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Abstract

We consider random walks in Dirichlet environment (RWDE) on Zd, for d ≥ 3, in the
sub-ballistic case. We associate to any parameter (α1, . . . , α2d) of the Dirichlet law a
time-change to accelerate the walk. We prove that the continuous-time accelerated
walk has an absolutely continuous invariant probability measure for the environment
viewed from the particle. This allows to characterize directional transience for the
initial RWDE. It solves as a corollary the problem of Kalikow’s 0−1 law in the Dirichlet
case in any dimension. Furthermore, we find the polynomial order of the magnitude
of the original walk’s displacement.
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1 Introduction

The behaviour of random walks in random environment (RWRE) is fairly well under-
stood in the case of dimension 1 (see Solomon ([16]), Kesten, Kozlov, Spitzer ([8]) and
Sinaï([15])). In the multidimensional case, some results are available under ballisticity
conditions (we refer to [20] and [2] for an overview of progress in this direction), or in
the case of small perturbations. But some simple questions remain unanswered. For ex-
ample, there is no general characterization of recurrence, Kalikow’s 0− 1 law is known
only for d ≤ 2 ([21]).

Random walks in Dirichlet environment (RWDE) is the special case when the tran-
sition probabilities at each site are chosen as i.i.d. Dirichlet random variables. RWDE
are interesting because of the analytical simplifications they offer, and because of their
link with reinforced random walks. Indeed, the annealed law of a RWDE corresponds to
the law of a linearly directed-edge reinforced random walk ([4], [11]). This model first
appeared in [11] in relation with edge reinforced random walks on trees. It was then
studied on Z×G ([7]), and on Zd ([5],[18],[12],[13],[14]).
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Sub-ballistic random walk in Dirichlet environment

We are interested in RWDE on Zd for d ≥ 3. A condition on the weights ensures that
the mean time spent in finite boxes is finite. Under this condition, it was proved ([13])
that there exists an invariant probability measure for the environment viewed from the
particle, absolutely continuous with respect to the law of the environment. Using [14],
this gives some criteria on ballisticity.

In this paper, we focus on the case when the condition on the weights is not sat-
isfied. Then the mean time spent in finite boxes is infinite, and there is no absolutely
continuous invariant probability measure ([13]). The law of large numbers gives a zero
speed. To overcome this difficulty, we construct a time-change that accelerates the
walk, such that the accelerated walk spends a finite mean time in finite boxes. An ab-
solutely continuous invariant probability measure then exists. With ergodic results, it
gives a characterization of the directional recurrence in the sub-ballistic case. As a
corollary, it solves the problem of Kalikow’s 0 − 1 law in the Dirichlet case (the case
d = 2 has been treated in [21]).

Besides, in the directionally transient case, we show a law of large numbers with
positive speed for our accelerated walk. This gives the polynomial order of the mag-
nitude of the original walk’s displacement, and could be a first step towards a limit
theorem for the original RWDE.

2 Definitions and statement of the results

Let (e1, . . . , ed) be the canonical basis of Zd, d ≥ 3, and set ej = −ej−d, for j ∈ [[d +

1, 2d]]. The set {e1, . . . , e2d} is the set of unit vectors of Zd. We denote by ‖z‖ =
∑d
i=1 |zi|

the L1-norm of z ∈ Zd, and write x ∼ y if ‖y − x‖ = 1. We consider the set of directed
edges E = {(x, y) ∈ (Zd)2, x ∼ y}. Let Ω be the set of all possible environments on Zd :

Ω = {ω = (ω(x, y))x∼y ∈]0, 1]E such that ∀x ∈ Zd,
2d∑
i=1

ω(x, x+ ei) = 1}.

For each ω ∈ Ω, we run a Markov chain Zn on Zd defined by the following transition
probabilities : ∀(x, y) ∈ Zd, ∀i ∈ [[1, 2d]],

Pωx (Zn+1 = y + ei|Zn = y) = ω(y, y + ei).

We are interested in random iid Dirichlet environments. Given a family of positive
weights (α1, . . . , α2d), a random iid Dirichlet environment is ω ∈ Ω constructed by choos-
ing independently at each site x ∈ Zd the values of (ω(x, x+ ei))i∈[[1,2d]] according to a
Dirichlet law with parameters (α1, . . . , α2d) that is with density :

Γ
(∑2d

i=1 αi

)
∏2d
i=1 Γ (αi)

(
2d∏
i=1

xαi−1
i

)
dx1 . . . dx2d−1

on the simplex

{(x1, . . . , x2d) ∈]0, 1]2d,

2d∑
i=1

xi = 1}.

Here Γ denotes the Gamma function Γ(α) =
∫∞

0
tα−1e−tdt , and dx1 . . . dx2d−1 repre-

sents the image of the Lebesgue measure on R2d−1 by the application (x1, . . . , x2d−1)→
(x1, . . . , x2d−1, 1 − x1 − · · · − x2d−1). Obviously, the law does not depend on the specific
role of x2d. We denote by P(α) the law obtained on Ω this way, by E(α) the expecta-
tion with respect to P(α), and by P(α)

x [.] = E(α)[Pωx (.)] the annealed law of the process
starting at x.
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In [13], it was proved that when

κ = 2

(
2d∑
i=1

αi

)
− max
i=1,...,d

(αi + αi+d) > 1,

there exists an invariant probability measure for the environment viewed from the par-
ticle, absolutely continuous with respect to P(α). This leads to a complete description
of ballistic regimes and directional transience. However, when κ ≤ 1, such an invariant
probability does not exist, and we only know that the walk is sub-ballistic. In this paper,
we focus on the case κ ≤ 1. We prove the existence of an invariant probability measure
for an accelerated walk. This allows to characterize recurrence in each direction for
the initial walk.

Let σ = (e1, . . . , en) be a directed path. By directed path, we mean a sequence of
directed edges ei such that ei = ei+1 for all i (e and e are the head and tail of the edge
e). We note ωσ =

∏n
i=1 ω(ei). Let Λ be a finite connected set of vertices containing 0.

Our accelerating function is :

γω(x) =
1∑
ωσ
, (2.1)

where the sum is on all σ finite simple (each vertex is visited at most once) paths starting
from x, going out of x+Λ, and stopped just after exiting x+Λ. Let Xt be the continuous-
time Markov chain whose jump rate from x to y is γω(x)ω(x, y), with X0 = 0. Then Zn =

Xtn , for tn =
∑n
k=1

1
γω(Zk)Ek, where the Ei are independent exponentially distributed

random variables with rate parameters 1 : Xt is an accelerated version of the walk Zn.

We note (τx)x∈Zd the shift on the environment defined by : τxω(y, z) = ω(x+y, x+z),
and call process seen from the particle the process defined by ωt = τXtω. Under Pω0

0

(ω0 ∈ Ω), ωt is a Markov process on state space Ω, his generator R is given by

Rf(ω) =

2d∑
i=1

γω(0)ω(0, ei) (f(τeiω)− f(ω)) ,

for all bounded measurable functions f on Ω. Invariant probability measures abso-
lutely continuous with respect to the law of the environment are a classical tool to
study processes viewed from the particle. The following theorem provides one for our
accelerated walk.

Theorem 2.1. Let d ≥ 3 and P(α) be the law of the Dirichlet environment for the
weights (α1, . . . , α2d). Let κΛ > 0 be defined by

κΛ = min{
∑

e∈∂+(K)

αe , K connected set of vertices , 0 ∈ K and ∂Λ ∩K 6= ∅}

where ∂+(K) = {e ∈ E, e ∈ K, e /∈ K} and ∂Λ = {x ∈ Λ|∃y ∼ x such that y /∈
Λ}. If κΛ > 1, there exists a unique probability measure Q(α) on Ω that is absolutely

continuous with respect to P(α) and invariant for the generator R. Furthermore, dQ
(α)

dP(α)

is in Lp(P(α)) for all 1 ≤ p < κΛ.
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0

Λ

Figure :
∑

e∈∂+(K)

αe (dashed arrows) for an arbitrary K (thick lines).

Remark 2.2. If Λ is a box of radius RΛ, the formula is explicit :

κΛ = min
i0∈[[1,d]]

αi0 + αi0+d + (RΛ + 1)
∑
i 6=i0

(αi + αi+d)

 .

Remark 2.3. κΛ can be made as big as we want by taking the set Λ big enough. Then
for each (α1, . . . , α2d), there exists an acceleration function such that the accelerated
walk verifies theorem 2.1.

Let dα = E
(α)
0 [Z1] = 1∑2d

i=1 αi

∑2d
i=1 αiei be the drift after the first jump.

Theorem 2.4. Let d ≥ 3,

i) If κΛ > 1 and dα = 0, then

lim
t→+∞

Xt

t
= 0, P

(α)
0 a.s.,

and ∀i = 1 . . . d,

lim inf
t→+∞

Xt · ei = −∞, lim sup
t→+∞

Xt · ei = +∞, P(α)
0 a.s..

ii) If κΛ > 1 and dα 6= 0, then ∃v 6= 0 such that

lim
t→+∞

Xt

t
= v, P

(α)
0 a.s.,

and ∀i = 1 . . . d such that dα · ei 6= 0, we have

(dα · ei)(v · ei) > 0,

whereas if dα · ei = 0,

lim inf
t→+∞

Xt · ei = −∞, lim sup
t→+∞

Xt · ei = +∞, P(α)
0 a.s..

