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Abstract

In this article, a class of multiparameter processes with wide-sense stationary incre-
ments is studied. The content is as follows. (1) The spectral representation is derived;
in particular, necessary and sufficient conditions for a measure to be a spectral mea-
sure is given. The relations to a commonly used class of processes, studied e.g. by
Yaglom, is discussed. (2) Some classes of deterministic integrands, here referred to
as predomains, are studied in detail. These predomains consist of functions or, more
generally, distributions. Necessary and sufficient conditions for completeness of the
predomains are given. (3) In a framework covering the classical Walsh-Dalang theory
of a temporal-spatial process which is white in time and colored in space, a class of
predictable integrands is considered. Necessary and sufficient conditions for com-
pleteness of the class are given, and this property is linked to a certain martingale
representation property.
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1 Introduction

Let d ≥ 1 be an integer which is fixed throughout. In this article we consider a class
of real-valued processes X = {Xu : u ∈ Rd} indexed by Rd with wide-sense stationary
increments. We refer to Section 2 for the precise definition so for now it suffices to say
that this class is large and contains e.g. the d-parameter fractional Brownian sheet and
a well-known example from the theory of stochastic partial differential equations cf. e.g.
Dalang [2], p. 5–6; see also Example 2.6. The main purpose is to study different kinds
of integrals with respect to such processes, focusing in particular on completeness of
various sets of integrands.

In Section 3 we discuss classes of deterministic integrands, referred to as predo-
mains. Predomains are not necessarily sets of functions but the corresponding integral
takes values in the set of square-integrable random variables. On predomains we use
the metric induced by the L2-distance between corresponding integrals. If complete-
ness is present, a predomain is referred to as a domain. In the one-dimensional case
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Multiparameter processes with stationary increment

d = 1 several predomains have been studied for processes with stationary increments. A
key reference in the case of fractional Brownian motion is Taqqu and Pipiras [7] where
various (pre)domains consisting of functions are analyzed. These authors show that
many natural predomains studied in the literature are in fact not complete and hence
not domains. To remedy this, Jolis [5] introduced a larger predomain consisting of distri-
butions in the case of a continuous processes with stationary increments. In particular
she showed that this will often lead to a domain. In Section 3 we follow [5] and study
predomains containing functions as well as distributions. Generalizing results of [5, 7],
necessary and sufficient conditions on the spectral measure for a predomain to be a
domain are given. Moreover, we show that the integral of an integrand ϕ belonging to
any of the predomains considered is given by∫

Rd

ϕ(u)X(du) =

∫
Rd

Fϕ(z)Z(dz), (1.1)

where F denotes the Fourier transform and Z the random spectral measure of X.
As is obvious from (1.1) the integral is closely linked to the spectral representation of

X. Therefore we study the spectral representation ofX in detail in Section 2. Moreover,
a comparison to the class of processes studied e.g. by Yaglom [13] is given.

Finally, in Section 4 we add a temporal component and thus consider Gaussian pro-
cesses X = {Xu : u = (t, x) ∈ R1+d} where t ∈ R is time and x ∈ Rd a spatial compo-
nent. We assume that X is white in time and colored in space. A martingale integral
with respect to X is constructed akin to the classical papers by Walsh [12] and Dalang
[2] although it should be noticed that in the present situation, unlike these papers, X
does in general not induce a martingale measure. For example, when d = 1, X could
be fractional in space with Hurst exponent H in (0, 1) in which case X only induces a
martingale measure as in [2] when H > 1/2. We show that the integral of a predictable
integrand ϕt(x) with respect to X is∫ ∞

0

∫
Rd

ϕt(x)X(d(t, x)) =

∫ ∞
0

∫
Rd

Fϕt(z) dZt(x),

where F denotes the Fourier transform in the space variable, and for fixed t, Zt(·) is the
random spectral measure of X((0, t]× ·) in the space variable. Necessary and sufficient
conditions for completeness for a class of integrands are given and in particular this
property is linked to a martingale representation property with respect to X.
Definitions and notation: For any measure µ, L2

C
(µ) denotes the set of complex-

valued µ-square integrable functions and L2
R

(µ) the subset hereof taking values in R.
Likewise, for any A ⊆ L2

C
(µ), spCA is the closed complex linear span and spRA the

corresponding closed real linear span of A. Observe that spRA coincides with the
real-valued elements in spCA if all elements in A are real-valued. According to usual
notation the space of tempered distributions, that is the dual of the Schwartz space
SC(Rd) consisting of complex-valued C∞–functions on Rd of rapid decrease, is de-
noted S ′

C
(Rd). The subspace of SC(Rd) consisting of real-valued functions is denoted

SR(Rd), and likewise S ′
R

(Rd) is the set of elements Ψ in S ′
C

(Rd) such that Ψ(φ) ∈ R
for all ϕ ∈ SR(Rd). Similarly, DC(Rd) (resp. DR(Rd)) denotes the set of complex-valued
(resp. real-valued) C∞-functions on Rd of compact support. The class of non-negative
elements in DR(Rd) is denoted by DR(Rd)+. For the general theory of distributions and
especially tempered distributions we refer to Schwartz [9].

Let λd denote Lebesgue measure on Rd. The Fourier transform F maps S ′
C

(Rd)

onto S ′
C

(Rd) and with the usual identification of a locally integrable function with its
corresponding tempered distribution when it exists, we have for f ∈ L1

C
(λd) that

Ff(z) =

∫
Rd

ei〈z,·〉f(·) dλd =

∫
Rd

ei〈z,u〉f(u) du, for z ∈ Rd.
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Here, 〈·, ·〉 is the canonical inner product on Rd with corresponding norm ‖·‖. The
notation differs from the one used e.g. in [9] where, for f ∈ L1

C
(λd), Ff(−2π·) is used

as the Fourier transform of f . But apart from a constant (2π)d appearing in Parseval’s
identity and the explicit form of the inverse F−1, all results from the general theory of
distributions remain valid with the definition given above. When d = 1 we also use the
notation F1 instead of F .

All random variables are defined on a probability space (Ω,F ,P) which is fixed
throughout. Equality in distribution is denoted

D
=. Finally, Bb(Rd) is the class of bounded

Borel sets in Rd.

2 Spectral representation

In Definition 2.4 the class of processes with wide-sense stationary increments is
defined and the spectral representation is given in Theorem 2.7. This representation is
stated in terms of the following class of random measures.

Definition 2.1. Let F be a symmetric Borel measure on Rd finite on compacts. A
set function Z : Bb(Rd) → L2

C
(P) is said to be an L2

C
(P)-valued random measure with

control measure F if

(1) Z(A ∪B) = Z(A) + Z(B) P-a.s. whenever A,B ∈ Bb(Rd) are disjoint;

(2) Z(A) = Z(−A) P-a.s. for A ∈ Bb(Rd);

(3) E[Z(A)Z(B)] = F (A ∩B) for A,B ∈ Bb(Rd);

(4) E[Z(A)] = 0 for A ∈ Bb(Rd).

Remark 2.2. Let Z be a random measure as above. From (1) and (3) it follows that
Z(∪∞n=1An) =

∑∞
n=1 Z(An) in L2

C
(P) for any disjoint sequence (An)n≥1 in Bb(Rd) satis-

fying ∪∞n=1An ∈ Bb(Rd).
Decompose Z as Z(A) = Z1(A) + iZ2(A) for A ∈ Bb(Rd); that is, Z1 is the real part of

Z, Z2 the imaginary part, and Z1(A), Z2(A) ∈ L2
R

(P) for A ∈ Bb(Rd). For A,B ∈ Bb(Rd)
we have

E[Z1(A)Z2(B)] = 0, (2.1)

E[Z1(A)Z1(B)] = 1
2

[
F (A ∩B) + F (A ∩ (−B))

]
, (2.2)

E[Z2(A)Z2(B)] = 1
2

[
F (A ∩B)− F (A ∩ (−B)

]
. (2.3)

To see this, notice that by (2) in Definition 2.1,

Z1(A) = 1
2

[
Z(A) + Z(−A)

]
and Z1(B) = 1

2

[
Z(B) + Z(−B)],

Z2(A) = 1
2i

[
Z(A)− Z(−A)

]
and Z2(B) = −1

2i

[
Z(B)− Z(−B)].

Hence, (2.1)–(2.3) follow by symmetry of the measure F and Definition 2.1(3).

