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Abstract

In this paper, we introduce the idea of stochastic integrals with respect to an increas-
ing process in the G-framework and extend G-Itô’s formula. Moreover, we study the
solvability of the scalar valued stochastic differential equations driven by G-Brownian
motion with reflecting boundary conditions (RGSDEs).
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1 Introduction

In the classical framework, Skorokhod [19, 20] first introduced diffusion processes with
reflecting boundaries in the 1960s. Since then, reflected solutions to stochastic differ-
ential equations (SDEs) and Backward SDEs (BSDEs) have been investigated by many
authors. For the one-dimensional case, El Karoui [3], El Karoui and Chaleyat-Maurel
[4] and Yamada [26] studied reflected SDEs (RSDEs) on a half-line and El Karoui et al.
[5] obtained the solvability of reflected BSDEs. For the multidimensional case, the ex-
istence of weak solutions to reflected SDEs on a smooth domain was proved by Stroock
and Varadhan [24]. Subsequently, Tanaka [25] solved the similar problem on a convex
domain by a direct approach based on the solution to the Skorokhod problem. Further-
more, Lions and Sznitman [12] extended these results to a non-convex domain. The
corresponding results for reflected BSDEs can be found in Gegout-Petit and Pardoux
[7], Ramasubramanian [17] and Hu and Tang [9] and others.

Motivated by uncertainty problems, risk measures and super-hedging in finance, Peng
[15, 16] introduced a framework of time consistent nonlinear expectation E[·], i.e., G-
expectation, in which a new type of Brownian motion was constructed and the corre-
sponding stochastic calculus was established. In order to solve the super-replication
problem in an uncertainty volatility model, Denis and Martini [2] independently in-
troduced a notion of upper expectation and the related capacity theory. Moreover, a
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GSDEs with Reflecting Boundary Conditions

stochastic integral of Itô’s type under a class of non-dominated probability measures
was formulated. Recently, Hu et al. [1] found there is a strong link that connects these
two frameworks, that is, theG-expectation E[·] can be represented by a concrete weakly
compact family PG of probability measures:

E[X] = sup
P∈PG

EP[X], X ∈ L1
G(Ω).

Then, a Choquet capacity C̄(·) can be naturally introduced to the G-framework:

C̄(A) := sup
P∈PG

P(A), A ∈ B(Ω),

by which we can have the following definition to the concept of “quasi-surely”, similar to
the one in Denis and Martini [2]: A set A ⊂ Ω is polar if C̄(A) = 0; and a property holds
“quasi-surely” (q.s. for short) if it holds outside a polar set. In these two frameworks,
a stochastic integral of Itô type is defined following a usual procedure, that is, giving a
definition first for some simple integrands and then completing the spaces of integrands
under the norm induced by the upper expectation related to PG. This norm is much
stronger than that in the classical case and thus, the space of integrands is smaller
than the classical one. In other words, some additional regularity assumption should
be imposed on the integrands to ensure that the integrals are well defined. Using these
notions of stochastic calculus in the G-framework, the existence and uniqueness results
for some types of SDEs driven by G-Brownian motion (GSDEs) can be obtained (cf.
Peng [16], Gao [6] and Lin and Bai [11]). For the reason stated above, the authors
who studied GSDEs always assumed the following condition on the coefficients of the
equations: for each x ∈ R,

f·(x), g·(x) ∈M2
G([0, T ]).

At this price, all results in the works for GSDEs listed above hold in the “quasi-surely”
(q.s.) sense, i.e., outside a polar set, and all the processes are immediately aggregated.

Closely related to the G-framework, Soner et al. [21, 22, 23] have established an-
other type of “quasi-sure” stochastic analysis and also a complete theory for second
order BSDEs (2BSDEs) under a uniform Lipschitz condition on the coefficients. In that
framework, another notion of “quasi-surely” was issued, which means that a property
holds P-a.s., for each probability measure P ∈ PH , which is a class of local martingale
measure. Obviously, this definition of “quasi-surely” is weaker than the one made by
G-capacity. In this weaker sense, we can consider the stochastic integral with respect
to the canonical B under each probability measure P ∈ PH , respectively and we only
need that these integrands meet the requirement for formulating a stochastic integral
with respect to a local martingale. Thus, this type of setting for 2BSDEs ensures that
we can treat the case that the coefficients have less regularity but that all the proper-
ties can only hold P-a.s., for each P ∈ PH . Following the pioneering work of Soner et
al. [23], Matoussi et al. [14] have studied the problem of reflected 2BSDEs with a lower
obstacle.

The aim of this paper is to study the solvability of stochastic differential equations
driven by G-Brownian motion with reflecting boundary conditions (RGSDEs) in the
sense of “quasi-surely” defined by Denis et al. [1]. The scalar valued RGSDE that
we consider is defined as following:

Xt = x+

∫ t

0

fs(Xs)ds+

∫ t

0

hs(Xs)d〈B〉s +

∫ t

0

gs(Xs)dBs +Kt, 0 ≤ t ≤ T, q.s.;

Xt ≥ St, 0 ≤ t ≤ T, q.s.;
∫ T

0

(Xt − St)dKt = 0, q.s.,

(1.1)
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where 〈B〉 is the quadratic variation process of G-Brownian motion B and K is an
increasing process that pushes the solution X upwards to remain above the obstacle
S in a minimal way. Similarly to how the uniqueness results for classical reflected
SDEs have been proved, the corresponding ones for RGSDEs can also be deduced from
a priori estimates. Moreover, a solution in Mp

G([0, T ]) to (1.1) can be constructed by
fixed-point iteration. Because of the reason that we have already explained, we need in
addition to some assumption on the coefficients f , h and g, which is similar to that in
Peng [16], Gao [6] and Lin and Bai [11], a regularity assumption on S to ensure that K
stays in the space Mp

G([0, T ]). To establish the comparison theorem, we need to develop
an extension of G-Itô’s formula to deal with such a process X, which involves both the
stochastic integrals and an increasing process. This extended G-Itô’s formula can have
its own interest and may be used in other situations.

This paper is organized as follows: Section 2 introduces notation and results in the G-
framework which are necessary for what follows. Section 3 introduces the stochastic
calculus with respect to an increasing process in the G-framework. Section 4 studies
reflected G-Brownian motion and Section 5 presents our main results.

2 G-Brownian motion, G-capacity and G-stochastic calculus

The main purpose of this section is to recall some preliminary results in theG-framework,
which are necessary later in the text. The reader interested in a more detailed descrip-
tion of these notions is referred to Denis et al. [1], Gao [6] and Peng [16].

2.1 G-Brownian motion

Adapting the approach in Peng [16], let Ω be the space of all R-valued continuous paths
with ω0 = 0 equipped with the distance

ρ(ω1, ω2) :=

∞∑
N=1

2−N (( max
0≤t≤N

|ω1
t − ω2

t |) ∧ 1),

B the canonical process and Cl,Lip(Rn) the collection of all local Lipschitz functions on
Rn. For a fixed T ≥ 0, the space of finite dimensional cylinder random variables is
defined by

L0
ip(ΩT ) := {ϕ(Bt1 , . . . , Btn) : n ≥ 1, 0 ≤ t1 ≤ . . . ≤ tn ≤ T, ϕ ∈ Cl,Lip(Rn)},

on which E[·] is a sublinear functional that satisfies: for all X, Y ∈ L0
ip(ΩT ),

(1) Monotonicity: if X ≥ Y , then E[X] ≥ E[Y ];

(2) Sub-additivity: E[X]− E[Y ] ≤ E[X − Y ];

(3) Positive homogeneity: E[λX] = λE[X], for all λ ≥ 0;

(4) Constant translatability: E[X + c] = E[X] + c, for all c ∈ R.

The triple (Ω, L0
ip(ΩT ),E) is called a sublinear expectation space.

Definition 2.1. A scalar valued random variable X ∈ L0
ip(ΩT ) is G-normal distributed

with parameters (0, [σ2, σ2]), i.e., X ∼ N (0, [σ2, σ2]), if for each ϕ ∈ Cl,Lip(R), u(t, x) :=

E[ϕ(x+
√
tX)] is a viscosity solution to the following PDE on R+ ×R:

∂u

∂t
−G

(
∂2u

∂x2

)
= 0;

u|t=0 = ϕ,
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where

G(a) :=
1

2
(a+σ2 − a−σ2), a ∈ R.

Remark 2.2. Without loss of generality, we always assume that σ2 = 1 in what follows.

Definition 2.3. We call a sublinear expectation E : L0
ip(ΩT )→ R a G-expectation if the

canonical process B is a G-Brownian motion under E[·], that is, for each 0 ≤ s ≤ t ≤ T ,
the increment Bt −Bs ∼ N (0, [(t− s)σ2, (t− s)]) and for all n > 0, 0 ≤ t1 ≤ . . . ≤ tn ≤ T

and ϕ ∈ Cl,Lip(Rn),

E[ϕ(Bt1 , . . . , Btn−1 , Btn −Btn−1)] = E[ψ(Bt1 , . . . , Btn−1)],

where ψ(x1, . . . , xn−1) := E[ϕ(x1, . . . , xn−1,
√
tn − tn−1B1)].

