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Abstract

In this paper we study the existence of a unique solution for linear stochastic differ-
ential equations driven by a Lévy process, where the initial condition and the coeffi-
cients are random and not necessarily adapted to the underlying filtration. Towards
this end, we extend the method based on Girsanov transformations on Wiener space
and developped by Buckdahn [8] to the canonical Lévy space, which is introduced in
[26].
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1 Introduction

Our aim in this paper is to prove the existence and uniqueness of a solution of the
linear stochastic differential equation

Xt = X0 +

∫ t

0

bsXs ds+

∫ t

0

asXs δWs +

∫ t

0

∫
{|y|>1}

vs(y)Xs− dN(s, y)

+

∫ t

0

∫
{0<|y|≤1}

vs(y)Xs− dÑ(s, y), 0 ≤ t ≤ T. (1.1)

Here X0 is a random variable, a, b and v(y), for any y ∈ R, y 6= 0, are random processes
not necessarily adapted to the underlying filtration, W is the canonical Wiener process,
N is the canonical Poisson random measure with parameter ν (see Section 2.2 for de-
tails), dÑ(t, y) := dN(t, y)−dt ν(dy), and the integral with respect to W (respectively the
integrals with respect to N and Ñ ) is in the Skorohod sense (respectively are pathwise
defined).

In the adapted case (i.e., deterministic initial condition and predictable coefficients
with respect to the filtration generated byW andN ), the stochastic differential equation
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Anticipating linear stochastic differential equations

(1.1) with not necessarily linear coefficients has been analyzed by several authors (see,
for instance, [2, 3, 4, 10, 11, 15, 16, 23, 24]). For example, Ikeda and Watanabe [11]
have considered this equation with no necessarily linear coefficients and have used the
Picard iteration procedure and Gronwall’s lemma to show existence and uniqueness
of the solution, respectively. It is well-known that this is possible due to the isometry
property of Itô integrals. Also, in this case, one approach to study equation (1.1) is to
assume first thatN does not have small jumps (i.e., the absolute values of the jump sizes
are bigger than a constant ε > 0) and consider equation (1.1) as a stochastic differential
equation driven by a Brownian motion between two consecutive jump times, which has
a unique solution under suitable conditions due to Itô [12]. Then, we only need to show
that this solution converges to the one of equation (1.1) as ε → 0. Namely, the solution
of the equation

Xε
t = X0 +

∫ t

0

bsX
ε
s ds+

∫ t

0

asX
ε
s δWs +

∫ t

0

∫
{|y|>1}

vs(y)Xε
s− dN(s, y)

+

∫ t

0

∫
{ε<|y|≤1}

vs(y)Xε
s− dÑ(s, y), 0 ≤ t ≤ T, (1.2)

converges as ε ↓ 0, to a solution of equation (1.1). We can see Rubenthaler [24] for
details. This method was also utilized to obtain an Itô formula for Lévy processes (see,
for example, Cont and Tankov [9]). We also mention that in the adapted and linear case,
Itô formula provides a tool to obtain the existence and uniqueness of the solution to
(1.1). For details, the reader can consult Protter [23].

In the general case, we cannot use the Picard iteration procedure, nor Gronwall’s
lemma to deal with (1.1) because the L2-norm of the solution depends on its derivative
in the Malliavin calculus sense and this derivative can be estimated only in terms of
the second derivative, and so on. Therefore we do not have a closed argument, as it is
pointed out by Nualart [20].

On the Wiener case (i.e., v ≡ 0), Buckdahn [6, 7, 8] has studied equation (1.1) via
anticipating Girsanov transformations. In particular, he showed that Itô formula is not
useful in this case. This approach has been also useful to deal with fractional stochastic
differential equations (see [13, 14]).

On the Poisson space, it means a ≡ 0, equation (1.1) has been considered in different
situations for different definitions of stochastic integral (see, for instance, [17, 18, 19,
21, 22]).

In this paper, in order to obtain the existence of a unique solution to equation (1.1),
we apply the method developed in [6, 7, 8] between consecutive jump times to figure out
the solution Xε of the stochastic linear equation (1.2). Then, we get the convergence
of Xε to the solution X of (1.1). Moreover, X agrees with the solution to equation
(1.1) obtained using the classical Itô’s calculus when a ≡ 0 (see Theorem 5.1 below and
Theorem II.37 in [23]).

