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Abstract

This paper deals with the spatial and temporal regularity of the unique Hilbert space
valued mild solution to a semilinear stochastic parabolic partial differential equation
with nonlinear terms that satisfy global Lipschitz conditions and certain linear growth
bounds. It is shown that the mild solution has the same optimal regularity properties
as the stochastic convolution. The proof is elementary and makes use of existing
results on the regularity of the solution, in particular, the Hölder continuity with a
non-optimal exponent.
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1 Introduction

Consider the following semilinear stochastic partial differential equation (SPDE)

dX(t) + [AX(t) + F (X(t))] dt = G(X(t)) dW (t), for 0 ≤ t ≤ T,
X(0) = X0,

(1.1)

where the mild solution X takes values in a Hilbert space H. The linear operator
A : D(A) ⊂ H → H is self-adjoint, positive definite with compact inverse and −A is
the generator of an analytic semigroup E(t) = e−tA on H. For example, let −A be the
Laplacian with homogeneous Dirichlet boundary conditions and H = L2(D) for some
bounded domain D ⊂ Rd with smooth boundary ∂D or a convex domain with polygonal
boundary. The nonlinear operators F and G are assumed to be globally Lipschitz con-
tinuous in the appropriate sense and W : [0, T ] × Ω → U denotes a standard Q-Wiener
process on a probability space (Ω,F ,P) with values in some Hilbert space U .
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Regularity for semilinear SPDE with multiplicative noise

Our aim is to study the spatial and temporal regularity properties of the unique mild
solution X : [0, T ]× Ω→ H. The spatial regularity is measured in terms of the domains
Ḣr := D(A

r
2 ), r ≥ 0, of fractional powers of the operator A. If −A is the Laplacian,

these domains coincide with standard Sobolev spaces, for example, Ḣ1 = H1
0 (D) or

Ḣ2 = H1
0 (D)∩H2(D) (c.f. [10, Th. 6.4] or [16, Ch. 3]). The regularity in time is expressed

by the Hölder exponent.
Assuming only that the semigroup E(t) is analytic and that F and G satisfy appropri-

ate global Lipschitz conditions on H one may show that (1.1) has a unique mild solution
X and that for every γ ∈ [0, 1) the solution X maps into Ḣγ ⊂ H and is γ

2 -Hölder con-

tinuous with respect to the norm
(
E
[
‖ · ‖pH

]) 1
p , p ∈ [2,∞), see, for example, [6] and

[7].
The border case γ = 1 is of special interest in numerical analysis. For example, if

one is analyzing an approximation scheme based on a finite element method, the spatial
regularity determines the order of convergence. Hence, a suboptimal regularity result
leads to a suboptimal estimate of the order of convergence (c.f. [16]).

The border case can be handled by making the additional assumption on the semi-
group E(t) = e−tA that the generator is self-adjoint with compact inverse. Under this
assumption the optimal regularity of stochastic convolutions of the form

WΦ
A (t) =

∫ t

0

E(t− σ)Φ(σ) dW (σ),

is studied in [6, Prop. 6.18] and [3]. Here Φ is a stochastically square integrable (p = 2)
process with values in the set of Hilbert-Schmidt operators. If, for r ≥ 0, the process Φ is
regular enough so that the process t 7→ A

r
2 Φ(t) is still stochastically square integrable,

then the convolution is a stochastic process, which is square integrable with values in
Ḣr+1. There exist some generalizations of this result, for instance, to Banach space
valued integrands [5], to the case p > 2 [18], and to Lévy noise [2].

The recent paper [7] extends this type of higher regularity result to the nonlinear
problem (1.1) by introducing an appropriate linear growth assumption for G on the
space Ḣr for some r ∈ [0, 1) (see (2.3) below). It is shown that X maps into Ḣr+γ for
γ ∈ [0, 1). The border case γ = 1 is not included because no additional assumption is
made on the analytic semigroup.

The purpose of the present paper is to fill this gap. We therefore assume that the
semigroup is generated by a self-adjoint operator with compact inverse and we com-
plement the global Lipschitz assumptions for F,G on H by a linear growth bound for G
on Ḣr. Our main results are presented in Theorems 3.1, 4.1, and 4.2. The proofs are
based on a very careful use of the smoothing property of the semigroup E(t) = e−tA

(see Lemma 3.2), and on the Hölder continuity of X with a suboptimal exponent (see
Lemmas 3.4 and 3.5).

Our regularity result for the mild solution of (1.1) coincides with the optimal regu-
larity property of the stochastic convolution but with the restriction r < 1. In this sense
we understand our result to be optimal.

Evolution equations of the form (1.1) are also studied by other authors. We refer
to [6, 9, 14, 19] and the references therein. Further related results are [20], where
conditions for spatial C∞-regularity are given, and [17], which provides conditions for
the existence of strong solutions to (1.1).

This paper consists of four additional sections. In the next section we give a more
precise formulation of our assumptions. In Section 3 we are concerned with the spatial
regularity of the mild solution. The proof is divided into several lemmas, which contain
the key ideas of proof. The lemmas are also useful in the proof of the temporal Hölder
continuity in Section 4. The proof of continuity in the border case requires an additional
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Regularity for semilinear SPDE with multiplicative noise

argument in form of Lebesgue’s dominated convergence theorem. This technique is also
developed in Section 4. The last section briefly reviews our results in the special case
of additive noise and gives an example in which the spatial regularity results are indeed
optimal.

2 Preliminaries

In this section we present the general form of the SPDE we are interested in. After
introducing some notation we state our assumptions and cite the result on existence,
uniqueness and regularity of a mild solution from [7].

By H we denote a separable Hilbert space (H, (·, ·), ‖ · ‖). Further, let A : D(A) ⊂
H → H be a densely defined, linear, self-adjoint, positive definite operator, which is
not necessarily bounded but with compact inverse. Hence, there exists an increasing
sequence of real numbers (λn)n≥1 and an orthonormal basis (en)n≥1 in H such that
Aen = λnen and

0 < λ1 ≤ λ2 ≤ . . . ≤ λn(→∞).

The domain of A is characterized by

D(A) =
{
x ∈ H :

∞∑
n=1

λ2
n(x, en)2 <∞

}
.

Thus, −A is the generator of an analytic semigroup of contractions, which is denoted
by E(t) = e−At.