For p ≥ 1, we denote by LpG(ΩT ) the completion of L0
ip(ΩT ) under the Banach norm

E[| · |p]
1
p .

2.2 G-capacity

Derived in Denis et al. [1], G-expectation E[·] can be viewed as an upper expectation
Ē[·] associated with a weakly compact family PG of probability measures on L1

G(ΩT ),
i.e.,

E[X] = Ē[X] := sup
P∈PG

EP[X], X ∈ L1
G(ΩT ).

In this sense, the domain of G-expectation can be extended from L1
G(ΩT ) to the space

of all B(ΩT ) measurable random variables L0(ΩT ) by setting

Ē[X] := sup
P∈PG

EP[X], X ∈ L0(ΩT ).

Naturally, we can define a corresponding regular Choquet capacity on Ω:

C̄(A) := sup
P∈PG

P(A), A ∈ B(Ω),

with respect to which, we have the following notions:

Definition 2.4. A set A ∈ B(Ω) is called polar if C̄(A) = 0. A property is said to hold
quasi-surely (q.s.) if it holds outside a polar set.

Definition 2.5. A random variable X is said to be quasi-continuous (q.c.) if for any
arbitrarily small ε > 0, there exists an open set O ⊂ Ω with C̄(O) < ε such that X is
continuous in ω on Oc.

Definition 2.6. We say that a random variable X has a q.c. version if there exists a
q.c. random variable Y such that X = Y , q.s..

In the language of G-capacity, Denis et al. [1] proved that for each p ≥ 1, the function
space LpG(ΩT ) has a dual representation, which is much more explicit to verify:

Theorem 2.7.

LpG(ΩT ) = {X ∈ L0(ΩT ) : X has a q.c. version, lim
N→+∞

Ē[|X|p1|X|>N ] = 0}.

Unlike in the classical framework, the downwards monotone convergence theorem only
holds true for a sequence of random variables from a subset of L0(ΩT ) (cf. Theorem 31
in Denis et al. [1]).

Theorem 2.8. Let {Xn}n∈N ⊂ L1
G(ΩT ) be such that Xn ↓ X, q.s., then Ē[Xn] ↓ Ē[X].

Remark 2.9. We note that dominated convergence theorem does not exist in the G-
framework, even though we assume that {Xn}n∈N is a sequence in L1

G(ΩT ). The lack of
this theorem is one of the main difficulties we shall overcome in the following sections.
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2.3 G-stochastic calculus

In Peng [16], generalized Itô integrals with respect to G-Brownian motion are estab-
lished:

Definition 2.10. A partition of [0, T ] is a finite ordered subset πN[0,T ] = {t0, t1, . . . , tN}
such that 0 = t0 < t1 < . . . < tN = T . We set

µ(πN[0,T ]) := max
k=0,1,...,N−1

|tk+1 − tk|.

For each p ≥ 1, define

Mp,0
G ([0, T ]) :=

{
ηt =

N−1∑
k=0

ξk1[tk,tk+1)(t) : ξk ∈ LpG(Ωtk)

}
,

and denote by Mp
G([0, T ]) the completion of Mp,0

G ([0, T ]) under the norm

||η||Mp
G([0,T ]) :=

(
1

T

∫ T

0

Ē[|ηt|p]dt
) 1

p

.

Remark 2.11. By Definition 2.10, if η is an element in Mp
G([0, T ]), then there exists a

sequence of processes {ηn}n∈N in Mp,0
G ([0, T ]), such that lim

n→+∞

∫ T
0
Ē[|ηnt − ηt|p]dt→ 0. It

is easily observed that for almost every t ∈ [0, T ], {ηnt }n∈N ⊂ L
p
G(Ωt) and Ē[|ηnt − ηt|p]→

0, thus ηt is an element in LpG(Ωt).

Definition 2.12. For each η ∈M2,0
G ([0, T ]), we define

I[0,T ](η) =

∫ T

0

ηsdBs :=

N−1∑
k=0

ξk(Btk+1
−Btk).

The mapping I[0,T ] : M2,0
G ([0, T ]) → L2

G(ΩT ) is continuous and linear and thus, can be
uniquely extended to I[0,T ] : M2

G([0, T ]) → L2
G(ΩT ). Then, for each η ∈ M2

G([0, T ]),

the stochastic integral with respect to G-Brownian motion B is defined by
∫ T

0
ηsdBs :=

I[0,T ](η).

Unlike the classical theory, the quadratic variation process of G-Brownian motion B is
not always a deterministic process (unless σ = σ) and it can be formulated in L2

G(Ωt) by

〈B〉t := lim
µ(πN

[0,t]
)→0

N−1∑
k=0

(Btnk+1
−Btnk )2 = B2

t − 2

∫ t

0

BsdBs.

Definition 2.13. For each η ∈M1,0
G ([0, T ]), we define

Q[0,T ](η) =

∫ T

0

ηsd〈B〉s :=

N−1∑
k=0

ξk(〈B〉tk+1
− 〈B〉tk).

The mapping Q[0,T ] : M1,0
G ([0, T ]) → L1

G(ΩT ) is continuous and linear and thus, can be
uniquely extended to Q[0,T ] : M1

G([0, T ]) → L1
G(ΩT ). Then, for each η ∈ M1

G([0, T ]), the
stochastic integral with respect to the quadratic variation process 〈B〉 is defined by∫ T

0
ηsd〈B〉s := Q[0,T ](η).

In view of the dual formulation ofG-expectation, as well as the properties of the quadratic
variation process 〈B〉 in the G-framework, the following BDG type inequalities are ob-
vious.
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Lemma 2.14. Let p ≥ 1, η ∈Mp
G([0, T ]) and 0 ≤ s ≤ t ≤ T . Then,

Ē

[
sup
s≤u≤t

∣∣∣∣ ∫ u

s

ηrd〈B〉r
∣∣∣∣p] ≤ |t− s|p−1

∫ s

t

Ē[|ηu|p]du.

Lemma 2.15. Let p ≥ 2, η ∈Mp
G([0, T ]) and 0 ≤ s ≤ t ≤ T . Then,

Ē

[
sup
s≤u≤t

∣∣∣∣ ∫ u

s

ηrdBr

∣∣∣∣p] ≤ CpĒ[∣∣∣∣ ∫ t

s

|ηu|2du
∣∣∣∣
p
2
]
≤ Cp|t− s|

p
2−1

∫ t

s

Ē[|ηu|p]du,

where Cp is a positive constant independent of η.

3 Stochastic calculus with respect to an increasing process

In this section, we define the stochastic integrals with respect to an increasing pro-
cess with continuous paths, and then we extend G-Itô’s formula to the case where an
increasing process appears in the dynamics. In the following, C and M denote two
positive constants whose values may vary from line to line.

3.1 Stochastic integrals with respect to an increasing process

Definition 3.1. We denote by Mc([0, T ]) the collection of all q.s. continuous processes
X whose paths X·(ω) : t 7→ Xt(ω) are continuous in t on [0, T ] outside a polar set A.

Remark 3.2. For example, from the proofs of Theorem 2.1 and Theorem 2.2 in Gao [6],
(
∫ t

0
ηsdBs)0≤t≤T and (

∫ t
0
ηsd〈B〉s)0≤t≤T have continuous modifications in Mc([0, T ]).

Definition 3.3. We denote by MI([0, T ]) the collection of q.s. increasing processes
K ∈ Mc([0, T ]) whose paths K·(ω) : t 7→ Kt(ω) are increasing in t on [0, T ] outside a
polar set A.

Remark 3.4. Obviously, an increasing process K in MI([0, T ]) has q.s. finite total
variation on [0, T ] and thus, its quadratic variation is q.s. 0.

Definition 3.5. We define, for a fixed X ∈ Mc([0, T ]), the stochastic integral with re-
spect to a given K ∈MI([0, T ]) by

(∫ T

0

XtdKt

)
(ω) =


∫ T

0

Xt(ω)dKt(ω) , ω ∈ Ac;

0 , ω ∈ A,
(3.1)

where A is a polar set and on the complementary of which, X·(ω) is continuous and
K·(ω) is increasing in t.

Remark 3.6. Because for a fixed ω ∈ Ac, the function X·(ω) is continuous and the
function K·(ω) is of bounded variation on [0, T ], the Riemann-Stieltjes integral on the
right-hand side always exists (cf. Hildebrandt [8]). Thus, (3.1) is well defined. Similar
definitions can be made for those X whose paths are q.s. piecewisely continuous and
without discontinuity of the second kind , i.e., for each ω ∈ Ac, the function X·(ω) is
discontinuous at a finite number of points and these discontinuous points are removable
or of the first kind.