Let Z be an L2
C

(P)-valued random measure with control measure F . As usual, inte-
gration with respect to Z can be defined starting with simple functions and extending
to L2

C
(F ) using the isometry condition Definition 2.1(3). Thus, the integral ϕ 7→

∫
ϕdZ

maps L2
C

(F ) linearly isometrically onto a closed subset of L2
C

(P) consisting of zero-mean
random variables, and satisfies, for A ∈ Bb(Rd) and ϕ,ψ ∈ L2

C
(F ),∫

1A dZ = Z(A), and E
[ ∫

ϕdZ

∫
ψ dZ

]
=

∫
ϕψ dF.

EJP 17 (2012), paper 74.
Page 3/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2287
http://ejp.ejpecp.org/


Multiparameter processes with stationary increment

Denoting by RC(Z) the set of integrals
∫
ϕdZ, ϕ ∈ L2

C
(F ), RR(Z) refers to the real-

valued elements inRC(Z). With L̃2
C

(F ) denoting the set of functions in L2
C

(F ) satisfying
ϕ(x) = ϕ(−x) for all x ∈ Rd we have

RR(Z) =
{∫

ϕdZ : ϕ ∈ L̃2
C(F )

}
.

Indeed, the inclusion ”⊇” follows from Definition 2.1(2) and ”⊆” from the fact that for
all ϕ ∈ L2

C
(F ), 1

2 (ϕ+ ϕ(−·)) is in L̃2
C

(F ) with integral equal to the real part of
∫
ϕdZ.

For u = (u1, . . . , ud) and v = (v1, . . . , vd) in Rd write u ≤ v if uj ≤ vj for all j, and
u < v if uj < vj for all j. Let (u, v] = {y ∈ Rd : u < y ≤ v}. Consider a family
H = {Hu : u ∈ Rd} with Hu ∈ C. For u ≤ v in Rd define the increment of H over (u, v],
H((u, v]), as

H((u, v]) =
∑

ε=(ε1,...,εd)∈{0,1}d
(−1)ε.H(c1(ε1),...,cd(εd)), (2.4)

where ε. = ε1 + · · · + εd, cj(0) = vj and cj(1) = uj . That is, H((u, v]) = Hv −Hu if d = 1

and

H((u, v]) = H(v1,v2) +H(u1,u2) −H(u1,v2) −H(v1,u1) if d = 2.

Notice that H((u, v]) = 0 if u ≤ v and u 6< v. Later we shall occasionally write 4hH(u)

for H((u, u+ h]) for u ∈ Rd and any h ∈ Rd+.

Remark 2.3. The set function H defined in (2.4) on the semi-ring R := {(u, v] : u ≤
v in Rd} is finitely additive. Conversely, let µ be a finitely additive set function on R and
set

Hu = (−1)nuµ((u ∧ 0, u ∨ 0]), for u ∈ Rd, (2.5)

where u ∧ 0 = (min(u1, 0), . . . ,min(ud, 0)), u ∨ 0 = (max(u1, 0), . . . ,max(ud, 0)) and nu is
the number of coordinates in u that are strictly less than 0. Then µ((u, v]) = H((u, v])

for all u ≤ v in Rd.
To show the first claim it is enough to show that for all u ≤ v in Rd, k = 1, . . . , d and

r ∈ (uk, vk) we have

H((u, v]) = H((u1, v1]× · · · × (uk−1, vk−1]× (uk, r]× (uk+1, vk+1]× · · · × (ud, vd])

+H((u1, v1]× · · · × (uk−1, vk−1]× (r, vk]× (uk+1, vk+1]× · · · × (ud, vd]).

This follows, however, directly from definition (2.4). To show the last claim let µ be a
finitely additive set function on R and {Hu : u ∈ Rd} be given by (2.5). The function
H vanishes on the axes, i.e. Hu = 0 for all u = (u1, . . . , ud) satisfying uj = 0 for some
j = 1, . . . , d. Hence, by definition of the increments H((0 ∧ u, 0 ∨ u]), u ∈ Rd, there is at
most one non-zero term in the sum (2.4), namely when c(ε) = u, and in this case ε. = nu.
That is,

H((0 ∧ u, 0 ∨ u]) = (−1)nuHu = µ((0 ∧ u, 0 ∨ u]).

Since any half-open interval (u, v] in Rd can be expressed in terms of a finite number of
intervals of the form (w ∧ 0, w ∨ 0], w ∈ Rd, using elementary set operations it follows
by finite additivity of H and µ that H((u, v]) = µ((u, v]).

Definition 2.4. A real-valued process X = {Xu : u ∈ Rd} is said to have wide-sense
stationary increments if X((u, v]) ∈ L2

R
(P) for all u ≤ v in Rd with E[X((u, v])] = 0 and

E
[
X
(
(u1 + h, v1 + h]

)
X
(
(u2 + h, v2 + h]

)]
= E

[
X
(
(u1, v1]

)
X
(
(u2, v2]

)]
(2.6)

for all h ∈ Rd and u1 ≤ v1, u2 ≤ v2 in Rd.
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It is enough that (2.6) holds for all h ∈ Rd+ for X to have wide-sense stationary
increments. To see this assume that (2.6) holds for all h ∈ Rd+ and let h ∈ Rd be given.

Choose h̃ ∈ Rd such that h̃ ≤ 0 and h̃ ≤ h. An application of (2.6) with h replaced by
h− h̃ ∈ Rd+ and −h̃ ∈ Rd+ yields

E
[
X
(
(u1 + h, v1 + h]

)
X
(
(u2 + h, v2 + h]

)]
= E

[
X
(
(u1 + h̃, v1 + h̃]

)
X
(
(u2 + h̃, v2 + h̃]

)]
= E

[
X
(
(u1, v1]

)
X
(
(u2, v2]

)]
which shows that (2.6) holds for general h ∈ Rd.

Remark 2.5. In this article we let increments be defined as in (2.4). However, when
d ≥ 2 an alternative way of defining an increment of H = {Hu : u ∈ Rd} could be as
Hv − Hu for u ≤ v, and this leads to the very different kind of wide-sense stationary
increments studied e.g. by Yaglom [13]. In this context, notice that in contrast to the
set function (u, v] 7→ H((u, v]) we have in the case d ≥ 2 that the set function (u, v] 7→
Hv −Hu is only finitely additive when H is constant.

Let us compare Yaglom’s definition to the one given above. A real-valued process
X = {Xu : u ∈ Rd} for which Xv −Xu ∈ L2

R
(P) and E[Xv −Xu] = 0 for all u ≤ v in Rd

is said to have wide-sense stationary increments in Yaglom’s sense if

E[(Xv1+h −Xu1+h)(Xv2+h −Xu2+h)]

= E[(Xv1 −Xu1
)(Xv2 −Xu2

)], for all h ∈ Rd and u1 ≤ v1, u2 ≤ v2 in Rd.

It is easily seen that this implies that X has wide-sense stationary increments in the
sense of Definition 2.4. But conversely there are many processes with wide-sense
stationary increments that do not have wide-sense stationary increments in Yaglom’s
sense. One such example is the Brownian sheet, where increments over disjoint in-
tervals are independent and X((u, v])

D
= N(0, λd((u, v])) for u ≤ v, in the case d ≥ 2.

See also Example 2.6 for another example. However, when d = 1 the two definitions
coincide.

The term ”wide-sense” refers to a property of the covariance function. In [1] (resp.
in [13], Definition 8.1.2) a process is said to have strict-sense stationary increments,
where increments are defined as Xv −Xu, if the finite dimensional distributions of the
increments are invariant under translations (resp. under translations and rotations). In
the following we only consider ”wide-sense” stationary increments.

Assume that X has wide-sense stationary increments in Yaglom’s sense. Yaglom
[13], Remark 3, p. 295, shows that, up to addition of a random variable not depending
on u, Xu is given by

Xu =

∫
Rd

(ei〈z,u〉 − 1) Z̃(dz) + 〈V, u〉, for u ∈ Rd, (2.7)

where Z̃ = {Z̃(A) : A ∈ Bb(Rd)} is an L2
C

(P)-valued random measure with control
measure F̃ satisfying ∫

Rd

(‖z‖2 ∧ 1) F̃ (dz) <∞

and V is a random vector in Rd. After a few calculations it follows that when d ≥ 2,

X((u, v]) =

∫
Rd

F1(u,v](z)Z(dz), for u < v, (2.8)

where Z(dz) = idz1 · · · zdZ̃(dz). That is, the control measure F of Z is F (dz) =
∏d
j=1 z

2
j F̃ (dz)

which satisfies ∫
Rd

1 ∧ ‖z‖2∏d
j=1 z

2
j

F (dz) <∞.
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Example 2.6. In some situations one can define X(A) not only for A = (u, v] but also
for arbitrary bounded Borel sets in Rd. In this case, if the mapping X : Bb(Rd)→ L2

R
(P)

is σ-additive one can in fact define X(ϕ) for a large class of Borel functions ϕ : Rd → R,
including all bounded Borel functions with compact support.

