specific way of the extension is immaterial.) Then

P
[
(σt,x+iy)x≥0,y≥gt(x) contains an infinite cluster

]
= 1 (4.6)

holds; in other words: A.s. the restriction of σt to the area
{
x+ iy ∈ H : x ≥ 0, y ≥ gt(x)

}
(endowed with the edges inherited from H) contains an infinite cluster. A more detailed
account of this topic can be found in [11], Section 11.5, or in the original papers [10],
[5]5.

4In this reference the statement is proved for independent bond percolation on Z2 but the proof is identical
for independent site percolation on Z2.

5Again, in these references the statement is proved for independent bond percolation on Z2 but the proof
carries over to independent site percolation on Z2 when duality of lattices is replaced by matching of lattices.
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Remark 4.1. A closer look shows that the core of the proof of Theorem 1.5 only relies
on the following weaker versions of equations (4.4) and (4.6): For all t > tc there exists
a(t) > 0 such that for all n ∈ N

P [ξt contains a 0∗-path from 0 to Sn(0)] ≥ e−a(t)n

holds and there exists b(t) > 0 such that

P
[
(σt,x+iy)x≥0,y≥eb(t)x contains an infinite cluster

]
= 1

holds. However, if we used only these equations, the statements of some of the lemmas
to come would have to be weakened accordingly, e.g. the width of the semi-infinite tube
in Lemma 4.3 would then also depend on t.

As a direct consequence of (4.6), we deduce the following lemma:

Lemma 4.2. For t > tc define the function ft : (0,∞)→ (0,∞) by

ft(x) :=
1

(c(t)x)3
ec(t)x, x > 0.

Then for all t > tc we have

P [Yt,x ≥ ft(x) for infinitely many x ∈ N] = 1. (4.7)

Proof. Let t > tc. From equations (1.3) and (4.6), together with the fact that the config-
uration (ηt,z)z∈H a.s. does not contain an infinite cluster, we conclude

P [Yt,x ≥ gt(x) for infinitely many x ∈ N] = 1.

It is therefore enough to show that gt(x) ≥ ft(x) holds for all sufficiently large x ∈ N.
Indeed, the definition of gt (below (4.5)) yields

x =
1

c(t)
(log gt(x) + 3 log log gt(x)) , x ≥ 1

c(t)
,

and applying ft on both sides of this equation gives

ft(x) =

(
log gt(x)

log gt(x) + 3 log log gt(x)

)3

gt(x), x ≥ 1

c(t)
.

Since gt(x) ≥ e for x ≥ 1
c(t) , we have(

log gt(x)

log gt(x) + 3 log log gt(x)

)3

≤ 1, x ≥ 1

c(t)
,

which completes the proof.

The first inequality in (4.4) also implies the following:

Lemma 4.3. For t > tc and x ∈ N let

Tt,x :=
[

3
4x,

5
4x
]
×
[

1
2ft(x),∞

)
∩H

be the semi-infinite tube with vertical midline at x, width 2bx4 c and starting height
d 1

2ft(x)e, and let

Dt,x :=
[

3
4x,

5
4x
]
×
{
d 1

2ft(x)e
}
∩H
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b
b

b

x x+ ⌊x
4 ⌋x− ⌊x

4 ⌋

⌈ 1
2ft(x)⌉

ft(x)

B⌊x
4 ⌋(zt,x,1)

B⌊x
4 ⌋(zt,x,2)

B⌊x
4 ⌋(zt,x,3)

B⌊x
4 ⌋(zt,x,Kt,x)

Tt,x

Figure 3: Partition of the tube Tt,x into Kt,x boxes

be its baseline. Additionally, let

PATH-IN-TUBEt,x := {∃y ≥ ft(x) : σt contains a 1-path from x+ iy to Dt,x within Tt,x}

be the event that in the configuration σt there exists a site with real part x and imaginary
part at least ft(x) which is connected by a 1-path to the baseline Dt,x within the tube
Tt,x. Then for all t > tc we have

P [PATH-IN-TUBEt,x for infinitely many x ∈ N] = 0. (4.8)