EJP 18 (2013), paper 58.
Page 4/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2109
http://ejp.ejpecp.org/


Sub-ballistic random walk in Dirichlet environment

As (Xt)t∈R+
and (Zn)n∈N go through exactly the same vertices in the same order, and

as the two processes stay a finite time on each vertex without exploding, recurrence and
transience for the original walk Zn · ei follow from those of Xt · ei.

Corollary 2.5. Let d ≥ 3, for i = 1, . . . , d

i) If dα · ei = 0,

lim inf
n→+∞

Zn · ei = −∞, lim sup
n→+∞

Zn · ei = +∞, P(α)
0 a.s..

ii) If dα · ei > 0,

lim
n→+∞

Zn · ei = +∞, P(α)
0 a.s..

iii) If dα · ei < 0,

lim
n→+∞

Zn · ei = −∞, P(α)
0 a.s..

The proof of theorem 2.4 allows besides to solve the problem of Kalikow’s 0− 1 law
in the Dirichlet case.

Corollary 2.6 (Kalikow’s 0 − 1 law in the Dirichlet case). Let P(α) be the law of the
Dirichlet environment on Zd, d ≥ 1, for the weights (α1, . . . , α2d), and Zn the associated
random walk in Dirichlet environment. Then for all l ∈ Rd \ {0}, we are in one of the
following cases :

• lim inf
n→+∞

Zn · l = −∞, lim sup
n→+∞

Zn · l = +∞, P(α)
0 a.s.,

• lim
n→+∞

Zn · l = −∞, P(α)
0 a.s.,

• lim
n→+∞

Zn · l = +∞, P(α)
0 a.s..

Remark 2.7. Theorem 2.4 also gives the existence of a deterministic asymptotic direc-
tion P(α)

0 a.s. when d ≥ 3 and dα 6= 0. As I was finishing this article, Tournier informed
me about the existence of a more general version of theorem 1 of [14]. Using this result
instead of [14] in the proof of theorem 2.4 allows to show that the asymptotic direction
is dα
|dα| , see [19] for details.

In the transient sub-ballistic case, we also obtain the polynomial order of the magni-
tude of the walk’s displacement :

Theorem 2.8. Let d ≥ 3, P(α) be the law of the Dirichlet environment with parameters
(α1, . . . , α2d) on Zd, and Zn the associated random walk in Dirichlet environment. We

suppose that κ = 2
(∑2d

i=1 αi

)
−maxi=1,...,d(αi + αi+d) ≤ 1. Let l ∈ {e1, . . . , e2d} be such

that dα · l 6= 0. Then

lim
n→+∞

log(Zn · l)
log(n)

= κ in P(α)-probability.

Remark 2.9. The directional transience shown in [19] should also enable to extend the
results of theorem 2.4, corollary 2.5 and theorem 2.8 from (ei)i=1,...,2d to any l ∈ Rd.
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3 Outline of the proofs

All the difficulties compared to [13] come from the presence of some big traps in the
sub-ballistic case. When the parameters α1, . . . , α2d are small, the Dirichlet environment
is very disordered. As the environment is not uniformly elliptic, it creates finite sets of
edges where a lot of time is spent. The walk is trapped on those edges. The simplest
example of trap is the case of two opposite edges with high probabilities :

To deal with the traps, we introduce an accelerated walk Xt, with the jump rates
γω(x)ω(x, y) from x to y, which moves faster in strong traps. We choose the accelerating
function γω(x) = 1∑

ωσ
defined in (2.1), where we sum on some paths exiting a box x+Λ.

It "kills" all the traps of size smaller than |Λ|, and for Λ big enough the walk Xt becomes
ballistic.

To prove theorems 2.1 and 2.4, we try to adapt the proofs of [13] to the accelerated
walk Xt. First we need an invariant measure absolutely continuous with respect to P(α)

for the process seen from the particle ωt. For this we approximate Zd by a periodic
torus of large size N . As the torus is a finite graph, there exists an invariant probability
π̃ωN for Xt, and Ndπ̃ωN (0)P

(α)
N is an invariant probability for ωt. We are then reduced to

find a bound for E(α)
[
(Ndπ̃ωN (0))p

]
, uniformly in N , for p < κΛ.

This is bounded by E(α)

[ ∏
x∈TN

(
π̃ωN (0)
π̃ωN (x)

)p/Nd]
thanks to the arithmetico-geometrical

inequality. We then use lemma 1 of [13] which tells that the time-reversed environment
ω̌ still follows i.i.d. Dirichlet laws of known parameters. We therefore rewrite the pre-

vious expectation as E(α)
[
ω̌θ̌N

ωθN
(γω(0))

p

Nd
−p ***

]
, where θN can be any positive function

that follows some divergence conditions., and *** are extra-terms made precise in the
proof (see expression 4.4) unnecessary for this heuristic approach.

At this point, Holder’s inequality allows to bound this expectation by

E(α)
[
ω−qθN (γω(0))

pq

Nd
−pq ***

] 1
q

E(α)
[
ω̌rθ̌N

] 1
r

where ω and ω̌ follow i.i.d. Dirichlet laws of known parameters. This is where the accel-
eration factor comes useful : ω−qθN has finite expectation only when α(e) − qθN (e) > 0

for all edges e. The γω factors allow to keep this integrability under weaker conditions.

A Taylor expansion then gives E(α)
[
(Ndπ̃ωN (0))p

]
≤ exp(c

∑
θN (e)2). It only remains

to show there exists θN of finite energy satisfying the divergence condition. For this,
we use a theorem of the type max-flow min-cut, in a generalized version that also gives
a bound on the norm of the flow.

It proves the existence of the invariant measure for the graph Zd. We conclude the
proof of theorem 2.4 by proving its ergodicity and applying Birkhoff’s ergodic theorem.
The other results are corollaries.

4 Proof of theorem 2.1

We first give some definitions and notations. Let G = (V,E) be an oriented graph.
For e ∈ E, we note e the tail of the edge, and e his head, such that e = (e, e). The
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divergence operator is : div : RE → RV such that : ∀x ∈ Zd,

div(θ)(x) =
∑

e∈E, e=x
θ(e)−

∑
e∈E, e=x

θ(e).

For N ∈ N∗, we set TN = (Z/NZ)d the d-dimensional torus of size N . We note
GN = (TN , EN ) the directed graph obtained by projection of (Zd, E) on the torus TN .
Let ΩN be the space of elliptic random environments on the torus :

ΩN = {ω = (ω(x, y))x∼y ∈]0, 1]EN such that ∀x ∈ TN ,
2d∑
i=1

ω(x, x+ ei) = 1}.

We denote by P(α)
N the law on the environment obtained by choosing independently for

each x ∈ TN the exit probabilities of x according to a Dirichlet law with parameters
(α1, . . . , α2d).

For ω ∈ ΩN , we note πωN the unique (because of ellipticity) invariant probability

measure of Zωn on the torus in the environment ω. Then
(
πωN (x)
γω(x)

)
x∈TN

is an invariant

measure for Xω
t on the torus in the environment ω, and

π̃ωN (y) :=

πωN (y)
γω(y)∑

x∈TN
πωN (x)

γω(x)

is the associated invariant probability. Define

fN (ω) := Ndπ̃ωN (0) and Q(α)
N := fNP

(α)
N ,

then, thanks to translation invariance, Q(α)
N is an invariant probability measure on ΩN

for the generator R of the accelerated process seen from the particle.

Proof. Let f be a bounded measurable function on ΩN .∫
ΩN

Rf(ω) dQ
(α)
N (ω)

=

∫
ΩN

2d∑
i=1

γω(0)ω(0, ei) (f(τeiω)− f(ω)) dQ
(α)
N (ω)

=

2d∑
i=1

∫
ΩN

γω(0)ω(0, ei)f(τeiω)Ndπ̃ωN (0) dP
(α)
N (ω)−

∫
ΩN

γω(0)f(ω) dQ
(α)
N (ω)

Using first translation invariance, then the definition of π̃ωN and the fact that πωN is a
probability measure, we get :

2d∑
i=1

∫
ΩN

γω(0)ω(0, ei)f(τeiω)Ndπ̃ωN (0) dP
(α)
N (ω)

=

2d∑
i=1

∫
ΩN

γω(ei)ω(ei, 0)f(ω)Ndπ̃ωN (ei) dP
(α)
N (ω)

=

∫
ΩN

2d∑
i=1

ω(ei, 0)
πωN (ei)∑
x∈TN

πωN (x)

γω(x)

f(ω)Nd dP
(α)
N (ω)

=

∫
ΩN

πωN (0)∑
x∈TN

πωN (x)

γω(x)

f(ω)Nd dP
(α)
N (ω)

=

∫
ΩN

γω(0)f(ω) dQ
(α)
N (ω)
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It gives
∫

ΩN
Rf(ω) dQ

(α)
N (ω) = 0, and proves that Q(α)

N is an invariant probability mea-
sure for R.

We can now reduce theorem 2.1 to the following lemma.