On the other hand, note that we could combine the ideas of Buckdahn [6] and Pri-
vault [22] in order to calculate the solution to (1.1) when the stochastic integrals with
respect to N and Ñ are interpreted as Skorohod type integrals. That is, we would be
able to consider modifications to equations (2.5) and (2.6) to get a Girsanov’s theorem
for Lévy processes. But we do not choose this approach here because, in general, the
solution of (1.1) is not given by Itô’s calculus when a ≡ 0 due to the relation between
the pathwise integral and Skorohod type one (see Corollary 2.9 in [1] and Privault [22]).
We will consider this method elsewhere.

The paper is organized as follows. Section 2 is devoted to different preliminaires:
Canonical Lévy space and process, Malliavin calculus and anticipative Girsanov trans-
formations. In section 3 the solution candidates for equations (1.1) and (1.2) are pre-
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sented and some of their properties are pointed out. In section 4 the existence of a
unique solution of (1.2) is proved and in Section 5, the same is done for (1.1). A long
and non-central proof of Theorem 2.10 is placed in the Appendix.

2 Preliminaries

In this section we give the framework and the tools we use in this paper to study
the existence of a unique solution to equation (1.1). In particular we introduce the
canonical Lévy space as it was done in Solé et al. [26], we extend some results given in
Buckdahn [6, 7] to the latter space and recall some basic facts of the Malliavin calculus.

In the remaining of this paper, ν represents a Lévy measure on R such that ν({0}) =

0 and
∫
R
x2ν(dx) < ∞ (for details see, for example, Sato [25]), T is a positive fixed

number and ` denotes the Lebesgue measure on [0, T ]. The Borel σ-algebra of a set
A ⊂ R is denoted by B(A). The jumps of a càdlàg process Z are denoted by ∆Z (i.e.,
∆tZ = Zt − Zt−). Also, for any p ≥ 1, | · |p and || · ||p denote the norms on Lp([0, T ]) and
on Lp(Ω), respectively. In particular || · ||∞ we will denote the norm on L∞(Ω), that is,
the essential supremum in Ω. Sometimes we use the notation | · |Lp(Ω) = || · ||p.

2.1 Canonical Lévy space

In this paper we consider all the processes defined on the canonical Lévy space on
[0, T ],

(Ω,F , P ) = (ΩW ⊗ ΩN ,FW ⊗FN , PW ⊗ PN ).

Here (ΩW ,FW , PW ) is the canonical Wiener space and (ΩN ,FNPN ) is the canonical
Lévy space for a pure jump Lévy process with Lévy measure ν, which is defined as
follows:

Let {εn : n ∈ N} be a strictly decreasing sequence of positive numbers such that
ε1 = 1, limn→∞ εn = 0 and ν(Sn) > 0 for any n ≥ 1, where S1 = {x ∈ R : ε1 < |x|} and
Sn = {x ∈ R : εn < |x| ≤ εn−1}. With this notation in mind, the canonical Lévy space
with measure ν is

(ΩN ,FN , PN ) =
⊗
n≥1

(Ω(n),F (n), P (n)),

where (Ω(n),F (n), P (n)) is the canonical Lévy space for a compound Poisson process
with intensity λn := ν(Sn) and probability measure Qn := ν(· ∩ Sn)/λn. That is, for
n ∈ N,

Ω(n) :=
⋃
k≥0

([0, T ]× Sn)
k
,

with ([0, T ]× Sn)
0

= {α}, where α is an arbitrary point,

F (n) :=
{
B ⊂ Ω(n) : B ∩ ([0, T ]× Sn)

k ∈ B
(

([0, T ]× Sn)
k
)
, for all k ∈ N

}
and for any B ∈ F (n),

P (n)(B) := e−λnT
∞∑
k=0

λkn(`⊗Qn)⊗k(B ∩ ([0, T ]× Sn)k)

k!
.

2.2 Canonical Lévy process

The canonical Wiener process W = {Wt : t ∈ [0, T ]} is defined as Wt(ω) = ω(t) for
ω ∈ ΩW , that is, ω is a continuous function on [0, T ] such that ω(0) = 0.
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The canonical pure jump process Jt = {Jt : t ∈ [0, T ]}, with Lévy measure ν, is

Jt(ω) = lim
k→∞

k∑
n=2

(
X

(n)
t (ω(n))− t

∫
Sn

xν(dx)

)
+X

(1)
t (ω(1)), ω = (ω(n))n≥1 ∈ ΩN ,

where the limit exists with probability 1 and

X
(n)
t (ω(n)) =

{∑m
l=1 xl1[0,t](tl), if ω(n) = ((t1, x1), . . . , (tm, xm)),

0, if ω(n) = α.