Remark 3.7. Given a sequence of refining partitions {πN[0,T ]}N∈N (i.e., πN[0,T ] ⊂ πN+1
[0,T ] ,

for all N ∈ N) such that µ(πN[0,T ])→ 0, we set a sequence of binary functions:

VN[0,T ](X,K)(ω) :=

N−1∑
k=0

XuN
k

(ω)(KtNk+1
(ω)−KtNk

(ω)), (3.2)
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where uNk ∈ [tNk , t
N
k+1). For a fixed ω ∈ Ac, by the Heine-Cantor theorem, X·(ω) and

K·(ω) are uniformly continuous in t on [0, T ]. Therefore, we can find an Mω > 0 such
that KT (ω) < Mω, then, for any arbitrarily small ε > 0, there exists a δ > 0 such that
for all |t− s| < δ, |Xt(ω)−Xs(ω|) < ε/Mω. It is sufficient to choose an N0 ∈ N such that
µ(πN0

[0,T ]) < δ, then, for all N > N0,∣∣∣∣VN[0,T ](X,K)(ω)−
(∫ T

0

XtdKt

)
(ω)

∣∣∣∣ < ε,

from which we deduce

VN[0,T ](X,K)→
∫ T

0

XtdKt, q.s., as N → +∞. (3.3)

The construction of sequence (3.2) provides a q.s. approximation to the stochastic
integral

∫ T
0
XtdKt. We note that the convergence (3.3) depends only on the sequence of

refined partitions (πN[0,T ])N∈N but is independent of the selection of the points of division

and the representatives XuN
k

on [tNk , t
N
k+1), k = 0, 1, . . . , N − 1, N ∈ N.

The following propositions can be verified directly by Definition 3.5 and the Heine-
Cantor theorem.

Proposition 3.8. Let X, X1, X2 ∈ Mc([0, T ]), K, K1, K2 ∈ MI([0, T ]) and 0 ≤ s ≤ r ≤
t ≤ T , then we have

(1)
∫ t
s
XudKu =

∫ r
s
XudKu +

∫ t
r
XudKu, q.s.;

(2)
∫ t
s
(αX1

u +X2
u)dKu = α

∫ t
s
X1
udKu +

∫ t
s
X2
udKu, q.s., where α ∈ L0(Ωs);

(3)
∫ t
s
Xud(K1 ±K2)u =

∫ t
s
XudK

1
u ±

∫ t
s
XudK

2
u, q.s..

Remark 3.9. By a classical argument, a q.s. continuous and bounded variation process
can be viewed as the difference of two increasing processes K1 − K2, where K1 and
K2 ∈ MI([0, T ]). By Proposition 3.8 (3), the stochastic integral with respect to K1 −K2

can be defined in the same way as Definition 3.5.

Proposition 3.10. Let X ∈Mc([0, T ]) and K ∈MI([0, T ]), then the integral
∫ ·

0
XsdKs is

q.s. continuous in t, i.e., (
∫ t

0
XsdKs)0≤t≤T ∈Mc([0, T ]).

As shown above, (3.1) defines a random variable
∫ T

0
XtdKt in L0(ΩT ). A natural ques-

tion arises: if we assume that for some appropriate p and q, X ∈ Mp
G([0, T ]) and

K ∈Mq
G([0, T ]), can this random variable

∫ T
0
XtdKt be verified as an element in L1

G(ΩT )

or not? In general, the answer is negative. This is because the integrability of X and
K cannot ensure the quasi-continuity of

∫ T
0
XtdKt (cf. Definition 2.5 and Theorem 2.7).

More precisely, the pathwise convergence (3.3) is not necessarily uniform in ω outside
a polar set A and it is hard to verify directly the convergence in the sense of L1

G(ΩT )

due to the lack of the dominated convergence theorem in the G-framework. However,
in some special cases, a proper sequence {VN[0,T ](X,K)}N∈N approximating to

∫ T
0
XtdKt

can be found and thus, the quasi-continuity is inherited during the approximation.

Proposition 3.11. Let K ∈ MI([0, T ]) ∩M2
G([0, T ]), KT ∈ L2

G(ΩT ) and φ : R → R is a

Lipschitz function, then
∫ T

0
φ(Kt)dKt is an element in L1

G(ΩT ).

Proof: Consider a sequence of refining partitions {πN[0,T ]}N∈N mentioned in Remark 3.7
and define the sequence of approximation: for each N ∈ N,

VN[0,T ](φ(K),K)(ω) =

N−1∑
k=0

φ(KtNk
)(ω)(KtNk+1

(ω)−KtNk
(ω)).
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From the explanation in Remark 2.11, we can always assume that at the points of divi-
sion, KtNk

∈ L2
G(ΩT ), k = 0, 1, . . . , N − 1, N ∈ N. As K is increasing, we have

∣∣∣∣VN[0,T ](φ(K),K)−
∫ T

0

φ(Kt)dKt

∣∣∣∣ ≤ ∣∣∣∣ ∫ T

0

(N−1∑
k=0

|KtNk+1
−KtNk

|1[tNk ,t
N
k+1)(t)

)
dKt

∣∣∣∣
≤
N−1∑
k=0

|KtNk+1
−KtNk

|2 ↓ 0, q.s., as N → +∞.

On the other hand, it is easy to verify by Theorem 2.7 that for all N ∈ N, VN[0,T ](φ(K),K)

and
∑N−1
k=0 |KtNk+1

−KtNk
|2 ∈ L1

G(ΩT ). Then, by Theorem 2.8, we obtain

Ē

[∣∣∣∣VN[0,T ](φ(K),K)−
∫ T

0

φ(Kt)dKt

∣∣∣∣] ≤ Ē[N−1∑
k=0

|KtNk+1
−KtNk

|2
]
↓ 0, as N → +∞.

From the completeness of L1
G(ΩT ) under Ē[| · |], we deduce the desired result. �

Remark 3.12. To verify that for all N ∈ N, VN[0,T ](φ(K),K) and
∑N−1
k=0 |KtNk+1

−KtNk
|2 ∈

L1
G(ΩT ), we should assume here that KT ∈ L2

G(ΩT ).

Proposition 3.13. Let X be a q.s. continuous G-Itô process such that

Xt = x+

∫ t

0

fsds+

∫ t

0

hsd〈B〉s +

∫ t

0

gsdBs, 0 ≤ t ≤ T, (3.4)

where f , h and g are elements in Mp
G([0, T ]), p > 2. Let K ∈ MI([0, T ]) ∩Mq

G([0, T ]) and

KT ∈ LqG(ΩT ), where 1/p+ 1/q = 1. Then,
∫ T

0
XtdKt is an element in L1

G(ΩT ).

Proof: Given a sequence of refining partitions {πN[0,T ]}N∈N, we construct sequence (3.2).
By the definitions of stochastic integrals and the BDG type inequalities, one can verify
that for each t ∈ [0, T ], Xt ∈ LpG(Ωt). Therefore, for all N ∈ N, VN[0,T ](X,K) ∈ L1

G(ΩT ).
Applying the BDG type inequalities, we have

Ē[ sup
s≤u≤t

|Xu −Xs|p] ≤ C
(
|t− s|p−1

(∫ t

s

(Ē[|fu|p] + Ē[|hu|p])du
)

+ |t− s|
p
2−1

∫ t

s

Ē[|gu|p]du
)
.

Thus,

Ē[ sup
k∈[0,N)∩N

sup
tk≤t≤tk+1

|Xt −XtNk
|p] ≤ Ē

[N−1∑
k=0

sup
tNk ≤t≤t

N
k+1

|Xt −XtNk
|p
]

≤ C
N−1∑
k=0

(∫ tNk+1

tNk

(|tNk+1 − tNk |p−1(Ē[|ft|p] + Ē[|ht|p]) + |tNk+1 − tNk |
p
2−1Ē[|gt|p])dt

)
(3.5)

≤ C
(
µ(πN[0,T ])

p−1

∫ T

0

(Ē[|ft|p] + Ē[|ht|p])dt+ µ(πN[0,T ])
p
2−1

∫ T

0

Ē[|gt|p]dt
)
.

From the integrability of f , h and g, we have

Ē[ sup
k∈[0,N)∩N

sup
tk≤t≤tk+1

|Xt −XtNk
|p] ≤ CM(µ(πN[0,T ])

p−1 + µ(πN[0,T ])
p
2−1).
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For each N ∈ N, we calculate∣∣∣∣VN[0,T ](X,K)−
∫ T

0

XtdKt

∣∣∣∣ ≤ ∫ T

0

∣∣∣∣N−1∑
k=0

XtNk
1[tNk ,t

N
k+1)(t)−Xt

∣∣∣∣dKt

≤ sup
0≤t≤T

∣∣∣∣N−1∑
k=0

XtNk
1[tNk ,t

N
k+1)(t)−Xt

∣∣∣∣KT ≤ KT sup
k∈[0,N)∩N

sup
tk≤t<tk+1

|Xt −XtNk
|.

Consequently,

Ē[|VN[0,T ](X,K)−
∫ T

0
XtdKt|] ≤ Ē[KT sup

k∈[0,N)∩N
sup

tk≤t<tk+1

|Xt −XtNk
|]

≤ (Ē[ sup
k∈[0,N)∩N

sup
tk≤t<tk+1

|Xt −XtNk
|p])

1
p (Ē[Kq

T ])
1
q

≤ CM(µ(πN[0,T ])
p−1 + µ(πN[0,T ])

p
2−1)

1
p → 0, as N → +∞.