By W : [0, T ] × Ω → U we denote a Q-Wiener process with values in a separable
Hilbert space (U, (·, ·)U , ‖ · ‖U ). While our underlying probability space is (Ω,F , P ), we
assume that the Wiener process is adapted to a normal filtration (Ft)t∈[0,T ] with Ft ⊂ F
for all t ∈ [0, T ]. The covariance operator Q : U → U is linear, bounded, self-adjoint,
positive semidefinite and trace-class, that is

Tr(Q) =

∞∑
m=1

(em, Qem)U <∞

for an arbitrary orthonormal basis (em)m∈N of U .
We study the regularity properties of a stochastic process X : [0, T ]×Ω→ H, T > 0,

which is the mild solution to the stochastic partial differential equation (1.1). Thus, X
satisfies the equation

X(t) = E(t)X0 −
∫ t

0

E(t− σ)F (X(σ)) dσ +

∫ t

0

E(t− σ)G(X(σ)) dW (σ) (2.1)

for all 0 ≤ t ≤ T .
In order to formulate our assumptions and main result we introduce the notion of

fractional powers of the linear operator A. For any r ∈ R the operator A
r
2 is given by

A
r
2 x =

∞∑
n=1

λ
r
2
nxnen

for all

x ∈ D(A
r
2 ) =

{
x =

∞∑
n=1

xnen : (xn)n≥1 ⊂ R with ‖x‖2r := ‖A r
2 x‖2 =

∞∑
n=1

λrnx
2
n <∞

}
.

EJP 17 (2012), paper 65.
Page 3/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2240
http://ejp.ejpecp.org/


Regularity for semilinear SPDE with multiplicative noise

By defining Ḣr := D(A
r
2 ) together with the norm ‖x‖r for r ∈ R, Ḣr becomes a Hilbert

space.
Instead of defining Ḣ−r for r > 0 as above one can also work with the dual space

(Ḣr)′. But, as it is shown, for example in [8, Th. B.8], our spaces Ḣ−r are isometrically
isomorphic to (Ḣr)′ for r > 0. Therefore, the results in our paper are independent of the
way Ḣ−r is defined. We prefer to work with the spaces Ḣr for r ∈ R, since the identical
spectral structure for all r ∈ R allows for a simple extension of the operator A−

r
2 seen

as a mapping from H to Ḣr to a mapping from Ḣ−r to H.
As usual [6, 12] we introduce the separable Hilbert space U0 := Q

1
2 (U) with the

inner product (u0, v0)U0
:= (Q−

1
2u0, Q

− 1
2 v0)U with Q−

1
2 denoting the pseudoinverse. The

diffusion operator G maps H into L0
2, where L0

2 denotes the space of all Hilbert-Schmidt
operators Φ: U0 → H with norm

‖Φ‖2L0
2

:=

∞∑
m=1

‖Φψm‖2.

Here (ψm)m≥1 is an arbitrary orthonormal basis of U0 (for details see, for example,
Proposition 2.3.4 in [12]). Further, L0

2,r denotes the set of all Hilbert-Schmidt operators

Φ: U0 → Ḣr together with the norm ‖Φ‖L0
2,r

:= ‖A r
2 Φ‖L0

2
.

Let r ∈ [0, 1), p ∈ [2,∞) be given. As in [7, 13] we make the following additional
assumptions.

Assumption 2.1. There exists a constant C such that

‖G(x)−G(y)‖L0
2
≤ C‖x− y‖ ∀x, y ∈ H (2.2)

and we have that G(Ḣr) ⊂ L0
2,r and

‖G(x)‖L0
2,r
≤ C (1 + ‖x‖r) ∀x ∈ Ḣr. (2.3)

Assumption 2.2. The nonlinearity F maps H into Ḣ−1+r. Furthermore, there exists a
constant C such that

‖F (x)− F (y)‖−1+r ≤ C‖x− y‖ ∀x, y ∈ H. (2.4)

Assumption 2.3. The initial value X0 : Ω→ Ḣr+1 is an F0-measurable random variable
with E

[
‖X0‖pr+1

]
<∞.

Under the above conditions Theorem 1 in [7] states that for every γ ∈ [r, r + 1) and
T > 0 there exists an up to modification unique mild solution X : [0, T ]×Ω→ Ḣγ to (1.1)
of the form (2.1), which satisfies

sup
t∈[0,T ]

E
[
‖X(t)‖pγ

]
<∞.

Moreover, the solution process is continuous with respect to
(
E
[
‖ · ‖pγ

] ) 1
p and fulfills

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,
γ−s
2 )

<∞

for every s ∈ [0, γ].
The aim of this paper is to show that these results on the spatial regularity and the

temporal Hölder continuity also hold with γ = r + 1. For r = 0 we also prove that the

solution process remains continuous with respect to the norm
(
E
[
‖ · ‖p1

]) 1
p .
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Remarks 2.4. 1. Actually, Theorem 1 in [7] assumes that F : H → H is globally Lips-
chitz, which is slightly stronger than Assumption 2.2. That Assumption 2.2 is sufficient
can be proved by just following the given proof line by line and making the appropriate
changes where ever F comes into play.

2. The linear growth bound (2.3) follows from (2.2) when r = 0.
3. Assumption 2.3 can be relaxed to X0 : Ω → H being an F0-measurable random

variable with E [‖X0‖p] < ∞. But, as it is known from deterministic PDE theory, this
will lead to a singularity at t = 0.

4. The framework is quite general. More explicit examples and a detailed discussion
of Assumption 2.1 can be found in [7]. We also refer to the discussion in [13] for further
examples, references and a related result for temporal regularity.

3 Spatial regularity

In this section we deal with the spatial regularity of the mild solution. Our result is
given by the following theorem. For a more convenient notation we set ‖ · ‖Lp(Ω;H) :=

(E [‖ · ‖pH])
1
p for any Hilbert space H. Also, if applied to an operator, the norm ‖ · ‖ is

understood as the operator norm for bounded, linear operators from H to H.

Theorem 3.1 (Spatial regularity). Let r ∈ [0, 1), p ∈ [2,∞). Given the assumptions of
Section 2 the unique mild solution X in (2.1) satisfies

P
[
X(t) /∈ Ḣr+1

]
= 0

for all t ∈ [0, T ]. In particular, there exists a constant C > 0 depending on p, r, A, F ,
G, T and the Hölder continuity constant of X with respect to the norm ‖ · ‖Lp(Ω;H) such
that

sup
t∈[0,T ]

(
E
[∥∥X(t)

∥∥p
r+1

]) 1
p ≤

(
E
[∥∥X0

∥∥p
r+1

]) 1
p + C

(
1 + sup

t∈[0,T ]

(
E
[∥∥X(t)

∥∥p
r

]) 1
p

)
.

Before we prove the theorem we introduce several useful lemmas. The first states
some well known facts on the semigroups (E(t))t∈[0,T ]. The parts (i), (ii) and (iv) hold
true for analytic semigroups in general, while we use an orthonormal eigenbasis of
the generator for the proof of (iii). For a proof of (i) and (ii) we refer to [11, Ch. 2.6,
Th. 6.13]. Since parts (iii), (iv) are not readily found in the literature, we provide proofs
here.