Lemma 4.1. ∀p ∈ [1, κΛ[,
sup
N∈N

‖ fN ‖Lp(P
(α)
N )

< +∞.

Once this lemma is proved, the proof of theorem 2.1 follows easily, we refer to [13],
pages 5, 6, where the situation is exactly the same, or to [2], pages 11 and 18, 19.

Proof of lemma 4.1. This proof is divided in two main steps. First we introduce the
"time-reversed environment" and prepare the application of the "time reversal invari-
ance" (lemma 1 of [12], or proposition 1 of [14]). Then we apply this invariance, and use
a lemma of the type "max-flow min-cut problem".

Step 1 :

Let (ω(x, y))x∼y be in ΩN . The time-reversed environment is defined by : ∀(x, y) ∈
T 2
N , x ∼ y,

ω̌(x, y) = ω(y, x)
πωN (y)

πωN (x)
.

We know that : ∀x ∈ TN , ∑
e=x

α(e) =
∑
e=x

α(e) =

2d∑
j=1

αj ,

then div(α)(x) = 0. We can therefore apply lemma 1 of [12] which gives : if (ω(x, y))

is distributed according to P(α)
N , then (ω̌(x, y)) is distributed according to P(α̌)

N , where
∀(x, y) ∈ E2

N ,
α̌(x, y) = α(y, x).

Let p be a real, 1 < p < κΛ. We have :

(fN (ω))p =
(
Ndπ̃ωN (0)

)p
.

Introducing the immediate fact that

1 =
∑
x∈TN

π̃ωN (x),

it gives :

(fN (ω))p =

 π̃ωN (0)×Nd∑
x∈TN

π̃ωN (x)


p

we can then use the arithmetico-geometric inequality :

(fN (ω))p ≤
∏
x∈TN

(
π̃ωN (0)

π̃ωN (x)

) p

Nd

=
∏
x∈TN

((
πωN (0)

πωN (x)

) p

Nd
(
γω(x)

γω(0)

) p

Nd

)

For N big enough and x 6= 0, the "γω(x)" term will have few effects on the integrability
of (fN (ω))p, as it is set to the small enough power p

Nd
. On the contrary, the "γω(0)" term
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is set to the power p
Nd
− p, and will therefore be small when 0 is in a trap : it is the

key to the integrability computation for the accelerated walk. We thus need to give now
some bounds for γω(0), whereas γω(x)

p

Nd will be dealt with later.

(fN (ω))p ≤
(

1

γω(0)

)p− p

Nd ∏
x∈TN

(
πωN (0)

πωN (x)

) p

Nd ∏
x∈TN
x 6=0

(γω(x))
p

Nd

=

( ∑
σ:0→Λc

ωσ

)p− p

Nd ∏
x∈TN

(
πωN (0)

πωN (x)

) p

Nd ∏
x∈TN
x 6=0

(γω(x))
p

Nd

≤ C
∑

σ:0→Λc

(ωσ)
p− p

Nd

∏
x∈TN

(
πωN (0)

πωN (x)

) p

Nd ∏
x∈TN
x 6=0

(γω(x))
p

Nd

 (4.1)

where C = (#{σ : 0→ Λc})p−
p

Nd and the sums on σ correspond to the sums on simple
paths.

Take θσN : EN → R+, and define θ̌σN by : ∀x ∼ y, θ̌σN (x, y) = θσN (y, x). It is clear that

ω̌θ̌
σ
N

ωθ
σ
N

= π
div(θσN )
N (4.2)

where by λβ we mean
∏
e∈EN λ(e)β(e) (resp.

∏
x∈TN λ(x)β(x)) for any couple of functions

λ, β on EN (resp. TN ). Therefore, if we choose for all σ : 0 → Λc simple path a θσN :

EN → R+ such that

div(θσN ) =
p

Nd

∑
x∈TN

(δ0 − δx), (4.3)

(4.1) and (4.2) give us

fpN ≤ C
∑

σ:0→Λc

(ωσ)
p− p

Nd
ω̌θ̌

σ
N

ωθ
σ
N

∏
x∈TN
x 6=0

(γω(x))
p

Nd

 .

Note that we choose a θσN for each term of the sum, they can be different as long as
(4.3) is satisfied. As the sum is finite, we only have to show that for all σ : 0→ Λc simple
path we can find (θσN )N∈N such that for all N , θσN satisfies (4.3) and :

sup
N∈N

E(α)

(ωσ)
p− p

Nd
ω̌θ̌

σ
N

ωθ
σ
N

∏
x∈TN
x 6=0

(γω(x))
p

Nd

 <∞. (4.4)

Step 2 :

Take p > 1. We first construct for all σ : 0 → Λc simple path a sequence (θσN )N∈N
that satisfies (4.3), and then we show that it satisfies (4.4) too.

Construction of (θσN )N∈N. We want to use lemma 2 of [13], which is a result of
type maw-flow min-cut (see for example [10], section 3.1, for a general description of
the max-flow min-cut problem), with a L2 bound. We first recall some definitions and
notions on the matter. In the infinite graph G = (Zd, E), a cut-set between x ∈ Zd and
∞ is a subset S of E such that any infinite simple directed path (i.e. an infinite directed
path that does not go twice through the same vertex) starting from x must necessarily
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go through one edge in S. A cut-set which is minimal for inclusion is necessarily of the
form :

S = ∂+(A) = {e ∈ E, e ∈ A, e ∈ Ac} (4.5)

where A is a finite subset of Zd containing x and such that any y ∈ A can be reached
by a directed path in A starting from x. Let (c(e))e∈E be a family of non-negative reals,
called the capacities. The minimal cut-set sum between 0 and∞ is defined by :

m((c(e))e∈E) = inf{c(S), S a cut-set separating 0 and∞}

where c(S) =
∑
e∈S c(e). Remark that the infimum can be taken only on minimal cut-

sets, i.e. cut-sets of the form (4.5).
In our case, we set σ an arbitrary simple path from 0 to Λc. Set N ∈ N, we define :

α(σ)(e) =

{
α(e) + κΛ if e ∈ σ
α(e) otherwise

Then m((α(σ)(e))e∈EN ) ≥ κΛ. Indeed :

• If some e ∈ σ is in the min-cut, it is obvious.

• Otherwise, as 0 ∈ σ the min-cut is of the form S = ∂+(K) with σ ⊂ K and K a
finite connected set of vertices. The definition of κΛ in theorem 2.1 gives directly
m((α(σ)(e))e∈EN ) ≥ κΛ.

Lemma 2 of [13] states :

Lemma 4.2 (Lemma 2 of [13]). Let C ′ and C ′′ be two reals such that 0 < C ′ < C ′′ <∞.
There exists a finite constant c1 > 0 and an integer N0 > 0 depending only on C ′, C ′′, d

such that for all sequence (ce)e∈E such that

∀e ∈ E, C ′ < ce < C ′′,

and for all integer N > N0, there exists a function θN : EN → R+ such that :

div(θN ) = m((c))
1

Nd

∑
x∈TN

(δ0 − δx),

‖θN‖22 =
∑
e∈EN

θN (e)2 < c1,

and such that

θN (e) ≤ c(e), ∀e ∈ EN ,

when we identify EN with the edges of E such that e ∈ [−N/2, N/2[d.

Remark 4.3. The first part of the lemma (without the L2 bound) is an extension of the
classical max-flow min-cut theorem on finite directed graphs. We add for all x a directed
edge (x, δ), where δ is a new cemetery point, and give a capacity of 1/Nd to all those
new edges. Then we apply the classical theorem with source 0 and sink δ to get the
result. The second part of the lemma is more complicated (see [13] for the proof).

With c(e) = p
κΛα

(σ)(e), it gives here that for all N ≥ N0 there is a function θσN
satisfying (4.3), such that θσN (e) ≤ p

κΛα
(σ)(e) and such that ‖θσN‖22 is uniformly bounded

in N .
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Preliminary computations about (4.4). Let q and r be positive reals such that
1
r + 1

q = 1 and pq < κΛ. Using in a first time Hölder’s inequality and then the time-
reversed environment (lemma 1 of [12]), we obtain :

E(α)

(ωσ)
p− p

Nd
ω̌θ̌

σ
N

ωθ
σ
N

∏
x∈TN
x 6=0

(γω(x))
p

Nd

 (4.6)

≤ E(α)

(ωσ)
pq− pq

Nd ω−qθ
σ
N

∏
x∈TN
x6=0

(γω(x))
pq

Nd


1
q

E(α)
[
ω̌rθ̌

σ
N

] 1
r

= E(α)

(ωσ)
pq− pq

Nd ω−qθ
σ
N

∏
x∈TN
x6=0

(γω(x))
pq

Nd


1
q

E(α̌)
[
ωrθ̌

σ
N

] 1
r

(4.7)

Define α(x) =
∑
e=x α(e), θσN (x) =

∑
e=x θ

σ
N (e). For all x ∈ TN , we have α(x) = α̌(x) =∑2d

i=0 αi, we thus note α0 =
∑2d
i=0 αi. In order to simplify notations, we note dλΩ =∏

e∈ẼN dω(e), where we obtain ẼN from EN by removing for each x one arbitrary edge
leaving x. We can now compute the first expectation in (4.7) :