An important example of this appears in the theory of stochastic partial differential
equations and is presented in Dalang [2], p. 5–6. Let X = {X(ϕ) : ϕ ∈ DR(Rd)} be a
centered Gaussian process with covariance function

E[X(ϕ)X(ψ)] =

∫
Rd

∫
Rd

ϕ(x)ψ(y)g(x− y) dx dy, (2.9)

where g : Rd → [0,∞] is a locally integrable function such that g = Fµ in S ′
R

(Rd) for a
tempered measure µ. By approximating with a sequence in DR(Rd) in the norm

‖φ‖g =
(∫

Rd

∫
Rd

|φ(x)φ(y)|g(x− y) dx dy
)1/2

(2.10)

one can define X(ϕ) for any bounded Borel function ϕ : Rd → R with compact support
by L2

R
(P)-continuity. Putting X(A) = X(1A) for A ∈ Bb(Rd) it follows easily that the

mapping (A ∈ Bb(Rd)) 7→ X(A) ∈ L2
R

(P) is σ-additive. Finally, if we let {Xu : u ∈ Rd}
be defined as Xu = (−1)nuX((0∧ u, 0∨ u]) (cf. Remark 2.3) then the increment over any
interval (u, v] with u < v in Rd is precisely X((u, v]). The process {Xu : u ∈ Rd} has
wide-sense stationary increments since

E[X(A+ h)X(B + h)] =

∫
A+h

∫
B+h

g(x− y) dx dy

=

∫
A

∫
B

g(x− y) dx dy = E[X(A)X(B)]

for any A,B ∈ Bb(Rd) and any h ∈ Rd.

In the next result we give the spectral representation of processes with wide-sense
stationary increments. In this case it is natural to look for a representation as in (2.8)
rather than (2.7). Recall that for u, v ∈ Rd with u < v,

F1(u,v](z) =

d∏
j=1

(
eivjzj − eiujzj

izj
), for z = (z1, . . . , zd) ∈ Rd, (2.11)

where the right-hand side should be understood by continuity if zj = 0 for some j, i.e.
the j’th factor equals vj − uj for zj = 0.

Theorem 2.7. Let X = {Xu : u ∈ Rd} be a real-valued process. Then X has wide-sense
stationary increments and the mapping (u ∈ Rd+) 7→ X((0, u]) is continuous in L2

R
(P) if

and only if there is a symmetric measure F on Rd satisfying∫
Rd

d∏
j=1

1

1 + z2
j

F (dz) <∞, (where z = (z1, . . . , zd)), (2.12)

and an L2
C

(P)-valued random measure Z with control measure F such that

X((u, v]) =

∫
F1(u,v] dZ, for u < v. (2.13)

If this is the case then for u1 < v1 and u2 < v2,

E[X((u1, v1])X((u2, v2])] =

∫
F1(u1,v1]F1(u2,v2] dF. (2.14)

The measures F and Z are uniquely determined byX. In addition,RC(Z) = spC{X((u, v]) :

u ≤ v} and RR(Z) = spR{X((u, v]) : u ≤ v}.
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The measure F above is called the spectral measure of X and Z is the random
spectral measure of X. The last statement in Theorem 2.7 shows that Z is Gaussian if
X is Gaussian.

If X vanishes on the axes then by Remark 2.3 Xu = (−1)nuX((0∧u, 0∨u]) for u ∈ Rd.
In particular, in this case (2.13) implies that

Xu =

∫
F1(0,u] dZ, for 0 < u in Rd.

Proof. The ”if” part: Let F satisfy (2.12) and Z be an L2
C

(P)-valued random measure
with control measure F . By (2.11) F1(u,v] ∈ L̃2

C
(F ) thus making the right-hand side of

(2.12) well-defined for all u < v in Rd. Assume that the increments of X are given by
(2.13) and notice that we have (2.14) as well by definition of the integral with respect
to Z. Hence, since for arbitrary h ∈ Rd and ui ≤ vi in Rd for i = 1, 2,

F1(u1+h,v1+h]F1(u2+h,v2+h] = F1(u1,v1]F1(u2,v2],

it follows from (2.14) that (2.6) holds, that is, X has wide-sense stationary increments.
From (2.11) and (2.14) it follows that (u ∈ Rd+) 7→ X((0, u]) is continuous in L2

R
(P).

The ”only if” part: In the case d = 1 the result goes back to [11] and [6]; see also Itô
[4], Theorem 6.1. In the general case we follow Itô’s approach closely. More specifically,
we first define three processes X(·), X(1)(·) and X1(·) as well as Z and F . Then we
establish the fundamental formula (2.20) below and finally we prove (2.12)–(2.13).

Assume that X has wide-sense stationary increments and the mapping (u ∈ Rd+) 7→
X((0, u]) is continuous in L2

R
(P). Define {X(ϕ) : ϕ ∈ DC(Rd)} as

X(ϕ) =

∫
Rd

Xuϕ(u) du, for ϕ ∈ DC(Rd),

where the integral is constructed in the L2
C

(P)-sense using that u 7→ Xuϕ(u) is L2
C

(P)-
continuous with compact support. Clearly, {X(ϕ) : ϕ ∈ DC(Rd)} constitutes a random
distribution in the sense of Itô [4] or Yaglom [13].

Denote by D the differential operator ∂d/∂u1 · · · ∂ud and define {X(1)(ϕ) : ϕ ∈
DC(Rd)} according to

X(1)(ϕ) = (−1)d
∫
Rd

XuDϕ(u) du, for ϕ ∈ DC(Rd).

Since, with e = (1, . . . , 1) ∈ Rd denoting the vector of ones,

Dϕ(u) = lim
ε↓0

ϕ((u− εe, u])/εd = lim
ε↓0
4εeϕ(u− εe)/εd, for u ∈ Rd and ϕ ∈ DC(Rd),

we get, using the assumptions and linear change of variables together with the formula∫
Rd

f(u)4hg(u) du = (−1)d
∫
Rd

4hf(u− h)g(u) du, h ∈ Rd+, (2.15)

that for ϕ ∈ DC(Rd)

(−1)d
∫
Rd

XuDϕ(u) du = lim
ε↓0

ε−d
∫
Rd

X((u, u+ εe])ϕ(u) du, in L2
C(P). (2.16)

A key point is that X(1) is stationary in the sense that

E[τhX
(1)(ϕ) τhX(1)(ψ)] = E[X(1)(ϕ)X(1)(ψ)], for h ∈ Rd, ϕ, ψ ∈ DC(Rd),
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where

τhX
(1)(ϕ) = X(1)(ϕ(· − h)), for h ∈ Rd, ϕ ∈ DC(Rd).

To see this, let h ∈ Rd and ϕ,ψ ∈ DC(Rd). Using (2.16) it follows that

E[τhX
(1)(ϕ)τhX(1)(ψ)]

= lim
ε↓0

ε−2dE[

∫
Rd

X((u, u+ εe])ϕ(u− h) du

∫
Rd

X((v, v + εe])ψ(v − h) dv]

= lim
ε↓0

ε−2dE[

∫
Rd

X((u+ h, u+ h+ εe])ϕ(u) du

∫
Rd

X((v + h, v + h+ εe])ψ(v) dv]

= lim
ε↓0

ε−2d

∫
R2d

E[X((u+ h, u+ h+ εe])X((v + h, v + h+ εe])]ϕ(u)ψ(v) dudv

= lim
ε↓0

ε−2d

∫
R2d

E[X((u, u+ εe])X((v, v + εe])]ϕ(u)ψ(v) dudv

= E[X(1)(ϕ)X(1)(ψ)].

Applying [13], Theorem 3, there exists an L2
C

(P)-valued random measure Z with
symmetric control measure F satisfying∫

Rd

1

(1 + ‖z‖2)q
F (dz) <∞, for some q ≥ 1, (2.17)

such that

X(1)(ϕ) =

∫
Rd

Fϕ(z)Z(dz), for ϕ ∈ DC(Rd).