Lemma 3.2. Let the infinitesimal generator −A of the semigroup (E(t))[0,∞) be self-
adjoint with compact inverse. Then the following properties hold true:

(i) For any µ ≥ 0 there exists a constant C = C(µ) such that

‖AµE(t)‖ ≤ Ct−µ for t > 0.

(ii) For any 0 ≤ ν ≤ 1 there exists a constant C = C(ν) such that

‖A−ν(E(t)− I)‖ ≤ Ctν for t ≥ 0.

(iii) For any 0 ≤ ρ ≤ 1 there exists a constant C = C(ρ) such that∫ τ2

τ1

‖A
ρ
2E(τ2 − σ)x‖2 dσ ≤ C(τ2 − τ1)1−ρ ‖x‖2 for all x ∈ H, 0 ≤ τ1 < τ2.

(iv) For any 0 ≤ ρ ≤ 1 there exists a constant C = C(ρ) such that∥∥∥Aρ ∫ τ2

τ1

E(τ2 − σ)xdσ
∥∥∥ ≤ C(τ2 − τ1)1−ρ‖x‖ for all x ∈ H, 0 ≤ τ1 < τ2.
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Proof. For the proof of (iii) we use the expansion of x ∈ H in terms of the eigenbasis
(en)n≥1 of the operator A. By Parseval’s identity we get∫ τ2

τ1

∥∥A ρ
2E(τ2 − σ)x

∥∥2
dσ =

∫ τ2

τ1

∥∥∥ ∞∑
n=1

A
ρ
2E(τ2 − σ)(x, en)en

∥∥∥2

dσ

=

∞∑
n=1

∫ τ2

τ1

(x, en)2λρne
−2λn(τ2−σ) dσ

=
1

2

∞∑
n=1

(x, en)2λρ−1
n

(
1− e−2λn(τ2−τ1)

)
.

By the boundedness of the function x 7→ xρ−1(1− e−x) for x ∈ [0,∞) and ρ ∈ [0, 1] there
exists a constant C = C(ρ) > 0 such that∫ τ2

τ1

∥∥A ρ
2E(τ2 − σ)x

∥∥2
dσ ≤ C(ρ)(τ2 − τ1)1−ρ

∞∑
n=1

(x, en)2,

which completes the proof of (iii).
The following proof of (iv) also works for analytic semigroups in general. By [11,

Ch. 1.2, Th. 2.4 (ii)] we first note that∥∥∥Aρ ∫ τ2

τ1

E(τ2 − σ)x dσ
∥∥∥ =

∥∥∥Aρ−1A

∫ τ2−τ1

0

E(σ)x dσ
∥∥∥

=
∥∥Aρ−1

(
E(τ2 − τ1)− I

)
x
∥∥.

Then, (iv) follows from (ii).

The next lemma is a special case of [6, Lem. 7.2] and will be needed to estimate
stochastic integrals.

Lemma 3.3. For any p ≥ 2, 0 ≤ τ1 < τ2 ≤ T , and for any L0
2-valued predictable process

Φ(t), t ∈ [τ1, τ2], which satisfies

E
[( ∫ τ2

τ1

∥∥Φ(σ)
∥∥2

L0
2

dσ
) p

2
]
<∞,

we have

E
[∥∥∥ ∫ τ2

τ1

Φ(σ) dW (σ)
∥∥∥p] ≤ C(p)E

[( ∫ τ2

τ1

∥∥Φ(σ)
∥∥2

L0
2

dσ
) p

2
]
.

Here the constant can be chosen to be

C(p) =
(p

2
(p− 1)

) p
2

(
p

p− 1

)p( p2−1)

.

The following two lemmas contain our main idea of proof and yield the key esti-
mates. The applied technique is already known in the literature for Bochner integrals
consisting of a convolution with an analytic semigroup, for example in [4, Prop. 3] and
[15, p. 157].

Lemma 3.4. Let s ∈ [0, r+ 1], p ≥ 2, and Y be a predictable stochastic process on [0, T ]

which maps into Ḣr with supσ∈[0,T ] ‖A
r
2 Y (σ)‖Lp(Ω;H) <∞. Then there exists a constant

C = C(p, r, s, A,G) such that, for all τ1, τ2 ∈ [0, T ] with τ1 < τ2,(
E
[( ∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ). (3.1)
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If, in addition, for some δ > r
2 there exists Cδ such that

‖Y (t1)− Y (t2)‖Lp(Ω;H) ≤ Cδ|t2 − t1|
δ for all t1, t2 ∈ [0, T ],

then we also have, with C = C(p, s,G,Cδ), that

(
E
[( ∫ τ2

τ1

∥∥A s
2E(τ2 − σ)

(
G(Y (σ))−G(Y (τ2))

)∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C√
1 + 2δ − s

(τ2 − τ1)
1+2δ−s

2 . (3.2)

In particular, with C = C(T, δ, p, r, s, A,G,Cδ) it holds that∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)G(Y (σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ). (3.3)

Proof. First note that, for 0 ≤ τ1 < τ2 ≤ T fixed, the mapping [τ1, τ2] 3 σ 7→ A
s
2E(τ2 −

σ)G(Y (σ)) is a predictable L0
2-valued process. Hence, Lemma 3.3 is applicable and

gives ∥∥∥∫ τ2

τ1

A
s
2E(τ2 − σ)G(Y (σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C(p)
∥∥∥(∫ τ2

τ1

∥∥A s
2E(τ2 − σ)

(
G(Y (σ))−G(Y (τ2))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

=: S1 + S2.

In the second step we just used the triangle inequality. Now we deal with both sum-
mands separately. In the first term S1 the time in G(Y (τ2)) is fixed. We also notice
that η := s − r − max(0, s − r) ≤ 0 and, hence, A

η
2 is a bounded linear operator on H.