The desired result follows. �

3.2 An extension of G-Itô’s formula

For each 0 ≤ s ≤ t ≤ T , consider a sum of a G-Itô process and an increasing process K:

Xt = Xs +

∫ t

s

fudu+

∫ t

s

hud〈B〉u +

∫ t

s

gudBu +Kt −Ks.

Lemma 3.14. Let Φ ∈ C2(R) be a real function with bounded and Lipschitz derivatives.
Let f , h and g be bounded processes in M2

G([0, T ]) and K ∈MI([0, T ])∩M2
G([0, T ]) satisfy

for each t ∈ [0, T ],
lim
s→t

Ē[|Kt −Ks|2] = 0. (3.6)

Then,

Φ(Xt)− Φ(Xs) =

∫ t

s

dΦ

dx
(Xu)fudu+

∫ t

s

dΦ

dx
(Xu)hud〈B〉u

+

∫ t

s

dΦ

dx
(Xu)gudBu +

∫ t

s

dΦ

dx
(Xu)dKu (3.7)

+
1

2

∫ t

s

d2Φ

dx2
(Xu)g2

ud〈B〉u, q.s..

The proof of this lemma is based on previous results in Peng [16] (cf. Lemma 6.1 and
Proposition 6.3 in Chapter III). To avoid redundancy, we first prove a reduced lemma
when f = h = g ≡ 0 to show how the increasing process K plays a role in this dynamic
and then give a sketch to indicate some key points to combine the simple lemma with
the previous results in Peng [16].

Lemma 3.15. Let Φ ∈ C2(R) be a real function with bounded and Lipschitz derivatives
and K ∈MI([0, T ]) ∩M2

G([0, T ]). Then,

Φ(Kt)− Φ(Ks) =

∫ t

s

dΦ

dx
(Ku)dKu, q.s..

Proof: Consider a sequence of refining partitions {πN[s,t]}N∈N. For each N ∈ N, from
the second order Taylor expansion, we have

Φ(Kt)− Φ(Ks) =

N−1∑
k=0

(Φ(KtNk+1
)− Φ(KtNk

))

=

N−1∑
k=0

dΦ

dx
(KtNk

)(KtNk+1
−KtNk

) +
1

2

N−1∑
k=0

d2Φ

dx2
(ξNk )(KtNk+1

−KtNk
)2,
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where ξNk satisfies KtNk
≤ ξNk ≤ KtNk+1

, q.s.. For the first part, similar to that in Remark
3.7, we obtain

lim
N→+∞

∣∣∣∣N−1∑
k=0

dΦ

dx
(KtNk

)(KtNk+1
−KtNk

)−
∫ t

s

dΦ

dx
(Ku)dKu

∣∣∣∣ = 0, q.s..

For the second part, because d2Φ
dx2 is bounded and the quadratic variation of K on [0, T ]

is q.s. 0, then,

1

2

N−1∑
k=0

d2Φ

dx2
(ξNk )(KtNk+1

−KtNk
)2 ≤ 1

2
M

N−1∑
k=0

(KtNk+1
−KtNk

)2 → 0, q.s., as N → +∞.

The proof is complete. �

Sketch of the proof of Lemma 3.14: To combine the result above with the ones in
Peng [16], we decompose X into MX+K, where MX denotes the G-Itô part of X. Given
a sequence of refining partitions {π2N

[s,t]}N∈N: for each N ∈ N,

π2N

[s,t] = {t2
N

0 , t2
N

1 . . . , t2
N

2N } = {s, s+ δ, . . . , s+ 2Nδ = t},

we have from the second order Taylor expansion

Φ(Xt)− Φ(Xs) =

2N−1∑
k=0

(Φ(X
t2

N

k+1

)− Φ(X
t2

N

k+1

))

=

2N−1∑
k=0

dΦ

dx
(X

t2
N

k

)(MX

t2
N

k+1

−MX

t2
N

k

) +
1

2

2N−1∑
k=0

d2Φ

dx2
(X

t2
N

k

)(MX

t2
N

k+1

−MX

t2
N

k

)2

+

2N−1∑
k=0

d2Φ

dx2
(ξ2N

k )(MX

t2
N

k+1

−MX

t2
N

k

)(K
t2

N

k+1

−K
t2

N

k

) +
1

2

2N−1∑
k=0

d2Φ

dx2
(ξ2N

k )(K
t2

N

k+1

−K
t2

N

k

)2

+
1

2

2N−1∑
k=0

(
d2Φ

dx2
(ξ2N

k )− d2Φ

dx2
(X

t2
N

k

)

)
(MX

t2
N

k+1

−MX

t2
N

k

)2 +

2N−1∑
k=0

dΦ

dx
(X

t2
N

k

)(K
t2

N

k+1

−K
t2

N

k

)

= IN1 + IN2 + IN3 + IN4 + IN5 + IN6 ,

where ξ2N

k satisfies X
t2

N

k

∧X
t2

N

k+1

≤ ξ2N

k ≤ X
t2

N

k

∨X
t2

N

k+1

q.s..

A key point in the proof is to verify the following convergences in M2
G([0, T ]):

2N−1∑
k=0

dΦ

dx
(X

t2
N

k

)1
[t2

N

k ,t2
N

k+1)
(·)→ dΦ

dx
(X·), as N → +∞; (3.8)

and
2N−1∑
k=0

d2Φ

dx2
(X

t2
N

k

)1
[t2

N

k ,t2
N

k+1)
(·)→ d2Φ

dx2
(X·), as N → +∞. (3.9)

For the G-Itô part MX , we deduce by the BDG type inequalities

∫ t

s

Ē

[∣∣∣∣ 2N−1∑
k=0

MX

t2
N

k

1
[t2

N

k ,t2
N

k+1)
(u)−MX

∣∣∣∣2]du ≤M |t− s|(δ + δ2)→ 0, as N → +∞. (3.10)
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For the increasing process K, thanks to assumption (3.6), for each u ∈ [s, t],

lim
N→+∞

Ē

[∣∣∣∣ 2N−1∑
k=0

K
t2

N

k

1
[t2

N

k ,t2
N

k+1)
(u)−Ku

∣∣∣∣2] = 0. (3.11)

Moreover, ∫ t

s

Ē

[∣∣∣∣ 2N−1∑
k=0

K
t2

N

k

1
[t2

N

k ,t2
N

k+1)
(u)

∣∣∣∣2]du ≤ ∫ t

s

Ē[K2
u]du < +∞.

By Lebesgue’s dominated convergence theorem to the integral on [s, t], we deduce

lim
N→+∞

∫ t

s

Ē

[∣∣∣∣ 2N−1∑
k=0

K
t2

N

k

1
[t2

N

k ,t2
N

k+1)
(u)−Ku

∣∣∣∣2]du = 0. (3.12)

Combining (3.10) and (3.12), (3.8) and (3.9) are readily obtained by the Lipschitz conti-
nuity of dΦ

dx and d2Φ
dx2 . Then, we can proceed similarly to Peng [16] to treat with IN1 and

IN2 .

On the other hand, due to the boundedness of d2Φ
dx2 and the boundedness and uniform

continuity of paths MX
· (ω) and K·(ω) on [0, T ], for each ω ∈ Ac, we can easily obtain

that IN3 and IN4 q.s. vanish.

For IN5 , we calculate

|IN5 | ≤
C

2

2N−1∑
k=0

|ξ2N

k −Xt2
N

k

||MX

t2
N

k+1

−MX

t2
N

k

|2

≤ C

2

( 2N−1∑
k=0

|(ξ1)2N

k −MX

t2
N

k

||MX

t2
N

k+1

−MX

t2
N

k

|2 +

2N−1∑
k=0

|(ξ2)2N

k −Kt2
N

k

||MX

t2
N

k+1

−MX

t2
N

k

|2
)
,

where (ξ1)2N

k satisfies MX

t2
N

k

∧MX

t2
N

k+1

≤ (ξ1)2N

k ≤MX

t2
N

k

∨MX

t2
N

k+1

and (ξ2)2N

k satisfies K
t2

N

k

≤

(ξ2)2N

k ≤ K
t2

N

k+1

, q.s.. The result in Peng [16] shows that the first part converges to 0

in M2
G([0, T ]), whereas the second part vanishes as a result of the uniform continuity of

paths K·(ω) on [0, T ], for all ω ∈ Ac and the q.s. boundedness of the quadratic variation
of the G-Itô part MX .

For IN6 , it converges to
∫ t
s
dΦ
dx (Xu)dKu, q.s. by Definition 3.5. �

Remark 3.16. In the proof of the classical Itô’s formula, (3.8) and (3.9) can be verified
directly by the pathwise continuity of X and Lebesgue’s dominated convergence theo-
rem on the product space [s, t] × Ω. But in the G-framework, we lack such a theorem.
In general, given an X ∈M2

G([0, T ]), the sequence of step processes

{ 2N−1∑
k=0

X
t2

N

k

1
[t2

N

k ,t2
N

k+1)
(·)
}
N∈N

could not converge to X in the sense of M2
G([0, T ]). Thus, (3.6) is needed to ensure that

(3.11) holds true.