Let Dp
C

(Rd) denote the set of ϕ ∈ DC(Rd) of the form

ϕ(z) =

d∏
j=1

gj(zj) (2.18)

where gj ∈ DC(R). Notice that for such a ϕ, Fϕ(z) =
∏d
j=1(F1gj)(zj). Following Itô [4],

set

X1(ϕ) =

∫
Rd

Gϕ(z)Z(dz), for ϕ ∈ Dp
C

(Rd), (2.19)

where

Gϕ(z) =

∫
Rd

d∏
j=1

eiujzj − 1{|zj |≤1}

izj
ϕ(u) du.

Observe that for ϕ as in (2.18) Gϕ(z) =
∏d
j=1G1gj(zj) where

G1gj(zj) =

∫
R

eiujzj − 1{|zj |≤1}

izj
gj(uj) duj .

Since G1gj(zj) is bounded and

G1gj(zj) =
F1gj(zj)

izj
, for |zj | > 1 ,

and thus tends to zero faster than any polynomial it follows, with q given in (2.17), that

sup
z∈Rd

|Gϕ(z))|2(1 + ‖z‖2)q <∞.
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Hence, by (2.17), Gϕ belongs to L2
C

(F ) making (2.19) well-defined. Maintaining the
definition of the differential operator D from above and using integration by parts we
get G(Dϕ) = (−1)dFϕ for ϕ ∈ Dp

C
(Rd), implying that

X(Dϕ) = (−1)dX(1)(ϕ) = X1(Dϕ), for ϕ ∈ Dp
C

(Rd),

or equivalently,
X1(ϕ) = X(ϕ), for ϕ ∈ Dp

0 (Rd),

where Dp
0 (Rd) is the subspace of Dp

C
(Rd) consisting of ϕ on the form (2.18) where, for

j = 1, . . . , d,
∫
R
gj(zj) dzj = 0.

For ϕ ∈ Dp
C

(Rd) and h ∈ Rd+ we have 4hϕ ∈ Dp
0 (Rd) and thus

X(4hϕ) =

∫
Rd

G(4hϕ)(z)Z(dz)

implying, since

G(4hϕ)(z) = Fϕ(z)

d∏
j=1

e−ihjzj − 1

izj
,

that

X(4hϕ) =

∫
Rd

Fϕ(z)

d∏
j=1

e−ihjzj − 1

izj
Z(dz). (2.20)

SplittingRd into disjoint sets according to the coordinates being numerically greater
than or less than 2π we see, using that F is finite on bounded sets, that equation (2.12)
is equivalent to that ∫

CI

∏
j∈I

1

z2
j

F (dz) <∞ (2.21)

for each non-empty I ⊆ {1, . . . , d}, where

CI = {z ∈ Rd : |zj | > 2π for j ∈ I and |zj | ≤ 2π for j /∈ I}.

To show (2.21) for a given I we argue as follows. By (2.20) we have for ϕ ∈ Dp
C

(Rd) and
h ∈ Rd+ that

‖X(4hϕ)‖2L2
C

(P) =

∫
Rd

|Fϕ(z)|2
d∏
j=1

|1− e
−ihjzj

izj
|2 F (dz)

≥
∫
CI

d∏
j=1

|1− e−ihjzj |2 |Fϕ(z)|2 F (dz)∏d
j=1 z

2
j

.

In particular this holds for every ϕn ∈ Dp
C

(Rd), n ≥ 1, of the form ϕn(z) =
∏d
j=1 gn(zj)

for z ∈ Rd, where gn ∈ DR(R)+ satisfies

gn(x) = 0, for |x| ≥ 1/n, and

∫
R

gn(x) dx = 1.

In this case |F1gn(zj)| ≥ 1/2 for all zj satisfying |zj | ≤ 2πn/16; see [4], p. 221. Hence
for arbitrary n and h ∈ Rd+,

‖X(4hϕn)‖2L2
R

(P) ≥ (1/2)2d

∫
CI

d∏
j=1

|1− e−ihjzj |2 1{|zj |≤2πn/16}

z2
j

F (dz). (2.22)
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Following [4] integrate both sides with respect to dh over the cube [0, 1]d. Using the
definition of CI and the product structure the integral of the integrand on the right-
hand side of (2.22) equals for each z ∈ CI and n ≥ 16

∏
j∈I

1

z2
j

∫ 1

0

|1− e−ihjzj |2 dhj1{2π<|zj |≤2πn/16}
∏
j /∈I

1

z2
j

∫ 1

0

|1− e−ihjzj |2 dhj1{|zj |≤2π}. (2.23)

Now, there is a constant b > 0 such that for all |zj | ≤ 2π and 0 ≤ hj ≤ 1/2

|1− e−ihjzj |2

|zj |2
≥ bh2

j ,

and, as shown on p. 221 in [4], there exists a constant c > 0 such that∫ 1

0

|1− e−ihjzj |2 dhj ≥ c

for all 2π < |zj |. Hence, using that we get a smaller value by integrating over [0, 1/2]

instead of over [0, 1] for j 6∈ I, it follows that the expression in (2.23) is greater than or
equal to ∏

j∈I

c

|zj |2
1{2π<|zj |≤2πn/16}

∏
j /∈I

b

24
1{|zj |≤2π}.

Inserting into (2.22) and applying monotone convergence (2.21) follows if

sup
n≥1, h∈[0,1]d

‖X(4hϕn)‖2L2
R

(P) <∞.

But using Jensen’s inequality we have, for all n ≥ 1 and h ∈ [0, 1]d,

‖X(4hϕn)‖2L2
R

(P) = E
[(∫

Rd

Xu4hϕn(u) du

)2 ]
= E

[(∫
Rd

(−1)d4hXu−hϕn(u) du

)2 ]
≤
∫
Rd

E[(4hXu−h)2]ϕn(u) du ≤ sup
u∈Rd, h∈[0,1]d

E[(4hXu−h)2]

which is finite due to the L2
R

(P)-continuity and the stationary increments.
Let h = v − u. From (2.20) and (2.15) it follows that∫

Rd

4hXx−hϕn(x) dx = (−1)d
∫
Rd

Fϕn(z)

d∏
j=1

e−ihjzj − 1

izj
Z(dz), (2.24)

for all n ≥ 1, where (ϕn)n≥1 ⊆ Dp
C

(Rd) ∩DR(Rd)+ is a sequence satisfying∫
Rd

ϕn(x) dx = 1 for n ≥ 1 and ϕn(x) dx→ δv weakly.

As n tends to infinity both sides of (2.24) converge in L2
R

(P) due to the continuity as-
sumption on X and the integrability property (2.12) of F , giving the identity

X((u, v]) = 4v−uXu =

∫
Rd

ei〈z,v〉
d∏
j=1

1− e−i(vj−uj)zj

izj
Z(dz)

=

∫
Rd

d∏
j=1

eivjzj − eiujzj

izj
Z(dz) =

∫
Rd

F1(u,v](z)Z(dz)
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which is (2.13).
To prove the last part notice that X and X(1) are in one-to-one correspondence,

that spC{X((u, v]) : u ≤ v} = spC{X(1)(ϕ) : ϕ ∈ DC(Rd)}, and that there is a similar
result with subscript C replaced by R. By construction (see [13] p. 281), Z is uniquely
determined; moreover we have RC(Z) = spC{X(1)(ϕ) : ϕ ∈ DC(Rd)} as well as the
corresponding result with subscript C replaced by R. This concludes the proof.

In connection with the integrability condition (2.12) on the spectral measure F we
have the following inequalities for all z = (z1, . . . , zd) in Rd:

( 1

1 + ‖z‖2
)d
≤

d∏
j=1

1

1 + z2
j

≤ 1

1 + ‖z‖2
. (2.25)

This should compared with the integrability condition satisfied by general tempered
measures cf. Lemma 3.4 below. The inequalities (2.25) can be shown as follows:

1 + ‖z‖2 = 1 +

d∑
j=1

z2
j ≤

∑
ε1,...,εd∈{0,1}

d∏
j=1

z
2εj
j =

d∏
j=1

(1 + z2
j )

=
∑

ε1,...,εd∈{0,1}

d∏
j=1

z
2εj
j ≤

∑
ε1,...,εd∈{0,1}

d∏
j=1

‖z‖2εj =
(
1 + ‖z‖2

)d
.

