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Abstract

We consider continuous state branching processes (CSBP) with additional multiplica-
tive jumps modeling dramatic events in a random environment. These jumps are
described by a Lévy process with bounded variation paths. We construct a process of
this class as the unique solution of a stochastic differential equation. The quenched
branching property of the process allows us to derive quenched and annealed results
and to observe new asymptotic behaviors. We characterize the Laplace exponent of
the process as the solution of a backward ordinary differential equation and establish
the probability of extinction. Restricting our attention to the critical and subcritical
cases, we show that four regimes arise for the speed of extinction, as in the case of
branching processes in random environment in discrete time and space. The proofs
are based on the precise asymptotic behavior of exponential functionals of Lévy pro-
cesses. Finally, we apply these results to a cell infection model and determine the
mean speed of propagation of the infection.
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1 Introduction

Continuous state branching processes (CSBP) are the analogues of Galton-Watson
(GW) processes in continuous time and continuous state space. They have been intro-
duced by Jirina [25] and studied by many authors including Bingham [8], Grey [19],
Grimvall [20], Lamperti [30, 31], to name but a few.

A CSBP Z = (Zt, t ≥ 0) is a strong Markov process taking values in [0,∞], where
0 and ∞ are absorbing states, and satisfying the branching property. We denote by
(Px, x > 0) the law of Z starting from x. Lamperti [31] proved that there is a bijection
between CSBP and scaling limits of GW processes. Thus they may model the evolution
of renormalized large populations on a large time scale.
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CSBP with catastrophes

The branching property implies that the Laplace transform of Zt is of the form

Ex

[
exp(−λZt)

]
= exp{−xut(λ)}, for λ ≥ 0,

for some non-negative function ut. According to Silverstein [36], this function is deter-
mined by the integral equation ∫ λ

ut(λ)

1

ψ(u)
du = t,

where ψ is known as the branching mechanism associated to Z. We assume here that
Z has finite mean, so that we have the following classical representation

ψ(λ) = −gλ+ σ2λ2 +

∫ ∞
0

(
e−λz − 1 + λz

)
µ(dz), (1.1)

where g ∈ R, σ ≥ 0 and µ is a σ-finite measure on (0,∞) such that
∫

(0,∞)

(
z ∧ z2

)
µ(dz)

is finite. The CSBP is then characterized by the triplet (g, σ, µ) and can also be defined
as the unique non-negative strong solution of a stochastic differential equation. More
precisely, from Fu and Li [16] we have

Zt = Z0 +

∫ t

0

gZsds+

∫ t

0

√
2σ2ZsdBs +

∫ t

0

∫ ∞
0

∫ Zs−

0

zÑ0(ds,dz,du), (1.2)

where B is a standard Brownian motion, N0(ds,dz,du) is a Poisson random measure
with intensity dsµ(dz)du independent of B, and Ñ0 is the compensated measure of N0.

The stable case with drift, i.e. ψ(λ) = −gλ+cλ1+β , with β in (0, 1], corresponds to the
CSBP that one can obtain by scaling limits of GW processes with a fixed reproduction
law. It is of special interest in this paper since the Laplace exponent can be computed
explicitly and it can also be used to derive asymptotic results for more general cases.

In this work, we are interested in modeling catastrophes which occur at random and
kill each individual with some probability (depending on the catastrophe). In terms of
the CSBP representing the scaling limit of the size of a large population, this amounts
to letting the process make a negative jump, i.e. multiplying its current value by a ran-
dom fraction. The process that we obtain is still Markovian whenever the catastrophes
follow a time homogeneous Poisson Point Process. Moreover, we show that condition-
ally on the times and the effects of the catastrophes, the process satisfies the branching
property. Thus, it yields a particular class of CSBP in random environment, which can
also be obtained as the scaling limit of GW processes in random environment (see [4]).
Such processes are motivated in particular by a cell division model; see for instance [5]
and Section 5.

We also consider positive jumps that may represent immigration events proportional
to the size of the current population. Our motivation comes from the aggregation be-
havior of some species. We refer to Chapter 12 in [12] for adaptive explanations of these
aggregation behaviors, or [35] which shows that aggregation behaviors may result from
manipulation by parasites to increase their transmission. For convenience, we still call
these dramatic events catastrophes.

The process Y that we consider in this paper is then called a CSBP with catastro-
phes. Roughly speaking, it can be defined as follows: The process Y follows the SDE
(1.2) between catastrophes, which are then given in terms of the jumps of a Lévy pro-
cess with bounded variation paths. Thus the set of times at which catastrophes occur
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CSBP with catastrophes

may have accumulation points, but the mean effect of the catastrophes has a finite first
moment. When a catastrophe with effect mt occurs at time t, we have

Yt = mtYt−.

We defer the formal definitions to Section 2. We also note that Brockwell has considered
birth and death branching processes with another kind of catastrophes, see e.g. [10].

First we verify that CSBP with catastrophes are well defined as solutions of a certain
stochastic differential equation, which we give as (2.3). We characterize their Laplace
exponents via an ordinary differential equation (see Theorem 1), which allows us to
describe their long time behavior. In particular, we prove an extinction criterion for the
CSBP with catastrophes which is given in terms of the sign of E[g +

∑
s≤1 logms]. We

also establish a central limit theorem conditionally on survival and under some moment
assumptions (Corollary 3).

We then focus on the case when the branching mechanism associated to the CSBP
with catastrophes Y has the form ψ(λ) = −gλ + cλ1+β , for β ∈ (0, 1], i.e. the stable
case. In this scenario, the extinction and absorption events coincide, which means that
{limt→∞ Yt = 0} = {∃t ≥ 0, Yt = 0}. We prove that the speed of extinction is directly
related to the asymptotic behavior of exponential functionals of Lévy processes (see
Proposition 4). More precisely, we show that the extinction probability of a stable CSBP
with catastrophes can be expressed as follows:

P(Yt > 0) = E

[
F

(∫ t

0

e−βKsds

)]
,

where F is a function with a particular asymptotic behavior and Kt := gt+
∑
s≤t logms

is a Lévy process of bounded variation that does not drift to +∞ and satisfies an ex-
ponential positive moment condition. We establish the asymptotic behavior of the sur-
vival probability (see Theorem 7) and find four different regimes when this probabil-
ity is equal to zero. Actually, such asymptotic behaviors have previously been found
for branching processes in random environments in discrete time and space (see e.g.
[21, 18, 1]). Here, the regimes depend on the shape of the Laplace exponent of K, i.e.
on the drift g of the CSBP and the law of the catastrophes. The asymptotic behavior
of exponential functionals of Lévy processes drifting to +∞ has been deeply studied
by many authors, see for instance Bertoin and Yor [7] and references therein. To our
knowledge, the remaining cases have been studied only by Carmona et al. (see Lemma
4.7 in [11]) but their result focuses only on one regime. Our result is closely related
to the discrete framework via the asymptotic behaviors of functionals of random walks.
More precisely, we use in our arguments local limit theorems for semi direct products
[34, 21] and some analytical results on random walks [26, 22], see Section 4.

From the speed of extinction in the stable case, we can deduce the speed of extinc-
tion of a larger class of CSBP with catastrophes satisfying the condition that extinction
and absorption coincide (see Corollary 6). General results for the case of Lévy processes
of unbounded variation do not seem easy to obtain since the existence of the process Y
and our approximation methods are not so easy to deduce. The particular case when
µ = 0 and the environment K is given by a Brownian motion has been studied in [9].
The authors in [9] also obtained similar asymptotics regimes using the explicit law of∫ t

0
exp(−βKs)ds.
Finally, we apply our results to a cell infection model introduced in [5] (see Section

5). In this model, the infection in a cell line is given by a Feller diffusion with catas-
trophes. We derive here the different possible speeds of the infection propagation.
More generally, these results can be related to some ecological problems concerning
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CSBP with catastrophes

the role of environmental and demographical stochasticities. Such topics are funda-
mental in conservation biology, as discussed for instance in Chapter 1 in [33]. Indeed,
the survival of the population may be either due to the randomness of the individual
reproduction, which is specified in our model by the parameters σ and µ of the CSBP,
or to the randomness (rate, size) of the catastrophes due to the environment. For a
study of relative effects of environmental and demographical stochasticities, the reader
is referred to [32] and references therein.

The remainder of the paper is structured as follows. In Section 2, we define and
study the CSBP with catastrophes. Section 3 is devoted to the study of the extinction
probabilities where special attention is given to the stable case. In Section 4, we anal-
yse the asymptotic behavior of exponential functionals of Lévy processes of bounded
variation. This result is the key to deducing the different extinction regimes. In Sec-
tion 5, we apply our results to a cell infection model. Finally, Section 6 contains some
technical results used in the proofs and deferred for the convenience of the reader.

2 CSBP with catastrophes

We consider a CSBP Z = (Zt, t ≥ 0) defined by (1.2) and characterized by the triplet
(g, σ, µ), where we recall that µ satisfies∫ ∞

0

(z ∧ z2)µ(dz) <∞. (2.1)

The catastrophes are independent of the process Z and are given by a Poisson random
measure N1 =

∑
i∈I δti,mti on [0,∞)× [0,∞) with intensity dtν(dm) such that

ν({0}) = 0 and 0 <

∫
(0,∞)

(1 ∧
∣∣m− 1

∣∣)ν(dm) <∞. (2.2)

The jump process

∆t =

∫ t

0

∫
(0,∞)

log(m)N1(ds,dm) =
∑
s≤t

log(ms),

is thus a Lévy process with paths of bounded variation, which is non identically zero.

The CSBP (g, σ, µ) with catastrophes ν is defined as the solution of the following
stochastic differential equation:

Yt = Y0 +

∫ t

0

gYsds+

∫ t

0

√
2σ2YsdBs +

∫ t

0

∫
[0,∞)

∫ Ys−

0

zÑ0(ds,dz,du)

+

∫ t

0

∫
[0,∞)

(
m− 1

)
Ys−N1(ds,dm), (2.3)

where Y0 > 0 a.s.

Let BV(R+) be the set of càdlàg functions on R+ := [0,∞) of bounded variation and
C2
b the set of all functions that are twice differentiable and are bounded together with

their derivatives, then the following result of existence and unicity holds:

Theorem 1. The stochastic differential equation (2.3) has a unique non-negative strong
solution Y for any g ∈ R, σ ≥ 0, µ and ν satisfying conditions (2.1) and (2.2), respec-
tively. Then, the process Y = (Yt, t ≥ 0) is a càdlàg Markov process satisfying the
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branching property conditionally on ∆ = (∆t, t ≥ 0) and its infinitesimal generator A
satisfies for every f ∈ C2

b

Af(x) = gxf ′(x) + σ2xf ′′(x) +

∫ ∞
0

(
f(mx)− f(x)

)
ν(dm)

+

∫ ∞
0

(
f(x+ z)− f(x)− zf ′(x)

)
xµ(dz).