In fact, the left-hand side of (3.7), particularly the term
∫ t
s
dΦ
dx (Xu)dKu, still belongs to

L2
G(Ωt). A sufficient condition of this result is that Kt ∈ L2

G(Ωt), which can be verified
by choosing a sequence such that tn → t and for all n ∈ N, Xtn ∈ L2

G(Ωtn) (Remark 2.11
ensures the existence of this sequence) and by deduction from assumption (3.6).
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Similar to Theorem 6.5 of Peng [16], we can extend G-Itô’s formula in Lemma 3.14
to those Φ whose second derivatives d2Φ

dx2 have polynomial growth. Unfortunately, this
extension is at the cost of more restrictions on the increasing process K.

Theorem 3.17. Let Φ ∈ C2(R) be a real function such that d2Φ
dx2 satisfies the poly-

nomial growth condition. Let f , h and g be bounded processes in M2
G([0, T ]) and

K ∈MI([0, T ]) ∩M2
G([0, T ]) satisfies that for each t ∈ [0, T ],

lim
s→t

Ē[|Kt −Ks|2] = 0;

and for any p > 2, Ē[Kp
T ] < +∞. Then,

Φ(Xt)− Φ(Xs) =

∫ t

s

dΦ

dx
(Xu)fudu+

∫ t

s

dΦ

dx
(Xu)hud〈B〉u

+

∫ t

s

dΦ

dx
(Xu)gudBu +

∫ t

s

dΦ

dx
(Xu)dKu (3.13)

+
1

2

∫ t

s

d2Φ

dx2
(Xu)g2

ud〈B〉u, q.s..

Proof: By the same argument in the proof of Theorem 6.5 of Peng [16], we can choose
a sequence of functions ΦN ∈ C2

0(R), such that for each x ∈ R,

|ΦN (x)− Φ(x)|+
∣∣∣∣dΦN

dx
(x)− dΦ

dx
(x)

∣∣∣∣+

∣∣∣∣d2ΦN

dx2
(x)− d2Φ

dx2
(x)

∣∣∣∣ ≤ C

N
(1 + |x|k), (3.14)

where C and k are positive constants independent of N . Obviously, ΦN satisfies the
conditions in Lemma 3.14. Therefore,

ΦN (Xt)− ΦN (Xs) =

∫ t

s

dΦN

dx
(Xu)fudu+

∫ t

s

dΦN

dx
(Xu)hud〈B〉u

+

∫ t

s

dΦN

dx
(Xu)gudBu +

∫ t

s

dΦN

dx
(Xu)dKu (3.15)

+
1

2

∫ t

s

d2ΦN

dx2
(Xu)g2

ud〈B〉u.

Borrowing the notation in the proof of Lemma 3.14 and using the BDG type inequalities,
we have

Ē[ sup
0≤t≤T

|Xt|2k] ≤ C(Ē[ sup
0≤t≤T

|MX
t |2k] + Ē[|KT |2k]) < +∞. (3.16)

Then, from (3.14) and (3.16), we deduce that as N → +∞,

ΦN (Xt)→ Φ(Xt), in L2
G(Ωt);

dΦN

dx
(X·)→

dΦ

dx
(X·), in M2

G([0, T ]); (3.17)

d2ΦN

dx2
(X·)→

d2Φ

dx2
(X·), in M2

G([0, T ]).

We can proceed as in Peng [16] to show that the terms on the right-hand side of (3.15),
except

∫ t
s
dΦN

dx (Xu)dKu, converge to their corresponding terms in (3.13). To complete
the proof, it suffices to show that for each ω ∈ Ac,∣∣∣∣ ∫ t

s

dΦN

dx
(Xu(ω))dKu(ω)−

∫ t

s

dΦ

dx
(Xu(ω))dKu(ω)

∣∣∣∣
≤ C

N

∫ t

s

(1 + |Xu(ω)|k)dKu(ω) ≤ C

N
(1 +Mk

ω)KT (ω)→ 0, as N → +∞,

by the continuity and boundedness of paths X·(ω) and K·(ω) on [0, T ]. �
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Remark 3.18. If |d
2Φ
dx2 (x)| ≤ C(1 + |x|k), for some k ≥ 1, then the condition on K could

be weakened to Ē[|KT |2(k+3)] < +∞.

Remark 3.19. Following exactly the procedure above, we can obtain a similar result
when a bounded variation process K1 −K2 appears in the dynamic.

4 Reflected G-Brownian motion

Before moving to the main result of this paper, we first consider a reduced RGSDE, that
is, taking f = h ≡ 0 and g ≡ 1, only a G-Brownian motion and an increasing process
drive the dynamic on the right-hand side of (1.1). In what follows, we establish the
solvability to the RGSDE of this type, i.e., the existence and uniqueness of reflected
G-Brownian Motion.

Let y be a real valued continuous function on [0, T ] with y0 ≥ 0. It is well-known that
there exists a unique pair (x, k) of functions on [0, T ] such that x = y + k, where x is
positive, k is an increasing and continuous function that starts from 0. Moreover, the
Riemann-Stieltjes integral

∫ T
0
xtdkt = 0. The solution to this Skorokhod problem on

[0, T ] is given by xt = yt + kt;

kt = sup
s≤t

x−s ,
(4.1)

which is explicit and unique.

Theorem 4.1. For any p ≥ 1, there exists a unique pair of processes (X,K) inMp
G([0, T ])×

(MI([0, T ]) ∩Mp
G([0, T ])), such that

Xt = Bt +Kt, 0 ≤ t ≤ T, q.s., (4.2)

where (a) K0 = 0; (b) X is positive; and (c)
∫ T

0
XtdKt = 0, q.s..

Proof: With the help of (4.1), we define a pair of processes (X,K) pathwisely on [0, T ]:Xt(ω) = Bt(ω) +Kt(ω);

Kt(ω) = sup
s≤t

B−s (ω). (4.3)

Obviously, K ∈ MI([0, T ]) and (a), (b) and (c) are satisfied. Therefore, to complete the
proof, we need only verify that K ∈Mp

G([0, T ]).

Because for all 1 ≤ p′ < p, Mp′

G ([0, T ]) ⊂ Mp
G([0, T ]), we can assume that p > 2 without

loss of generality. Given a sequence of partitions {πN[0,T ]}N∈N, we set

(B−t )N (ω) :=

N−1∑
k=0

B−
tNk

(ω)1[tNk ,t
N
k+1)(t), 0 ≤ t ≤ T ;

and

sup
0≤s≤t

(B−s )N :=

N−1∑
k=0

max
l∈{0,1,...,k}

B−
tNl
1[tNk ,t

N
k+1)(t), 0 ≤ t ≤ T.

We observe that both ((B−t )N )0≤t≤T and ( sup
0≤s≤t

(B−s )N )0≤t≤T are step processes inMp
G([0, T ]).

Because

Ē[| sup
0≤s≤t

(B−s )N − sup
0≤s≤t

B−s |p] ≤ Ē[ sup
0≤s≤t

|(B−s )N −B−s |p]

≤ Ē[ sup
0≤t≤T

|BNt −Bt|p] ≤ Ē[ sup
k∈N∩[0,N)

sup
tk≤t<tk+1

|Bt −BtNk |
p],

EJP 18 (2013), paper 9.
Page 13/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2566
http://ejp.ejpecp.org/


GSDEs with Reflecting Boundary Conditions

then, letting f = h ≡ 0 and g ≡ 1 in (3.5), we obtain

Ē[| sup
0≤s≤t

(B−s )N − sup
0≤s≤t

B−s |p] ≤ Cµ(πN[0,T ])
p
2−1 → 0, as N → +∞,

which shows that ( sup
0≤s≤t

(B−s )N )0≤t≤T converges to K in Mp
G([0, T ]).

On the other hand, the uniqueness of such a pair (X,K) is inherited from the solution
to the Skorokhod problem pathwisely. The proof is complete. �

Remark 4.2. We call the process X in Theorem 4.1 a G-reflected Brownian motion on
the half-line [0,+∞).

Furthermore, if the G-Brownian motion B is replaced by some G-Itô process, we have
the following statement similar to Theorem 4.1.

Theorem 4.3. For some p > 2, consider a q.s. continuous G-Itô process Y defined in
the form of (3.4) whose coefficients are all elements in Mp

G([0, T ]). Then, there exists a
unique pair of processes (X,K) in Mp

G([0, T ])× (MI([0, T ]) ∩Mp
G([0, T ])) such that

Xt = Yt +Kt, 0 ≤ t ≤ T, q.s., (4.4)

where (a) X is positive; (b) K0 = 0; and (c)
∫ T

0
XtdKt = 0, q.s..

We omit the proof, because it is an analogue to the proof above and deduced mainly by
the integrability of the coefficients of Y and (3.5).

5 Scalar valued RGSDEs

We state our main result in this section by giving the existence and uniqueness of the
solutions to the scalar valued RGSDEs with Lipschitz coefficients. Additionally, a com-
parison theorem is given at the end of this paper.