The following corollary gives necessary and sufficient conditions for a Gaussian pro-
cess with stationary increments to be of the form described in Example 2.6.

Corollary 2.8. Let X = {Xu : u ∈ Rd} be a centered Gaussian process with wide-sense
stationary increments, spectral measure F and random spectral measure Z. If FF is a
positive locally integrable function then the process

X(φ) =

∫
FφdZ, φ ∈ DR(Rd), (2.26)

is of the form (2.9) with µ = F and g = Fµ in S ′
R

(Rd).
Conversely, let {X(φ) : φ ∈ DR(Rd)} be of the form (2.9) and {Xu : u ∈ Rd} be

the corresponding process with wide-sense stationary increments constructed in Exam-
ple 2.6. Then {Xu : u ∈ Rd} has spectral measure F = µ, and therefore∫ d∏

j=1

1

1 + z2
j

µ(dz) <∞. (2.27)

Proof. Assume that g = FF is a positive locally integrable function and let {X(φ) :

φ ∈ DR(Rd)} be given by (2.26). By elementary properties of Fourier transforms and
convolutions

E[X(φ)X(ψ)] =

∫
FφFψ dF =

∫
Rd

∫
Rd

φ(x)ψ(y)g(x− y) dx dy

for φ, ψ ∈ DR(Rd), which shows the first part.
Conversely, consider the process {Xu : u ∈ Rd} with wide-sense stationary incre-

ments constructed in Example 2.6 and let us show that F = µ. Again by elementary
properties of Fourier transforms and convolutions

E[X(φ)X(ψ)] =

∫
FφFψ dµ, for φ, ψ ∈ DR(Rd). (2.28)
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Let E be the set of simple functions on Rd defined in (3.1) below. By (2.14) and linearity
we have that

E[X(φ)X(ψ)] =

∫
FφFψ dF, for φ, ψ ∈ E . (2.29)

For (φj)
d
j=1 ⊆ DR(R) set φ(z) =

∏d
j=1 φj(zj) and

φn(z) =

d∏
j=1

φn,j(zj) where φn,j =

∞∑
k=−∞

φj(
k−1
n )1((k−1)/n,k/n].

Notice that (φn)n∈N ⊆ E and φ ∈ DR(Rd). By continuity of φ we have that φn → φ in
‖ · ‖g (see (2.10)) and hence X(φn) → X(φ) in L2

R
(P). According to (2.28)–(2.29) we

have ∫
|Fφ|2 dµ = E[X(φ)2] = lim

n→∞
E[X(φn)2]

= lim
n→∞

∫
|Fφn|2 dF =

∫
|Fφ|2 dF,

where in the last equality we have used that Fφn → Fφ in L2
C

(F ), cf. Lemma 3.6 below.
This proves that µ = F . Finally, (2.27) follows from Theorem 2.7.

Example 2.9. Consider the case d = 1 and let X = {Xu : u ∈ R} be a fractional
Brownian motion with Hurst exponent H ∈ (0, 1). Then X has absolutely continuous
spectral measure F with density f : x 7→ C|x|1−2H for some C > 0. By Corollary 2.8,
X is of the form (2.9) if and only if FF = Ff is a positive locally integrable function.
For H ∈ ( 1

2 , 1), Ff = (x 7→ K|x|2H−2) for some constant K > 0 and hence X is of the
form (2.9). On the other hand, X is not of the form (2.9) when H ∈ (0, 1

2 ] because Ff
is not a locally integrable function. Indeed, to show the last claim let rα : x 7→ C|x|α for
all α > −1. For the moment assume that Frα is a locally integrable function. By the
scaling property of rα we have for all u ∈ R that Frα(x) = |u|α+1(Frα)(ux) for λ1-a.e.
x, which implies that Frα(x) = K ′|x|−1−α for λ1-a.e. x and some constant K ′ ∈ R \ {0}.
This shows that Frα is not a locally integrable function when α ≥ 0. In particular, Ff is
not a locally integrable function when H ∈ (0, 1

2 ].

3 Deterministic integrands

Let X = {Xu : u ∈ Rd} be a real-valued process with wide-sense stationary incre-
ments having spectral measure F satisfying (2.12) and random spectral measure Z.
Assume furthermore that F is absolutely continuous with respect to λd with density f .
In the following we study classes of deterministic integrands with respect to X.

Let E be the set of simple functions on Rd of the form

ϕ =

n∑
j=1

αj1(uj ,vj ] (3.1)

where {αj} ⊆ R and {uj}, {vj} ⊆ Rd satisfy uj ≤ vj for all j. For ϕ ∈ E represented as
in (3.1) define the simple integral as∫

ϕdX :=

n∑
j=1

αjX((uj , vj ]), (3.2)

and equip E with the norm ‖ϕ‖E := ‖
∫
ϕdX‖L2

R
(P). Notice that the integral (3.2) is

well-defined by finite additivity of the mapping (u, v] 7→ X((u, v]), that is,
∫
ϕdX does
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not depend on the representation (3.1). By Theorem 2.7,∫
Rd

ϕ(u) dXu =

∫
Rd

Fϕ(z) dZz and ‖ϕ‖2E =

∫
Rd

|Fϕ|2 dF for ϕ ∈ E . (3.3)

Definition 3.1. A pseudo normed linear space (Λ, ‖ · ‖Λ) containing E as a dense sub-
space and satisfying ‖ϕ‖E = ‖ϕ‖Λ for ϕ ∈ E is called a predomain for X. A domain is
a complete predomain. Given a predomain Λ, there is a unique continuous linear map-
ping

∫
· dX : Λ→ L2

R
(P), extending the simple integral (3.2). This mapping is called the

integral with respect to X.

Notice that Λ is not assumed to be a function space. By definition, a domain is a
completion of E and thus uniquely determined up to an isometric isomorphism. Below
we give concrete examples of predomains and domains.

Remark 3.2. Using the completeness of L2
R

(P) we see that a predomain Λ is a domain
if and only if {∫

ϕdX : ϕ ∈ Λ
}

= spR
{
X((u, v]) : u, v ∈ Rd, u ≤ v

}
. (3.4)

This emphasizes why domains are more attractable than predomains since for the latter
we only have ”⊆” in (3.4).

For ease of reading we formulate two lemmas. The first generalizes Lemma 3.1 of
[5] to d ≥ 2. For the second see [9], Chapter VII, Théorème VII.

Lemma 3.3. Let ϕ ∈ S ′
C

(Rd) be given such that Fϕ is a function. Then ϕ ∈ S ′
R

(Rd) if
and only if Fϕ(−x) = Fϕ(x) for λd-a.e. x.

Lemma 3.4. Let µ be a signed Borel measure on Rd. Then µ is a tempered measure,
that is µ ∈ S ′

C
(Rd) if ∫

Rd

(1 + ‖u‖2)−k |µ|(du) <∞

for some positive integer k ≥ 1. This condition is also necessary if µ is a positive
measure. In particular, a real-valued Borel function h is a tempered distribution if, and
in case h is non-negative only if,∫

Rd

|h(u)|
(1 + ‖u‖2)k

du <∞

for some positive integer k ≥ 1.

In view of (3.3) it is natural to look for predomains consisting of objects for which a
Fourier transform can be defined, that is spaces of distributions. Let ϕ be a tempered
distribution. If the Fourier transform Fϕ is a function, then this function is determined
up to Lebesgue null sets and hence by absolute continuity of F the following spaces are
well-defined:

Λdist =
{
ϕ ∈ S ′R(Rd) : Fϕ is a function such that

∫
Rd

|Fϕ(z)|2 F (dz) <∞
}
,

Λfunc =
{
ϕ ∈ L2

R(Rd) :

∫
Rd

|Fϕ(z)|2 F (dz) <∞
}
.

Moreover, let Λdist and Λfunc be equipped with the pseudo norms

‖ϕ‖2Λfunc
=

∫
Rd

|Fϕ(z)|2 F (dz), ‖ϕ‖2Λdist
=

∫
Rd

|Fϕ(z)|2 F (dz).

Notice that SR(Rd) ⊆ Λfunc ⊆ Λdist.
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Theorem 3.5. (1) Λdist is a predomain for X and the integral on Λdist is given by∫
ϕdX =

∫
FϕdZ, ϕ ∈ Λdist. (3.5)

(2) Λdist is a domain for X if and only if

∀g ∈ L2
R(F ) ∃k ∈ N :

∫
{f>0}

|g(u)|
(1 + ‖u‖2)k

du <∞. (3.6)

In particular, Λdist is a domain for X if there exists k ∈ N such that∫
{f>0}

1

f(u)(1 + ‖u‖2)k
du <∞. (3.7)

(3) Λfunc is a predomain, and it is a domain if and only if

L2
R(F ) ⊆ L2

R(1{f(u)>0} du). (3.8)

By Lemma 3.6 we further have that Λdist is complete if and only if F(Λdist) = L̃2
C

(F ).