E(α)

(ωσ)
pq− pq

Nd ω−qθ
σ
N

∏
x∈TN
x6=0

(γω(x))
pq

Nd


=

∫
(ωσ)

pq− pq

Nd

( ∏
e∈EN

ω(e)α(e)−1−qθσN (e)

) ∏
x∈TN
x 6=0

(γω(x))
pq

Nd

∏
x∈TN

Γ(αx)∏
e∈EN

Γ(αe)
dλΩ

=

∫
(ωσ)

pq− pq

Nd

( ∏
e∈EN

ω(e)α(e)−1−qθσN (e)

) ∏
x∈TN

Γ(αx)

∏
x∈TN
x6=0

( ∑
σ:x→(x+Λ)c

ωσ

) pq

Nd ∏
e∈EN

Γ(αe)

dλΩ

E(α)

[
(ωσ)

pq− pq

Nd ω−qθ
σ
N

∏
x∈TN

(γω(x))
pq

Nd

]

≤
∫ (ωσ)

pq− pq

Nd

( ∏
e∈EN

ω(e)α(e)−1−qθσN (e)

)( ∏
x∈TN

Γ(αx)

)
( ∏
x∈TN , x 6=0

ω
pq

Nd
σx

)( ∏
e∈EN

Γ(αe)

) dλΩ

where σx is an arbitrarily chosen simple path in the preceding sum. Then

E(α)

[
(ωσ)

pq− pq

Nd ω−qθ
σ
N

∏
x∈TN

(γω(x))
pq

Nd

]
≤

∏
x∈TN

Γ(α0)
∏

e∈EN
Γ (βσ(e)− qθσN (e))∏

e∈EN
Γ(αe)

∏
x∈TN

Γ (βσ(x)− qθσN (x))
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with
βσ(x) =

∑
x=e

βσ(e)

and

βσ(e) = α(e) + pq

(
1− 1

Nd

)
1e∈σ −

∑
x∈TN ,x 6=0

pq

Nd
1e∈σx .

As Λ is finite, an edge can be in only a finite number of σx. We have then for all e,∑
x∈TN ,x 6=0

pq
Nd
1e∈σx < +∞. This proves that βσ is well defined and takes only finite

values.
The second expectation in (4.7) is easy to compute :

E(α̌)(ωrθ̌
σ
N ) =

∏
e∈EN

Γ(α(e) + rθσN (e))
∏

x∈TN
Γ(α0)∏

x∈TN
Γ(α0 + rθ̌σN (x))

∏
e∈EN

Γ(α(e))
.

We did not check that the previous expressions are well defined : we need to prove
that for the given θσN , the arguments of the Gamma functions are positive. As it is a bit
tedious, we delay this checking to the next point in the proof.

We now have that E(α)
[
(ωσ)

p− p

Nd
ω̌θ̌
σ
N

ωθ
σ
N

∏
x∈TN (γω(x))

p

Nd

]
is smaller than :

∏
x

Γ(α0)
∏
e

Γ (βσ(e)− qθσN (e))∏
e

Γ(αe)
∏
x

Γ (βσ(x)− qθσN (x))


1
q

∏
e

Γ(α(e) + rθσN (e))
∏
x

Γ(α0)∏
x

Γ(α0 + rθ̌σN (x))
∏
e

Γ(α(e))


1
r

We are reduced to prove that ∀σ : 0→ Λc simple path,

sup
N∈N


∏

x∈TN
Γ(α0)∏

e∈EN
Γ(αe)


∏

e∈EN
Γ (βσ(e)− qθσN (e))∏

x∈TN
Γ (βσ(x)− qθσN (x))


1
q


∏
e∈EN

Γ(α(e) + rθσN (e))∏
x∈TN

Γ(α0 + rθ̌σN (x))


1
r

 < +∞

(4.8)
Checking that the previous Gamma functions were well defined. As for all e ∈

EN α(e) > 0 and θσN (e) ≥ 0, the result is straightforward except for Γ (βσ(e)− qθσN (e))

and Γ (βσ(x)− qθσN (x)). By construction of θσN , we know that βσ(e) − qθσN (e) ≥ βσ(e) −
pq
κΛα

(σ)(e). Then we just have to check the positivity of this second expression. Take
e ∈ EN :

• If e ∈ σ, then

βσ(e)− pq

κΛ
α(σ)(e) = α(e)− pq

κΛ
(α(e) + κΛ) + pq − pq

Nd
−
∑
x∈TN
x 6=0

pq

Nd
1e∈σx

= α(e)
(

1− pq

κΛ

)
− pq

Nd

(
1 +

∑
x∈TN
x 6=0

1e∈σx

)

As we assumed pq < κΛ and κΛ > 1, α(e)
(
1− pq

κΛ

)
> 0. The second term can be

made as small as needed by choosing N big enough. Then βσ(e) − pq
κΛα

(σ)(e) > 0

for N big enough.
• If e /∈ σ, then

βσ(e)− pq

κΛ
α(σ)(e) = α(e)− pq

κΛ
α(e)−

∑
x∈TN
x 6=0

pq

Nd
1e∈σx

≥ α(e)
(

1− pq

κΛ

)
− (]Λ)

pq

Nd
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As before, by choosing N big enough we make sure that it is positive. Remark
that for N big enough, mini=1...2d αi

(
1− pq

κΛ

)
− (]Λ) pq

Nd
is also positive, and it is a

uniform lower bound of βσ(e)− qθσN (e), for all e /∈ σ.

Proof of (4.8). As σ is a finite path, the above tells us that there exists ε > 0 such
that :

∀e ∈ σ, ε ≤ βσ(e)− pq

κΛ
α(σ)(e) = α(e)

(
1− pq

κΛ

)
− pq

Nd

(
1 +

∑
x∈TN
x 6=0

1e∈σx

)
≤ α(e),

and the same is true for α(x) by summing on e. Define :

Aσ1 =


∏

x∈e∈σ
Γ(α0)∏

e∈σ
Γ(α(e))

∏
e∈σ

sup[ε,maxi αi] Γ(s)∏
x∈e∈σ

inf [ε,maxi αi] Γ(s)


1
q

Aσ2 =


∏

x∈e∈σ
Γ(α0)∏

e∈σ
Γ(α(e))

∏
e∈σ

sup[α(e),α(e)(1+r)+rκΛ] Γ(s)∏
x∈e∈σ

inf [α(e),α(e)(1+r)+rκΛ] Γ(s)


1
r

We have then, for any fixed σ :∏
x∈TN

Γ(α0)∏
e∈EN

Γ(αe)


∏

e∈EN
Γ (βσ(e)− qθσN (e))∏

x∈TN
Γ (βσ(x)− qθσN (x))


1
q


∏
e∈EN

Γ(α(e) + rθσN (e))∏
x∈TN

Γ(α0 + rθ̌σN (x))


1
r

≤ Aσ1Aσ2

∏
x/∈σ

Γ(α0)∏
e/∈σ

Γ(αe)


∏
e/∈σ

Γ (βσ(e)− qθσN (e))∏
x/∈σ

Γ (βσ(x)− qθσN (x))


1
q

∏
e/∈σ

Γ(α(e) + rθσN (e))∏
x/∈σ

Γ(α0 + rθ̌σN (x))


1
r

≤ Aσ1Aσ2 exp

 ∑
e∈EN
e/∈σ

ν (α(e), θσN (e), βσ(e))−
∑
x∈TN
x/∈σ

ν̃ (α0, θ
σ
N (x), βσ(x))


with :

ν (α(e), θσN (e), βσ(e)) =
1

r
ln Γ(α(e) + rθσN (e)) +

1

q
ln Γ(βσ(e)− qθσN (e))− ln Γ(α(e))

ν̃ (α0, θ
σ
N (x), βσ(x)) =

1

r
ln Γ(α0 + rθσN (x) +

pr

Nd
) +

1

q
ln Γ(βσ(x)− qθσN (x))− ln Γ(α0)

(the pr
Nd

comes from the fact that ∀x 6= 0, θσN (x) − θ̌σN (x) = div(θσN )(x) = − p
Nd

). We
set α = mini∈[[1,2d]] αi and α = maxi∈[[1,2d]] αi. Then ∀e ∈ EN , α ≤ α(e) ≤ α, ∀e /∈
σ qθσN (e) ≤ pq

κΛα(e) and pq < κΛ. Taylor’s inequality gives : ∀e /∈ σ, ∀x /∈ σ,{
|ν (α(e), θσN (e), βσ(e))| ≤ C1

(
θσN (e)2 + pq

Nd

)
|ν̃ (α0, θ

σ
N (x), βσ(x))| ≤ C2

(
θσN (x)2 + p

Nd
+ pq

Nd

)
with C1 and C2 positive constants. Then we can find a constant C3 > 0 independent of
N ≥ N0 such that :∏

x∈TN
Γ(α0)∏

e∈EN
Γ(αe)


∏

e∈EN
Γ (βσ(e)− qθσN (e))∏

x∈TN
Γ (βσ(x)− qθσN (x))


1
q


∏
e∈EN

Γ(α(e) + rθσN (e))∏
x∈TN

Γ(α0 + rθ̌σN (x))


1
r

≤ exp

(
C3

( ∑
e∈EN

θσN (e)2 +
∑
x∈TN

θσN (x)2

))
.
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As seen before with the L2 bound part of lemma 2 of [13], this is bounded by a finite
constant independent of N . It follows that the supremum on N is finite too. This
concludes the argument for any fixed σ and proves (4.8). This proves the lemma.