Finally, the canonical Lévy process with triplet (γ, σ, ν) is defined as

Xt(ω) = γt+ σWt(ω
′) + Jt(ω

′′), for ω = (ω′, ω′′) ∈ ΩW ⊗ ΩN .

Recall also that the associated Poisson random measure is

N(B) := #{t ∈ [0, T ] : (t,∆Xt) ∈ B}, B ∈ B([0, T ]×R0),

where R0 = R− {0}.

2.3 Elements of Malliavin calculus

In this paper we deal with the derivative with respect to the process W in the Malli-
avin calculus sense. So, in this subsection, we recall some basic properties of this
operator. For details, the reader can consult Nualart [20] or Solé et al. [26].

Let SW be the set of random variables of the form

F = f(

∫ T

0

h1(s)dWs, . . . ,

∫ T

0

hn(s)dWs), (2.1)

where n ≥ 1, hj ∈ L2([0, T ]) and f ∈ C∞b (Rn), that means f and all its partial derivatives
are bounded. The derivative of the random variable F with respect to W is the random
variable

DWF =

n∑
j=1

(∂jf)(

∫ T

0

h1(s)dWs, . . . ,

∫ T

0

hn(s)dWs)hj .

The operator DW is a linear operator from L2(ΩW ) into L2(ΩW × [0, T ]), closable and
unbounded. We will always consider the closed extension of DW and its domain will be
denoted by DW1,2.

Let D̃W1,∞ = {F ∈ (DW1,2 ∩ L∞(ΩW )) : DF ∈ L∞(ΩW × [0, T ])}. The Skorohod integral

with respect to W , denoted by δW , is the adjoint of the derivative operator DW : D̃W1,∞ ⊂
L∞ (ΩW )→ L∞ (ΩW × [0, T ]). That is, u is in Dom δW if and only if u ∈ L1 (ΩW × [0, T ])

and there exists a random variable δW (u) ∈ L1(ΩW ) satisfying the duality relation

EW

[∫ T

0

utD
W
t Fdt

]
= EW

[
δW (u)F

]
for every F ∈ D̃W1,∞, (2.2)

where EW is the expectation with respect to the probability measure PW . As it was
pointed out by Buckdahn [6, 7], δW (u) is well-defined.

We can extend the last definitions to Hilbert space valued random variables: Let
SW (L2(ΩN )) be the set of all smooth L2(ΩN )-random variables of the form

F =

n∑
i=1

fi(

∫ T

0

h1,i(s)dWs, . . . ,

∫ T

0

hni,i(s)dWs)Gi, (2.3)
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where n ≥ 1, hj,i ∈ L2([0, T ]), Gi ∈ L2(ΩN ) and fi ∈ C∞b (Rni), for i ∈ {0, . . . , n} and
j ∈ {0 . . . , ni}. The derivative of the random variable F with respect to W is the L2(ΩN×
[0, T ])-valued random variable

DWF =

n∑
i=1

ni∑
j=1

(∂jfi)(

∫ T

0

h1,i(s)dWs, . . . ,

∫ T

0

hni,i(s)dWs)hj,iGi.

The operator DW is a linear operator from L2(Ω) into L2 (Ω× [0, T ]) , closable and un-
bounded. Moreover it can be iterated defining DW,k

t1,...,tk
F := DW

tk
· · ·DW

t1 F.

For any k, p ≥ 1, we introduce the spacesDWk,p(L
2(ΩN )) as the closure of SW (L2(ΩN ))

with respect to the norm

‖F‖pW,k,p :=
∣∣ |F |L2(ΩN )

∣∣p
Lp(ΩW )

+

k∑
j=1

∣∣∣∣∣∣
(∫

[0,T ]j
|DW,j

z F |2L2(ΩN )dz

) 1
2

∣∣∣∣∣∣
p

Lp(ΩW )

.