(2.4)

Moreover, for every t ≥ 0,

Ey

[
exp

{
− λ exp

{
− gt−∆t

}
Yt

}∣∣∣∣ ∆

]
= exp

{
− yvt(0, λ,∆)

}
a.s.,

where for every (λ, δ) ∈ (R+,BV(R+)), vt : s ∈ [0, t] 7→ vt(s, λ, δ) is the unique solution
of the following backward differential equation :

∂

∂s
vt(s, λ, δ) = egs+δsψ0

(
e−gs−δsvt(s, λ, δ)

)
, vt(t, λ, δ) = λ, (2.5)

and

ψ0(λ) = ψ(λ)− λψ′(0) = σ2λ2 +

∫ ∞
0

(e−λz − 1 + λz)µ(dz). (2.6)

Proof. Under Lipschitz conditions, the existence and uniqueness of strong solutions for
stochastic differential equations are classical results (see [24]). In our case, the result
follows from Proposition 2.2 and Theorems 3.2 and 5.1 in [16]. By Itô’s formula (see
for instance [24] Th.5.1), the solution of the SDE (2.3), (Yt, t ≥ 0) solves the following
martingale problem. For every f ∈ C2

b ,

f(Yt) = f(Y0) + loc. mart. + g

∫ t

0

f ′(Ys)Ysds

+ σ2

∫ t

0

f ′′(Ys)Ysds+

∫ t

0

∫ ∞
0

Ys

(
f(Ys + z)− f(Ys)− f ′(Ys)z

)
µ(dz)ds

+

∫ t

0

∫ ∞
0

(
f(mYs)− f(Ys)

)
ν(dm)ds,

where the local martingale is given by∫ t

0

f ′(Ys)
√

2σ2YsdBs +

∫ t

0

∫ ∞
0

(
f(mYs−)− f(Ys−)

)
Ñ1(ds,dm) (2.7)

+

∫ t

0

∫ ∞
0

∫ Ys−

0

(
f(Ys− + z)− f(Ys−)

)
Ñ0(ds,dz,du),

and Ñ1 is the compensated measure of N1. Even though the process in (2.7) is a local
martingale, we can define a localized version of the corresponding martingale problem
as in Chapter 4.6 of Ethier and Kurtz [15]. We leave the details to the reader. From
pathwise uniqueness, we deduce that the solution of (2.3) is a strong Markov process
whose generator is given by (2.4).

The branching property of Y , conditionally on ∆, is inherited from the branching
property of the CSBP and the fact that the additional jumps are multiplicative.

To prove the second part of the theorem, let us now work conditionally on ∆. Apply-
ing Itô’s formula to the process Z̃t = Yt exp{−gt−∆t}, we obtain

Z̃t = Y0 +

∫ t

0

e−gs−∆s

√
2σ2YsdBs +

∫ t

0

∫ ∞
0

∫ Ys−

0

e−gs−∆s−zÑ0(ds,dz,du),
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CSBP with catastrophes

and then Z̃ is a local martingale conditionally on ∆. A new application of Itô’s formula
ensures that for every F ∈ C1,2

b , F (t, Z̃t) is also a local martingale if and only if for every
t ≥ 0,∫ t

0

∂2

∂x2
F (s, Z̃s)σ

2Z̃se
−gs−∆sds+

∫ t

0

∂

∂s
F (s, Z̃s)ds (2.8)

+

∫ t

0

∫ ∞
0

Z̃s

([
F (s, Z̃s + ze−gs−∆s)− F (s, Z̃s)

]
egs+∆s − ∂

∂x
F (s, Z̃s)z

)
µ(dz)ds = 0.

In the vein of [24, 5], we choose F (s, x) := exp{−xvt(s, λ,∆)}, where vt(s, λ,∆) is dif-
ferentiable with respect to the variable s, non-negative and such that vt(t, λ,∆) = λ, for
λ ≥ 0. The function F is bounded, so that (F (s, Z̃s), 0 ≤ s ≤ t) will be a martingale if
and only if for every s ∈ [0, t]

∂

∂s
vt(s, λ,∆) = egs+∆sψ0

(
e−gs−∆svt(s, λ,∆)

)
, a.s.,

where ψ0 is defined in (2.6).
Proposition 17 in Section 6 ensures that a.s. the solution of this backward differen-

tial equation exists and is unique, which essentially comes from the Lipschitz property
of ψ0 (Lemma 18) and the fact that ∆ possesses bounded variation paths. Then the
process (exp{−Z̃svt(s, λ,∆)}, 0 ≤ s ≤ t) is a martingale conditionally on ∆ and

Ey

[
exp

{
− Z̃tvt(t, λ,∆)

}∣∣∣∣ ∆

]
= Ey

[
exp

{
− Z̃0vt(0, λ,∆)

}∣∣∣∣∆] a.s.,

which yields

Ey

[
exp

{
− λZ̃t

}∣∣∣∣ ∆

]
= exp

{
− yvt(0, λ,∆)

}
a.s. (2.9)

This implies our result.

Referring to Theorem 7.2 in [27], we recall that a Lévy process has three possible
asymptotic behaviors: either it drifts to ∞, −∞, or oscillates a.s. In particular, if the
Lévy process has a finite first moment, the sign of its expectation yields the regimes of
above. We extend this classification to CSBP with catastrophes.

Corollary 2. We have the following three regimes.

i) If (∆t + gt)t≥0 drifts to −∞, then P(Yt → 0 | ∆) = 1 a.s.

ii) If (∆t + gt)t≥0 oscillates, then P(lim inft→∞ Yt = 0 | ∆) = 1 a.s.

iii) If (∆t + gt)t≥0 drifts to +∞ and there exists ε > 0, such that∫ ∞
0

z log1+ε(1 + z)µ(dz) <∞, (2.10)

then P(lim inft→∞ Yt > 0 | ∆) > 0 a.s. and there exists a non-negative finite r.v. W such
that

e−gt−∆tYt −−−→
t→∞

W a.s., {W = 0} =
{

lim
t→∞

Yt = 0
}
.

Remark 1. In the regime (ii), Y may be absorbed in finite time a.s. (see the next
section). But Yt may also a.s. do not tend to zero. For example, if µ = 0 and σ = 0, then
Yt = exp(gt+ ∆t) and lim supt→∞ Yt =∞.
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CSBP with catastrophes

Assumption (iii) of the corollary does not imply that {limt→∞ Yt = 0} = {∃t : Yt =

0}. Indeed, the case µ(dx) = x−21[0,1](x)dx inspired by Neveu’s CSBP yields ψ(u) ∼
u log u as u → ∞. Then, according to Remark 2.2 in [29], P(∃t : Yt = 0) = 0 and
0 < P(limt→∞ Yt = 0) < 1.

Proof. We use (2.8) with F (s, x) = x to get that Z̃ = (Yt exp(−gt −∆t) : t ≥ 0) is a non-
negative local martingale. Thus it is a non-negative supermartingale and it converges
a.s. to a non-negative finite random variable W . This implies the proofs of (i-ii).

In the case when (gt + ∆t, t ≥ 0) goes to +∞, we prove that P(W > 0 | ∆) > 0 a.s.
According to Lemma 19 in Section 6, the assumptions of (iii) ensure the existence of a
non-negative increasing function k on R+ such that for all λ > 0,

ψ0(λ) ≤ λk(λ) and c(∆) :=

∫ ∞
0

k
(
e−(gt+∆t)

)
dt <∞ a.s.

For every (t, λ) ∈ (R∗+)2, the solution vt of (2.5) is non-decreasing on [0, t]. Thus for all
s ∈ [0, t], vt(s, 1,∆) ≤ 1, and

ψ0(e−gs−∆svt(s, 1,∆)) ≤ e−gs−∆svt(s, 1,∆)k(e−gs−∆svt(s, 1,∆))

≤ e−gs−∆svt(s, 1,∆)k(e−gs−∆s) a.s.

Then (2.5) gives
∂

∂s
vt(s, 1,∆) ≤ vt(s, 1,∆)k(e−gs−∆s),

implying

− ln(vt(0, 1,∆)) ≤
∫ t

0

k(e−gs−∆s)ds ≤ c(∆) <∞ a.s.

Hence, for every t ≥ 0, vt(0, 1,∆) ≥ exp(−c(∆)) > 0 and conditionally on ∆ there exists
a positive lower bound for vt(0, 1,∆). Finally from (2.9),

Ey[exp{−W} |∆] = exp
{
− y lim

t→∞
vt(0, 1,∆)

}
< 1

and P(W > 0 | ∆) > 0 a.s.
Moreover, since Y satisfies the branching property conditionally on ∆, we can show
(see Lemma 20 in Section 6) that

{W = 0} =
{

lim
t→∞

Yt = 0
}

a.s.,

which completes the proof.

We now derive a central limit theorem in the supercritical regime:

Corollary 3. Assume that (gt + ∆t, t ≥ 0) drifts to +∞ and (2.10) is satisfied. Then,
under the additional assumption∫

(0,e−1]∪[e,∞)

(logm)2ν(dm) <∞, (2.11)

conditionally on {W > 0},
log(Yt)−mt

ρ
√
t

d−−−→
t→∞

N (0, 1),

where
d−→ means convergence in distribution,

m := g +

∫
{| log x|≥1}

logmν(dm) <∞, ρ2 :=

∫ ∞
0

(logm)2ν(dm) <∞,

and N (0, 1) denotes a centered Gaussian random variable with variance equals 1.
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Proof. We use the central limit theorem for the Lévy process (gt + ∆t, t ≥ 0) under
assumption (2.11) of Doney and Maller [13], see Theorem 3.5. For simplicity, the details
are deferred to Section 6.4. We then get

gt+ ∆t −mt

ρ
√
t

d−−−→
t→∞

N (0, 1). (2.12)

From Corollary 2 part iii), under the event {W > 0}, we get

log Yt − (gt+ ∆t)
a.s.−−−→
t→∞

logW ∈ (−∞,∞),

and we conclude using (2.12).

3 Speed of extinction of CSBP with catastrophes

In this section, we first study the particular case of the stable CSBP with growth
g ∈ R. Then, we derive a similar result for another class of CSBP’s.

3.1 The stable case

We assume in this section that

ψ(λ) = −gλ+ c+λ
β+1, (3.1)

for some β ∈ (0, 1], c+ > 0 and g in R.
If β = 1 (i.e. the Feller diffusion), we necessarily have µ = 0 and the CSBP Z follows

the continuous diffusion

Zt = Z0 +

∫ t

0

gZsds+

∫ t

0

√
2σ2ZsdBs, t ≥ 0.

In the case when β ∈ (0, 1), we necessarily have σ = 0 and the measure µ takes the form
µ(dx) = c+(β + 1)x−(2+β)dx/Γ(1 − β). In other words, the process possesses positive
jumps with infinite intensity [28]. Moreover,

Zt = Z0 +

∫ t

0

gZsds+

∫ t

0

Z
1/(β+1)
s− dXs, t ≥ 0,

where X is a (β + 1)-stable spectrally positive Lévy process.