5.1 Formulation to RGSDEs

We consider the following scalar valued RGSDE:

Xt = x+

∫ t

0

fs(Xs)ds+

∫ t

0

hs(Xs)d〈B〉s +

∫ t

0

gs(Xs)dBs +Kt, 0 ≤ t ≤ T, q.s., (5.1)

where

(A1) The initial condition x ∈ R;

(A2) For some p > 2, the coefficients f , h and g : Ω× [0, T ]×R→ R are given functions
that satisfy for each x ∈ R, f·(x), h·(x) and g·(x) ∈Mp

G([0, T ]);

(A3) The coefficients f , h and g that satisfy a Lipschitz condition, i.e., for each t ∈ [0, T ]

and x, x′ ∈ R, |ft(x)− ft(x′)|+ |ht(x)− ht(x′)|+ |gt(x)− gt(x′)| ≤ CL|x− x′|, q.s.;

(A4) The obstacle is a G-Itô process whose coefficients are all elements in Mp
G([0, T ]),

and we shall always assume that S0 ≤ x, q.s..

The solution of the RGSDE (5.1) is a pair of processes (X,K) that take values both in R
and satisfy:

(A5) X ∈Mp
G([0, T ]) and Xt ≥ St, 0 ≤ t ≤ T , q.s.;

(A6) K ∈MI([0, T ]) ∩Mp
G([0, T ]) and K0 = 0, q.s.;

(A7)
∫ T

0
(Xt − St)dKt = 0, q.s..
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5.2 Some a priori estimates and the uniqueness result

Let (X,K) be a solution to (5.1). Replacing Yt by x +
∫ t

0
fs(Xs)ds +

∫ t
0
hs(Xs)d〈B〉s +∫ t

0
gs(Xs)dBs−St and Xt by Xt−St in (4.4), we have the following representation of K:

Kt = sup
0≤s≤t

(
x+

∫ s

0

fu(Xu)du+

∫ s

0

hu(Xu)d〈B〉u (5.2)

+

∫ s

0

gu(Xu)dBu − Ss
)−

, 0 ≤ t ≤ T, q.s..

We now give an a priori estimate on the uniform norm of the solution.

Proposition 5.1. Let (X,K) be a solution to (5.1). Then, there exists a constant C > 0

such that

Ē[ sup
0≤t≤T

|Xt|p] + Ē[Kp
T ] ≤ C

(
|x|p +

∫ T

0

(Ē[|ft(0)|p]

+ Ē[|ht(0)|p] + Ē[|gt(0)|p])dt+ Ē[ sup
0≤t≤T

|S+
t |p]

)
.

Proof: As X is the solution of (5.1), we obtain

Ē[ sup
0≤s≤t

|Xs|p] ≤ Ē[ sup
0≤s≤t

|x+
∫ s

0
fu(Xu)du+

∫ s
0
hu(Xu)d〈B〉u +

∫ s
0
gu(Xu)dBu +Ks|p]

≤ C(|x|p + Ē[ sup
0≤s≤t

|
∫ s

0
fu(Xu)du|p] + Ē[ sup

0≤s≤t
|
∫ s

0
hu(Xu)d〈B〉u|p]

+ Ē[ sup
0≤s≤t

|
∫ s

0
gu(Xu)dBu|p] + Ē[|Kt|p]).

(5.3)
In a similar way to (5.3), from the representation of K (5.2), we have

Ē[Kp
t ] ≤ Ē[ sup

0≤s≤t
((x+

∫ s
0
fu(Xu)du+

∫ s
0
hu(Xu)d〈B〉u +

∫ s
0
gu(Xu)dBu − Ss)−)p]

≤ Ē[ sup
0≤s≤t

((x+
∫ s

0
fu(Xu)du+

∫ s
0
hu(Xu)d〈B〉u +

∫ s
0
gu(Xu)dBu − S+

s )−)p]

≤ Ē[ sup
0≤s≤t

|x+
∫ s

0
fu(Xu)du+

∫ s
0
hu(Xu)d〈B〉u +

∫ s
0
gu(Xu)dBu − S+

s |p]

≤ C(|x|p + Ē[ sup
0≤s≤t

|
∫ s

0
fu(Xu)du|p] + Ē[ sup

0≤s≤t
|
∫ s

0
hu(Xu)d〈B〉u|p]

+ Ē[ sup
0≤s≤t

|
∫ s

0
gu(Xu)dBu|p] + Ē[ sup

0≤s≤t
|S+
s |p]).

(5.4)
Combining (5.3) and (5.4) and applying BDG type inequalities, we get

Ē[ sup
0≤s≤t

|Xs|p] + Ē[Kp
t ] ≤ C(|x|p+

∫ t
0
(Ē[|fs(Xs)|p]

+ Ē[|hs(Xs)|p] + Ē[|gs(Xs)|p])ds+ Ē[ sup
0≤s≤t

|S+
s |p].

By assumption (A3), we calculate

Ē[ sup
0≤s≤t

|Xs|p] + Ē[Kp
t ] ≤ C(|x|p +

∫ t
0
(Ē[(|fs(0)|+ CL|Xs|)p] + Ē[(|hs(0)|+ CL|Xs|)p]

+ Ē[(|gs(0) + CL|Xs|)p])ds+ Ē[ sup
0≤s≤t

|S+
s |p]

≤ C(|x|p +
∫ t

0
(Ē[|fs(0)|p] + Ē[|hs(0)|p] + Ē[|gs(0)|p])ds

+ Ē[ sup
0≤s≤t

|S+
s |p] +

∫ t
0
Ē[|Xs|p]ds)

≤ C(|x|p +
∫ T

0
(Ē[|ft(0)|p] + Ē[|ht(0)|p] + Ē[|gt(0)|p])dt

+ Ē[ sup
0≤t≤T

|S+
t |p] +

∫ t
0
Ē[ sup

0≤u≤s
|Xu|p]ds).

(5.5)
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Applying Gronwall’s lemma to Ē[ sup
0≤s≤t

|Xs|p], we deduce

Ē[ sup
0≤s≤t

|Xt|p] ≤ C
(
|x|p+

∫ T
0

(Ē[|ft(0)|p] + Ē[|ht(0)|p]

+ Ē[|gt(0)|p])dt+ Ē[ sup
0≤t≤T

|S+
t |p]

)
, 0 ≤ t ≤ T.

(5.6)

Putting (5.6) into (5.5), the result follows. �

In the following theorem, we estimate the variation in the solutions induced by a varia-
tion in the coefficients and the obstacle processes.

Theorem 5.2. Let (x1, f1, h1, g1, S1) and (x2, f2, h2, g2, S2) be two sets of coefficients
that satisfy the assumptions (A1)-(A4) and (Xi,Ki) the solution to the RGSDE corre-
sponding to (xi, f i, hi, gi, Si), i = 1, 2. Define

∆x := x1 − x2, ∆f := f1 − f2, ∆h := h1 − h2, ∆g := g1 − g2;

∆S := S1 − S2, ∆X := X1 −X2, ∆K := K1 −K2.

Then there exists a constant C > 0 such that

Ē[ sup
0≤t≤T

|∆Xt|p] ≤ C
(
|∆x|p +

∫ T

0

(Ē[|∆ft(X1
t )|p]+Ē[|∆ht(X1

t )|p]

+Ē[|∆gt(X1
t )|p])dt+ Ē[ sup

0≤t≤T
|∆St|p]

)
.

Proof: Defining

(MX)it := xi +
∫ t

0
f is(X

i
s)ds+

∫ t
0
his(X

i
s)d〈B〉s +

∫ t
0
gis(X

i
s)dBs, 0 ≤ t ≤ T, i = 1, 2;

and
∆MX := (MX)1 − (MX)2,

we calculate in a similar way to the proof of Proposition 5.1

Ē[ sup
0≤s≤t

|(∆MX)s|p] ≤ Ē[ sup
0≤s≤t

|∆x+
∫ s

0
(f1
u(X1

u)− f2
u(X2

u))du

+
∫ s

0
(h1
u(X1

u)− h2
u(X2

u))d〈B〉u +
∫ s

0
(g1
u(X1

u)− g2
u(X2

u))dBu|p]

≤ Ē[ sup
0≤s≤t

|∆x+
∫ s

0
∆fu(X1

u)du+
∫ s

0
(f2
u(X1

u)− f2
u(X2

u))du

+
∫ s

0
∆hu(X1

u)d〈B〉u +
∫ s

0
(h2
u(X1

u)− h2
u(X2

u))d〈B〉u

+
∫ s

0
∆gu(X1

u)dBu +
∫ s

0
(g2
u(X1

u)− g2
u(X2

u))dBu|p]

≤ C(|∆x|p +
∫ t

0
(Ē[|∆fs(X1

s )|p] + Ē[|∆hs(X1
s )|p]

+ Ē[|∆gs(X1
s )|p])ds+

∫ t
0
Ē[|∆Xs|p]ds)

and

Ē[ sup
0≤s≤t

|∆Ks|p] = Ē[ sup
0≤s≤t

| sup
0≤u≤s

((MX)1
u − S1

u)− − sup
0≤u≤s

((MX)2
u − S2

u)−|p]

≤ Ē[ sup
0≤s≤t

| sup
0≤u≤s

|((MX)1
u − S1

u)− − ((MX)2
u − S2

u)−||p]

= Ē[ sup
0≤s≤t

|((MX)1
s − S1

s )− − ((MX)2
s − S2

s )−|p]

≤ Ē[ sup
0≤s≤t

|((MX)1
s − S1

s )− ((MX)2
s − S2

s )|p]

≤ C(Ē[ sup
0≤s≤t

|∆(MX)s|p] + Ē[ sup
0≤s≤t

|∆Ss|p]).