5 Proof of theorem 2.4 and corollary 2.6

To obtain results on the initial random walk Zn, we need some estimates on our
acceleration function γω. In particular, we will need the following lemma :

Lemma 5.1. Let Λ be an arbitrary finite connected set of vertices containing 0. For all
x ∈ Zd and s < κ,

E(α) ((γω(x))s) < +∞.

As its proof is quite computational, we defer it to the appendix. Remark that it is
nevertheless quite easy to get a weaker bound : γω(0) = 1∑

ωσ
≤ 1

ωσ1
, where the sum is

on all σ finite simple paths from 0 to Λc, and where σ1 is the path from 0 to Λc going only

through edges (ne1, (n + 1)e1). Then E(α)
(
γω(0)λ

)
≤ E(α)

(
1
ωσ1

λ
)
< +∞ for all λ < α1.

This weaker bound suffices for the proof of theorem 2.4, but lemma 5.1 is fully needed
in the proof of theorem 2.8. Also remark that this lemma is the only result involving γω

where we do not need κΛ > 1. This is of little importance as the assumption κΛ > 1 is
needed otherwise in the proof of theorem 2.8.

Theorem 2.4 is based on classical results on ergodic stationary sequences, see [3]
pages 342− 344. We need another preliminary lemma.

Lemma 5.2. Q(α) is ergodic and equivalent to P(α). Set ∆i = Xi−Xi−1, i ∈ N, then ∆i

is stationary and ergodic under Q(α)[Pω0 (.)].

Proof. The proof of the first point is easily adapted from chapter 2 of [2], by replacing
the discrete process by the continuous process : we use the continuous martingales con-
vergence theorems, and the continuous version of Birkhoff’s theorem (see for example
[9], pages 9− 11).

For the second point, as Q(α) is an invariant probability for ωt, it is straightforward

that ∆i is stationary. It remains to prove ergodicity. Set A ⊂
(
Zd
)N

a measurable set
such that ∀t, θ−1

t (A) = A with θt the time-shift. We note

r(x, ω) = Pωx ((∆i ∈ A)) and r(ω) = r(0, ω).

We have ∀ω ∈ Ω,
lim
n→∞

r(Xn, ω) = 1A((∆i)), P
ω
x a.s.. (5.1)

Indeed, setting Fn = σ((Xt)t≤n) gives :

Pωx ((∆i) ∈ A|Fn) = Pωx ((∆i+n) ∈ A|Fn) = PωXn ((∆i) ∈ A) = r(Xn, ω),

then r(Xn, ω) is a (closed) bounded martingale and we have the wanted limit (5.1) by
a.s. convergence, as 1A((∆i)) is F∞-measurable. Remark that r(Xn, ω) = r(ωn). The
application of Birkhoff’s ergodic theorem ([3], page 337) for the time-shift of size 1 gives

lim
n→∞

1

n

n∑
k=1

r(Xk, ω) = EQ
(α)

(r(ω)) , Pω0 a.s..

Comparing with (5.1), it implies that EQ
(α)

(r(ω)) ∈ {0, 1}.
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Lemma 5.3. Let D(l, n) = maxt∈[0,1] |(Xn+t−Xn) · l| be the maximum distance travelled
by the walk in direction l = e1, . . . , e2d, during a time [n, n + 1], n ∈ N. Choose RΛ such
that Λ is included in the ball B(0, RΛ). Then

P(α) (D(l, n) ≥ 2kRΛ) ≤ Ck1
Γ(C2k)

where C1 and C2 are positive constants depending only on the parameters (α1, . . . , α2d).

Proof. Let N be the number of visits of 0 before exiting Λ. The random variable N

follows a geometric law of parameter pN := 1
Gω,Λ(0,0) the inverse of the Green function

killed at the exit time of Λ. We note T the total time spent on 0 before exiting Λ, T =
1

γω(0)

∑N
i=1Ei, where the Ei are independent exponential random variables of parameter

1. Set ε > 0.

Pω (T ≤ ε|N) = Pω

(
N∑
i=1

Ei ≤ γω(0)ε|N

)
= e−γ

ω(0)ε
+∞∑
k=N

(γω(0)ε)k

k!
.

Then

Pω (T ≤ ε) = e−γ
ω(0)εEω

(
+∞∑
k=N

(γω(0)ε)k

k!

)

= e−γ
ω(0)ε

+∞∑
n=1

+∞∑
k=n

(γω(0)ε)k

k!
pN (1− pN )

n−1

= e−γ
ω(0)ε

+∞∑
k=1

k∑
n=1

(γω(0)ε)k

k!
pN (1− pN )

n−1

= e−γ
ω(0)ε

+∞∑
k=1

(γω(0)ε)k

k!
pN

1− (1− pN )k

pN

= 1− e−pNγ
ω(0)ε = 1− e−

γω(0)

Gω,Λ(0,0)
ε

For all a > 0, let 0 < λ < κ,

P(α) (T ≤ ε)

= E(α)

(
1− e−

γω(0)

Gω,Λ(0,0)
ε
)

= E(α)

(
(1− e−

γω(0)

Gω,Λ(0,0)
ε
)1{ γω(0)

Gω,Λ(0,0)
≥a}

)
+ E(α)

(
(1− e−

γω(0)

Gω,Λ(0,0)
ε
)1{ γω(0)

Gω,Λ(0,0)
<a}

)
≤ P(α)

(
γω(0)

Gω,Λ(0, 0)
≥ a

)
+ E(α)

(
γω(0)

Gω,Λ(0, 0)
ε1{ γω(0)

Gω,Λ(0,0)
<a}

)
≤ P(α) (γω(0) ≥ a) + E(α)

(
γω(0)

Gω,Λ(0, 0)
ε1{ γω(0)

Gω,Λ(0,0)
<a}

)
≤
E(α)

(
γω(0)λ

)
aλ

+ aεP(α)

(
γω(0)

Gω,Λ(0, 0)
< a

)
As λ < κ, lemma 5.1 gives :

P(α) (T ≤ ε) ≤ C

aλ
+ aε

with C a positive constant independent of a. Then for a = ε−
1

λ+1 we have :

P(α) (T ≤ ε) ≤ (C + 1)ε
λ
λ+1 .
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If D(l, n) ≥ 2kRΛ, the walk went through at least k distinct sets Xt + Λ of empty
intersection. The time spent in such a set is bigger than the time spent on one point in
the set, and those times are independent in disjoint sets (because the environments in
the sets are independent). We get (for T1, . . . , Tk i.i.d. of same law as T ) :

P(α) (D(l, n) ≥ 2kRΛ)

≤ P(α)

(
∃ε1, . . . , εk such that

k∑
i=1

εi ≤ 1 and T1 = ε1, . . . , Tk = εk

)

≤
∫
∑
εi≤1

(C + 1)k
(

λ

λ+ 1

)k k∏
i=1

ε
λ
λ+1−1

i dε1 . . . dεk

= (C + 1)k
(

λ

λ+ 1

)k Γ( λ
λ+1 )k

Γ(k λ
λ+1 + 1)

≤
((C + 1)Γ( λ

λ+1 + 1))k

Γ(k λ
λ+1 )

This concludes the proof of the lemma.

We can now prove theorem 2.4 : lemma 5.2 allows to use Birkhoff’s ergodic theorem
to the ∆i and get the result for discrete times, lemma 5.3 extends this result to the
continuous walk.

Proof of theorem 2.4. Lemma 5.2 gives that the sequence (∆i)i∈N is stationary and er-
godic under Q(α) (Pω0 (.)). We apply Birkhoff’s ergodic theorem to the ∆i to get a law of
large numbers :

Xk

k
→k→∞, k∈N E

Q(α)

[Eω0 (X1)] , Q
(α)
0 a.s. and thus P(α)

0 a.s. .

If dα · ei = 0, the symmetry of the law of the environment gives EQ
(α)

[Eω0 (X1)] ·
ei = 0. Then Xk

k → 0 when dα = 0. Furthermore theorem 6.3.2 of [3] gives that the
processes Xk is directionally recurrent when dα ·ei = 0. As Xt stays only a finite time on
each vertex before the next jump, directional recurrence for (Xk)k∈N implies directional
recurrence for (Xt)t∈R+ (the probability to come back to 0 after a finite time is 1).

For l ∈ Rd, we note Al = {Xtk · l → ∞}, where (tk)k∈N are the jump times. If l 6= 0

and if P(α)
0 (Al) > 0, Kalikow’s 0−1 law ([6], [21] proposition 3) gives P(α)

0 (Al∪A−l) = 1.