For the stable CSBP with catastrophes, the backward differential equation (2.5) can
be solved and in particular, we get

Proposition 4. For all x0 > 0 and t ≥ 0:

Px0
(Yt > 0 | ∆) = 1− exp

{
−x0

(
c+β

∫ t

0

e−β(gs+∆s)ds

)−1/β
}

a.s. (3.2)

Moreover,
Px0(there exists t > 0, Yt = 0 | ∆) = 1 a.s.,

if and only if the process (gt+ ∆t, t ≥ 0) does not drift to +∞.

Proof. Since ψ0(λ) = c+λ
β+1, a direct integration gives us

vt(u, λ,∆) =

[
c+β

∫ t

u

e−β(gs+∆s)ds+ λ−β
]−1/β

,
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which implies

Ex0

[
e−λZ̃t

∣∣∣ ∆
]

= exp

{
−x0

(
c+β

∫ t

0

e−β(gs+∆s)ds+ λ−β
)−1/β

}
a.s. (3.3)

Hence, the absorption probability follows by letting λ tend to∞ in (3.3). In other words,

Px0(Yt = 0 | ∆) = exp

{
−x0

(
c+β

∫ t

0

e−β(gs+∆s)ds

)−1/β
}

a.s.

Since Px0
(there exists t ≥ 0 : Yt = 0 | ∆) = limt→∞Px0

(Yt = 0 | ∆) a.s., we deduce

Px0
(there exists t ≥ 0 : Yt = 0 | ∆) = exp

{
−x0

(
c+β

∫ ∞
0

e−β(gs+∆s)ds

)−1/β
}

a.s.

Finally, according to Theorem 1 in [7],
∫∞

0
exp{−β(gs+ ∆s)}ds = ∞ a.s. if and only if

the process (gt+ ∆t, t ≥ 0) does not drift to +∞. This completes the proof.

In what follows, we assume that the Lévy process ∆ admits some positive expo-
nential moments, i.e. there exists λ > 0 such that φ(λ) < ∞. We can then define
θmax = sup{λ > 0, φ(λ) <∞} ∈ (0,∞] and we have

φ(λ) := logE[eλ∆1 ] =

∫ ∞
0

(mλ − 1)ν(dm) <∞ for λ ∈ [0, θmax). (3.4)

We note that φ can be differentiated on the right in 0 and also in 1 if θmax > 1:

φ′(0) := φ′(0+) =

∫ ∞
0

log(m)ν(dm) ∈ (−∞,∞), φ′(1) =

∫ ∞
0

log(m)mν(dm).

Recall that ∆t/t converges to φ′(0) a.s. and that g + φ′(0) is negative in the subcrit-
ical case. Proposition 4 then yields the asymptotic behavior of the quenched survival
probability :

e−gt−∆tPx0
(Yt > 0| ∆) ∼ x0

(
c+β

∫ t

0

eβ(gt+∆t−gs−∆s)ds
)−1/β

(t→∞),

which converges in distribution to a positive finite limit proportional to x0. Then,

1

t
logPx0

(Yt > 0| ∆)→ g + φ′(0) (t→∞)

in probability.
Additional work is required to get the asymptotic behavior of the annealed survival

probability, for which four different regimes appear when the process a.s. goes to zero:

Proposition 5. We assume that ν satisfies (2.2) and (2.11), and that ψ and φ satisfy
(3.1) and (3.4) respectively.

a/ If φ′(0) + g < 0 (subcritical case) and θmax > 1, then

(i) If φ′(1) + g < 0 (strongly subcritical regime), then there exists c1 > 0 such
that for every x0 > 0,

Px0(Yt > 0) ∼ c1x0e
t(φ(1)+g), as t→∞.
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(ii) If φ′(1) + g = 0 (intermediate subcritical regime), then there exists c2 > 0

such that for every x0 > 0,

Px0
(Yt > 0) ∼ c2x0t

−1/2et(φ(1)+g), as t→∞.

(iii) If φ′(1) + g > 0 (weakly subcritical regime) and θmax > β + 1, then for every
x0 > 0, there exists c3(x0) > 0 such that

Px0
(Yt > 0) ∼ c3(x0)t−3/2et(φ(τ)+gτ), as t→∞,

where τ is the root of φ′ + g on ]0, 1[: φ(τ) + gτ = min
0<s<1

{φ(s) + gs}.

b/ If φ′(0) + g = 0 (critical case) and θmax > β, then for every x0 > 0, there exists
c4(x0) > 0 such that

Px0(Yt > 0) ∼ c4(x0)t−1/2, as t→∞.

Proof. From Proposition 4 we know that

Px0(Yt > 0) = 1− E

[
exp

{
−x0

(
c+β

∫ t

0

e−β(gs+∆s)ds

)−1/β
}]

= E

[
F

(∫ t

0

e−βKsds

)]
,

where F (x) = 1 − exp{−x0(c+βx)−1/β} and Ks = ∆s + gs. The function F satisfies
assumption (4.5) which is required in Theorem 7 (which is stated and proved in the next
section). Hence Proposition 5 follows from a direct application of this Theorem.

In the case of CSBP’s without catastrophes (ν = 0), the subcritical regime is reduced
to (i), and the critical case differs from b/, since the asymptotic behavior is given by 1/t.
In the strongly and intermediate subcritical cases (i) and (ii), E[Yt] provides the expo-
nential decay factor of the survival probability which is given by φ(1) + g. Moreover the
probability of non-extinction is proportional to the initial state x0 of the population. We
refer to the proof of Lemma 11 and Section 4.4 for more details.
In the weakly subcritical case (iii), the survival probability decays exponentially with
rate φ(τ) + gτ , which is strictly smaller than φ(1) + g. In fact, as it appears in the
proof of Theorem 7, the quantity which determines the asymptotic behavior in all cases
is E[exp{infs∈[0,t](∆s + gs)}]. We also note that c3 and c4 may not be proportional to
x0. We refer to [3] for a result in this vein for discrete branching processes in random
environment.

More generally, the results stated above can be compared to the results which ap-
pear in the literature of discrete (time and space) branching processes in random envi-
ronment (BPRE), see e.g. [21, 18, 1]. A BPRE (Xn, n ∈ N) is an integer valued branching
process, specified by a sequence of generating functions (fn, n ∈ N). Conditionally on
the environment, individuals reproduce independently of each other and the offsprings
of an individual at generation n has generating function fn. We present briefly the
results of Theorem 1.1 in [17] and Theorems 1.1, 1.2 and 1.3 in [18]. To lighten the
presentation, we do not specify here the moment conditions.
In the subcritical case, i.e. when E[log f ′0(1)] < 0, we have the following three asymp-
totic regimes as n increases,

P(Xn > 0) ∼ can, as n→∞,

where c is a positive constant and an is given by

an = E
[
f ′0(1)

]n
, an = n−1/2E

[
f ′0(1)

]n
or an = n−3/2

(
min

0<s<1
E
[
(f ′0(1))s

])n
,
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when E[f ′0(1) log f ′0(1)] is negative, zero or positive, respectively.
In the critical case, i.e. E[log f ′0(1)] = 0, we have

P(Xn > 0) ∼ cn−1/2, as n→∞,

for some positive constant c. In the particular case when β = 1, these results on BPRE
and the approximation techniques implemented in Section 4 can be used to get Propo-
sition 5. We refer to Remarks 2 and 3 for more details.

Finally, in the continuous framework, such results have been established for the
Feller diffusion case, i.e. β = 1, whose drift varies following a Brownian motion (see
[9]). In other words the process K is given by a Brownian motion plus a drift. The
techniques used by the authors rely on an explicit formula for the Laplace transform
of exponential functionals of Brownian motion which we cannot find in the literature
for the case of Lévy processes. These results have been completed in the surpercritical
regime in [23].

3.2 Beyond the stable case.

In this section, we prove a similar result to Proposition 5 for CSBP’s with catastro-
phes in the case when the branching mechanism ψ0 is not stable. For technical reasons,
we assume that the Brownian coefficient is positive and the associated Lévy measure µ
satisfies a second moment condition.

Corollary 6. Assume that (3.4) holds and∫
(0,∞)

z2µ(dz) <∞, σ2 > 0,

∫
(0,∞)

(logm)2ν(dm) <∞.

a/ If φ′(0) + g < 0 and θmax > 1, then

(i) If φ′(1) + g < 0, there exist 0 < c1 ≤ c′1 <∞ such that for every x0,

c1x0e
t(φ(1)+g) ≤ Px0(Yt > 0) ≤ c′1x0e

t(φ(1)+g) for sufficiently large t.

(ii) If φ′(1) + g = 0, there exist 0 < c2 ≤ c′2 <∞ such that for every x0,

c2x0t
−1/2et(φ(1)+g) ≤ Px0

(Yt > 0) ≤ c′2x0t
−1/2et(φ(1)+g) for sufficiently large t.

(iii) If φ′(1)+g > 0 and θmax > β+1, for every x0, there exist 0 < c3(x0) ≤ c′3(x0) <

∞ such that

c3(x0)t−3/2et(φ(τ)+gτ) ≤ Px0(Yt > 0) ≤ c′3(x0)t−3/2et(φ(τ)+gτ) (t > 0),

where τ is the root of φ′ + g on ]0, 1[.

b/ If φ′(0)+g = 0 and θmax > β, then for every x0, there exist 0 < c4(x0) < c′4(x0) <∞
such that

c4(x0)t−1/2 ≤ Px0
(Yt > 0) ≤ c′4(x0)t−1/2 (t > 0).

Note that the assumption σ2 > 0 is only required for the upper bounds.

Proof. We recall that the branching mechanism associated with the CSBP Z satisfies
(1.1) for every λ ≥ 0. So for every λ ≥ 0,

2σ2 ≤ ψ′′(λ) = 2σ2 +

∫
(0,∞)

z2e−λzµ(dz).
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Since c :=
∫∞

0
z2µ(dz) <∞, ψ′′ is continuous on [0,∞). By Taylor-Lagrange’s Theorem,

we get for every λ ≥ 0, ψ−(λ) ≤ ψ(λ) ≤ ψ+(λ), where

ψ−(λ) = λψ′(0) + σ2λ2 and ψ+(λ) = λψ′(0) + (σ2 + c/2)λ2.

We first consider the case ν(0,∞) < ∞, so that ∆ has a finite number of jumps on
each compact interval a.s., and we also introduce the CSBP’s with catastrophes Y − and
Y + which have the same catastrophes ∆ as Y , but with the characteristics (g, σ2, 0)

and (g, σ2 + c/2, 0), respectively. We denote u−,t and u+,t for their respective Laplace
exponent, in other words for all (λ, t) ∈ R2

+,

E
[

exp{−λY −t }
]

= exp{−u−,t(λ)}, E
[

exp{−λY +
t }
]

= exp{−u+,t(λ)}.

Thus conditionally on ∆, for every time t such that ∆t = ∆t−, we deduce, thanks to
Theorem 1, the following identities

u′−,t(λ) = −ψ−(u−,t), u′+,t(λ) = −ψ+(u+,t), u′t(λ) = −ψ(ut).