Proof. (1): Lemma 3.6 below implies that E is dense in Λdist showing together with
(3.3) that Λdist is a predomain for X. The continuous linear mapping ϕ 7→

∫
ϕdX from

Λdist to L2
C

(P) defined by (3.5) extends the simple integral by (3.3) and is hence the
corresponding integral since L2

R
(P) is a closed subspace of L2

C
(P).

(2): Assume that for all g ∈ L2
R

(F ), (3.6) holds for some k and let us show that Λdist

is a domain for X. Let {ϕn} be a Cauchy sequence in Λdist. By completeness of L2
C

(F )

there exists g ∈ L2
C

(F ) with g = g(−·) such that Fϕn → g in L2
C

(F ). Since we may
assume that g = 0 on {f = 0}, (3.6) and Lemma 3.4 show that g ∈ S ′

C
(Rd). Hence,

using Lemma 3.3, ϕ := F−1g is in Λdist and ϕn → ϕ in Λdist which shows that Λdist is
complete.

Conversely, assume that Λdist is complete. For contradiction consider an h ∈ L2
R

(F )

which does not satisfy (3.6) with g replaced by h. Without loss of generality we may
assume that h ≥ 0 and h = 0 on {f = 0}. By Lemma 3.4, h 6∈ S ′

R
(Rd). Let h1 =

1
2 (h+ h(−·)) and h2 = 1

2 (h− h(−·)) be the even and odd parts of h and set g = h1 + ih2.
By linearity, g ∈ L2

C
(F ) and if g ∈ S ′

C
(Rd) then h1, h2 ∈ S ′

R
(Rd) which implies that

h = h1 +h2 ∈ S ′
R

(Rd). Thus g ∈ L2
C

(F )\S ′
C

(Rd) and by construction g = g(−·). Since F
is a tempered measure, SR(Rd) is dense in L2

R
(F ) and therefore there exist sequences

{ge,n} and {go,n} in SR(Rd) consisting of even and odd functions approximating h1 and
h2 in L2

R
(F ). Setting gn = ge,n + igo,n for n ≥ 1 we have {gn} ⊆ SC(Rd) ⊆ S ′

C
(Rd)

satisfying gn = gn(−·) and gn → g in L2
C

(F ). Thus ϕn := F−1gn is a Cauchy sequence in
Λdist which does not converge.

The last statement in (2) follows since for any measurable function g : Rd → R, we
have by the Cauchy-Schwarz inequality that∫

{f>0}

|g(u)|
(1 + ‖u‖2)k

du ≤
(∫
{f>0}

|g(u)|2f(u) du
)1/2(∫

{f>0}

1

f(u)

1

(1 + ‖u‖2)2k
du
)1/2

.

(3): Assume (3.8) and let {ϕn} be Cauchy in Λfunc. As in the proof of (2) there is a
g ∈ L2

C
(F ) with g = g(−·) and satisfying g = 0 on {f = 0} such that Fϕn → g in L2

C
(F ).

Since g ∈ L2
C

(Rd) we have by Lemma 3.3 that ϕ := F−1g is in Λfunc and ϕn → ϕ in Λfunc,
showing that the latter space is complete.

Conversely assume that Λfunc is complete. As in the proof of (2), if (3.8) is not
satisfied there is a function g : Rd → C satisfying g = 0 on {f = 0} and g = g(−·) such
that g ∈ L2

C
(F ) \ L2

C
(1{f(u)>0}du). Again as in (2) we can construct a sequence {gn} in

L2
C

(Rd) ∩L2
C

(F ) satisfying gn = gn(−·) such that gn → g in L2
C

(F ). Then ϕn := F−1gn is
a non-converging Cauchy sequence in Λfunc.
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Lemma 3.6. For (φj)
d
j=1 ⊆ DR(R) let φ(z) =

∏d
j=1 φj(zj) and

φn(z) =

d∏
j=1

φn,j(zj) where φn,j =

∞∑
k=−∞

φj(
k−1
n )1((k−1)/n,k/n].

Then Fφn → Fφ in L2
C

(F ). In particular, F(E ) is a dense subspace of L̃2
C

(F ).

Proof. For simplicity assume that supp(φj) ⊆ (0, 1) for all j. For all n, j and t ∈ R \ {0}

(F1φn,j)(t) =

∫
R

eistφn,j(s) ds =

n+1∑
k=1

φj(
k−1
n )
(ei(k/n)t − ei((k−1)/n)t

it

)
=
−1

it

n∑
k=1

(φj(
k
n )− φj(k−1

n ))ei(k/n)t.

Hence, denoting by Kj the total variation of φj on [0, 1],

|(F1φn,j)(t)| ≤
Kj

|t|
.

Furthermore, for all j,

‖F1φn,j −F1φj‖∞ ≤ ‖φn,j − φj‖L1(R) → 0 as n→∞ (3.9)

implying that Cj := supn∈N‖F1φn,j‖∞ < ∞. Thus Fφn(z) =
∏d
j=1 F1φn,j(zj) → Fg(z)

pointwise by (3.9), and

|(Fφn)(z)| =
d∏
j=1

|F1φn,j(zj)| ≤
d∏
j=1

(
1{|zj |≤1}Cj + 1{|zj |>1}

Kj

|zj |

)
which by dominated convergence implies that Fφn → Fφ in L2

C
(F ).

Let G be the real linear span of functions φ of the form φ(u) =
∏d
j=1 φj(uj) where

{φj} ⊆ DR(R). Since (Fφ)(z) =
∏d
j=1(Fφj)(zj) it follows by arguments as in [4], Theo-

rem 4.1, that F(G) is dense in L̃2
C

(F ). To show that F(E ) is dense in L̃2
C

(F ) it is hence
enough to show that for all φ ∈ G there exists a sequence {φn} ⊆ E such that Fφn → Fφ
in L2

C
(F ) which, however, follows by the above.

Remark 3.7. Theorem 3.5(2)–(3) underlines that it is easier for Λdist than for Λfunc to
be a domain. As an illustration, consider the fractional Brownian sheet, which corre-
sponds to X being Gaussian and f(u) =

∏d
j=1 cHj

|uj |1−2Hj , where H1, . . . ,Hd ∈ (0, 1)

and cHj
> 0 are constants, see e.g. [10]. Since f satisfies (3.7), Theorem 3.5 shows that

Λdist is complete. Moreover, by Theorem 3.5 it follows that Λfunc is complete if and only
if H1 = · · · = Hd = 1

2 , that is, X is a Brownian sheet. In the case d = 1, where X is a
fractional Brownian motion, a quite long proof of the non-completeness of Λfunc can be
founded in Taqqu and Pipiras [7], Theorem 3.1, and the completeness of Λdist is shown
by Jolis [5], Proposition 4.1.

Remark 3.8. Λdist is not always a domain. For instance, if d = 1 and f(u) = e−u
2

then
g(u) = eu belongs to L2(F ) but

∫
R
|g(u)|(1 + u2)−k du = ∞ for all k ∈ N. Hence, by

Theorem 3.5(2) Λdist is not a domain.
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4 Stochastic integrands for processes white in time and colored
in space

In the following we add a temporal component; that is, we consider processes in-
dexed by R1+d rather than Rd. A generic element u ∈ R1+d will be decomposed as
u = (t, x) where t ∈ R is time and x = (x1, . . . , xd) ∈ Rd a space variable. Intervals in
R1+d will be written either as (u, v] or (s, t] × (x, y] where (s, t] is an interval in R and
(x, y] is an interval in Rd. Functions on R1+d will often be denoted by ϕt(x) for t ∈ R
and x ∈ Rd, and Fϕt(z) denotes the Fourier transform in the space variable for fixed t.