Furthermore, since s ∈ [0, r + 1] we have ρ := max(0, s − r) ∈ [0, 1] and Lemma 3.2 (iii)
is applicable. By writing s = η + ρ+ r, we get∫ τ2

τ1

∥∥A s
2E(τ2 − σ)G(Y (τ2))

∥∥2

L0
2

dσ

=

∫ τ2

τ1

∞∑
m=1

∥∥A s
2E(τ2 − σ)G(Y (τ2))ϕm

∥∥2
dσ

≤
∞∑
m=1

∫ τ2

τ1

∥∥A η
2

∥∥2∥∥A ρ
2E(τ2 − σ)A

r
2G(Y (τ2))ϕm

∥∥2
dσ

≤ C(s, r)
∥∥A η

2

∥∥2∥∥A r
2G(Y (τ2))

∥∥2

L0
2
(τ2 − τ1)min(1,1+r−s),

where (ϕm)m≥1 denotes an orthonormal basis of U0. We also used that 1 − ρ = 1 −
max(0, s− r) = min(1, 1 + r − s). Finally, by Assumption 2.1 we conclude

S1 ≤ C(p, r, s, A,G)
(

1 + sup
σ∈[0,T ]

∥∥A r
2 Y (σ)

∥∥
Lp(Ω;H)

)
(τ2 − τ1)min( 1

2 ,
1+r−s

2 ).
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This proves (3.1). For S2 we first make use of the fact that ‖BΦ‖L0
2
≤ ‖B‖‖Φ‖L0

2
and

then apply Lemma 3.2 (i) followed by (2.2) to get

S2 ≤ C(p, s,G)
∥∥∥(∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2 dσ
) 1

2
∥∥∥
Lp(Ω;R)

= C(p, s,G)
(∥∥∥∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2 dσ
∥∥∥
Lp/2(Ω;R)

) 1
2

≤ C(p, s,G)
(∫ τ2

τ1

(τ2 − σ)−s‖Y (σ)− Y (τ2)‖2Lp(Ω;H) dσ
) 1

2

.

By the Hölder continuity of Y we arrive at

S2 ≤ C(p, s,G,Cδ)
(∫ τ2

τ1

(τ2 − σ)−s+2δ dσ
) 1

2

≤ C(p, s,G,Cδ)√
1 + 2δ − s

(τ2 − τ1)
1+2δ−s

2 .

This shows (3.2). Combination of the estimates for S1 and S2 yields (3.3) by using
(τ2 − τ1)2δ−r ≤ T 2δ−r.

Lemma 3.5. Let s ∈ [0, r+ 1], p ≥ 2, and Y be a stochastic process on [0, T ] which maps
into H with supσ∈[0,T ] ‖Y (σ)‖Lp(Ω;H) < ∞. Then there exists a constant C = C(r, s, F )

such that, for all τ1, τ2 ∈ [0, T ] with τ1 < τ2,∥∥∥A s
2

∫ τ2

τ1

E(τ2 − σ)F (Y (τ2)) dσ
∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 . (3.4)

If, in addition, for some δ > 0 there exists Cδ such that

‖Y (t1)− Y (t2)‖Lp(Ω;H) ≤ Cδ|t2 − t1|
δ for all t1, t2 ∈ [0, T ],

then we also have, with C = C(r, s, F, Cδ), that∥∥∥A s
2

∫ τ2

τ1

E(τ2 − σ)
(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤ C

1 + r − s+ 2δ
(τ2 − τ1)

1+r−s+2δ
2 . (3.5)

In particular, with C = C(T, δ, r, s, F, Cδ) it holds that∥∥∥A s
2

∫ τ2

τ1

E(τ2 − σ)F (Y (σ)) dσ
∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 . (3.6)

Proof. As in the previous lemma the main idea is to use the Hölder continuity of Y to
estimate the left-hand side in (3.6). We have∥∥∥A s

2

∫ τ2

τ1

E(τ2 − σ)F (Y (σ)) dσ
∥∥∥
Lp(Ω;H)

≤
∥∥∥A s

2

∫ τ2

τ1

E(τ2 − σ)F (Y (τ2)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ τ2

τ1

E(τ2 − σ)
(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

.
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Regularity for semilinear SPDE with multiplicative noise

Therefore, if we show (3.4) and (3.5) then (3.6) follows immediately by using (τ2−τ1)δ ≤
T δ.

For (3.4) first note that the random variable A
−1+r

2 F (X(τ2)) takes values in H almost
surely. Hence, we can apply Lemma 3.2 (iv). Together with Assumption 2.2 this yields∥∥∥A s

2

∫ τ2

τ1

E(τ2 − σ)F (Y (τ2)) dσ
∥∥∥
Lp(Ω;H)

≤
∥∥∥A s+1−r

2

∫ τ2

τ1

E(τ2 − σ)A
−1+r

2 F (Y (τ2)) dσ
∥∥∥
Lp(Ω;H)

≤ C(r, s)(τ2 − τ1)
1+r−s

2

∥∥A−1+r
2 F (Y (τ2))

∥∥
Lp(Ω;H)

≤ C(r, s, F )
(

1 + sup
σ∈[0,T ]

‖Y (σ)‖Lp(Ω;H)

)
(τ2 − τ1)

1+r−s
2 .

Finally, again by Lemma 3.2 and Assumption 2.2, we show (3.5):∥∥∥A s
2

∫ τ2

τ1

E(τ2 − σ)
(
F (Y (τ2))− F (Y (σ))

)
dσ
∥∥∥
Lp(Ω;H)

≤
∫ τ2

τ1

∥∥A s+1−r
2 E(τ2 − σ)A

−1+r
2 (F (Y (τ2))− F (Y (σ)))

∥∥
Lp(Ω;H)

dσ

≤ C(r, s, F )

∫ τ2

τ1

(τ2 − σ)
r−s−1

2 ‖Y (τ2)− Y (σ)‖Lp(Ω;H) dσ

≤ C(r, s, F, Cδ)

∫ τ2

τ1

(τ2 − σ)
r−s−1+2δ

2 dσ =
2C(r, s, F, Cδ)

1 + r − s+ 2δ
(τ2 − τ1)

1+r−s+2δ
2 .

This completes the proof.

Now we are well prepared for the proof of Theorem 3.1.

Proof of Theorem 3.1. By taking norms in (2.1) we get, for t ∈ [0, T ],(
E
[
‖X(t)‖pr+1

]) 1
p = ‖A

r+1
2 X(t)‖Lp(Ω;H)

≤ ‖A
r+1
2 E(t)X0‖Lp(Ω;H)

+
∥∥∥A r+1

2

∫ t

0

E(t− σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A r+1

2

∫ t

0

E(t− σ)G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

=: I + II + III.

The first term is well-known from deterministic theory and can be estimated by

‖A
r+1
2 E(t)X0‖Lp(Ω;H) ≤ ‖A

r+1
2 X0‖Lp(Ω;H) <∞,

since X0 : Ω→ Ḣr+1 by Assumption 2.3.
We recall that, by Theorem 1 in [7], the mild solution X is an Ḣr-valued predictable

stochastic process which is δ-Hölder continuous for any 0 < δ < 1
2 with respect to the

norm ‖ · ‖Lp(Ω;H). We choose δ := r+1
4 so that 0 ≤ r

2 < δ < 1
2 . Hence, we can apply

Lemmas 3.4 and 3.5 with Y = X.
For the second term we apply (3.6) with τ1 = 0, τ2 = t, s = r + 1 and Y = X. This

yields

II ≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
<∞.
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Regularity for semilinear SPDE with multiplicative noise

For the last term we apply (3.3) with the same parameters as above:

III ≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
<∞.