Moreover for every t such that θt = exp{∆t −∆t−}6= 1,

u−,t(λ)

u−,t−(λ)
=

ut(λ)

ut−(λ)
=

u+,t(λ)

u+,t−(λ)
= θt,

and u−,0(λ) = u0(λ) = u+,0(λ) = λ. So for all t, λ, we have

u+,t(λ) ≤ u(t, λ) ≤ u−,t(λ).

The extension of the above inequality to the case ν(0,∞) ∈ [0,∞] can be achieved by
successive approximations. We defer the technical details to Section 6.6.
Having into account that the above inequality holds in general, we deduce, taking λ→
∞, that

P(Y +
t > 0) ≤ P(Yt > 0) ≤ P(Y −t > 0).

The result then follows from the asymptotic behavior of P(Y −t > 0) and P(Y +
t > 0),

which are inherited from Proposition 5.

4 Local limit theorem for some functionals of Lévy processes

We proved in Proposition 4 that the probability that a stable CSBP with catastrophes
becomes extinct at time t equals the expectation of a functional of a Lévy process. We
now prove the key result of the paper. It deals with the asymptotic behavior of the mean
of some Lévy functionals.
More precisely, we are interested in the asymptotic behavior at infinity of

aF (t) := E

[
F

(∫ t

0

exp{−βKs}ds
)]

,

where K is a Lévy process with bounded variation paths and F belongs to a particular
class of functions on R+. We will focus on functions which decrease polynomially at
infinity (with exponent −1/β). The motivations come from the previous section. In
particular, the Proposition 5 is a direct application of Theorem 7.

Thus, we consider a Lévy process K = (Kt, t ≥ 0) of the form

Kt = γt+ σ
(+)
t − σ(−)

t , t ≥ 0, (4.1)
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where γ is a real constant, σ(+) and σ(−) are two independent pure jump subordinators.
We denote by Π, Π(+) and Π(−) the associated Lévy measures of K, σ(+) and σ(−),
respectively. We also define the Laplace exponents of K, σ(+) and σ(−) by

φK(λ) = logE
[
eλK1

]
, φ+

K(λ) = logE
[
eλσ

(+)
1

]
and φ−K(λ) = logE

[
e−λσ

(−)
1

]
, (4.2)

and assume that

θmax = sup

{
λ ∈ R+,

∫
[1,∞)

eλxΠ(+)(dx) <∞

}
> 0. (4.3)

From the Lévy-Khintchine formula, we deduce

φK(λ) = γλ+

∫
(0,∞)

(
eλx − 1

)
Π(+)(dx) +

∫
(0,∞)

(
e−λx − 1

)
Π(−)(dx).

Finally, we assume that E[K2
1 ] <∞, which is equivalent to∫

(−∞,∞)

x2Π(dx) <∞. (4.4)

Theorem 7. Assume that (4.1), (4.3) and (4.4) hold. Let β ∈ (0, 1] and F be a positive
non increasing function such that for x ≥ 0

F (x) = CF (x+ 1)−1/β
[
1 + (1 + x)−ςh(x)

]
, (4.5)

where ς ≥ 1, CF is a positive constant, and h is a Lipschitz function which is bounded.

a/ If φ′K(0) < 0

(i) If θmax > 1 and φ′K(1) < 0, there exists a positive constant c1 such that

aF (t) ∼ c1etφK(1), as t→∞.

(ii) If θmax > 1 and φ′K(1) = 0, there exists a positive constant c2 such that

aF (t) ∼ c2t−1/2etφK(1), as t→∞.

(iii) If θmax > β + 1 and φ′K(1) > 0, there exists a positive constant c3 such that

aF (t) ∼ c3t−3/2etφK(τ), as t→∞,

where τ is the root of φ′K on ]0, 1[.

b/ If θmax > β and φ′K(0) = 0, there exists a positive constant c4 such that

aF (t) ∼ c4t−1/2, as t→∞.

This result generalizes Lemma 4.7 in Carmona et al. [11] in the case when the
process K has bounded variation paths. More precisely, the authors in [11] only provide
a precise asymptotic behavior in the case when φ′K(1) < 0.

The assumption on the behavior of F as x → ∞ is finely used to get the asymptotic
behavior of aF (t). Lemma 10 gives the properties of F which are required in the proof.

The strongly subcritical case (case (i)) is proved using a continuous time change
of measure (see Section 4.4). For the remaining cases, we divide the proof in three
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steps. The first one (see Lemma 8) consists in discretizing the exponential functional∫ t
0

exp(−βKs)ds using the random variables

Ap,q =

p∑
i=0

exp{−βKi/q} =

p∑
i=0

i−1∏
j=0

exp
{
− β

(
K(j+1)/q −Kj/q

)}
((p, q) ∈ N×N∗). (4.6)

Secondly (see Lemmas 11, 12 and 13), we study the asymptotic behavior of the dis-
cretized expectation

Fp,q := E
[
F
(
Ap,q/q

)]
(q ∈ N∗), (4.7)

when p goes to infinity. This step relies on Theorem 2.1 in [21], which is a limit theorem
for random walks on an affine group and generalizes theorems A and B in [34].
Finally (see Sections 4.3 and 4.4), we prove that the limit of Fbqtc,q, when q → ∞, and
aF (t) both have the same asymptotic behavior when t goes to infinity.

4.1 Discretization of the Lévy process

The following result, which follows from the property of independent and stationary
increments of the process K, allows us to concentrate on Ap,q, which has been defined
in (4.6).

Lemma 8. Let t ≥ 1 and q ∈ N∗. Then

1

q
e
−β(|γ|/q+σ(+)

1/q
)
A

(1)
bqtc−1,q ≤

∫ t

0

e−βKsds ≤ 1

q
e
β(|γ|/q+σ(−)

1/q
)
A

(2)
bqtc,q,

where for every (p, q) ∈ N×N∗, σ(+)
1/q (resp σ(−)

1/q ) is independent of A(1)
p,q (resp A(2)

p,q) and

Ap,q
(d)
= A(1)

p,q

(d)
= A(2)

p,q.

Proof. Let (p, q) be in N×N∗ and s ∈ [p/q, (p+ 1)/q]. Then

Ks ≤ Kp/q + |γ|/q + [σ
(+)
(p+1)/q − σ

(+)
p/q ] and Ks ≥ Kp/q − |γ|/q − [σ

(−)
(p+1)/q − σ

(−)
p/q ]. (4.8)

Now introduce

K
(1)
p/q = Kp/q + [σ

(+)
(p+1)/q − σ

(+)
p/q ]− σ(+)

1/q = γp/q + [σ
(+)
(p+1)/q − σ

(+)
1/q ]− σ(−)

p/q ,

and

K
(2)
p/q = Kp/q − [σ

(−)
(p+1)/q − σ

(−)
p/q ] + σ

(−)
1/q = γp/q + σ

(+)
p/q − [σ

(−)
(p+1)/q − σ

(−)
1/q ].

Then, we have for all (p, q) ∈ N×N∗

(K0,K1/q, ...,Kp/q)
(d)
= (K

(1)
0 ,K

(1)
1/q, ...,K

(1)
p/q)

(d)
= (K

(2)
0 ,K

(2)
1/q, ...,K

(2)
p/q).

Moreover, the random vector (K
(1)
0 ,K

(1)
1/q, ...,K

(1)
p/q) is independent of σ(+)

1/q and (K
(2)
0 ,K

(2)
1/q, ...,K

(2)
p/q)

is independent of σ(−)
1/q . Finally, the definition of

A(i)
p,q =

p∑
i=0

exp{−βK(i)
i/q}

for i ∈ {1, 2} and the inequalities in (4.8) complete the proof.
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4.2 Asymptotical behavior of the discretized process

First, we recall Theorem 2.1 of [21] in the case where the test functions do not van-
ish. This is the key result to obtain the asymptotic behavior of the discretized process.

Theorem 9 (Giuvarc’h, Liu 01). Let (an, bn)n≥0 be a (R∗+)2-valued sequence of iid ran-
dom variables such that E[log(a0)] = 0. Assume that b0/(1 − a0) is not constant a.s.
and define A0 = 1, An =

∏n−1
k=0 ak and Bn =

∑n−1
k=0 Akbk, for n ≥ 1. Let η, κ, ξ be three

positive numbers such that κ < ξ, and φ̃ and ψ̃ be two positive continuous functions on
R+ such that they do not vanish and for a constant C > 0 and for every a > 0, b ≥ 0,
b′ ≥ 0, we have

φ̃(a) ≤ Caκ, ψ̃(b) ≤ C

(1 + b)ξ
, and |ψ̃(b)− ψ̃(b′)| ≤ C|b− b′|η.

Moreover, assume that

E
[
aκ0
]
<∞, E

[
a−η0

]
<∞, E

[
bη0
]
<∞ and E

[
a−η0 b−η0

]
<∞.

Then there exist two positive constants c(φ̃, ψ̃) and c(ψ̃) such that

lim
n→∞

n3/2E
[
φ̃(An)ψ̃(Bn)

]
= c(φ̃, ψ̃) and lim

n→∞
n1/2E

[
ψ̃(Bn)

]
= c(ψ̃).

Let us now state a technical lemma on the tail of function F , useful to get the asymp-
totical behaviour of the disretized process. Its proof is deferred to Section 6.5 for the
convenience of the reader.

Lemma 10. Assume that F satisfies (4.5). Then there exist two positive finite constants
η and M such that for all (x, y) in R2

+ and ε in [0, η],∣∣∣F (x)− CFx−1/β
∣∣∣ ≤ Mx−(1+ε)/β , (4.9)∣∣∣F (x)− F (y)
∣∣∣ ≤ M

∣∣∣x−1/β − y−1/β
∣∣∣. (4.10)

Recall the definitions of Ap,q and Fp,q in (4.6) and (4.7), respectively. The three fol-
lowing lemmas study the asymptotic behavior of Fp,q and the mean value of (Ap,q/q)

−1/β

in the regimes of (ii), (iii) and b/.

Lemma 11. Assume that |φ′K(0+)| < ∞, θmax > 1 and φ′K(1) = 0. Then there exists a
positive and finite constant c2(q) such that,

Fp,q∼CF c2(q)(p/q)−1/2e(p/q)φK(1), as p→∞, (4.11)

and
E
[
(Ap,q/q)

−1/β
]
∼c2(q)(p/q)−1/2e(p/q)φK(1), as p→∞. (4.12)

Proof. Let us introduce the exponential change of measure known as the Escheer trans-
form

dP(λ)

dP

∣∣∣∣
Ft

= eλKt−φK(λ)t for λ ∈ [0, θmax), (4.13)

where (Ft)t≥0 is the natural filtration generated by K which is naturally completed.
The following equality in law

Ap,q = e−βKp/q
( p∑
i=0

eβ(Kp/q−Ki/q)
)

(d)
= e−βKp/q

( p∑
i=0

eβKi/q
)
,
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leads to e−(p/q)φK(1)E
[
A
−1/β
p,q

]
= E(1)

[
Ã
−1/β
p,q

]
, where Ãp,q =

∑p
i=0e

βKi/q . Let ε > 0 be

such that (4.9) holds and observe that Ãp,q ≥ 1 a.s. for every (p, q) in N×N∗. Thus,

E(1)
[
Ã−(1+ε)/β
p,q

]
≤ E(1)

[
Ã−1/β
p,q

]
≤ E(1)

[
inf

i∈[0,p]∩N
e−Ki/q

]
.