Let F denote a symmetric measure onRd with density f with respect to λd satisfying
f(x) = f(−x) for all x ∈ Rd. Assume throughout that F satisfies condition (2.12). The
measure λ1 × F on R1+d then satisfies (2.12) as well. Consider an L2

R
(P)-continuous

Gaussian process X = {Xu : u ∈ R1+d} with wide-sense stationary increments and
spectral measure λ1 × F . By Parseval’s identity and (2.14) we have, for si < ti (in R)
and xi < yi (in Rd), i = 1, 2,

E[X((s1, t1]× (x1, y1])X((s2, t2]× (x2, y2])] (4.1)

= 2π

∫
R

1(s1,t1]1(s2,t2] dλ1

∫
Rd

F1(x1,y1]F1(x2,y2] dF.

Thus, there are independent increments in time, and the correlation in space is deter-
mined by F . That is, X is white in time but colored in space.

From now on we consider only time points in R+. Notice that in general X((0, t]× ·)
may not extend to an L2

R
(P)-valued measure defined on Bb(Rd) as in [2]. As an example,

if d = 1 and X is fractional in space we have f(x) = C|x|1−2H for x ∈ R (where H ∈
(0, 1)) for some constant C > 0. In this case X extends to a measure in space as in [2]
if and only if H > 1/2 cf. Example 2.9. We shall see that one can nevertheless define
a martingale integral with respect to X; moreover, we show that the set of integrands
forms a complete space if and only if Λdist is complete.

For t ≥ 0 let Zt = {Zt(A) : A ∈ Bb(Rd)} denote the random spectral measure of
X((0, t]× ·). Notice that by (4.1) the latter has spectral measure 2πtF .

Define the filtration G = (Gt)t≥0 as

Gt := σ{X((0, s]× (u, v]) : s ≤ t, u ≤ v} ∨ N , t ≥ 0,

where N denotes the set of P-null sets. A standard argument based on the stationary
independent increments in X shows that G is right-continuous. For fixed u and v the
process {X((0, t] × (u, v]) : t ≥ 0} is a (non-standard) Brownian motion with respect to
G. By the last property in Theorem 2.7 it follows that

Gt = σ{Zs(A) : s ≤ t, A ∈ Bb(Rd)} ∨ N .

Let us first describe the basic properties of Z = {Zt(A) : t ≥ 0, A ∈ Bb(Rd)}. For
A,B ∈ Bb(Rd) let

c1(A,B) = π[F (A ∩B) + F (A ∩ (−B))] and c2(A,B) = π[F (A ∩B)− F (A ∩ (−B))].

Decompose Zt(A) into the real and imaginary parts as Zt(A) = Z1
t (A) + iZ2

t (A).

Proposition 4.1. (1) The process Z is Gaussian and has stationary independent in-
crements in the sense that Zt −Zs = {Zt(A)−Zs(A) : A ∈ Bb(Rd)} is independent
of Gs and Zt − Zs

D
= Zt−s for all 0 ≤ s < t.

(2) Let A,B ∈ Bb(Rd). The processes {Z1
t (A) : t ≥ 0} and {Z2

t (B) : t ≥ 0} are
independent Brownian motions with respect to G. Moreover, {(Zjt (A), Zjt (B)) : t ≥
0} is a bivariate Brownian motion with respect to G and E[Zjt (A)Zjt (B)] = cj(A,B)t

for j = 1, 2.
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Proof. For 0 ≤ s < t let Zs,t = {Zs,t(A) : A ∈ Bb(Rd)} denote the random spectral
measure of X((s, t] × ·). The processes Zs and Zs,t are independent by independence
of X((0, s] × ·) and X((s, t] × ·) and the last part of Theorem 2.7. Thus, Zs + Zs,t =

{Zs(A) + Zs,t(A) : A ∈ Bb(Rd)} is an L2
C

(P)-valued random measure. Since, in addition,

X((0, t]× (u, v]) = X((0, s]× (u, v]) +X((s, t]× (u, v])

=

∫
F1(u,v] d(Zs + Zs,t) for u ≤ v in Rd,

it follows by uniqueness of the random spectral measure that Zt−Zs = Zs,t. Hence Zt−
Zs is Gaussian and independent of Gs. Since Z has independent Gaussian increments it
follows that Z is Gaussian. Finally, since Zt − Zs and Zt−s are Gaussian and both have
control measure 2π(t − s)F they have the same law by (2.1)–(2.3). This concludes the
proof of (1).

By (1), {(Z1
t (A), Z2

t (B)) : t ≥ 0} and {(Zjt (A), Zjt (B)) : t ≥ 0} (j = 1, 2) are bivariate
Brownian motions with respect to G. Hence, since Z1

t (A) and Z2
t (B) are independent by

(2.1), the first part of (2) follows. Similarly, (2.2) and (2.3) show that E[Zjt (A)Zjt (B)] =

cj(A,B)t.

It follows from Proposition 4.1 that the process Z = {Zt(A) : t ≥ 0, A ∈ Bb(Rd)} is
an orthogonal (and hence worthy) martingale measure in the sense of [12]. (In fact, the
only difference compared to [12] is that we use complex martingales rather than real
ones.) More precisely, we have the following:

(a) For A ∈ Bb(Rd) {Zt(A) : t ≥ 0} is a complex-valued continuous martingale with
respect to (Gt)t≥0 with Z0(A) = 0.

(b) For fixed t ≥ 0 the mapping A 7→ Zt(A) is σ-additive from Bb(Rd) to L2
C

(P).

(c) For all A,B ∈ Bb(Rd), 〈Z·(A), Z·(B)〉t = 2πtF (A ∩B).

Here, for two complex continuous square-integrable martingales M and N which are 0

at 0, 〈M,N〉 is the continuous complex process of bounded variation characterized by
being 0 at 0 and MN − 〈M,N〉 being a martingale.

Notice that (a) is immediate from Proposition 4.1(2) and (b) is simply the σ-additivity
of the random spectral measure mentioned in Remark 2.2. Finally, using Proposi-
tion 4.1(2), it follows that 〈Z1

· (A), Z2
· (B)〉t = 0 for all A,B ∈ Bb(Rd) and hence

〈Z·(A), Z·(B)〉t = 〈Z1
· (A), Z1

· (B)〉t + 〈Z2
· (A), Z2

· (B)〉t
= [c1(A,B) + c2(A,B)]t = 2πF (A ∩B)t,

which is (c).
Denote by P the predictable σ-field on R+ × Ω. Set P̃ := P × B(Rd) and

L2
C(Z) :=

{
ϕ : ϕ is a P̃-measurable mapping from R+ × Ω×Rd to C

satisfying E
[ ∫
R1+d

|ϕt(x)|2 dt F (dx)
]
<∞

}
.

This is clearly a complete space when equipped with the norm

E
[ ∫
R1+d

|ϕt(x)|2 dt F (dx)
] 1

2
, ϕ ∈ L2

C(Z).

Thus, also L̃2
C

(Z), the set of ϕ’s in L2
C

(Z) satisfying ϕt(x) = ϕt(−x) for all (t, x) P-a.s.,
is complete.
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Since Z is a worthy martingale measure it induces a stochastic integral cf. [12], that
is a unique continuous linear mapping

(ϕ ∈ L2
C(Z)) 7→

∫
ϕ dZ ∈ L2

C(P)

determined by ∫
ϕdZ = c(Zs2((u, v])− Zs1((u, v]))1G

if
ϕt(ω, x) = c1G(ω)1(s1,s2](t)1(u,v](x) (4.2)

for some c ∈ R, s1 < s2 (in R), G ∈ Gs1 and u ≤ v (in Rd), and∥∥∥∫ ϕdZ
∥∥∥2

L2
C

(P)
= E

[ ∫ ∞
0

∫
Rd

|ϕt(x)|2 dt F (dx)
]

for ϕ ∈ L2
C(Z).

The real-valued integral processes correspond to integrands in L̃2
C

(Z). For ϕ ∈ L2
C

(Z)

the process Mϕ
t :=

∫ t
0

∫
Rd ϕdZ, t ≥ 0, is by construction a complex square-integrable

continuous martingale up to infinity which is 0 at 0; moreover,

〈Mϕ,Mψ〉t =

∫ t

0

∫
Rd

ϕs(y)ψs(y) dsF (dy), for ϕ,ψ ∈ L2
C(Z).

To define an integral with respect to X introduce the set

ΛX =
{
ϕ : R+ × Ω→ S ′R(Rd) : ϕ is predictable, Fϕt(ω) is a function

for all (ω, t), and E
[ ∫
R1+d

|Fϕt(x)|2 dt F (dx)
]
<∞

}
.