Suppose that dα · ei > 0 then ([14]) P(α)
0 (Aei) > 0, this implies that (Xtk · ei)k∈N visits 0 a

finite number of times Q(α)
0 a.s.. Then (Xk · ei)k∈N visits 0 a finite number of times Q(α)

0

a.s. (as Xt stays only a finite time on each vertex). Theorem 6.3.2 of [3] and Birkhoff’s
ergodic theorem give then : EQ

(α)

(Eω(X1)) · ei > 0.
We now consider the limit for the continuous-time walk. For t > 0, we set k = btc.

Then for all i = 1, . . . , 2d,

Xk · ei −D(ei, k) ≤ Xt · ei ≤ Xk · ei +D(ei, k).

Then
Xk · ei
k − 1

− D(ei, k)

k − 1
≤ Xt · ei

t
≤ Xk · ei

k
+
D(ei, k)

k
.

Lemma 5.3 gives : for ε > 0,

+∞∑
k=1

P(α)

(∣∣∣∣D(ei, k)

k

∣∣∣∣ ≥ ε) ≤ +∞∑
k=1

C
kε

2RΛ
1

Γ
(
C2kε
2RΛ

) < +∞.
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Then by Borel-Cantelli’s lemma, D(ei,k)
k →t→+∞ 0 , P

(α)
0 a.s. . It gives

lim
t→+∞

Xt

t
= lim
k→+∞

Xk

k
= EQ

(α)

[Eω0 (X1)] , P
(α)
0 a.s. .

This gives the directional transience in the case dα · ei > 0, and finishes the proof.

Proof of corollary 2.6. We prove as in the proof of theorem 2.4 that

lim
t→+∞

Xt

t
= lim
k→+∞

Xk

k
= EQ

(α)

[Eω0 (X1)] , P
(α)
0 a.s. . (5.2)

We still note Al = {Xtk · l → ∞, k ∈ N}. Suppose that P(α)
0 (Al) > 0. Then P(α)

0 (Al ∪
A−l) = 1 ([6], [21] proposition 3). It allows to find a finite interval I of R, of positive
measure, containing 0 and such that (Xtk · l)k∈N goes a finite number of times in I,

P
(α)
0 a.s. and thus Q(α)

0 a.s.. As before, it implies that (Xk · l)k∈N goes a finite number

of times in I, Q(α)
0 a.s.. We can then apply the theorem of [1] to (Xk)k∈Z (obtained via

the extension of (Xt)t∈R+
to t ∈ R) to get EQ

(α)

[Eω0 (X1 · l)] 6= 0. We then deduce from

(5.2) that : Xt · l→t→∞ +∞ P
(α)
0 a.s. if EQ

(α)

[Eω0 (X1 · l)] > 0, Xt · l→t→∞ −∞ P
(α)
0 a.s.

else-wise.
As (Xt)t∈R+ and (Zn)n∈N go through exactly the same vertices in the same order, and

as the two processes stay a finite time on each vertex, without exploding (see lemma
5.3), recurrence and transience for Zn · l follows from those of Xt · l. This gives as a
consequence Kalikow’s 0− 1 law in the d ≥ 3 Dirichlet case.

The 0 − 1 law is true in the general case of random walks in random environments
for d = 1 and d = 2 (see respectively Solomon ([16]) and Zerner and Merkl ([21])), it
concludes the proof.

6 Proof of theorem 2.8

To prove the result, we need a preliminary theorem on the polynomial order of the
hitting times of the walk.

Theorem 6.1. Let d ≥ 3, P(α) be the law of the Dirichlet environment with parameters
(α1, . . . , α2d) on Zd, and Zn the associated random walk in Dirichlet environment. We

suppose that κ = 2
(∑2d

i=1 αi

)
−maxi=1,...,d(αi + αi+d) ≤ 1. Let l ∈ {e1, . . . , e2d} be such

that dα · l 6= 0. Let T l,Zn = infi{i ∈ N|Zi · l ≥ n} be the hitting time of the level n in
direction l, for the non-accelerated walk Z. Then :

lim
n→+∞

log(T l,Zn )

log(n)
=

1

κ
in P(α)-probability.

The proof of this preliminary theorem consists of two bounds. The upper bound is a
consequence of theorem 2.4 and therefore needs an accelerated walk with κΛ > 1. The
lower bound does not make use of an accelerated walk at all.

Proof. Upper bound
For Λ such that κΛ > 1, we defineA(t) =

∫ t
0
γω(Xs)ds. ThenXA−1(t) is the continuous-

time Markov chain whose jump rate from x to y is ω(x, y). This Markov chain has
asymptotically the same behaviour as Zn, then we only have to prove that

lim
n→+∞

log(A(T l,Xn ))

log(n)
≤ 1

κ
,
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with T l,Xn = inft{t ∈ R+|Xt · l ≥ n}.

Set 0 < α < κ, and take β such that α < β < κ. Using first Markov’s inequality and
then the inequality (

∑j
i=1 λi)

ε ≤
∑j
i=1(λi)

ε for ε < 1 gives :

P(α)

(
A(t)

t
1
α

≥ x
)
≤ 1

xβt
β
α

E

((∫ t

0

γω(Xs)ds

)β)

≤ 1

xβt
β
α

E

 dte∑
i=1

(∫ i

i−1

γω(Xs)ds

)β
=

1

xβt
β
α

dte∑
i=1

E

((∫ i

i−1

γω(Xs)ds

)β)

where dte represents the upper integer part of t. Let Di = maxl∈{e1,...,e2d}(D(l, i)) (cf.
lemma 5.3 for the definition of D(l, i)). Splitting the expectation depending on the value
of Di gives :

E

((∫ i

i−1

γω(Xs)ds

)β)
= E

(
+∞∑
k=0

1{Di=k}

(∫ i

i−1

γω(Xs)ds

)β)

≤
+∞∑
k=0

E

1{Di=k}
 ∑
x∈B(Xi,k)

γω(x)

β


≤
+∞∑
k=0

E
(
1
p
{Di=k}

) 1
p

E


 ∑
x∈B(Xi,k)

γω(x)

qβ


1
q

where B(Xi, k) = {x ∈ Zd|maxj=1,...,2d |(Xi − x) · ej | ≤ k}, and 1
p + 1

q = 1. For the last
Hölder’s inequality, we chose q > 1 such that qβ < κ.

In the following, c, C1 and C2 will be finite constants, that can change from line to

line. As P(Di = k) ≤ P(Di ≥ k) ≤ Ck1
Γ(C2k) by lemma 5.3 and qβ < 1 we get :

E

((∫ i

i−1

γω(Xs)ds

)β)
≤

+∞∑
k=0

C
k
p

1

Γ(C2k)
1
p

E


 ∑
x∈B(Xi,k)

γω(x)

qβ


1
q

≤
+∞∑
k=0

c
Ck1

Γ(C2k)
1
p

∑
x∈B(Xi,k)

E
(
γω(x)qβ

) 1
q

As the Dirichlet laws are iid, the value of the expectation is independent of x. Lemma

EJP 18 (2013), paper 58.
Page 18/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2109
http://ejp.ejpecp.org/


Sub-ballistic random walk in Dirichlet environment

5.1 then gives a uniform finite bound for all x.

P(α)

(
A(t)

t
1
α

≥ x
)
≤ 1

xβt
β
α

dte∑
i=1

+∞∑
k=0

c
Ck1

Γ(C2k)
1
p

∑
x∈B(Xi,k)

1

=
1

xβt
β
α

dte∑
i=1

+∞∑
k=0

c
Ck1

Γ(C2k)
1
p

(2k + 1)d

≤ dte
xβt

β
α

+∞∑
k=0

ckd
Ck1

Γ(C2k)
1
p

≤ c t
1− βα

xβ

As β > α, it implies that A(t)

t
1
α
→t→+∞ 0 in P(α)-probability, for all α < κ. Then,

A(T l,Xn )

(T l,Xn )
1
α
→t→+∞ 0 in P(α)-probability. As we chose κΛ > 1, we can apply theorem 2.4

that gives

lim
t→+∞

Xt · l
t

= v · l 6= 0, P
(α)
0 a.s..

Then
X
T
l,X
n
·l

T l,Xn
→ v · l and T l,Xn ∼ n

v·l . It implies that A(T l,Xn )

n
1
α
∼ A(T l,Xn )

(T l,Xn )
1
α

(v · l) 1
α →n→+∞ 0 in

P(α)-probability, for all α < κ.

It gives limn→+∞
log(A(T l,Xn ))

log(n) ≤ 1
κ and concludes the proof of the upper bound.

Lower bound
This proof follows the lines of the proof of proposition 12 in [18]. As κ ≤ 1, we can

assume that α1 + α−1 ≥ 2
∑2d
j=1 αj − 1. We prove that, for every l ∈ {e1, . . . , e2d}, for

every α > κ,
T l,Z2n

n
1
α
→n→∞ +∞ P(α) a.s.. The same being true for (T l,Z2n+1), this is sufficient

to conclude.
Set l ∈ {e1, . . . , e2d}. We introduce the exit times

Θ0 = inf{n ∈ N|Zn /∈ {Z0, Z0 + e1}}

(with a minus sign instead of the plus if l = −e1), and for k ≥ 1, Θk = Θ0 ◦ τT l,Z2k
(where τ

is the time-shift). We use the convention that Θk =∞ if T l,Z2k =∞. The only dependence

between the times Θk is that Θj = ∞ implies Θk = ∞ for all k ≥ j. The ”2” in T l,Z2k

causes indeed Θk to depend only on {x ∈ Zd|x · l ∈ {2k, 2k+ 1}} which are disjoint parts
of the environment.