Note that supσ∈[0,T ] ‖X(σ)‖Lp(Ω;H) ≤ ‖A−
r
2 ‖ supσ∈[0,T ] ‖A

r
2X(σ)‖Lp(Ω;H) is finite because

of Theorem 1 in [7].

4 Regularity in time

This section is devoted to the temporal regularity of the mild solution. Our main
result is summarized in the following theorem. For the border case s = r + 1 we refer
to Theorem 4.2 below.

Theorem 4.1 (Temporal regularity). Let r ∈ [0, 1), p ∈ [2,∞). Under the assumptions
of Section 2 the unique mild solution X to (1.1) is Hölder continuous with respect to(
E [‖ · ‖ps ]

) 1
p and satisfies

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,

1+r−s
2 )

<∞ (4.1)

for every s ∈ [0, r + 1).

Proof. Let 0 ≤ t1 < t2 ≤ T be arbitrary. By using the mild formulation (2.1) we get(
E [‖X(t1)−X(t2)‖ps ]

) 1
p =

∥∥A s
2 (X(t1)−X(t2))

∥∥
Lp(Ω;H)

≤
∥∥A s

2 (E(t1)− E(t2))X0

∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t2

t1

E(t2 − σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t1

0

(E(t2 − σ)− E(t1 − σ))F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t2

t1

E(t2 − σ)G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

+
∥∥∥A s

2

∫ t1

0

(E(t2 − σ)− E(t1 − σ))G(X(σ)) dW (σ)
∥∥∥
Lp(Ω;H)

=: T1 + T2 + T3 + T4 + T5. (4.2)

We estimate the five terms separately. The term T1 is estimated by

T1 =
∥∥∥A s−r−1

2 (I − E(t2 − t1))A
r+1
2 E(t1)X0

∥∥∥
Lp(Ω;H)

≤ C
∥∥A r+1

2 X0

∥∥
Lp(Ω;H)

(t2 − t1)
1+r−s

2 ,

where we used Lemma 3.2 (ii) and Assumption 2.3.

As in the proof of Theorem 3.1 we choose the Hölder exponent δ := r+1
4 so that

r
2 < δ < 1

2 and we can apply Lemmas 3.4 and 3.5 with Y = X.

The term T2 coincides with (3.6) and we have

T2 ≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
(t2 − t1)

1+r−s
2 .
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Regularity for semilinear SPDE with multiplicative noise

For the third term we also apply Lemma 3.2 (ii) before we use (3.6):

T3 =
∥∥∥A s−r−1

2 (E(t2 − t1)− I)A
r+1
2

∫ t1

0

E(t1 − σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

≤ C(t2 − t1)
1+r−s

2

∥∥∥A r+1
2

∫ t1

0

E(t1 − σ)F (X(σ)) dσ
∥∥∥
Lp(Ω;H)

≤ C
(

1 + sup
σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
(t2 − t1)

1+r−s
2 .

The fourth term is estimated analogously by using (3.3) instead of (3.6). We get

T4 ≤ C
(

1 + sup
σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
(t2 − t1)min( 1

2 ,
1+r−s

2 ).

Finally, for the last term we use Lemma 3.3 first. Since, for 0 ≤ t1 < t2 ≤ T fixed,
the function [0, t1] 3 σ 7→ A

s
2 (E(t2 − σ)− E(t1 − σ))G(X(σ)) is a predictable stochastic

process Lemma 3.3 can be applied. Then, by using Lemma 3.2 (ii) with ν = 1+r−s
2 and

Lemma 3.4 with s = r + 1 we get

T5 ≤ C
∥∥∥(∫ t1

0

∥∥A s−r−1
2 (E(t2 − t1)− I)A

r+1
2 E(t1 − σ)G(X(σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C(t2 − t1)
1+r−s

2

(∥∥∥(∫ t1

0

∥∥A r+1
2 E(t1 − σ)G(X(t1))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+
∥∥∥(∫ t1

0

∥∥A r+1
2 E(t1 − σ)

(
G(X(σ))−G(X(t1))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

)
≤ C(t2 − t1)

1+r−s
2

(
1 + sup

σ∈[0,T ]

∥∥A r
2X(σ)

∥∥
Lp(Ω;H)

)
.

Altogether, this proves (4.1) and the Hölder continuity of X with respect to the norm
‖A s

2 · ‖Lp(Ω;H) for all s ∈ [0, r + 1).

The temporal regularity of X with respect to the norm
(
E[‖·‖pr+1

) 1
p is more involved.

For the case r = 0 we can prove the following result.

Theorem 4.2. Let r = 0 and p ∈ [2,∞). Under the assumptions of Section 2 the unique

mild solution X to (1.1) is continuous with respect to
(
E [‖ · ‖p1]

) 1
p .

Before we begin the proof we analyze the continuity properties of the semigroup in
the deterministic context.

Lemma 4.3. Let 0 ≤ τ1 < τ2 ≤ T . Then we have
(i)

lim
τ2−τ1→0

∫ τ2

τ1

∥∥A 1
2E(τ2 − σ)x

∥∥2
dσ = 0 for all x ∈ H,

(ii)

lim
τ2−τ1→0

∥∥∥A∫ τ2

τ1

E(τ2 − σ)x dσ
∥∥∥ = 0 for all x ∈ H.

Proof. As in the proof of Lemma 3.2 we use the orthogonal expansion of x ∈ H with
respect to the eigenbasis (en)n≥1 of the operator A. Thus, for (i) we get, as in the proof
of Lemma 3.2 (iii),∫ τ2

τ1

∥∥∥A 1
2E(τ2 − σ)x

∥∥∥2

dσ =
1

2

∞∑
n=1

(x, en)2
(

1− e2λn(τ2−τ1)
)
.
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Regularity for semilinear SPDE with multiplicative noise

We apply Lebesgue’s dominated convergence theorem. Note that the sum is dominated
by 1

2‖x‖
2 for all τ2 − τ1 ≥ 0. Moreover, for every n ≥ 1 we have

lim
τ2−τ1→0

(
1− e2λn(τ2−τ1)

)
(x, en)2 = 0.

Hence, Lebesgue’s theorem gives us (i). The same argument also yields the second
case, since ∥∥∥A ∫ τ2

τ1

E(τ2 − σ)xdσ
∥∥∥2

=

∞∑
n=1

(x, en)2
(
1− eλn(τ2−τ1)

)2
.

The proof is complete.