On S ′
C

(Rd) we use the cylindrical σ-algebra σ(Ψ 7→ Ψ(ψ) : ψ ∈ SC(Rd)), that is,
ϕ : R+ × Ω→ S ′

C
(Rd) is predictable if and only if

((t, ω) ∈ R+ × Ω) 7→ ϕt(ω)(ψ) ∈ C

is predictable for all ψ ∈ SC(Rd). Furthermore, the following lemma shows that Fϕt(x)

can be chosen bimeasurable making ΛX well-defined.

Lemma 4.2. Let ϕ : R+ × Ω → S ′
C

(Rd) be predictable such that Fϕt(ω) is a function
for all (ω, t). Then there exists a P̃-measurable mapping Φ: R+×Ω×Rd → C such that
for all (t, ω), Φ(t, ω, ·) = Fϕt(ω)(·) λd-a.e.

Proof. Since F maps S ′
C

(Rd) continuously into S ′
C

(Rd)

Φψ : R+ × Ω→ C, (t, ω) 7→
∫
Rd

(Fϕt(ω))(x)ψ(x) dx

is predictable, that is P-measurable for all ψ ∈ SC(Rd). Hence by a Monotone Class
Lemma (cf. e.g. II.3 in [8]) argument, Φψ is predictable for all bounded measurable
functions ψ : Rd → C with compact support. In particular, for all compact sets K ⊆ Rd,
the mapping R+ × Ω → L1

C
(K) : (t, ω) 7→ Fϕt(ω)|K is weakly measurable and hence

(strongly) measurable by Pettis’ theorem since L1
C

(K) is a separable Banach space. By
applying [3], Exc. 1.75, there exists a P̃-measurable mapping ΦK : R+ × Ω ×Rd → C

such that for all (t, ω), ΦK(t, ω, ·) = Fϕt(ω)(·) λd|K -a.e., which shows the existence of Φ

since K was arbitrary and Rd is a countable union of compact sets.
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Notice that ΛX is Dalang’s space P considered in [2], page 9, with a few modifica-
tions: We consider the time interval [0,∞) rather than [0, T ] and as mentioned above
our X does in general not induce a martingale measure. For ϕ ∈ ΛX define∫ ∞

0

∫
Rd

ϕdX :=

∫ ∞
0

∫
Rd

(Fϕt)(x) dZ.

By the above lemma, the integral is well-defined and maps ΛX into L2
R

(P). On ΛX define
the norm ‖·‖ΛX

as

‖ϕ‖2ΛX
:=
∥∥∥ ∫ ∞

0

∫
Rd

ϕdX
∥∥∥2

L2
R

(P)
= E

[ ∫ ∞
0

∫
Rd

|(Fϕt)(x)|2 dt F (dx)
]
.

The integral with respect to X just defined extends the simple integral since if ϕ is
given by (4.2) then, by definition,∫ ∞

0

∫
Rd

ϕdX = c1G

(∫
Rd

F1(u,v](x)Zs2(dx)−
∫
Rd

F1(u,v](x)Zs1(dx)
)

= c1G
(
X((0, s2]× (u, v])−X((0, s1]× (u, v])

)
= c1GX((s1, s2]× (u, v]),

where the second equality is due to (2.13). Moreover, if ψ : R+ → S ′
R

(Rd) is a determin-
istic measurable mapping, then the integral

∫∞
0

∫
Rd ψ dX exists if and only if ψ ∈ ΛX ,

that is, Fψt is a function satisfying
∫
R1+d |Fψt(x)|2dtF (dx) <∞. Thus, in view of the the

first part of Theorem 4.3 below, this improves Theorem 3 in [2].

Theorem 4.3. The real linear span of processes given by (4.2) is dense in ΛX . More-
over, the following three statements are equivalent:

(a) f satisfies (3.6),

(b) ΛX equipped with the norm ‖·‖ΛX
is complete,

(c) for every G∞-measurable random variable V ∈ L2
R

(P) there is a ϕ ∈ ΛX such that

V = E[V ] +

∫ ∞
0

∫
Rd

ϕdX.

Proof. The first part: Using Lemma 3.3 and Lemma 4.2 it suffices to show that whenever
ϕ ∈ L2

C
(Z) is of the form ϕt(ω, x) = 1F (ω)1(s1,s2](t)ψ(x), where ψ ∈ L̃2

C
(F ) then there

is a sequence (ϕn)n≥1 in L2
C

(Z) of the form ϕn,t(ω, x) = 1F (ω)1(s1,s2](t)Fψn(x) where
ψn ∈ E (see (3.1)) approximating ϕ in ΛX . However, this follows since by Lemma 3.6
the ψn’s can be chosen such that Fψn approximates ψ in L2

C
(F ).

(b) implies (a): Suppose that ΛX is complete. To show that f satisfies (3.6) it is
enough to show that Λdist is complete, cf. Theorem 3.5(2). Let therefore (ψn)n≥1 be a
Cauchy sequence in Λdist and set φnt (ω) = 1(0,1](t)ψ

n(·) ∈ S ′
R

(Rd). We note that φn are
deterministic elements in ΛX with Fφnt = 1(0,1](t)Fψn and

‖φn − φm‖ΛX
= ‖ψn − ψm‖Λdist

, n,m ≥ 1. (4.3)

Eq. (4.3) shows that (φn)n≥1 is a Cauchy sequence in ΛX and hence convergent with a
limit point φ. That is,

1(0,1]Fψn −−−−→
n→∞

Fφ in L2
C(P× λ1 × F ).

By Tonelli’s Theorem there exist ω0 ∈ Ω and s0 ∈ (0, 1] such that with ψ = φs0(ω0) we
have 1(0,1]Fψ = Fφ (P× λ1 × F )-a.s. By definition of ΛX , ψ ∈ Λdist and ‖ψn − ψ‖Λdist

=

‖φn − φ‖ΛX
→ 0, proving the completeness of Λdist.
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(a) implies (c): Assume (3.6). Every ψ ∈ L̃2
C

(Z) is given by ψt(ω, x) = Fρt(ω, x) for
some ρ ∈ ΛX . Indeed, by disregarding a null set if necessary we may and do assume
that ψt(ω) ∈ L̃2

C
(F ) for all (t, ω). By Theorem 3.5, F(Λdist) = L̃2

C
(F ) so we can use

ρt(ω) := F−1ψt(ω). Hence, it suffices to show that V can be written as

V = E[V ] +

∫ ∞
0

∫
Rd

ψ dZ for some ψ ∈ L̃2
C(Z). (4.4)

In the following fix n ≥ 1 and A1, . . . , An ∈ Bb(Rd) satisfying Aj ∩ (−Aj) = ∅ for all j and
(A1 ∪ (−A1)) ∩ . . . ∩ (An ∪ (−An)) = ∅. Define M j and N j as

M j
t = Zt(Aj) and N j

t = Zt(−Aj).

Decompose M j
t in the real and imaginary parts as M j

t = M1,j
t + iM2,j

t . By Proposi-
tion 4.1M1,j andM2,j are independent Brownian motions. Thus, if V j is any real-valued
square integrable random variable measurable with respect to the σ-algebra generated
by (M1,j ,M2,j) there are two (Gt)-predictable processes α1,j , α2,j : R×Ω→ R satisfying

V j = E[V j ] +

∫ ∞
0

α1,j
t dM1,j

t +

∫ ∞
0

α2,j
t dM2,j

t P-a.s.

(These two processes are even predictable in the filtration generated by (M1,j ,M2,j).)

Using that, by Definition 2.1(2), N j
t = M j

t , it is readily seen that the right-hand side
equals

E[V j ] +

∫ ∞
0

βjt dM
j
t +

∫ ∞
0

βjt dN
j
t ,

where βjt = (α1,j
t − iα

2,j
t )/2. Thus,

V j = E[V j ] +

∫ ∞
0

∫
Rd

ϕjdZ,

where ϕjt (x) = 1Aj (x)βjt + 1−Aj (x)βjt . By the assumptions on the Aj ’s, the martingales
M1,j ,M2,j , j = 1, . . . , n, are orthogonal, so Itô’s formula implies

n∏
j=1

V j =

n∏
j=1

E[V j ] +

n∑
j=1

∫ ∞
0

∫
Rd

(
∏
k:k 6=j

Mϕk

s )ϕjs(y)Z(ds, dy).

This gives (4.4) when V =
∏n
j=1 V

j from which the general case follows using the
Monotone Class Lemma.

(c) implies (b): Follows from completeness of L2
R

(P).
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