Now the Skorohod integral with respect to W , denoted by δW , is the adjoint of the
derivative operator DW : D̃W1,∞(L∞(ΩN )) ⊂ L∞ (Ω)→ L∞ (Ω× [0, T ]) with

D̃W1,∞(L∞(ΩN )) =
{
F ∈ (DW1,2(L2(ΩN )) ∩ L∞(Ω)) : DF ∈ L∞(Ω× [0, T ])

}
.

That is, u is in Dom δW if and only if u ∈ L1 (Ω× [0, T ]) and there exists a random
variable δW (u) ∈ L1(Ω) satisfying the duality relation

E

[∫ T

0

utD
W
t Fdt

]
= E

[
δW (u)F

]
for every F ∈ D̃W1,∞(L∞(ΩN )). (2.4)

The operator δW is an extension of the Itô integral in the sense that the set L2
a(ΩW ×

[0, T ]) of all square-integrable and adapted processes with respect to the filtration gen-
erated by X is included in Dom δW and the operator δW restricted to L2

a(ΩW × [0, T ])

coincides with the Itô stochastic integral with respect to W . For u ∈ Dom δW we will
make use of the notation δW (u) =

∫ T
0
utδWt and for u11[0,t] in Dom δW we will write

δW (u11[0,t]) =
∫ t

0
usδWs. Note that in (2.2) and (2.4) we are using δW for the Skorohod

integrals defined on L1(ΩW × [0, T ]) and on L1(Ω × [0, T ]), respectively. We hope that
the space will be clear when we use this operator.

The following result will be important in next section.

Lemma 2.1. Let F ∈ DW1,2(L2(ΩN )) and u ∈ Dom δW ∩ L1 (Ω× [0, T ]). Then, for almost
all ω′′ ∈ ΩN , F (·, ω′′) ∈ DW1,2, u(·, ω′′) ∈ Dom δW ∩ L1 (ΩW × [0, T ]),

DWF (·, ω′′) = (DWF )(·, ω′′)

and
δW (u(·, ω′′)) = δW (u)(·, ω′′).

Remark 2.2. Note that left-hand sides of last two equalities are given by (2.1) and
(2.2), while right-hand sides are defined via (2.3) and (2.4), respectively.

Proof of Lemma 2.1. Let F ∈ DW1,2(L2(ΩN )). Then, there is a sequence {Fn ∈ SW (L2(ΩN )) :

n ∈ N} of the form (2.3) such that ‖Fn − F‖W,1,2 → 0. Hence, the definition of the canon-
ical Lévy space, in particular the definition of the probability measure P , implies that
there is a subsequence {nk : k ∈ N} such that, for a.a. ω′′ ∈ ΩN ,

|Fnk
(·, ω′′)− F (·, ω′′)|2L2(ΩW )+

∣∣∣∣∣∣
(∫

[0,T ]

|(DW
z Fnk

(·, ω′′))− (DW
z F )(·, ω′′)|2dz

) 1
2

∣∣∣∣∣∣
2

L2(ΩW )

→ 0,
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which gives that the first part of the result is true because {Fnk
(·, ω′′) : k ∈ N} is a

sequence of the form (2.1).

Finally, let H ∈ SW and G ∈ L∞(ΩN ). Then, the duality relation (2.4) yields

E

[
G

∫ T

0

utD
W
t Hdt

]
= E

[
GδW (u)H)

]
.

Consequently, using the definition of the probability measure P , for a.a. ω′′ ∈ ΩN ,

EW

[∫ T

0

ut(·, ω′′)DW
t Hdt

]
= EW

[
δW (u)(·, ω′′)H

]
.

Thus, from the duality relation (2.2), the proof is complete.

2.4 Anticipative Girsanov Transformations

Here, for the convenience of the reader, we recall some basic facts on anticipative
Girsanov transformations. By Lemma 2.1, some of these results will be a consequence
of the properties of transformations on Wiener space. For a more detailed account on
this subject we refer to [6, 7, 8]. Remember that, by the definition of the canonical Lévy
space, we have that for any ω ∈ Ω there are ω′ ∈ ΩW and ω′′ ∈ ΩN such that ω = (ω′, ω′′)

and vice versa. For ω′ ∈ ΩW and ω′′ ∈ ΩN , we use the convention ω = (ω′, ω′′).

Given a process a ∈ L2(Ω× [0, T ]), we define the transformation Ta : Ω→ ΩW as the
application defined by

Ta(ω′, ω′′) := ω′ +

∫ ·
0

as(ω
′, ω′′)ds.