Proof of Theorem 4.2. We must show that limt2−t1→0+ ‖X(t2)−X(t1)‖Lp(Ω;Ḣ1) = 0 with
either t1 or t2 fixed. As already demonstrated in the proof of Lemma 4.3 we use
Lebesgue’s dominated convergence theorem. Let 0 ≤ t1 < t2 ≤ T . We consider again
the terms Ti, i = 1, . . . , 5, in (4.2) but now with s = 1.

For T1 continuity follows immediately: For almost every ω ∈ Ω we get that X0(ω) ∈
Ḣ1. Thus, for every fixed ω ∈ Ω with this property we have

lim
t2−t1→0

‖(E(t2)− E(t1))A
1
2X0(ω)‖ = 0

by the strong continuity of the semigroup. We also have that

‖(E(t2)− E(t1))A
1
2X0(ω)‖ ≤ ‖A 1

2X0(ω)‖,

where the latter is an element of Lp(Ω;R) as a function of ω ∈ Ω by Assumption 2.3.
Hence, Lebesgue’s theorem is applicable and yields limt2−t1→0 T1 = 0.

In order to treat the right and left limits simultaneously in the remaining terms, we
compute the limits as t1 → t3 and t2 → t3 for fixed but arbitrary t3 ∈ [t1, t2].

In the case of T2 we get

T2 ≤
∥∥∥A∫ t2

t1

E(t2 − σ)A−
1
2

(
F (X(σ))− F (X(t2))

)
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A ∫ t2

t1

E(t2 − σ)A−
1
2

(
F (X(t2))− F (X(t3))

)
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A ∫ t2

t1

E(t2 − σ)A−
1
2F (X(t3)) dσ

∥∥∥
Lp(Ω;H)

.

(4.3)

Because of (3.5), where we can choose s = r+ 1 = 1 and δ = 1
4 > 0, the limit t2 − t1 → 0

of the first summand is 0. For the second summand in (4.3) we apply Lemma 3.2 (iv)
with ρ = 1, and Assumption 2.2 with r = 0. Then we derive∥∥∥A ∫ t2

t1

E(t2 − σ)A−
1
2

(
F (X(t2))− F (X(t3))

)
dσ
∥∥∥
Lp(Ω;H)

≤ C
∥∥A− 1

2 (F (X(t2))− F (X(t3)))
∥∥
Lp(Ω;H)

≤ C‖X(t2)−X(t3)‖Lp(Ω;H)

and the limit t2 → t3 of this term vanishes by (4.1) with s = 0.
For the last summand in (4.3) we again apply Lemma 3.2 (iv) with ρ = 1 and obtain,

for almost every ω ∈ Ω,∥∥∥A∫ t2

t1

E(t2 − σ)A−
1
2F (X(t3, ω)) dσ

∥∥∥ ≤ C‖A− 1
2F (X(t3, ω))‖

≤ C
(
1 + ‖X(t3, ω)‖

)
,
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which belongs to Lp(Ω;R) for all t3 ∈ [0, T ]. By Lemma 4.3 (ii) it also holds that

lim
t1→t3
t2→t3

∥∥∥A∫ t2

t1

E(t2 − σ)A−
1
2F (X(t3, ω)) dσ

∥∥∥ = 0

for almost all ω ∈ Ω. Then Lebesgue’s dominated convergence theorem yields that this
term vanishes, which completes the proof for T2.

Next, we take care of T3, which is estimated by

T3 ≤
∥∥∥A 1

2

∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)(
F (X(σ))− F (X(t1))

)
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A 1

2

∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)(
F (X(t1))− F (X(t3))

)
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥A 1

2

∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)
F (X(t3)) dσ

∥∥∥
Lp(Ω;H)

.

(4.4)

For the first summand in (4.4) we get by Lemma 3.2 (ii)∥∥∥A 1
2

∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)(
F (X(σ))− F (X(t1))

)
dσ
∥∥∥
Lp(Ω;H)

≤
∫ t1

0

∥∥A− η2 (E(t2 − t1)− I
)
A

1+η
2 E(t1 − σ)

(
F (X(σ))− F (X(t1))

)∥∥
Lp(Ω;H)

dσ

≤ C(t2 − t1)
η
2

∫ t1

0

(t1 − σ)−
2+η
2

∥∥A− 1
2

(
F (X(σ))− F (X(t1))

)∥∥
Lp(Ω;H)

dσ,

(4.5)

where η ∈ (0, 2]. We continue the estimate by applying Assumption 2.2 and the Hölder
continuity of X with exponent 1

2 with respect to the norm ‖ · ‖Lp(Ω;H) as it was shown in
(4.1) with s = 0. This gives∥∥∥A∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)
A−

1
2

(
F (X(σ))− F (X(t1))

)
dσ
∥∥∥
Lp(Ω;H)

≤ C(t2 − t1)
η
2

∫ t1

0

(t1 − σ)−
2+η−1

2 dσ = C
2

1− η
t
1−η
2

1 (t2 − t1)
η
2 .

Therefore, in the limit t2 − t1 → 0 this term is zero as long as η ∈ (0, 1).
For the second summand in (4.4) we apply Lemma 3.2 (iv) with ρ = 1 and get∥∥∥A 1

2

∫ t1

0

(
E(t2 − σ)− E(t1 − σ)

)
F (X(t1)) dσ

∥∥∥
Lp(Ω;H)

=
∥∥∥A∫ t1

0

E(t1 − σ)
(
E(t2 − t1)− I

)
A−

1
2F (X(t1)) dσ

∥∥∥
Lp(Ω;H)

≤ C
∥∥∥(E(t2 − t1)− I

)
A−

1
2F (X(t1))

∥∥∥
Lp(Ω;H)

≤ C
∥∥∥(E(t2 − t1)− I

)
A−

1
2

(
F (X(t1))− F (X(t3)

)∥∥∥
Lp(Ω;H)

+ C
∥∥∥(E(t2 − t1)− I

)
A−

1
2F (X(t3))

∥∥∥
Lp(Ω;H)

.

By Assumption 2.2 and (4.1) it holds true that∥∥∥(E(t2 − t1)− I
)
A−

1
2

(
F (X(t1))− F (X(t3)

)∥∥∥
Lp(Ω;H)

≤ C
∥∥X(t1)−X(t3)

∥∥
Lp(Ω;H)

≤ C|t1 − t3|
1
2 .
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Hence, this term vanishes in the limit t1 → t3. Therefore, the proof for T3 is complete,
if we can show that

lim
t1→t3
t2→t3

∥∥(E(t2 − t1)− I
)
A−

1
2F (X(t3))

∥∥
Lp(Ω;H)

= lim
t1→t3
t2→t3

∥∥∥A ∫ t2

t1

E(t2 − σ)A−
1
2F (X(t3)) dσ

∥∥∥
Lp(Ω;H)

= 0.