Since φ′K(1) = 0 and E[K2
1/q] <∞, Theorem A in [26] implies

E(1)

[
inf

i∈[0,p]∩N
e−Ki/q

]
∼ Ĉq(p/q)−1/2, as p→∞,

where Ĉq is a finite positive constant. We define for z ≥ 1,

Dq(z, p) = (p/q)1/2E(1)
[
Ã−z/βp,q

]
.

Moreover, we note that there exists p0 ∈ N such that for p ≥ p0, Dq(1, p) ≤ 2Ĉq.
Our aim is to prove that Dq(1, p) converges, as p increases, to a finite positive con-

stant d2(q). Then, we introduce an arbitrary x ∈ (0, (CF /M)1/εq−1/β) and apply Theorem
9 with

ψ̃(z) = F (z), φ̃(z) = z1/(2β), (η, κ, ξ) = (1, 1/(2β), 1/β).

Observe that F is a Lipschitz function and that under the probability measure P(1),
(an, bn)n≥0 = (exp(β(K(n+1)/q −Kn/q)), x

−βq−1)n≥0 is an i.i.d. sequence of random vari-
ables with E(1)[log(a0)] = 0, since φ′K(1) = 0. Moreover, a simple computation gives

E(1)[a−1
0 ] = e(φK(1−β)−φK(1))/q <∞,

so that the moment conditions of Theorem 9 are satisfied. We apply the result with

Bn = q−1x−β
n−1∑
i=0

eβKi/q , n ∈ N∗

and we get the existence of a positive finite real number b(q, x) such that

(p/q)1/2E(1)
[
F
(
x−βÃp,q/q

)]
→ b(q, x), as p→∞.

Taking expectation in (4.9) yields∣∣∣(p/q)1/2E(1)
[
F
(
x−βÃp,q/q

)]
− CFxq1/βDq(1, p)

∣∣∣ ≤Mx1+εq(1+ε)/βDq(1 + ε, p). (4.14)

Defining Dq := lim infp→∞Dq(1, p) and Dq := lim supp→∞Dq(1, p), we combine the two
last dispalys to get

CFxq
1/βDq ≤ b(q, x) +Mx1+εq(1+ε)/β lim sup

p→∞
Dq(1 + ε, p),

and
CFxq

1/βDq ≥ b(q, x)−Mx1+εq(1+ε)/β lim sup
p→∞

Dq(1 + ε, p).

Adding that Dq(z, p) is non-increasing with respect to z, Dq(1 + ε, p) ≤ Dq(1, p) ≤ 2Ĉq
for every p ≥ p0 and

Dq −Dq ≤
4MĈqx

εqε/β

CF
.
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Finally, letting x→ 0, we get thatDq(1, p) converges to a finite constant d2(q). Moreover,
from (4.14), we get for every integer p:

(CFxq
1/β +Mx1+εq(1+ε)/β)Dq(1, p) ≥ (p/q)1/2E(1)

[
F
(
x−βÃp,q/q

)]
.

Letting p→∞, we get that d2(q) is positive, which gives (4.12).
Now, using (4.9), we get

E

∣∣∣Fp,q − CF (Ap,q/q)
−1/β

∣∣∣ ≤ E [(Ap,q/q)−(1+ε)/β
]
,

so the asymptotic behavior in (4.11) will be proved as soon as we show that

E
[
A−(1+ε)/β
p,q

]
= o

(
E
[
A−1/β
p,q

])
, as p→∞.

From the Escheer transform (4.13), with λ = 1 + ε, and the independence of the
increments of K, we have

E
[
A−(1+ε)/β
p,q

]
= e(p/q)φK(1)E(1)

[( p∑
i=0

e−βKi/q
)−ε/β( p∑

i=0

eβ(Kp/q−Ki/q)
)−1/β]

≤ e(p/q)φK(1)E(1)
[

inf
0≤i≤bp/3c

eεKi/q inf
b2p/3c≤j≤p

e−(Kp/q−Kj/q)
]

= e(p/q)φK(1)E(1)
[

inf
0≤i≤bp/3c

eεKi/q
]
E(1)

[
inf

0≤j≤bp/3c
e−Kj/q

]
.

Using (4.4), we observe that E(1)[K1/q] = 0 and E(1)[K2
1/q] < ∞. We can then apply

Theorem A in [26] to the random walks (−Ki/q)i≥1 and (εKi/q)i≥1. Therefore, there
exists C(q) > 0 such that

E
[
A−(1+ε)/β
p,q

]
≤ (C(q)/p)e(p/q)φK(1) = o

(
E
[
A−1/β
p,q

])
, as p→∞.

Taking c2(q) = d2(q)q1/β leads to the result.

Remark 2. In the particular case when β = 1, it is enough to apply Theorem 1.2 in [18]
to a geometric BPRE (Xn, n ≥ 0) whose p.g.f’s satisfy

fn(s) =

∞∑
k=0

pnq
k
ns
k =

pn
1− qns

,

with 1/pn = 1 + exp
{
β
(
K(n+1)/q −Kn/q

)}
, and qn = 1− pn. Using E[A−1

p,q] = P(Xp > 0)

and log f ′0(1) = K1/q, allows to get the asymptotic behavior of E[A−1
p,q] from the speed of

extinction of BPRE in the case of geometric reproduction law (with the extra assumption
φK(2) <∞).

Recall that τ is the root of φ′K on ]0, 1[, i.e. φK(τ) = min0<s<1φK(s).

Lemma 12. Assume that φ′K(0) < 0, φ′K(1) > 0 and θmax > β + 1. Then there exist two
positive constants d(q) and c3(q) such that

Fp,q ∼ c3(q)(p/q)−3/2e(p/q)φK(τ), as p→∞, (4.15)

and

E
[
(Ap,q/q)

−1/β
]
∼ d(q)(p/q)−3/2e(p/q)φK(τ), as p→∞. (4.16)
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Proof. First we apply Theorem 9 where, for z ≥ 0,

ψ̃(z) = F (z), φ̃(z) = zτ/β , (η, κ, ξ) = (1, τ/β, 1/β).

Again F is a Lipschitz function, and under the probability measure P(τ), (an, bn)n≥0 =

(exp(−β(K(n+1)/q −Kn/q)), q
−1)n≥0, is an i.i.d. sequence of random variables such that

E(τ)[log(a0)] = 0, since φ′K(τ) = 0. The moment conditions

E(τ)
[
a
τ/β
0

]
= e−φK(τ)/q <∞ and E(τ)

[
a−1

0

]
= e(φK(β+τ)−φK(τ))/q <∞,

enable us to apply Theorem 9. In this case,

Bn = q−1
n−1∑
i=0

e−βKi/q , n ∈ N∗.

Then there exists c3(q) > 0 such that

E [F (Ap,q/q)] e
−(p/q)φK(τ) = E(τ)

[
F (Ap,q/q)e

−τKp/q
]
∼ c3(q)(p/q)−3/2,

as p→∞. This gives (4.15).
To prove

E
[
(Ap,q/q)

−1/β
]
∼ d(q)(p/q)−3/2e

p
q φK(τ), as p→∞

for d(q) > 0, we follow the same arguments as those used in the proof of Lemma 11. In
other words, we define for z ≥ 1,

Dq(z, p) = (p/q)3/2e−(p/q)φK(τ)E
[
A−z/βp,q

]
,

which is non-increasing with respect to z. We obtain the same type of inequalities as in
Lemma 11, for the random variable A instead of Ã.

Again we take ε > 0 such that (4.9) holds. Then Lemma 7 in [22] yields the existence
of Cq > 0 such that for p large enough,

E
[
A−(1+ε)/β
p,q

]
≤ E

[
A−1/β
p,q

]
≤ E

[
inf

i∈[0,p]∩N
e−Ki/q

]
∼ Cq(p/q)−3/2e(p/q)φK(τ).

Finally, we use Theorem 9 to get 0 < lim infn→∞Dq(1, n) = lim supn→∞Dq(1, n) < ∞,
which completes the proof.

Lemma 13. Assume that φ′K(0) = 0 and θmax > β. Then there exist two positive
constants b(q) and c4(q) such that

Fp,q ∼ c4(q)(p/q)−1/2, as p→∞, (4.17)

and
E
[
(Ap,q/q)

−1/β
]
∼ b(q)(p/q)−1/2, as p→∞. (4.18)

Proof. The proof is almost the same as the proof of Lemma 12. We first apply Theorem
9 to the same function ψ̃ and sequence (an, bn)n≥0 defined in Lemma 12 but under the
probability measure P instead of P(τ). Then, we get

E
[
F (Ap,q/q)

]
∼ c4(q)(p/q)−1/2, as p→∞.

Now, we define for z ≥ 1,

Dq(z, p) = (p/q)1/2E
[
A−z/βp,q

]
,

and from Theorem A in [26] and Theorem 9, we obtain that Dq(1, p) has a positive finite
limit when p goes to infinity.
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4.3 From the discretized process to the continuous process

Up to now, the asymptotic behavior of the processes was depending on the step size
1/q. By letting q tend to infinity, we obtain our results in continuous time. To do this we
shall use several times a technical Lemma on limits of sequences.

Lemma 14. Assume that the non-negative sequences (an,q)(n,q)∈N2 , (a′n,q)(n,q)∈N2 and
(bn)n∈N satisfy for every (n, q) ∈ N2:

an,q ≤ bn ≤ a′n,q,

and that there exist three sequences (a(q))q∈N, (c−(q))q∈N and (c+(q)q∈N such that

lim
n→∞

an,q = c−(q)a(q), lim
n→∞

a′n,q = c+(q)a(q), and lim
q→∞

c−(q) = lim
q→∞

c+(q) = 1.

Then there exists a non-negative constant a such that

lim
q→∞

a(q) = lim
n→∞

bn = a.

Proof. From our assumptions, it is clear that for every q ∈ N

lim sup
n→∞

bn ≤ c+(q)a(q) and c−(q)a(q) ≤ lim inf
n→∞

bn.

Then letting q go to infinity, we obtain

lim sup
n→∞

bn ≤ lim inf
q→∞

a(q) and lim sup
q→∞

a(q) ≤ lim inf
n→∞

bn,

which ends the proof.

Recalling the notations (4.11) to (4.18), we prove the following limits :

Lemma 15. There exist five finite positive constants b, d, c2, c3 and c4 such that

(b(q), d(q), c2(q), c3(q), c4(q)) −→ (b, d, c2, c3, c4), as q →∞. (4.19)

Proof. First we prove the convergence of d(q). From Lemma 8, we know that for every
n ∈ N∗

e
φ
−
K

(1)−|γ|
q E

[(
Anq,q/q

)−1/β]
≤ E

[( ∫ n

0

e−βKudu
)−1/β]

≤ e
φ
+
K

(1)+|γ|
q E

[(
Anq−1,q/q

)−1/β]
.