For t0, . . . , tk ∈ N , one has, using the Markov property at time T l,Z2k , the indepen-
dence and the translation invariance of P(α) :

P
(α)
0 (Θ0 = t0, . . . ,Θk = tk) = P

(α)
0

(
Θ0 = t0, . . . ,Θk−1 = tk−1,Θk = tk, T

l,Z
2k <∞

)
≤ P(α)

0 (Θ0 = t0, . . . ,Θk−1 = tk−1)P
(α)
0 (Θ0 = tk)

≤ · · · ≤ P(α)
0 (Θ0 = t0) . . .P

(α)
0 (Θ0 = tk−1)P

(α)
0 (Θ0 = tk)

= P(α)
(

Θ̂0 = t0, . . . , Θ̂k = tk

)
where, under P(α), the random variables Θ̂k are independent and have the same distri-
bution as Θ0. From this, we deduce that for all A ⊂ NN,

P
(α)
0 ((Θk) ∈ A) ≤ P(α)

(
(Θ̂k) ∈ A

)
.
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In particular, for α > κ,

P
(α)
0

(
lim inf

k

Θ0 + · · ·+ Θk−1

k
1
α

<∞
)
≤ P(α)

(
lim inf

k

Θ̂0 + · · ·+ Θ̂k−1

k
1
α

<∞

)
. (6.1)

In order to bound this probability, we compute the tail of the distribution of Θ0 using
Stirling’s formula :

P
(α)
0 (Θ0 ≥ n) = E

(
ω(0, e1)d

n
2 eω(e1, 0)b

n
2 c
)

=
Γ(α0)2

Γ(α1)Γ(α−1)

Γ(α1 +
⌈
n
2

⌉
)Γ(α−1 +

⌊
n
2

⌋
)

Γ(α0 +
⌈
n
2

⌉
)Γ(α0 +

⌊
n
2

⌋
)

∼n→∞ cnα1+α−1−2α0 = cn−κ

with c a constant. We can then use the limit theorem for stable laws (see for example
[3]) that gives :

Θ̂0 + · · ·+ Θ̂k−1

k
1
κ

⇒ Y

where Y has a non-degenerate distribution. Then for α > κ, Θ̂0+···+Θ̂k−1

k
1
α

→ ∞. (6.1)

then gives P(α)
0

(
lim infk

Θ0+···+Θk−1

k
1
α

<∞
)

= 0.

As T l,Z2k ≥ Θ0 + · · ·+ Θk−1, it gives
T l,Z2n

n
1
α
→n→∞ +∞ P(α) a.s. as wanted, for all α > κ.

It gives limn→+∞
log(T l,Zn )

log(n) ≥
1
κ and concludes the proof of the lower bound.

Using an inversion argument, we can now prove theorem 2.8.

Proof of theorem 2.8. We note Zn = maxi≤n Zi · l. As Zn ≥ m ⇔ T l,Zm ≤ n, theorem 6.1
gives that for any ε > 0 we have, for n big enough,

nκ−ε ≤ Zn ≤ nκ+ε in P(α)-probability.

As Zn · l is transient, we can introduce renewal times τi for the direction l (see [17]
or [20] p71 for a detailed construction) such that τi < +∞ P(α) a.s., for all i. Then

0 ≤ Zn − Zn · l ≤ max
i=0,...,n−1

(Zτi+1
− Zτi) · l for n ≥ τ1.

When the walk Zn · l discovers a new vertex in direction l, there is a positive prob-
ability that this vertex will be the next Zτi . As the vertices have i.i.d. exit probabilities
under P(α), this probability is independent of the newly discovered vertex, and is inde-
pendent of the path that lead to this vertex. Then (Zτi+1

− Zτi) · l follows a geometric
law of parameter P(α)(Z0 = Zτ1), for all i ∈ N. This means that we can find C and c two
positive constants such that for all n, P(α)

(
(Zτi+1

− Zτi) · l ≥ n
)
≤ Ce−cn.

Borel Cantelli’s lemma then gives that, for n big enough,

max
i=0,...,n−1

(Zτi+1 − Zτi) · l ≤ (log n)2 P(α) a.s..

As τ1 <∞, it gives
nκ−ε ≤ Zn · l ≤ nκ+ε in P(α)-probability.

Taking the limit ε→ 0 gives limn→+∞
log(Zn·l)

log(n) = κ and concludes the proof.
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A Appendix : Proof of lemma 5.1

The proof that follows is largely inspired by the article [18] by Tournier. His result
can however not be directly applied here, as γω(x) ≥ Gω,Λ(x, x), and some of the paths
he considered are not necessarily simple paths. To adapt the proof to our case, we need
an additional assumption on the graph (some symmetry property for the edges), which
simplifies the proof (the construction of the set C(ω) is quite shorter).

To prove the result, we consider the case of finite directed graphs with a cemetery
vertex. A vertex δ is said to be a cemetery vertex when no edge exits δ, and every vertex
is connected to δ through a directed path. We furthermore suppose that the graphs have
no multiple edges, no elementary loop (consisting of one edge starting and ending at
the same point), and that if (x, y) ∈ E and y 6= δ, then (y, x) ∈ E.

We need a definition of γω(x) for those graphs. Let G = (V ∪ {δ}, E) be a finite di-
rected graph, (α(e))e∈E be a family of positive real numbers, P(α) be the corresponding
Dirichlet distribution, and (Zn) the associated random walk in Dirichlet environment.
We need the following stopping times : the hitting times

Hx = inf{n ≥ 0|Zn = x}

and
H̃x = inf{n ≥ 1|Zn = x}

for x ∈ G, the exit time
TA = inf{n ≥ 0|Zn /∈ A}

for A ⊂ V , and the time of the first loop

L = inf{n ≥ 1|∃n0 < n such that Zn = Zn0
}.

For x in such a G, we define :

γω(x) =
1

Pωx (Hδ < H̃x ∧ L)
=

1∑
σ:x→δ

ωσ
.

where we sum on simple paths from x to δ. In the following, we denote by 0 an arbitrary
fixed vertex in G. We use the notations A = {e|e ∈ A} and A = {e|e ∈ A} for A ⊂ E, and
we call strongly connected a subset A of E such that for all x, y ∈ A∪A, there is a path
in A from x to y. Remark that if A is strongly connected, then A = A.

For the new function γω on G, we get the following result

Theorem A.1. Let G = (V ∪ {δ}, E) be a finite directed graph, where δ is a cemetery
vertex. We furthermore suppose that G has no multiple edges, no elementary loop, and
that if (x, y) ∈ E and y 6= δ, then (y, x) ∈ E. Let (α(e))e∈E be a family of positive real
numbers, and P(α) be the corresponding Dirichlet distribution. Let 0 ∈ V . There exist
c, C, r > 0 such that, for t large enough,

P(α)(γω(0) > t) ≤ C (ln t)r

tminA βA

where the minimum is taken over all strongly connected subsets A of E such that 0 ∈ A,
and βA =

∑
e∈∂+A

α(e), (we recall that ∂+(K) = {e ∈ E, e ∈ K, e /∈ K}).

In Zd, we can identify Λc (where Λ is the subset involved in the construction of γω)
with a cemetery vertex δ. We obtain a graph where the two definitions of γω coincide,
and that verifies the hypothesis of theorem A.1. Among the strongly connected subsets
A of edges such that A contains a given x, the ones minimizing the "exit sum" βA are
made of only two edges (x, x + ei) and (x + ei, x), i ∈ [|1, 2d|]. Then minA βA = κ =

2
(∑2d

i=1 αi

)
−maxi=1,...,d(αi + αi+d). It proves lemma 5.1.
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Proof of theorem A.1. This proof is based on the proof of the "upper bound" in [18].
We need lower bounds on the probability to reach δ by a simple path. We construct
a random subset C(ω) where a weaker ellipticity condition holds. Quotienting by this
subset allows to get a lower bound for the equivalent of Pω0 (Hδ < H̃0∧L) in the quotient
graph. Proceeding by induction then allows to conclude.

We proceed by induction on the number of edges of G. More precisely, we prove :

Proposition A.2. Let n ∈ N∗. Let G = (V ∪ {δ}, E) be a directed graph possessing
at most n edges, and such that every vertex is connected to δ by a directed path. We
furthermore suppose that G has no multiple edges, no elementary loop, and that if
(x, y) ∈ E and y 6= δ, then (y, x) ∈ E. Let (α(e))e∈E be positive real numbers. Then, for
every vertex 0 ∈ V , there exist real numbers C, r > 0 such that, for small ε > 0,

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε

)
≤ Cεβ(− ln ε)r

where β = min{βA|A is a strongly connected subset of V and 0 ∈ A}.