This is true by an application of Lebesgue’s dominated convergence theorem. In order
to apply this theorem, we obtain a dominating function for almost every ω ∈ Ω by∥∥(E(t2 − t1)− I

)
A−

1
2F (X(t3, ω))

∥∥ ≤ C(1 + ‖X(t3, ω)‖
)
.

Further, Lemma 4.3 (ii) yields

lim
t1→t3
t2→t3

∥∥∥A∫ t2

t1

E(t2 − σ)A−
1
2F (X(t3, ω)) dσ

∥∥∥ = 0

for almost every ω ∈ Ω. Altogether, this shows lim t1→t3
t2→t3

T3 = 0.

For T4, one has to use Lemma 3.3, which yields

T4 ≤ C
∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(σ))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C
∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)

(
G(X(σ))−G(X(t2))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C
∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)

(
G(X(t2))−G(X(t3))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C
∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(t3))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

.

(4.6)

The limit t2 − t1 → 0 of the first summand is 0 because of (3.2), where we again choose
s = 1 and δ = 1

4 > r
2 = 0. As before, we discuss the simultaneous limits t1 → t3 and

t2 → t3 for the remaining summands in (4.6).
By Lemma 3.2 (iii) it holds for the second summand in (4.6) that∥∥∥(∫ t2

t1

∥∥A 1
2E(t2 − σ)

(
G(X(t2))−G(X(t3))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

=
∥∥∥( ∞∑

m=1

∫ t2

t1

∥∥A 1
2E(t2 − σ)

(
G(X(t2))−G(X(t3))

)
ϕm
∥∥2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C
∥∥G(X(t2))−G(X(t3))

∥∥
Lp(Ω;L0

2)

≤ C
∥∥X(t2)−X(t3)

∥∥
Lp(Ω;H)

.

(4.7)

Consequently, this term also vanishes as t2 → t3 by (4.1).
Next we come to the third summand in (4.6). By Lemma 3.2 (iii) with ρ = 1 and

Assumption 2.1 we obtain for almost every ω ∈ Ω(∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(t3, ω))

∥∥2

L0
2

dσ
) 1

2

=
( ∞∑
m=1

∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(t3, ω))ϕm

∥∥2
dσ
) 1

2

≤ C
( ∞∑
m=1

∥∥G(X(t3, ω))ϕm
∥∥2
) 1

2 ≤ C
(
1 +

∥∥X(t3, ω)
∥∥),
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where (ϕm)m≥1 is an arbitrary orthonormal basis of U0 and the last term belongs to
Lp(Ω;R). In order to apply Lebesgue’s Theorem it remains to discuss the pointwise
limit. For this Lemma 4.3 (i) yields

lim
t1→t3
t2→t3

∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(t3, ω))

∥∥2

L0
2

dσ

=

∞∑
m=1

lim
t1→t3
t2→t3

∫ t2

t1

∥∥A 1
2E(t2 − σ)G(X(t3, ω))ϕm

∥∥2
dσ = 0.

In fact, the interchanging of summation and taking the limit is justified by a further
application of Lebesgue’s Theorem. Altogether, this proves the desired result for T4.

The estimate of T5 works similarly as for T3. We apply Lemma 3.3 and get

T5 ≤ C
∥∥∥(∫ t1

0

∥∥A 1
2

(
E(t2 − σ)− E(t1 − σ)

)(
G(X(σ))−G(X(t1))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

+ C
∥∥∥(∫ t1

0

∥∥A 1
2

(
E(t2 − σ)− E(t1 − σ)

)
G(X(t1))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

.

(4.8)

By using a similar technique as for (4.5) the first summand in (4.8) is estimated by∥∥∥(∫ t1

0

∥∥A 1
2

(
E(t2 − σ)− E(t1 − σ)

)(
G(X(σ))−G(X(t1))

)∥∥2

L0
2

dσ
) 1

2
∥∥∥2

Lp(Ω;R)

=
∥∥∥∫ t1

0

∥∥A 1
2

(
E(t2 − σ)− E(t1 − σ)

)(
G(X(σ))−G(X(t1))

)∥∥2

L0
2

dσ
∥∥∥
Lp/2(Ω;R)

≤ C(t2 − t1)η
∥∥∥∫ t1

0

(t1 − σ)−1−η ‖G(X(σ))−G(X(t1))‖2L0
2

dσ
∥∥∥
Lp/2(Ω;R)

≤ C(t2 − t1)η
∫ t1

0

(t1 − σ)−1−η ‖X(σ)−X(t1)‖2Lp(Ω;H) dσ

≤ C(t2 − t1)η
1

1− η
t1−η1 .

For the first inequality we applied Lemma 3.2 (i) and (ii) with an arbitrary parameter
η ∈ (0, 1). Then we used (2.2) and the 1

2 -Hölder continuity of X. It follows that the
summand vanishes in the limit t2 − t1 → 0.

For the second summand in (4.8) it holds that∥∥∥(∫ t1

0

∥∥A 1
2

(
E(t2 − σ)− E(t1 − σ)

)
G(X(t1))

∥∥2

L0
2

dσ
) 1

2
∥∥∥
Lp(Ω;R)

=
∥∥∥( ∞∑

m=1

∫ t1

0

∥∥A 1
2E(t1 − σ)

(
E(t2 − t1)− I

)
G(X(t1))ϕm

∥∥2
dσ
) 1

2
∥∥∥
Lp(Ω;R)

≤ C
∥∥(E(t2 − t1)− I

)
G(X(t1))

∥∥
Lp(Ω;L0

2)

≤ C
∥∥G(X(t1))−G(X(t3))

∥∥
Lp(Ω;L0

2)
+
∥∥(E(t2 − t1)− I

)
G(X(t3))

∥∥
Lp(Ω;L0

2)
,

where we used Lemma 3.2 (iii). By Assumption 2.1 and (4.1) it holds that

lim
t1→t3

∥∥G(X(t1))−G(X(t3))
∥∥
Lp(Ω;L0

2)
= 0.

Since, as above, Lebesgue’s dominated convergence theorem yields that

lim
t1→t3
t2→t3

∥∥(E(t2 − t1)− I
)
G(X(t3))

∥∥
Lp(Ω;L0

2)
= 0

the proof for T5 is complete. This completes the proof of the theorem.
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Remark 4.4. If one wants to extend the result of Theorem 4.2 to general r ∈ [0, 1) it is
not hard to adapt the given arguments for all terms Ti, i ∈ {1, 2, 3, 5}.