(4.20)
A direct application of Lemma 14 with

a(q) = d(q), c−(q) = e(φ−K(1)−|γ|)/q, and c+(q) = e(φ+
K(1)+|γ|)/q,

yields that d(q) converges as q → ∞ to a finite non-negative constant d. Let us now
prove that d is positive. Let (q1, q2) be in N2. According to (4.16) and (4.20) there exists
n ∈ N such that

0 < e
φ
−
K

(1)−|γ|
q1 d(q1)/2 ≤ n3/2e−nφK(τ)E

[( ∫ n

0

e−βKudu
)−1/β]

≤ 2e
φ
+
K

(1)+|γ|−φK (τ)

q2 d(q2).

Letting q2 go to infinity, we conclude that lim infq→∞ d(q) > 0. Similar arguments imply
the convergence of b(q) to a positive constant.

Now, we prove the convergence of c2(q), c3(q) and c4(q). Again the proofs of the
three cases are very similar, so we only prove the second one. From Lemmas 8 and 12,
we know that for every (n, q) ∈ N2,

E
[
F
(
e
β(|γ|/q+σ(−)

1/q
)
Anq,q/q

)]
≤ aF (n) ≤ E

[
F
(
e
−β(|γ|/q+σ(+)

1/q
)
Anq−1,q/q

)]
.
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Using (4.10), we obtain

Fnq,q +ME
[
e
−|γ|/q−σ(−)

1/q − 1
]
E

[(Anq,q
q

)− 1
β

]
≤ aF (n) ≤

Fnq−1,q +ME
[
e
|γ|/q+σ(+)

1/q − 1
]
E

[(Anq−1,q

q

)− 1
β

]
.

Thus, dividing by n−3/2 exp(nφK(τ)) in the above inequality, we get the convergence
using Lemmas 12, 14 and Equation (4.10) with

a(q) = c3(q), c−(q) = 1−Md(q)(e(φ−K(1)−|γ|)/q − 1)

c3(q)
c+(q) = 1+

Md(q)(e(φ+
K(1)+|γ|)/q − 1)

c3(q)
.

We then prove that limq→∞ c3(q) is positive using similar arguments as previously.

4.4 Proof of Theorem 7

Proof of Theorem 7 a/ (i). Recall from Lemma II.2 in [6] that the process (Kt−K(t−s)− , 0 ≤
s ≤ t) has the same law as (Ks, 0 ≤ s ≤ t). Then∫ t

0

e−βKsds =

∫ t

0

e−βK(t−s)ds = e−βKt
∫ t

0

eβKt−βK(t−s)ds
(d)
= e−βKt

∫ t

0

eβKsds.

We first note that for every q ∈ N∗ and t ≥ 2/q, Lemma 8 leads to

E

[(∫ t

0

e−βKsds

)−1/β
]
≤ E

(∫ 2/q

0

e−βKsds

)−1/β


≤ q1/βe|γ|/qE
(
e
σ
(+)

1/q (A
(1)
1,q)
−1/β

)
≤ q1/β exp

(φK(1) + |γ|+ φ+
K(1)

q

)
<∞,

where φ+
K was defined in (4.2). Hence using (4.13), with λ = 1, we have

E

[(∫ t

0

e−βKsds

)−1/β
]

= E

[
eKt

(∫ t

0

eβKsds

)−1/β
]

= etφK(1)E(1)

[(∫ t

0

eβKsds

)−1/β
]
.

The above identity implies that the decreasing function t 7→ E(1)[(
∫ t

0
eβKsds)−1/β ] is

finite for all t > 0. So it converges to a non-negative and finite limit c1, as t increases.
This limit is positive, since under the probability P(1), K is still a Lévy process with
negative mean E(1)(K1) = φ′K(1) and according to Theorem 1 in [7], we have∫ ∞

0

eβKsds <∞, P(1)-a.s.

Hence, we only need to prove

aF (t) ∼ CFE
[( ∫ t

0

e−βKsds
)−1/β]

, as t→∞. (4.21)

Recall that θmax > 1 and φ′K(1) < 0. So we can choose ε > 0 such that (4.9) holds,
1 + ε < θmax, φK(1 + ε) < φK(1) and φ′K(1 + ε) < 0. Therefore∣∣∣∣∣F

(∫ t

0

e−βKsds

)
− CF

(∫ t

0

e−βKsds

)−1/β
∣∣∣∣∣ ≤M

(∫ t

0

e−βKsds

)−(1+ε)/β

.
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In other words, it is enough to show

E

[(∫ t

0

e−βKsds

)−(1+ε)/β
]

= o(etφK(1)), as t→∞.

From the Escheer transform (4.13), with λ = 1 + ε, we deduce

E

[(∫ t

0

e−βKsds

)−(1+ε)/β
]

= E

[
e(1+ε)Kt

(∫ t

0

eβKsds

)−(1+ε)/β
]

= etφK(1+ε)E(1+ε)

[(∫ t

0

eβKsds

)−(1+ε)/β
]
.

Again from Lemma 8, we obtain for t ≥ q/2,

E

(∫ t

0

e−βKsds

)− 1+ε
β

 ≤ q(1+ε)/β exp
(φK(1 + ε) + |γ|(1 + ε) + φ+

K(1 + ε)

q

)
<∞,

implying that the decreasing function t 7→ E(1+ε)[(
∫ t

0
exp(βKs)ds)

−(1+ε)/β ] is finite for
all t > 0. This completes the proof.

Remark 3. In the particular case when β = 1, it is enough to apply Theorem 1.1 in [18]
to the geometric BPRE (Xn, n ≥ 0) defined in Remark 2 to get the result.

Proof of Theorem 7 a/ (ii), (iii), and b/. The proofs are very similar for the three regimes,
for this reason we only focus on the proof of the regime in a/(iii).

Let ε > 0. Thanks to Lemma 15, we can choose q ∈ N∗ such that q ≥ 1/ε and
(1− ε)c3 ≤ c3(q) ≤ (1 + ε)c3. Then for every t ≥ 1, the monotonicty of F yields

E
[
F (Cbqtc,qe

β|γ|/q/q)
]
≤ aF (t) ≤ E

[
F (Dbqtc−1,qe

−β|γ|/q/q)
]
.

Applying (4.10), we obtain :∣∣∣E[F (Cbqtc,qe
β|γ|/q/q)

]
− Fbqtc,q

∣∣∣ ≤ (1− e−ε(|γ|−φ
−
K(1)))ME

[
(Abqtc,q/q)

−1/β
]
,∣∣∣E[F (Dbqtc−1,qe

−β|γ|/q/q)
]
− Fbqt−1c,q

∣∣∣ ≤ (eε(|γ|+φ
+
K(1)) − 1)ME

[
(Abqtc−1,q/q)

−1/β
]
.

Taking t to infinity, it is clear from Lemma 12 that both terms are bounded by

l(ε)t−3/2etφK(τ) =
[
2Md(eε(|γ|+φ

+
K(1)) − e−ε(|γ|−φ

−
K(1)))e−εφK(τ)

]
t−3/2etφK(τ) (4.22)

where φ−K and φ+
K are defined in (4.2), and l(ε) goes to 0 when ε decreases. On the other

hand, for t large enough

(1− 2ε)c3t
−3/2etφK(τ) ≤ Fbqtc,q ≤ aF (t) ≤ Fbqtc−1,q ≤ (1 + 2ε)c3t

−3/2etφK(τ),

which completes the proof of Theorem 7.

5 Application to a cell division model

When the reproduction law has a finite second moment, the scaling limit of the
GW process is a Feller diffusion with growth g and diffusion part σ2. That is to say,
the stable case with β = 1 and additional drift term g. Such a process is also the
scaling limit of birth and death processes. It gives a natural model for populations
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which die and multiply fast, randomly, without interaction. Such a model is considered
in [5] for parasites growing in dividing cells. The cell divides at constant rate r and
a random fraction Θ ∈ (0, 1) of parasites enters the first daughter cell, whereas the
remainder enters the second daughter cell. Following the infection in a cell line, the
parasites grow as a Feller diffusion process and undergo a catastrophe when the cell
divides. We denote by Nt and N∗t the numbers of cells and infected cells at time t,
respectively. We say that the cell population recovers when the asymptotic proportion
of contaminated cells vanishes. If there is one infected cell at time 0, E[Nt] = ert and
E[N∗t ] = ertP(Yt > 0), where

Yt =1 +

∫ t

0

gYsds+

∫ t

0

√
2σ2YsdBs +

∫ t

0

∫ 1

0

(θ − 1)Ys−ρ(ds, dθ). (5.1)

Here B is a Brownian motion and ρ(ds, dθ) a Poisson random measure with intensity
2rdsP(Θ ∈ dθ). Note that the intensity of ρ is twice the cell division rate. This bias
follows from the fact that if we pick an individual at random at time t, we are more
likely to choose a lineage in which many division events have occurred. Hence the
ancestral lineages from typical individuals at time t have a division rate 2r.

Corollary 2 and Proposition 5 with β = 1, ψ(λ) = −gλ+σ2λ and ν(dx) = 2rP(Θ ∈ dx)

imply the following result.

Corollary 16. a/ We assume that g < 2rE [log(1/Θ)]. Then there exist positive con-
stants c1, c2, c3 such that

(i) If g < 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c1egt, as t→∞.

(ii) If g = 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c2t−1/2egt, as t→∞.

(iii) If g > 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c3t−3/2eαt, as t→∞.

where α = minλ∈[0,1]{gλ+ 2r(E[Θλ]− 1/2)} < g.

b/ We now assume g = 2rE [log(1/Θ)], then there exists c4 > 0 such that,

E [N∗t ] ∼ c4t−1/2ert, as t→∞.

c/ Finally, if g > 2rE [log(1/Θ)], then there exists 0 < c5 < 1 such that,

E [N∗t ] ∼ c5ert, as t→∞.

Hence if g > 2rE [log(1/Θ)] (supercritical case c/), the mean number of infected cells
is equivalent to the mean number of cells. In the critical case (b/), there are somewhat
fewer infected cells, owing to the additional square root term. In the strongly subcritical
regime (a/ (i)), the mean number of infected cells is of the same order as the number of
parasites. This suggests that parasites do not accumulate in some infected cells. The
asymptotic behavior in the two remaining cases is more complex.

We stress the fact that fixing the growth rate g of parasites and the cell division rate
r, but making the law of the repartition Θ vary, it changes the asymptotic behavior of
the number of infected cells. For example, if we focus on random variables Θ satisfying
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P(Θ = θ) = P(Θ = 1 − θ) = 1/2 for a given θ ∈]0, 1/2[, the different regimes can be
described easily (see Figure 1).