(5.7)
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Then, we have

Ē[ sup
0≤s≤t

|∆Xs|p] ≤ Ē[ sup
0≤s≤t

|(∆MX)s + ∆Ks|p|]

≤ C(Ē[ sup
0≤s≤t

|(∆MX)s|p] + Ē[ sup
0≤s≤t

|∆Ks|p])

≤ C(|∆x|p +
∫ t

0
(Ē[|∆fs(X1

s )|p] + Ē[|∆hs(X1
s )|p]

+ Ē[|∆gs(X1
s )|p])ds+ Ē[ sup

0≤s≤t
|∆Ss|p] +

∫ t
0
Ē[|∆Xs|p]ds).

≤ C(|∆x|p +
∫ T

0
(Ē[|∆ft(X1

t )|p] + Ē[|∆ht(X1
t )|p] + Ē[|∆gt(X1

t )|p])dt

+ Ē[ sup
0≤t≤T

|∆St|p] +
∫ t

0
Ē[ sup

0≤u≤s
|∆Xu|p]ds).

Gronwall’s lemma gives the desired result. �

We deduce immediately the following uniqueness result by taking x1 = x2, f1 = f2,
h1 = h2, g1 = g2 and S1 = S2 in Theorem 5.2.

Theorem 5.3. Under assumptions (A1)-(A4), there exists at most one solution inMp
G([0, T ])×

(MI([0, T ]) ∩Mp
G([0, T ])) to the RGSDE (5.1).

5.3 Existence result

We now turn to the following existence result for the RGSDE (5.1). The proof will be
based on a Picard iteration.

Theorem 5.4. Under assumptions (A1)-(A4), there exists a unique solution inMp
G([0, T ])×

(MI([0, T ]) ∩Mp
G([0, T ])) to the RGSDE (5.1).

Proof: We set X0 = x and K0 = 0. For each n > 0, Xn+1 is given by recurrence:

Xn+1
t = x+

∫ t

0

fs(X
n
s )ds+

∫ t

0

hs(X
n
s )d〈B〉s +

∫ t

0

gs(X
n
s )dBs +Kn+1

t , 0 ≤ t ≤ T, (5.8)

where

(a) Xn+1 ∈Mp
G([0, T ]), Xn+1

t ≥ St, 0 ≤ t ≤ T, q.s.;

(b) Kn+1 ∈MI([0, T ]) ∩Mp
G([0, T ]), Kn+1

0 = 0, q.s.;

(c)
∫ T

0
(Xn+1

t − St)dKn+1
t = 0, q.s..

SubstitutingXn+1 by X̃n+1+St on the left-hand side of (5.8), we know that (Xn+1,Kn+1)

is well defined in Mp
G([0, T ])× (MI([0, T ]) ∩Mp

G([0, T ])) by Theorem 4.3.

First, we establish an a priori estimate uniform in n for {Ē[ sup
0≤t≤T

|Xn
t |p]}n∈N. In a similar

way to (5.5), we have

Ē[ sup
0≤s≤t

|Xn+1
t |p] ≤ C

(
|x|p +

∫ T

0

(Ē[|ft(0)|p] + Ē[|ht(0)|p]

+ Ē[|gt(0)|p])dt+ Ē[ sup
0≤t≤T

|S+
t |p] +

∫ t

0

Ē[ sup
0≤u≤s

|Xn
u |p]ds

)
.

By recurrence, it is easy to verify that for all n ∈ N,

Ē[ sup
0≤s≤t

|Xn
s |p] ≤ p(t), 0 ≤ t ≤ T,

where p(·) is the solution to the following ordinary differential equation:

p(t) = C

(
|x|p +

∫ T

0

(Ē[|ft(0)|p] + Ē[|ht(0)|p] + Ē[|gt(0)|p])dt+ Ē[ sup
0≤t≤T

|S+
t |p] +

∫ t

0

p(s)ds

)
;
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and p(·) is continuous and thus, bounded on [0, T ].

Secondly, for each n and m ∈ N, we define

un+1,m
t := Ē[ sup

0≤s≤t
|Xn+m+1

s −Xn+1
s |p], 0 ≤ t ≤ T.

Following the procedures in the proof of Theorem 5.2, we have

un+1,m
t ≤ C

∫ t

0

un,ms ds.

Set

vnt := sup
m∈N

un,mt , 0 ≤ t ≤ T,

then

0 ≤ un+1,m
t ≤ C sup

m∈N

∫ t

0

un,ms ds ≤ C
∫ t

0

sup
m∈N

un,ms ds = C

∫ t

0

vns ds.

Taking the supremum over all m ∈ N on the left-hand side, we obtain

0 ≤ vn+1
t = sup

m∈N
un+1,m
t ≤ C

∫ t

0

vns ds.

Finally, we define

αt := lim sup
n→+∞

vnt , 0 ≤ t ≤ T.

It is easy to find that vnt ≤ Cp(t), where C is independent of n. By the Fatou-Lebesgue
theorem, we have

0 ≤ αt ≤ C
∫ t

0

αsds.

Gronwall’s lemma gives

αt = 0, 0 ≤ t ≤ T,

which implies that {Xn}n∈N is a Cauchy sequence under the norm (E[ sup
0≤t≤T

| · |p])
1
p ,

whose limit is certainly in Mp
G([0, T ]). We denote the limit by X and set

Kt := sup
0≤s≤t

(
x+

∫ s

0

fu(Xu)du+

∫ s

0

hu(Xu)d〈B〉u +

∫ s

0

gu(Xu)dBu − Ss
)−

, 0 ≤ t ≤ T.

Obviously, the pair of processes (X,K) satisfies (A5) - (A7). We notice that

Ē

[
sup

0≤t≤T

∣∣∣∣ ∫ t

0

(fs(X
n
s )− fs(Xs))ds

∣∣∣∣p] ≤ C ∫ T

0

Ē[|Xn
t −Xt|p]dt;

Ē

[
sup

0≤t≤T

∣∣∣∣ ∫ t

0

(hs(X
n
s )− hs(Xs))d〈B〉s

∣∣∣∣p] ≤ C ∫ T

0

Ē[|Xn
t −Xt|p]dt;

Ē

[
sup

0≤t≤T

∣∣∣∣ ∫ t

0

(gs(X
n
s )− gs(Xs))dBs

∣∣∣∣p] ≤ C ∫ T

0

Ē[|Xn
t −Xt|p]dt.

Then, one can verify that Kn converges to K in Mp
G([0, T ]) following the steps of (5.7).

We conclude that the pair of processes (X,K), well defined in Mp
G([0, T ])× (MI([0, T ])∩

Mp
G([0, T ])), is a solution to the RGSDE (5.1). �
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Remark 5.5. Unlike a classical RSDE or RBSDE, the constraint process S here is as-
sumed to be a G-Itô process instead of a continuous process with Ē[ sup

0≤t≤T
(S+
t )2] ≤ +∞

(cf. El Karoui et al. [3]). In fact, this is a sufficient condition to ensure that Kn+1 is still
a Mp

G([0, T ]) process in (5.8) by Theorem 4.3, which may be weakened to:

Ē[ sup
s≤u≤t

|Su − Ss|p] ≤ C|t− s|
p
2 .

Remark 5.6. We could also consider (5.1) with less regularity assumptions on the co-
efficients f , h, g and the obstacle S under a family PW of local martingale measures
by using the approach introduced in Soner et al. [21, 22, 23]. The only problem in
this case is the aggregation of the processes in the Picard iteration (5.8) for the proof
of existence. Adapting to the assumptions of Theorem 2.2 in Nutz [13], we assume
in addition that we work under Zermelo-Fraenkel set theory with the axiom of choice
and the continuum hypothesis, then the stochastic integral of Itô’s type

∫ t
0
gs(X

n
s )dBs

can be well aggregated at each step of the recurrence. Thus, we can define from (4.1)
a universal pair (Xn+1,Kn+1) to make (5.8) P-a.s. hold for all P ∈ PW . Following
the argument in the proof of Theorem 5.4 under each P ∈ PW , there exists a pair
(XP,KP) such that (5.1) holds true P-a.s. and (Xn,Kn) converges to (XP,KP) in prob-
ability measure P. By Lemma 2.5 in Nutz [13], there exists a universal pair (X,K) such
that (X,K) = (XP,KP), P-a.s., which solves (5.1) under each P ∈ P and thus, in the
(weaker) sense of PW -q.s..

Remark 5.7. In contrast with the fact mentioned in Remark 3.3 of Matoussi et al. [14],
our results can be directly applied to the symmetrical problem, i.e., the RGSDE with
an upper barrier. This conclusion is because the proof is only based on a pathwise
construction and a fixed-point iteration.