As γω(0) = 1
Pω0 (Hδ<H̃0∧L)

, this proposition suffices to prove the result. The following

is devoted to its proof.
Initialization : if |E| = 1, the only edge links 0 to δ, then Pω0 (Hδ < H̃0 ∧ L) = 1 and

the property is true.
If |E| = 2, the only possible edges link 0 to δ, and another vertex x to δ, then Pω0 (Hδ <

H̃0 ∧ L) = 1 and the property is true.
Let n ∈ N∗. We suppose the induction hypothesis to be true at rank n. Let G =

(V ∪{δ}, E) be a directed graph with n+1 edges, and such that every vertex is connected
to δ by a directed path. We furthermore suppose that G has no multiple edges, no
elementary loop, and that if (x, y) ∈ E and y 6= δ, then (y, x) ∈ E. Let (α(e))e∈E be
positive real numbers. To get a "weak ellipticity condition", we introduce the random
subset C(ω) of E constructed as follows :

Construction of C(ω). Let ω ∈ Ω. Let x be chosen for ω(0, x) to be a maximizer on
all ω(0, y), y ∼ 0. If x 6= δ, we set

C(ω) = {(0, x); (x, 0)}.

If x = δ, we set C(ω) = {(0, δ)}. Remark that C(ω) is well defined as soon as x is uniquely
defined, which means almost surely, as there is always a directed path heading to δ.

The support of the distribution of ω → C(ω) writes as a disjoint union C = C0 ∪ Cδ
depending whether x = δ or not. For C ∈ C, we define the event

EC = {C(ω) = C}.

As C is finite, it is sufficient to prove the upper bound separately on all events EC . If
C ∈ Cδ, on EC , Pω0 (Hδ < H̃0 ∧ L) ≥ Pω0 (Z1 = δ) ≥ 1

|E| by construction of C(ω). Then we
have for small ε > 0 :

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε, EC

)
= 0

In the following, we will therefore work on EC , when C ∈ C0 (ie when x 6= δ). In this
case, C is strongly connected.

Quotienting procedure.

Definition A.3. If A is a strongly connected subset of edges of a graph G = (V,E),
the quotient graph of G obtained by contracting A ⊂ E to the vertex ã is the graph G̃

deduced from G by deleting the edges of A, replacing all the vertices of A by one new
vertex ã, and modifying the endpoints of the edges of E \A accordingly. Thus the set of
edges of G̃ is naturally in bijection with E \A and can be thought of as a subset of E.
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In our case, we consider the quotient graph G̃ obtained by contracting C(ω), which
is a strongly connected subset of E, to a new vertex 0̃. We need to define the associated
quotient environment ω̃ ∈ Ω̃. For every edge in Ẽ, if e /∈ ∂+C then ω̃(e) = ω(e), and if
e ∈ ∂+C, ω̃(e) = ω(e)

Σ , where Σ =
∑
e∈∂+C

ω(e).

This environment allows us to bound γω(0) using the similar quantity in G̃. Notice
that, from 0, one way for the walk to reach δ without coming back to 0 and without mak-
ing loops consists in exiting C without coming back to 0, and then reaching δ without
coming back to C (0 or x) and without making loops. Then, for ω ∈ EC ,

Pω0 (Hδ < H̃0 ∧ L)

≥ Pω0 (Hδ < H̃C ∧ L) + Pω0 (Z1 = x,Hδ < 1 + (H̃C ∧ L) ◦ τ1)

= Pω0 (Hδ < H̃C ∧ L) + Pω0 (Z1 = x)Pωx (Hδ < H̃C ∧ L)

≥ Pω0 (Hδ < H̃C ∧ L) +
1

|E|
Pωx (Hδ < H̃C ∧ L)

≥ 1

|E|

(
Pω0 (Hδ < H̃C ∧ L) + Pωx (Hδ < H̃C ∧ L)

)
=

1

|E|
ΣP ω̃

0̃
(Hδ < H̃0̃ ∧ L)

where we used the Markov property, the construction of C, 1
|E| ≤ 1, and the definition

of the quotient. Finally, we have

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε, EC

)
≤ P(α)

(
ΣP ω̃

0̃
(Hδ < H̃0̃ ∧ L) ≤ |E|ε, EC

)
. (A.1)

Back to Dirichlet environment. Under P(α), ω̃ does not follow a Dirichlet distri-
bution because of the normalization. But we can reduce to the Dirichlet situation with
the following lemma (which is a particular case of lemma 9 in [18]).

Lemma A.4. Let (ω
(0)
i )1≤i≤n0

, (ω
(x)
i )1≤i≤nx be the exit probabilities out of 0 and x for

ω ∈ Ω, they are independent random variables following Dirichlet laws of respective
parameters (α

(0)
i )1≤i≤n0

, (α
(x)
i )1≤i≤nx . Let Σ =

∑
e∈∂+C

ω(e) and βC =
∑
e∈∂+C

α(e).
There exists positive constants c, c′ such that, for every ε > 0,

P(α)
(

ΣP ω̃
0̃

(Hδ < H̃0̃ ∧ L) ≤ ε
)
≤ cP̃(α)

(
Σ̃Pω

0̃
(Hδ < H̃0̃ ∧ L) ≤ ε

)
,

where P̃(α) is the Dirichlet distribution of parameter (α(e))e∈Ẽ on Ω̃, ω is the canoni-

cal random variable on Ω̃, and, under P̃(α), Σ̃ is a positive bounded random variable
independent of ω and such that, for all ε > 0, P̃(α)(Σ̃ ≤ ε) ≤ c′εβC .

Remark that the symmetry property we imposed on the edges is important here :
if there was no edge from x to 0, the probability for a walk in G̃ to exit 0̃ through one
of the edges exiting x in G would necessarily be bigger than 1

2 . Then asymptotically, it
could not be bounded by Dirichlet variables.

This lemma and (A.1) give :

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε, EC

)
≤ P(α)

(
ΣP ω̃

0̃
(Hδ < H̃0̃ ∧ L) ≤ |E|ε, EC

)
(A.2)

≤ P(α)
(

ΣP ω̃
0̃

(Hδ < H̃0̃ ∧ L) ≤ |E|ε
)

≤ cP̃(α)
(

Σ̃Pω
0̃

(Hδ < H̃0̃ ∧ L) ≤ |E|ε
)
.

Induction. Inequality (A.2) relates the same quantities in G and G̃, allowing to
complete the induction argument.
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The edges in C do not appear in G̃ any more : G̃ has n − 2 edges. In order to apply
the induction hypothesis, we need to check that each vertex is connected to δ. This
results directly from the same property for G. If (x, y) ∈ Ẽ and y 6= δ, then (x, y) /∈ C(ω)

and (y, x) /∈ C(ω). As only the edges of C(ω) disappeared, then (y, x) ∈ Ẽ. G̃ has no
elementary loop. Indeed G has none, and the quotienting only merges the vertices of
C, whose joining edges are those of C, deleted in the construction. It only remains to
prove that G̃ has no multiple edges. It is not necessarily the case (quotienting may have
created multiple edges), but it is possible to reduce to this case, using the additivity
property of the Dirichlet distribution.

The induction hypothesis applied to G̃ and 0̃ then gives, for small ε > 0,

P̃(α)
(
Pω

0̃
(Hδ < H̃0̃ ∧ L) ≤ ε

)
≤ c′′εβ̃(− ln ε)r, (A.3)

where c′′ > 0, r > 0 and β̃ is the exponent "β" from the statement of the induction
hypothesis corresponding to the graph G̃.

This inequality, associated with (A.2) and the following simple lemma (also see [18]
for the proof of the lemma) then allows to carry out the induction :

Lemma A.5. If X and Y are independent positive bounded random variables such that,
for some real numbers αX , αY , r > 0,

• there exists C > 0 such that P (X < ε) ≤ CεαX for all ε > 0 (or equivalently for
small ε);

• there exists C ′ > 0 such that P (Y < ε) ≤ C ′εαY (− ln ε)r for small ε > 0;

then there exists a constant C ′′ > 0 such that, for small ε > 0,

P (XY ≤ ε) ≤ C ′′εαX∧αY (− ln ε)r+1

(and r + 1 can be replaced by r if αX 6= αY ).

We get from this lemma, (A.2) and (A.3) some constants c, r > 0 such that, for small
ε > 0,

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε, EC

)
≤ cεβC∧β̃(− ln ε)r+1.

It remains to prove that β̃ ≥ β, where β is the exponent defined in the induction hy-
pothesis relative to G and 0. Let Ã be a strongly connected subset of Ẽ such that 0̃ ∈ Ã.
Set A = Ã ∪ C ⊂ E. In view of the definition of Ẽ, every edge exiting Ã corresponds
to an edge exiting A, and vice-versa (the only edges deleted in the quotient procedure
are those of C). Thus, recalling that the weights of the edges are preserved in the quo-
tient, βÃ = βA. Moreover, 0̃ ∈ A and A is strongly connected, so that βA ≥ β. As a
consequence, β̃ ≥ β as announced.

Then βC ∧ β̃ ≥ βC ∧ β = β because C is strongly connected, and 0 ∈ C. It gives, for
small ε > 0 :

P(α)
(
Pω0 (Hδ < H̃0 ∧ L) ≤ ε, EC

)
≤ cεβ(− ln ε)r+1.

Summing on all events EC , C ∈ C concludes the induction and the proof.
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