Proof. Let t > tc and x ∈ N. As depicted in Figure 3, we partition the tube Tt,x upto
height ft(x) into disjoint boxes of radius bx4 c such that adjacent boxes have vertical

distance 1. Let Kt,x :=
⌊
ft(x)−d 12 ft(x)e+1

2b x4 c+1

⌋
be the number of these boxes, and for k ∈

{1, . . . ,Kt,x} let

zt,x,k := x+ i
(
d 1

2ft(x)e+ (2k − 1)bx4 c+ (k − 1)
)

be the centre of the kth such box. Recalling the notation introduced in equations (4.1),
(4.2) and (4.3), and passing from the lattice Z2 to the matching lattice Z2∗, we obtain

P [PATH-IN-TUBEt,x]

≤ P
[
∀k ∈ {1, . . . ,Kt,x} : σt contains no 0∗-path from Lb x4 c(zt,x,k)

to Rb x4 c(zt,x,k) within Bb x4 c(zt,x,k)
]

=
(

1−P
[
ξt contains a 0∗-path from Lb x4 c(0) to Rb x4 c(0) within Bb x4 c(0)

])Kt,x

.
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Now an argument similar to the proof of Theorem 11.55 in [11] gives

P
[
ξt contains a 0∗-path from Lb x4 c(0) to Rb x4 c(0) within Bb x4 c(0)

]
≥ P

[
ξt contains a 0∗-path from Lb x4 c(0) through 0 to Rb x4 c(0) within Bb x4 c(0)

]
≥
(

1

4
P
[
ξt contains a 0∗-path from 0 to Sb x4 c(0)

])2

≥ 1

16
ρ2 1

bx4 c2
e−2c(t)b x4 c

≥ Ω
(
e−

4c(t)
6 x
)

for x→∞.

Here the second inequality is obtained by an application of the FKG inequality, the third
inequality is a consequence of (4.4), and in the last inequality we use Landau notation.
In addition, it is evident from the definition of Kt,x that

Kt,x ≥ Ω
(
e

5c(t)
6 x
)

for x→∞

holds. From all this we conclude that P [PATH-IN-TUBEt,x] decays at least exponen-
tially for x→∞, in particular

∞∑
x=1

P [PATH-IN-TUBEt,x] <∞

holds. Equation (4.8) therefore follows from the Borel-Cantelli lemma.

In Lemma 4.2 we saw that for any time t there are a.s. infinitely many x ∈ N with
Yt,x ≥ ft(x). Very roughly speaking, we now want to prove that if Yt,x ≥ ft(x) holds
for some x ∈ N, then for all x̃ of order x the corresponding height of destruction Yt,x̃
is also of order at least ft(x), i.e. there cannot be “large fluctuations” in the heights of
destruction at time t. The precise statement is as follows:

Lemma 4.4. For t > tc and x ∈ N let

LARGE-FLUCTt,x :=
{
Yt,x ≥ ft(x),∃x1, x2 ∈ N : 3

4x ≤ x1 < x < x2 ≤ 5
4x,

Yt,x1
< 1

2ft(x), Yt,x2
< 1

2ft(x)
}

denote the event that the height of destruction at x up to time t is at least ft(x) but
there exist 3

4x ≤ x1 < x < x2 ≤ 5
4x such that the height of destruction at x1 and x2 up

to time t is less than 1
2ft(x) (see Figure 4). Then for all t > tc we have

P [LARGE-FLUCTt,x for infinitely many x ∈ N] = 0. (4.9)

Proof. Let t > tc and x ∈ N. We are going to prove

LARGE-FLUCTt,x
a.s.⊂ PATH-IN-TUBEt,x , (4.10)

from which equation (4.9) follows by Lemma 4.3. So assume that the event
LARGE-FLUCTt,x occurs. Then by the definition of the height of destruction, there
exist y ≥ ft(x) and 0 < s ≤ t such that

ηs−,x+iy = 1, ηs,x+iy = 0
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xx1 x2

1
2ft(x)

ft(x)

Yt,·

Figure 4: A visualisation of the event LARGE-FLUCTt,x

holds. According to the property [DESTRUCTION] in Definition 1.3, this means that
one of the following two cases occurs:
Case 1: |Cs−,x+iy| =∞.
Case 2: Cs−,x+iy contains a site in ∂H+ i.
However, the condition Yt,x1