5.4 Comparison principle

In this subsection, we establish a comparison principle for RGSDEs. At first, we assume
additionally a bounded condition on the coefficients f , h and g and the obstacle process
S, and then we remove it in the second step.

Theorem 5.8. Given two RGSDEs that satisfy the assumptions (A1)-(A4), we addition-
ally suppose in the following:

(1) x1 ≤ x2;

(2) f i, hi and g1 = g2 = g are bounded and Si are uniformly bounded above, i = 1, 2;

(3) for each x ∈ R, f1
t (x) ≤ f2

t (x), h1
t (x) ≤ h2

t (x); and S1
t ≤ S2

t , 0 ≤ t ≤ T , q.s..

Let (Xi,Ki) be a solution to the RGSDE with data (f i, hi, g, Si), i = 1, 2, then

X1
t ≤ X2

t , 0 ≤ t ≤ T, q.s..

Proof: Since f i, hi and g are bounded and Si are uniformly bounded above, i = 1, 2,
using the BDG type inequalities to (5.2), we deduce that Ki

T has the moment for any
arbitrarily large order and for each t ∈ [0, T ], lim

s→t
Ē[|Ki

t −Ki
s|2] = 0, i = 1, 2.

Notice that (x+)2 is not a C2(R) function. We have to consider (x+)3 and apply the
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extended G-Itô’s formula to ((X1
t −X2

t )+)3, then

((X1
t −X2

t )+)3 = 3

∫ t

0

|(X1
s −X2

s )+|2(f1
s (X1

s )− f2
s (X2

s ))ds

+ 3

∫ t

0

|(X1
s −X2

s )+|2(h1
s(X

1
s )− h2

s(X
2
s ))d〈B〉s

+ 3

∫ t

0

|(X1
s −X2

s )+|2(gs(X
1
s )− gs(X2

s ))dBs (5.9)

+ 3

∫ t

0

|(X1
s −X2

s )+|2d(K1
s −K2

s )

+ 3

∫ t

0

(X1
s −X2

s )+|gs(X1
s )− gs(X2

s )|2d〈B〉s.

As on {X1
t > X2

t }, X1
t > X2

t ≥ S2
t ≥ S1

t , we have∫ t

0

|(X1
s −X2

s )+|2d(K1
s −K2

s ) =

∫ t

0

|(X1
s −X2

s )+|2dK1
s −

∫ t

0

|(X1
s −X2

s )+|2dK2
s

≤
∫ t

0

|(X1
s − S1

s )+|2dK1
s −

∫ t

0

|(X1
s −X2

s )+|2dK2
s (5.10)

≤ −
∫ t

0

|(X1
s −X2

s )+|2dK2
s ≤ 0, q.s..

We put (5.10) into (5.9) and then, by Lipschitz condition (A3) and by takingG-expectation
on both sides of (5.10), we conclude

Ē[((X1
t −X2

t )+)3] ≤ CĒ
[ ∫ t

0

((X1
s −X2

s )+)3ds

]
≤ C

∫ t

0

Ē[((X1
s −X2

s )+)3]ds.

Using Gronwall’s lemma, it follows that Ē[((X1
t −X2

t )+)3] = 0, which implies the result.
�

Theorem 5.9. Given two given RGSDEs that satisfy the assumptions (A1)-(A4), we
additionally suppose in the following:

(1) x1 ≤ x2 and g1 = g2 = g;

(2) for each x ∈ R, f1
t (x) ≤ f2

t (x) and h1
t (x) ≤ h2

t (x); and S1
t ≤ S2

t , 0 ≤ t ≤ T , q.s..

Let (Xi,Ki) be a solution to the RGSDE with data (f i, hi, g, Si), i = 1, 2, then

X1
t ≤ X2

t , 0 ≤ t ≤ T, q.s..

Proof: First, we define the truncated functions for the coefficients and the obstacle
process: for each N > 0, ξNt (x) := (−N ∨ ξt(x)) ∧N , where ξ denote f i, hi, g and x ∈ R;
and (Si)Nt = Sit ∧N , 0 ≤ t ≤ T , i = 1, 2. It is easy to verify that the truncated coefficients
and the obstacle processes satisfy (A2) and (A3). Moreover, the truncated functions
keep the order of the coefficients and the obstacle processes, that is, for each N > 0,

(f1)Nt (x) ≤ (f2)Nt (x) and (h1)Nt (x) ≤ (h2)Nt (x), for all x ∈ R, 0 ≤ t ≤ T, q.s.;

and

(S1)Nt ≤ (S2)Nt , 0 ≤ t ≤ T, q.s..

EJP 18 (2013), paper 9.
Page 20/23

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2566
http://ejp.ejpecp.org/


GSDEs with Reflecting Boundary Conditions

Consider the following RGSDEs:

(Xi)Nt = x+

∫ t

0

(f i)Ns ((Xi)Ns )ds+

∫ t

0

(hi)Ns ((Xi)Ns )d〈B〉s

+

∫ t

0

gNs ((Xi)Ns )dBs + (Ki)Nt , 0 ≤ t ≤ T, q.s., i = 1, 2,

under the following conditions:

(a) (Xi)N ∈Mp
G([0, T ]), (Xi)Nt ≥ (Si)Nt , 0 ≤ t ≤ T, q.s.;

(b) (Ki)N ∈MI([0, T ]) ∩Mp
G([0, T ]), (Ki)N0 = 0, q.s.;

(c)
∫ T

0
((Xi)Nt − (Si)Nt )d(Ki)Nt = 0, q.s..

By Theorem 5.8, it is readily observed that for each N ∈ N,

(X1)Nt ≤ (X2)Nt , 0 ≤ t ≤ T, q.s.. (5.11)

Meanwhile, by Theorem 5.2, we have

Ē[ sup
0≤s≤t

|(Xi)Ns −Xi
s|p] ≤ C(

∫ T
0

(Ē[|(f i)Nt (Xi
t)− f it (Xi

t)|p] + Ē[|(hi)Nt (Xi
t)− hit(Xi

t)|p]

+Ē[|gNt (Xi
t)− gt(Xi

t)|p])dt+ Ē[ sup
0≤t≤T

|(Si)Nt − Sit |p]

+
∫ t

0
Ē[ sup

0≤u≤s
|(Xi)Nu −Xi

u|p]ds).

Applying again Gronwall’s lemma, we obtain

Ē[ sup
0≤t≤T

|(Xi)Nt −Xi
t |p] ≤ C

(∫ T

0

(Ē[|(f i)N (t,Xi
t)− f i(t,Xi

t)|p] + Ē[|(hi)N (t,Xi
t)− hi(t,Xi

t)|p]

+ Ē[|gN (t,Xi
t)− g(t,Xi

t)|p])dt+ Ē[ sup
0≤t≤T

|(Si)Nt − Sit |p]
)
.

For each t ∈ [0, T ], we calculate

Ē[|(f i)Nt (Xi
t)− f it (Xi

t)|p] ≤ Ē[|f it (Xi
t)|p1|fi

t (Xi
t)|>N ]

≤ Ē[(|f it (0)|+ CL|Xi
t |)p1(|fi

t (0)|+CL|Xi
t |)>N ]

≤ C(Ē[|f it (0)|p1|fi
t (0)|>N

2
] + Ē[|Xi

t |p1|Xi
t |>N

2
]).

Taking into consideration that f·(0) and Xi ∈ Mp
G([0, T ]), from the argument in Remark

2.11, we know that ft(0) and Xi
t ∈ LpG([0, T ]) for almost every t ∈ [0, T ]. Therefore,

letting N → +∞, we have

Ē[|(f i)Nt (Xi
t)− f it (Xi

t)|p]→ 0.

Similarly, we also obtain
Ē[|(hi)Nt (Xi

t)− hit(Xi
t)|p]→ 0;

and
Ē[|(gi)Nt (Xi

t)− git(Xi
t)|p]→ 0.

Using Lebsgue’s dominated convergence theorem to the integrals on [0, T ], it follows
that

lim
N→+∞

∫ T

0

(Ē[|(f i)N (t,Xi
t)− f i(t,Xi

t)|p] + Ē[|(hi)N (t,Xi
t)− hi(t,Xi

t)|p] (5.12)

+ Ē[|gN (t,Xi
t)− g(t,Xi

t)|p])dt = 0.
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On the other hand,

Ē[ sup
0≤t≤T

|(Si)Nt − Sit |p] ≤ Ē[ sup
0≤t≤T

(|Sit |p1{|Si
t |>N})] ≤ Ē[ sup

0≤t≤T
|Sit |p1{ sup

0≤t≤T
|Si

t |>N}].

By the proof of Theorem 4.3, we know that sup
0≤t≤T

Sit is an element in LpG(ΩT ). So we

have

Ē[ sup
0≤t≤T

|(Si)Nt − Sit |p] ≤ Ē[ sup
0≤t≤T

|Sit |p1{ sup
0≤t≤T

|Si
t |>N}]→ 0, as N → +∞. (5.13)

Combining (5.12) and (5.13), we obtain

Ē[ sup
0≤t≤T

|(Xi)Nt −Xi
t |p]→ 0, as N → +∞. (5.14)

Then, (5.11) and (5.14) yield the desired result . �
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