Observe that for ω′′ fixed, we obtain a transformation on the Wiener space. We say this
transformation is absolutely continuous if the measure PW ◦ (Ta(·, ω′′))−1 is absolutely
continuous with respect to PW , for almost all ω′′ ∈ ΩN . Henceforth, we introduce the
Cameron-Martin space CM , that is, the subspace of absolutely continuous functions of
ΩW , with square-integrable derivatives, endowed with the norm

|ω′|CM :=

(∫ T

0

ω̇′(t)2dt

) 1
2

.

The following two results are an immediate consequence of [6, 7, 8] and Lemma 2.1:

Proposition 2.3. Let T 1 and T 2 be two absolutely continuous transformations associ-
ated with processes a1 and a2, respectively, F ∈ DW1,2(L2(ΩN )) and σ ∈ L2([0, T ],DW1,2(L2(ΩN ))).

Then, for almost all ω′′ ∈ ΩN , we have

|F (Ta1(ω′, ω′′), ω′′)− F (Ta2(ω′, ω′′), ω′′)| ≤ |||DWF |2||∞|Ta1(ω′, ω′′)− Ta2(ω′, ω′′)|CM

and (∫ T

0

|σs(Ta1(ω′, ω′′), ω′′)− σs(Ta2(ω′, ω′′), ω′′)|2ds

) 1
2

≤

∥∥∥∥∥∥
(∫ T

0

∫ T

0

|DW
r σs|2dsdr

) 1
2

∥∥∥∥∥∥
∞

|Ta1(ω′, ω′′)− Ta2(ω′, ω′′)|CM .
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Proposition 2.4. Let Ta be an absolutely continuous transformation. Assume a ∈
L2([0, T ];DW1,2(L2(ΩN ))), and let σ ∈ L2([0, T ];DW1,2(L2(ΩN ))) be with σ(Ta, ·) ∈ L2([0, T ], L2(Ω))

and ∥∥∥∥∥∥
(∫ T

0

∫ T

0

|DW
r σs|2dsdr

) 1
2

∥∥∥∥∥∥
∞

<∞.

Then, for almost all ω′′ ∈ ΩN , we get σ(Ta(·, ω′′), ω′′) ∈ L2([0, T ];DW1,2),

DW
t (σs(Ta(ω′, ω′′), ω′′)) = (DW

t σs)(Ta(ω′, ω′′), ω′′)

+

∫ T

0

(DW
r σs)(Ta(ω′, ω′′), ω′′)(DW

t ar)(ω
′, ω′′)dr,

and∫ T

0

σs(Ta(ω′, ω′′), ω′′)δWs =

(∫ T

0

σsδWs

)
(Ta(ω′, ω′′), ω′′)

−
∫ T

0

σs(Ta(ω′, ω′′), ω′′)as(ω
′, ω′′)ds

−
∫ T

0

∫ T

0

(DW
r σs)(Ta(ω′, ω′′), ω′′)(DW

s ar)(ω
′, ω′′)drds,

for almost all ω′ ∈ ΩW .

In the remaining of this paper DW1,∞(L2(ΩN )) represents the set of the elements F in
DW1,2(L2(ΩN )) such that

||F ||1,∞ := ||F ||∞ + || |DWF |2 ||∞ <∞.

Similarly DW2,∞(L2(ΩN )) is the family of all the elements in DW2,2(L2(ΩN ))∩DW1,∞(L2(ΩN ))

such that DW,2F ∈ L∞(Ω;L2([0, T ]2).
Now, for a ∈ L2([0, T ];DW1,∞(L2(ΩN ))) fixed, we consider two families of transforma-

tions {Tt : Ω → ΩW : 0 ≤ t ≤ T} and {As,t : Ω → ΩW : 0 ≤ s ≤ t ≤ T}, which are the
solutions of the equations

(Tt ω)· = ω′· +

∫ t∧·

0

as(Tsω, ω
′′) ds. (2.5)

and

(As,t ω)· = ω′· −
∫ t∧·

s∧·
ar(Ar,tω, ω

′′) dr, (2.6)

respectively.
Observe that, for simplicity of the notation, we do not make explicitly the depen-

dence on a in these equations. Some of the properties of the solutions to (2.5) and (2.6)
that we need are established in the following result. See [6, 7, 8] for its proof.