For T4, however, the situation is more delicate. This becomes apparent in the dis-
cussion of (4.7), which for r ∈ (0, 1) is equal to∥∥∥(∫ t2

t1

∥∥A 1+r
2 E(t2 − σ)

(
G(X(t2))−G(X(t3))

)∥∥
L0

2
dσ
) 1

2
∥∥∥2

Lp(Ω;R)

≤ C
∥∥A r

2

(
G(X(t2))−G(X(t3))

)∥∥
Lp(Ω;L0

2)
.

Unlike the case r = 0 we do not want to assume that x 7→ A
r
2G(x) is globally Lipschitz

continuous. Therefore, we cannot directly conclude that this term vanishes in the limit
t2 → t3.

However, for p ∈ (2,∞], it is enough to assume that the mapping x 7→ A
r
2G(x) is

continuous. In order to show this we use a generalized version of Lebesgue’s dominated
convergence theorem (see [1, 1.23]), which allows a t2-dependent family of dominating
functions.

In fact, by the linear growth condition (2.3) we obtain, for almost all ω ∈ Ω,∥∥A r
2

(
G(X(t2, ω))−G(X(t3, ω))

)∥∥
L0

2
≤ C

(
1 + ‖A r

2X(t2, ω)‖+ ‖A r
2X(t3, ω)‖

)
,

where, by (4.1), the family of dominating functions converges:(
1 + ‖A r

2X(t2)‖+ ‖A r
2X(t3)‖

)
→
(
1 + 2‖A r

2X(t3)‖
)

in Lp(Ω,R) as t2 → t3.

Further, by (4.1) with p ∈ (2,∞) Kolmogorov’s continuity theorem [6, Th. 3.3] yields
that there exists a continuous version of the process t 7→ A

r
2X(t). Hence, under the

additional assumption that x 7→ A
r
2G(x) is continuous we obtain, for almost all ω ∈ Ω,

lim
t2→t3

∥∥A r
2

(
G(X(t2, ω))−G(X(t3, ω))

)∥∥
L0

2
= 0.

By the generalized version of the dominated convergence theorem (see [1, 1.23]) we
conclude that the unique mild solution X to (1.1) is continuous with respect to

(
E[‖ ·

‖pr+1]
) 1
p .

The case p = 2 remains as an open problem.

5 Additive noise and optimal regularity

In this section we briefly review the assumptions and our results in the case of
additive noise, that is, we consider the case where G ∈ L0

2 is independent of x. Then
the SPDE (1.1) has the form

dX(t) + [AX(t) + F (X(t))] dt = GdW (t), for 0 ≤ t ≤ T,
X(0) = X0.

(5.1)

For related regularity results in this special case we refer to [6, Ch. 5].
Since now G is a fixed bounded linear operator Assumption 2.1 is simplified to

Assumption 5.1 (Additive noise). The Hilbert-Schmidt operator G satisfies

‖G‖L0
2,r

= ‖A r
2G‖L0

2
<∞. (5.2)

Recall that the covariance operator Q of the Wiener process W is incorporated into
the norm ‖ ·‖L0

2
. If, for example, H = U and G is the identity I : H → H, then (5.2) reads

as follows

‖I‖L0
2,r

=

∞∑
m=1

∥∥A r
2Q

1
2ϕm

∥∥2
<∞,
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where (ϕm)m≥1 denotes an arbitrary orthonormal basis of the Hilbert space H. This is
a common assumption on the covariance operator Q (see [6]). In particular, for r = 0

this condition becomes ‖I‖L0
2

= Tr(Q) <∞.
Our result for additive noise is summarized by the following corollary.

Corollary 5.2 (Additive noise). If the Assumptions 2.2, 2.3 and 5.1 hold for some r ∈
[0, 1], p ∈ [2,∞), then the unique mild solution X : [0, T ]×Ω→ H to (5.1) takes values in
Ḣr+1. Moreover, for every s ∈ [0, r + 1], the solution process is continuous with respect

to
(
E [‖ · ‖ps ]

) 1
p and fulfills

sup
t1,t2∈[0,T ],t1 6=t2

(
E [‖X(t1)−X(t2)‖ps ]

) 1
p

|t1 − t2|min( 1
2 ,
r+1−s

2 )
<∞.

We stress that the case r = 1 is now included. In fact, the only place, where r < 1

is required, is the estimate (3.2) and its consequences. But in the case of additive noise
the left-hand side of this estimate is equal to zero and we avoid this problem. The same
is true for the proof of continuity, where the critical terms vanish analogously (c.f. the
proof of Theorems 4.1 and 4.2).

In order to motivate why we speak of optimal spatial regularity we conclude this
section with the following example, where our results turn out to be sharp. Without
loss of generality we restrict our discussion to the case p = 2. For p > 2 one may use
the results on the optimal regularity of the stochastic convolution from [18] or [2].

Example 5.3. Let H = L2(0, 1) be the space of all square integrable real-valued func-
tions which are defined on the unit interval (0, 1). Further, assume that −A is the Lapla-
cian with Dirichlet boundary conditions. In this situation the orthonormal eigenbasis
(ek)k≥1 of −A is explicitly known to be

λk = k2π2 and ek(y) =
√

2 sin(kπy) for all k ≥ 1, y ∈ (0, 1).

Consider the SPDE

dX(t) +AX(t) dt = GdW (t), for 0 ≤ t ≤ T,
X(0) = 0.

(5.3)

We choose the operator G to be the identity on H, and W to be a Q-Wiener process on
H, where the covariance operator Q : H → H is given by

Qe1 = 0, Qek =
1

k log(k)2
ek for all k ≥ 2.

Then we have

‖G‖L0
2,r

=

∞∑
k=2

∥∥A r
2Q

1
2 ek
∥∥2

=

∞∑
k=2

λrk
1

k log(k)2
= π2r

∞∑
k=2

k2r

k log(k)2
.

Since this series converges only with r = 0, Assumption 5.1 is satisfied only for r = 0.
Corollary 5.2 yields that the mild solution X to (5.3) takes values in Ḣ1. In the following
we show that this result cannot be improved.

In our example the mild formulation (2.1) reads

X(t) =

∫ t

0

E(t− σ)GdW (σ).
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Hence, by the Itô-isometry for the stochastic integral we have

E
[∥∥A 1+r

2 X(t)
∥∥2]

=

∫ t

0

∥∥A 1+r
2 E(t− σ)G

∥∥2

L0
2

dσ

=

∫ t

0

∞∑
k=2

λ1+r
k e−2λk(t−σ) 1

k log(k)2
dσ

=
1

2

∞∑
k=2

λrk
(
1− e−2λkt

) 1

k log(k)2

≥ 1

2
π2r
(
1− e−2λ1t

) ∞∑
k=2

k2r

k log(k)2
=∞ for all t > 0, r > 0.

Thus, X(t) /∈ L2(Ω; Ḣ1+r) for r > 0.
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