If g/r > log 2, the cell population either recovers or not, depending on the asymme-
try of the parasite sharing. If g/r ≤ log 2/2, the cell population recovers but the speed
of recovery increases with respect to the asymmetry of the parasite sharing, as soon as
the weakly subcritical regime is reached. Such phenomena were known in the discrete
time, discrete space framework (see [2]), but the boundaries between the regimes are
not the same, due to the bias in division rate in the continuous setting. Moreover, we
note that if g/r ∈ (log 2/2, log 2), then parasites are in the weakly subcritical regime
whatever the distribution of Θ on ]0, 1[. This phenomenon also only occurs in the con-
tinuous setting.

Figure 1: Extinction regimes in the case P(Θ = θ) = P(Θ = 1 − θ) = 1/2. Boundaries
between the different regimes are given by g/r = − log(θ(1 − θ)) (supercritical and
subcritical) and g/r = −θ log θ − (1− θ) log(1− θ) (strongly and weakly subcritical).

6 Auxiliary results

This section is devoted to the technical results which are necessary for the previous
proofs.

6.1 Existence and uniqueness of the backward ordinary differential equation

The Laplace exponent of Z̃ in Theorem 1 is the solution of a backward ODE. The
existence and uniqueness of this latter are stated and proved below.

Proposition 17. Let δ be in BV(R+). Then the backward ordinary differential equation
(2.5) admits a unique solution.

The proof relies on a classical approximation of the solution of (2.5) and the Cauchy-
Lipschitz Theorem. When there is no accumulation of jumps, the latter provides the
existence and uniqueness of the solution between two successive jump times of δ. The
problem remains on the times where accumulation of jumps occurs. Let us define the
family of functions δn by deleting the small jumps of δ,

δnt = δt −
∑
s≤t

(
δs − δs−

)
1{|δs−δs−|<1/n}.
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We note that ψ0 is continuous, and s 7→ egs+δ
n
s is piecewise C1 on R+ with a finite

number of discontinuities. From the Cauchy-Lipschitz Theorem, for every n ∈ N∗ we
can define a solution vnt (., λ, δ) continuous with càdlàg first derivative of the backward
differential equation:

∂

∂s
vnt (s, λ, δ) = egs+δ

n
s ψ0

(
e−gs−δ

n
s vnt (s, λ, δ)

)
, 0 ≤ s ≤ t, vnt (t, λ, δ) = λ.

We want to show that the sequence (vnt (., λ, δ))n≥1 converges to a function vt(., λ, δ)

which is solution of (2.5). This follows from the next result. We fix t > 0 and define

S := sup
s∈[0,t],n∈N∗

{
egs+δ

n
s , e−gs−δ

n
s

}
. (6.1)

Lemma 18. For every λ > 0, there exists a positive finite constant C such that for all
0 ≤ η ≤ κ ≤ λS,

0 ≤ ψ0(κ)− ψ0(η) ≤ C(κ− η). (6.2)

Proof. First, we observe that S is finite and that for all 0 ≤ η < κ ≤ λS, we have
0 ≤ e−κx − e−ηx + (κ − η)x ≤ (κ − η)x for x ≥ 0 since x 7→ e−x + x is increasing and
e−κx ≤ e−ηx. Moreover

0 ≤ e−x − 1 + x ≤ x ∧ x2, (6.3)

and combining these inequalities yields

ψ0(κ)− ψ0(η)

= σ2(κ2 − η2) +

∫ ∞
1

(
e−κx − e−ηx + (κ− η)x

)
µ(dx)

+ (κ− η)

∫ 1

0

x(1− e−ηx)µ(dx) +

∫ 1

0

(
e−(κ−η)x − 1 + (κ− η)x

)
e−ηxµ(dx)

≤ σ2(κ2 − η2) + (κ− η)

∫ ∞
1

xµ(dx) + (κ− η)η

∫ 1

0

x2µ(dx) + (κ− η)2

∫ 1

0

x2µ(dx)

≤
[
2λSσ2 +

∫ ∞
1

xµ(dx) + λS

∫ 1

0

x2µ(dx)
]
(κ− η),

which proves Lemma 18.

Next, we prove the existence and uniqueness result.

Proof of Proposition 17. We now prove that (vnt (s, λ, δ), s ∈ [0, t])n≥0 is a Cauchy se-
quence. For simplicity, we denote vn(s) = vnt (s, λ, δ), and for all v ≥ 0:

ψn(s, v) = egs+δ
n
s ψ0

(
e−gs−δ

n
s v
)

and ψ∞(s, v) = egs+δsψ0

(
e−gs−δsv

)
.

We have for any 0 ≤ s ≤ t and m,n ≥ 1:

|vn(s)− vm(s)| =
∣∣∣ ∫ t

s

ψn(u, vn(u))du−
∫ t

s

ψm(u, vm(u))du
∣∣∣ (6.4)

≤
∫ t

s

(Rn(u) +Rm(u))du+

∫ t

s

∣∣∣ψ∞(u, vn(u))− ψ∞(u, vm(u))
∣∣∣du,

where for any u ∈ [0, t],

Rn(u) :=
∣∣∣ψn(u, vn(u))− ψ∞(u, vn(u))

∣∣∣
≤ egu+δnu

∣∣∣ψ0

(
e−gu−δ

n
uvn(u)

)
− ψ0

(
e−gu−δuvn(u)

)∣∣∣+ eguψ0

(
e−gu−δuvn(u)

)∣∣∣eδnu − eδu∣∣∣.
EJP 18 (2013), paper 106.

Page 24/31
ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2774
http://ejp.ejpecp.org/


CSBP with catastrophes

Moreover, from (6.1) to (6.2), we obtain

Rn(u) ≤ SCλ
∣∣∣e−δnu − e−δu ∣∣∣+ e|g|tψ0(λS)

∣∣∣eδnu − eδu ∣∣∣
≤

(
SCλ+ e|g|tψ0(λS)

)
sup
u∈[0,t]

{∣∣∣e−δnu − e−δu ∣∣∣, ∣∣∣eδnu − eδu ∣∣∣} := sn.

Using similar arguments as above, we get from (6.2),∣∣∣ψ∞(u, vn(u))− ψ∞(u, vm(u))
∣∣∣ ≤ CS2

∣∣∣vn(u)− vm(u)
∣∣∣.

From (6.4), we use Gronwall’s Lemma (see e.g. Lemma 3.2 in [14]) with

Rm,n(s) =

∫ t

s

Rn(u)du+

∫ t

s

Rm(u)du,

to deduce that for all 0 ≤ s ≤ t,

|vn(s)− vm(s)| ≤ Rm,n(s) + CS2eCS
2(t−s)

∫ t

s

Rm,n(u)du.

Recalling that Rn(u) ≤ sn and
∫ t
s
Rn(u)du ≤ tsn for u ≤ t, we get for every n0 ∈ N∗,

sup
m,n≥n0,s∈[0,t]

|vn(s)− vm(s)| ≤ t
[
1 + CS2eCS

2tt
]

sup
m,n≥n0

(sn + sm).

Adding that sn → 0 ensures that (vn(s), s ∈ [0, t])n≥0 is a Cauchy sequence under the
uniform norm. Then there exists a continuous function v on [0, t] such that vn → v, as n
goes to∞.

Next, we prove that v is solution of the Equation (2.5). As δ satisfies (6.1), we have
for any s ∈ [0, t] and n ∈ N∗:∣∣∣v(s)−

∫ t

s

ψ∞(s, v(s))ds− λ
∣∣∣

≤
∣∣∣v(s)− vn(s)

∣∣∣+

∫ t

s

∣∣∣ψ∞(s, v(s))− ψn(s, v(s))
∣∣∣ds+

∫ t

s

∣∣∣ψn(s, v(s))− ψn(s, vn(s))
∣∣∣ds

≤ tsn + (1 + CS2) sup
{∣∣∣v(s)− vn(s)

∣∣∣, s ∈ [0, t]
}
,

so that letting n→∞ yields
∣∣∣v(s)−

∫ t
s
ψ∞(s, v(s))ds− λ

∣∣∣ = 0. It proves that v is solution

of (2.5). The uniqueness follows from Gronwall’s lemma.

6.2 An upper bound for ψ0

The study of the Laplace exponent of Z̃ in Corollary 2 requires a fine control of the
branching mechanism ψ0.

Lemma 19. Assume that the process (gt+ ∆t, t ≥ 0) goes to +∞ a.s. There exists a
non-negative increasing function k on R+ such that for every λ ≥ 0

ψ0(λ) ≤ λk(λ) and

∫ ∞
0

k
(
e−(gt+∆t)

)
dt <∞.

Proof. The inequality (6.3) implies that for every λ ≥ 0,

ψ0(λ) ≤ σ2λ2 +

∫ ∞
0

(
λ2z21{λz≤1} + λz1{λz>1}

)
µ(dz)

≤
(
σ2 +

∫ 1

0

z2µ(dz)

)
λ2 + λ21{λ<1}

∫ 1/λ

1

z2µ(dz) + λ

∫ ∞
1/λ

zµ(dz).
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Now, using condition (2.10) we obtain the existence of a positive constant c such that

λ

∫ ∞
1/λ

zµ(dz) ≤ λ log−(1+ε)(1 + 1/λ)

∫ ∞
1/λ

z log1+ε(1 + z)µ(dz) ≤ cλ log−(1+ε)(1 + 1/λ).

Next, let us introduce the function f , given by

f(z) = z−1 log1+ε(1 + z), for z ∈ [1,∞).

If we derivate the function f , we deduce that there exists a positive real number A > 1

such that f is decreasing on [A,∞). Therefore, for every λ < 1/A,∫ 1/λ

A

λ2z2µ(dz) = λ log−(1+ε) (1 + 1/λ) f (1/λ)

∫ 1/λ

A

z log1+ε(1 + z)

f(z)
µ(dz)

≤ λ log−(1+ε) (1 + 1/λ)

∫ 1/λ

A

z log1+ε(1 + z)µ(dz).

Adding that λ2
∫ A

1
z2µ(dz) ≤ λ2A

∫∞
1
zµ(dz) and using again condition (2.10), we deduce

that there exists a positive constant c′ such that for every λ ≥ 0,

ψ0(λ) ≤ c′
(
λ2 + λ log−(1+ε)(1 + 1/λ)

)
.

Since λ2 is negligible with respect to λ log−(1+ε)(1 + 1/λ) when λ is close enough to 0 or
infinity, we conclude that there exists a positive constant c′′ such that

ψ0(λ) ≤ c′′λ log−(1+ε)(1 + 1/λ).

Defining the function k(z) = c′′ log−(1+ε)(1 + 1/z), for z > 0, we get that:

k
(
e−(gt+∆t)

)
∼ c′′ log−(1+ε)(2), (t→ 0),

thus the integral of k(exp(−gt−∆t)) is finite in a neighborhood of zero, and

0 ≤
∫ ∞

1

k
(
e−(gt+∆t)

)
dt ≤ c′′

∫ ∞
1

e−(gt+∆t)(gt+ ∆t)
−(1+ε)dt,

which is finite since the process (gt + ∆t, t ≥ 0) drifts +∞ and has finite first moment.
This completes the proof.

6.3 Extinction versus explosion

We now verify that the process (Yt)t≥0 can be properly renormalized as t → ∞ on
the non-extinction event. We use a classical branching argument.