Proposition 2.5. Let a ∈ L2([0, T ];DW1,∞(L2(ΩN ))). Then, there exist two unique fami-
lies of absolutely continuous transformations {Tt, 0 ≤ t ≤ T} and {As,t : 0 ≤ s ≤ t ≤ T}
that satisfy equations (2.5) and (2.6), respectively. Moreover, for all s, t ∈ [0, T ], s < t,
As,t(·, ω′′) = Ts(·, ω′′)At(·, ω′′), with At = A0,t, Tt(·, ω′′) is invertible with inverse At(·, ω′′)
and a·(T·(∗, ω′′), ω′′) ∈ L2([0, T ];DW1,∞), for a.a. ω′′ ∈ ΩN .

In relation to the transformation As,t, we have the following lemma that will be
useful for our purposes.
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Lemma 2.6. Let a ∈ L2([0, T ];DW1,∞(L2(ΩN ))). Then, for any u ≤ s ≤ t, we have

|Au,tω −Au,sω|2CM ≤ 2

(∫ t

s

||ar||2∞dr
)

exp

{
2

∫ T

0

|| |DWar|22 ||∞dr

}
.

Remark 2.7. Note Au,t is continuous in t with respect the CM-norm, uniformly in u.

Proof of Lemma 2.6. Let u ≤ s ≤ t. Then, by the Propositions 2.3 and 2.5 we have

|Au,sω −Au,tω|2CM =

∣∣∣∣∫ s∧·

u∧·
ar(Ar,sω, ω

′′)dr −
∫ t∧·

u∧·
ar(Ar,tω, ω

′′)dr

∣∣∣∣2
CM

=

∫ T

0

|11(u,s](r)ar(Ar,sω, ω
′′)− 11(u,t](r)ar(Ar,tω, ω

′′)|2dr

≤ 2

∫ t

s

|ar(Ar,tω, ω′′)|2dr + 2

∫ s

u

|ar(Ar,sω, ω′′)− ar(Ar,tω, ω′′)|2dr

≤ 2

∫ t

s

||ar||2∞dr + 2

∫ s

u

|| |DWar|22 ||∞|Ar,sω −Ar,tω|2CMdr.

So, using Gronwall’s lemma, we obtain

|Au,tω −Au,sω|2CM ≤ 2

(∫ t

s

||ar||2∞dr
)

exp

{
2

∫ s

u

|| |DWar|22 ||∞dr
}

which implies the result holds.

Remark 2.8. In [6, 7, 8], Buckdahn has proven that both inequalities in Proposition 2.3
hold only for almost all ω′ ∈ ΩW . But, by Fubini theorem, it is not difficult to see that,
in this case, the inequality in Lemma 2.6 is satisfied for a.a. ω ∈ Ω.

To finish this subsection we give some results related to the densities of the trans-
formations {Tt : Ω → ΩW : 0 ≤ t ≤ T} and {As,t : Ω → ΩW : 0 ≤ s ≤ t ≤ T}. Now,
let F ∈ L∞(Ω) and a as in Proposition 2.5. One of our main tools in the proof of the
existence and uniqueness of the solution to equation (1.1) are the equalities, proven by
Buckdahn [6, 7, 8],

E [F (As,tω, ω
′′)Ls,t(ω)] = E [F ] (2.7)

and
E [F (As,tω, ω

′′)] = E [FLs,t] , (2.8)

where

Ls,t(ω) = exp

{∫ t

s

ar(Ar,tω, ω
′′)δWr −

1

2

∫ t

s

a2
r(Ar,tω, ω

′′)dr

−
∫ t

s

∫ t

r

(DW
u ar)(Ar,tω, ω

′′)DW
r [au(Au,tω, ω

′′)]dudr

}
(2.9)

is the density of A−1
s,t and

Ls,t(ω) = exp

{
−
∫ t

s

ar(TtArω, ω
′′)δWr −

1

2

∫ t

s

a2
r(TtArω, ω

′′)dr

−
∫ t

s

∫ r

s

(DW
u ar)(TtArω, ω

′′)DW
r [au(TtAuω, ω

′′)]dudr

}
. (2.10)

Finally, we have that, in this case,

Ls,t(ω) = L−1
s,t (As,tω, ω

′′), (2.11)

L0,t(ω) = L0,s(As,tω, ω
′′)Ls,t(ω), 0 ≤ s ≤ t ≤ T. (2.12)
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These two relations can be proved as consequence of the equalities (2.7) and (2.8).
Indeed,

E [F (As,tω, ω
′′)Ls,t(ω)] = E [F ] = E

[
FLs,tL−1

s,t

]
= E

[
F (As,tω, ω

′′)L−1
s,t (As,tω, ω

′′)
]
,

and

E [F (Atω, ω
′′)L0,t(ω)] = E [F (Asω, ω

′′)L0,s(ω)] = E [F (Atω, ω
′′)L0,s(As,tω, ω

′′)Ls,t(ω)] .