< 1
2ft(x), Yt,x2

< 1
2ft(x) in the event LARGE-FLUCTt,x

implies that all sites of the form x1 + iy1, x2 + iy2 with y1, y2 ≥ 1
2ft(x) cannot be part

of Cs−,x+iy. It is easy to see that a.s. in both cases this implies that the configuration
(ηs−,z)z∈H contains a 1-path which runs from x+ iy to the baseline

(x1, x2)×
{
d 1

2ft(x)e
}
∩H

within the half-infinite tube

(x1, x2)×
[

1
2ft(x),∞

)
∩H. (4.11)

(For case 1 observe that a.s. there exists v ≥ y with ηs−,u+iv = 0 for all u ∈ {x1, x1 +

1, . . . , x2} so that the cluster Cs−,x+iy cannot stretch to infinity within the tube (4.11).)
Since the tube (4.11) is a subset of the tube Tt,x and because of the basic inequality
(1.2), this proves the inclusion (4.10).

Lemmas 4.2 and 4.4 enable us to prove the following lemma, which is only slightly
weaker than Theorem 1.5:

Lemma 4.5. For all t > tc we have P [Yt,0 =∞] = 1.

Proof. Let t > tc. Suppose that the lemma is not true; then there exists y ∈ N0 with
P [Yt,0 = y] > 0. The translation-invariance of H-forest-fire processes ([TRANSL-INV] in
Definition 1.3) and the Birkhoff ergodic theorem (see e.g. [15], Section V.3, Theorem 1)
imply that the sequence 1

n

∑n−1
x=0 1{Yt,x=y}, n ∈ N, is a Cauchy sequence a.s. and that

there exists ε > 0 such that the event

A :=

{
1

n

n−1∑
x=0

1{Yt,x=y} > ε eventually as n→∞
}
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satisfies P[A] > 0. Consequently, on the event A there a.s. exists n0 ∈ N such that for
all n1, n2 ≥ n0 ∣∣∣∣∣ 1

n1

n1−1∑
x=0

1{Yt,x=y} −
1

n2

n2−1∑
x=0

1{Yt,x=y}

∣∣∣∣∣ < 1

9
ε (4.12)

and

1

n1

n1−1∑
x=0

1{Yt,x=y} > ε

hold.
However, given n0 on the event A, it follows from Lemmas 4.2 and 4.4 that there a.s.

exists n1 ≥ max{n0, 8} such that for all x ∈
{
n1, . . . , n1 + bn1

4 c
}

1{Yt,x=y} = 0

holds. With this n1 and n2 := n1 + bn1

4 c we obtain

1

n1

n1−1∑
x=0

1{Yt,x=h} −
1

n2

n2−1∑
x=0

1{Yt,x=h} =
1

n1

n1−1∑
x=0

1{Yt,x=h}

(
1− n1

n1 + bn1

4 c

)

> ε ·
(

1− 1
5
4 − 1

n1

)
≥ 1

9
ε,

which is opposed to (4.12). Hence P[A] > 0 cannot hold - a contradiction.

Theorem 1.5 is now an immediate consequence of Lemma 4.5: The translation-
invariance [TRANSL-INV] implies that we only need to consider the case x = 0 in
Theorem 1.5. Since Yt,0 is obviously monotone increasing in t, we have

{∀t > tc : Yt,0 =∞} = {∀t ∈ (tc,∞) ∩Q : Yt,0 =∞}

so that

P [∀t > tc : Yt,0 =∞] = 1 (4.13)

follows from Lemma 4.5. Moreover, if 0 ≤ t < tc and y ∈ N0, then the definition of
the height of destruction, the condition [DESTRUCTION] in Definition 1.3 and equation
(1.2) yield

{Yt,0 ≥ y} ⊂ {∃v ≥ y : σt contains a 1-path from iv to ∂H} .

As a consequence of the exponential decay of the radius for subcritical independent site
percolation on Z2, the probability of the latter event decays to zero as y →∞ so that

P [Yt,0 =∞] = lim
y→∞

P [Yt,0 ≥ y] = 0

holds for 0 ≤ t < tc. Herefrom we readily deduce

P [∃0 ≤ t < tc : Yt,0 =∞] = 0 (4.14)

by a similar monotonicity argument as above. Equations (4.13) and (4.14) complete the
proof of Theorem 1.5.
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