Lemma 20. Let Y be a non-negative Markov process satisfying the branching property.
We also assume that there exists a positive function at such that for every x0 > 0, there
exists a non-negative finite random variable W such that

atYt −−−→
t→∞

W a.s, Px0(W > 0) > 0, at
t→∞−→ 0.

Then

{W = 0} =
{
Yt −−−→

t→∞
0
}

Px0 a.s.
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Proof. First, we prove that

Px0
(lim sup
t→∞

Yt =∞ | lim sup
t→∞

Yt > 0) = 1. (6.5)

Let 0 < x ≤ x0 ≤ A be fixed. Since at → 0 and Px(W > 0) > 0, there exists t0 > 0

such that α := Px(Yt0 ≥ A) > 0. By the branching property, the process is stochastically
monotone as a function of its initial value. Thus, for every y ≥ x (including y = x0),

Py(Yt0 ≥ A) ≥ α > 0.

We define recursively the stopping times

T0 := 0, Ti+1 = inf{t ≥ Ti + t0 : Yt ≥ x} (i ≥ 0).

For any i ∈ N∗, the strong Markov property implies

Px0(YTi+t0 ≥ A | (Yt : t ≤ Ti), Ti <∞) ≥ α.

Conditionally on {lim supt→∞ Yt > x}, the stopping times Ti are finite a.s. and for all
0 < x ≤ x0 ≤ A,

Px0
(∀i ≥ 0 : YTi+t0 < A, lim sup

t→∞
Yt > x) = 0.

Then, Px0(lim supt→∞ Yt <∞, lim supt→∞ Yt > x) = 0. Now since {lim supt→∞ Yt > 0} =

∪x∈(0,x0]{lim supt→∞ Yt > x}, we get (6.5).
Next, we consider the stopping times Tn = inf{t ≥ 0 : Yt ≥ n}. The strong Markov

property and branching property imply

Px0
(W = 0;Tn <∞) = Ex0

(
1Tn<∞PYTn (W = 0)

)
≤ Pn(atYt −→

t→∞
0) = P1(atYt −→

t→∞
0)n,

which goes to zero as n→∞, since P1(atYt
t→∞−→ 0) = P1(W = 0) < 1. Then,

0 = Px0
(W = 0;∀n : Tn <∞) = Px0

(W = 0, lim sup
t→∞

Yt =∞) = Px0
(W = 0, lim sup

t→∞
Yt > 0),

where the last identity comes from (6.5). This completes the proof.

6.4 A Central limit theorem

We need the following central limit theorem for Lévy processes in Corollary 3.

Lemma 21. Under the assumption (2.11) we have

gt+ ∆t −mt

ρ
√
t

d−−−→
t→∞

N (0, 1).

Proof. For simplicity, let η be the image measure of ν under the mapping x 7→ ex. Hence,
assumption (2.11) is equivalent to

∫
|x|≥1

x2η(dx) <∞, or E[∆2
1] <∞.

We define T (x) = η
(
(−∞,−x)

)
+η
(
(x,∞)

)
and U(x) = 2

∫ x
0
yT (y)dy, and assume that

T (x) > 0 for all x > 0. According to Theorem 3.5 in Doney and Maller [13] there exist
two functions a(t), b(t) > 0 such that

gt+ ∆t − a(t)

b(t)

d−−−→
t→∞

N (0, 1), if and only if
U(x)

x2T (x)
−−−−→
x→∞

∞.

If the above condition is satisfied, then b is regularly varying with index 1/2 and it may
be chosen to be strictly increasing to ∞ as t → ∞. Moreover b2(t) = tU(b(t)) and
a(t) = tA(b(t)), where

A(x) = g+

∫
{|z|<1}

zη(dz) + η
(
(1,∞)

)
− η
(
(−∞,−1)

)
+

∫ x

1

(
η
(
(y,∞)

)
− η
(
(−∞,−y)

))
dy.
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Note that under our assumption x2T (x)→ 0, as x→∞. Moreover, note

U(x) = x2T (x) +

∫
(−x,0)

z2η(dx) +

∫
(0,x)

z2η(dx),

and

A(x) = g +

∫
{|z|<x}

zη(dz) + x
(
η
(
(x,∞)

)
− η
(
(−∞,−x)

))
.

Hence assumption (2.11) implies that

U(x) −−−−→
x→∞

∫
(−∞,∞)

z2η(dz) = ρ2, A(x) −−−−→
x→∞

g +

∫
R

zη(dz) = m,

Therefore, we deduce U(x)/(x2T (x)) → ∞ as x → ∞, b(t) ∼ ρ
√
t and a(t) ∼ mt, as

t→∞.
Now assume that T (x) = 0, for x large enough. Define

Ψ(λ, t) = − logE

[
exp

{
iλ

(
gt+ ∆t − a(t)

b(t)

)}]
,

where the functions a(t) and b(t) are defined as above. Hence since the process (∆t, t ≥
0) is of bounded variation, from the definition of a(t) and the Lévy-Khintchine formula
we deduce

Ψ(λ, t) = −iλ
(
gt

b(t)
− a(t)

b(t)

)
+ t

∫
R

(
1− e

iλ
b(t)

x
)
η(dx)

= t

∫
{|x|<b(t)}

(
1− e

iλ
b(t)

x +
iλ

b(t)
x+

(iλ)2

2b2(t)
x2
)
η(dx)− t(iλ)2

2b2(t)

∫
{|x|<b(t)}

x2η(dx)

+ t

∫
{|x|≥b(t)}

(
1− e

iλ
b(t)

x
)
η(dx) + iλt

(
η(b(t),∞)− η(−∞,−b(t))

)
.

Since T (x) = 0 for all x large, b(t)→∞ and t−1b2(t)→ ρ2, as t→∞, therefore

Ψ(λ, t) −−−→
t→∞

λ2

2
,

which implies the result thanks to Lévy’s Theorem.

6.5 A technical Lemma

We now prove a technical lemma that is needed in the proofs of Section 4.

Proof of Lemma 10. To obtain (4.9), it is enough to choose ε ≤ 1 as we assume in (4.5)
that ς ≥ 1.

In order to prove (4.10), we first define the function h̃ : x ∈ R+ 7→ (1 +x)1−ςh(x) and
let 0 ≤ x ≤ y. Then,

F (x)− F (y)

CF
≤

(
(x+ 1)−1/β − (y + 1)−1/β

)
+ (1 + y)−1/β−1

∣∣∣h̃(x)− h̃(y)
∣∣∣

+
∣∣∣h̃(x)

∣∣∣((1 + x)−1/β−1 − (1 + y)−1/β−1
)
. (6.6)

We deal with the second term of the right hand side. Denoting by k the Lipschitz
constant of h̃ and applying the Mean Value Theorem to z ∈ R+ 7→ (z + 1)−1/β on [x, y],
we get

(1 + y)−1/β−1
∣∣∣h̃(x)− h̃(y)

∣∣∣ ≤ k(y + 1)−1/β−1(y − x) ≤ kβ
(

(x+ 1)−1/β − (y + 1)−1/β
)
.
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Moreover, as β ∈ (0, 1], we have the following inequalities :(
1 + y

1 + x

)1+1/β

− 1 ≤

((
1 + y

1 + x

)1/β

− 1

)(
1 + y

1 + x
− 1

)
≤
((y

x

)1/β

− 1

)
2

1 + y

1 + x

Dividing by (1 + y)1/β+1 and using (1 + y)/[(1 + x)(1 + y)1/β+1] ≤ y−1/β yield

(1 + x)−1/β−1 − (1 + y)−1/β−1 ≤ 2
(
x−1/β − y−1/β

)
.

Similarly (1 + x)−1/β − (1 + y)−1/β ≤ x−1/β − y−1/β and equation (6.6) give us

0 ≤ F (x)− F (y) ≤ CF (1 + 2[‖h‖∞ + kβ])
(
x−1/β − y−1/β

)
.

This completes the proof.

6.6 Approximations of the survival probability for ν(0,∞) =∞
Finally, we prove Corollary 6 in the case when ν(0,∞) =∞.

End of the proof of Corollary 6. We let Aε1,ε2 = (0, 1−ε1)∪(1+ε2,∞), where 0 < 1−ε1 <

1 < 1 + ε2 and define the Poisson random measure Nε1,ε2
1 as the restriction of N1 to

R+ ×Aε1,ε2 . We denote by dtνε1,ε2(dm) for its intensity measure, where νε1,ε2(dm) =

1{m∈Aε1,ε2}ν(dm), and the corresponding Lévy process ∆ε1,ε2 is defined by

∆ε1,ε2
t =

∫ t

0

∫
(0,∞)

logm Nε1,ε2
1 (ds,dm).

We also consider the CSBP’s Y ε1,ε2 (resp Y ε1,ε2,− and Y ε1,ε2,+) with branching mecha-
nism ψ (resp. ψ− and ψ+) and the same catastrophes ∆ε1,ε2 via (2.3). Since νε1,ε2(0,∞) <

∞, from the first step we have uε1,ε2+,t (λ) ≤ uε1,ε2(t, λ) ≤ uε1,ε2−,t (λ), where as expected
E[exp{−λY ε1,ε2,∗t }] = exp{−uε1,ε2∗,t (λ)} for each ∗ ∈ {+, ∅,−}.

Similarly, let Aε1 = (0, 1 − ε1) ∪ (1,∞) and define the Poisson random measure Nε1
1

as the restriction of N1 to R+ ×Aε1 with intensity measure dtνε1(dm), where νε1(dm) =

1{m∈Aε1}ν(dm). Let us fix t in R∗+, and define Y ε1 as the unique strong solution of

Y ε1t = Y0 +

∫ t

0

gY ε1s ds+

∫ t

0

√
2σ2Y ε1s dBs +

∫ t

0

∫
[0,∞)

∫ Y
ε1
s−

0

zÑ0(ds,dz,du)

+

∫ t

0

∫
[0,∞)

(
m− 1

)
Y ε1s−N

ε1
1 (ds,dm).

(6.7)

We already know from Theorem 1 that Equation (6.7) has a unique non-negative strong
solution. Moreover, from Theorem 5.5 in [16] and the fact that Nε1

1 has the same jumps
as Nε1,ε2

1 plus additional jumps greater than one, we conclude

Y ε1,ε2t ≤ Y ε1t , a.s.

Using assumption (2.2), we can apply Gronwall’s Lemma to the non-negative function
t 7→ E[Y ε1t − Y

ε1,ε2
t ] and obtain

E
[∣∣Y ε1,ε2t − Y ε1t

∣∣] −−−→
ε2→0

0.

Now, since Y ε1,ε2 is decreasing with ε2, we finally get, Y ε1,ε2t
a.s.−−→ Y ε1t , as ε2 → 0.

Using similar arguments as above for Y ε1,ε2,+ and Y ε1,ε2,−, we deduce

uε1+,t(λ) ≤ uε1(t, λ) ≤ uε1,−,t(λ).

In order to complete the proof, we let ε1 tend to 0.
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