2.5 The anticipative linear stochastic differential equation on canonical Wiener
space

On the canonical Wiener space, Buckdahn [6, 7, 8] has studied equation (1.1) via the
anticipating Girsanov transformations (2.5) and (2.6). Namely, he considered the linear
stochastic differential equation

Zt = Z0 +

∫ t

0

hsZs ds+

∫ t

0

asZs δWs, t ∈ [0, T ], (2.13)

and stated the following result:

Theorem 2.9. Assume a ∈ L2([0, T ],DW1,∞), h ∈ L1([0, T ], L∞(ΩW )) and Z0 ∈ L∞(ΩW ).
Then, the process Z = {Zt : t ∈ [0, T ]} defined by

Zt := Z0(A0,t) exp

{∫ t

0

hs(As,t) ds

}
L0,t (2.14)

belongs to L1(ΩW × [0, T ]) and is a global solution of (2.13). Conversely, if Y ∈ L1(ΩW ×
[0, T ]) is a global solution of (2.13) and, if, moreover, a, h ∈ L∞(ΩW × [0, T ]) and DWa ∈
L∞(ΩW × [0, T ]2), then Y is of the form (2.14) for a.e. 0 ≤ t ≤ T .

Moreover we need the following proposition on the continuity of Z, whose proof is
given in the Appendix (see Section 6) because it is too long and technical.

Theorem 2.10. Assume Z0 ∈ DW1,∞, h ∈ L1([0, T ],DW1,∞) and that, for some p > 2,

a ∈ L2p([0, T ],DW1,∞) ∩ L2([0, T ],DW2,∞).

Then, Z given by (2.14) has continuous trajectories a.s.

3 Two processes with jumps

In the sequel we use the following hypothesis on the coefficients:

(H1) Assume thatX0 ∈ DW1,∞(L∞(ΩN )), b, v(y) ∈ L1([0, T ],DW1,∞(L∞(ΩN )), for all y ∈ R0.
Moreover, there exists p > 2 such that

a ∈ L2([0, T ],DW2,∞(L∞(ΩN )) ∩ L2p([0, T ],DW1,∞(L∞(ΩN )).

(H2) There exists a positive function g ∈ L2(R0, ν) ∩ L1(R0, ν) such that

|vs(y, ω)| ≤ g(y), uniformly in ω and s,

and
lim
|y|→0

g(y) = 0.

(H3) The function g satisfies
∫
R0

(eg(y) − 1)ν(dy) <∞.
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(H4) The function g satisfies
∫
R0

(e2g(y) − 1)ν(dy) <∞.

Remark 3.1. As an example, observe that the following function is in L1(R0, ν) ∩
L2(R0, ν) and is such that (H3) and (H4) hold, and lim|y|→0 g(y) = 0.

g(y) =

{
k1(β)y2, y ∈ (−β, β),

k2(β), y ∈ (−β, β)c,

where β ∈ (0, 1) and k1(β) and k2(β) are positive constants.

In the remaining of this paper, we use the notation F (As,t(ω)) = F (As,t(ω), ω′′) for
any function F : Ω→ R.

Given ε > 0, set

Xε
t = X0(A0,t) exp

{∫ t

0

bs(As,t) ds

}
L0,t

∏
s≤t,ε<|y|

[
1 + vs(y,As,t)∆N(s, y)

]

× exp

{
−
∫ t

0

∫
{|y|>ε}

vs(y,As,t) ν(dy)ds

}
. (3.1)

Notice that this process can also be written as follows

Xε
t = X0(A0,t) exp

{∫ t

0

bεs(As,t) ds

}
L0,t

Nε
t∏

i=1

[
1 + vτε

i
(yεi , Aτε

i ,t
)
]
,

where bεs(ω) := bs(ω) −
∫
{|y|>ε} vs(y, ω)ν(dy), {τεi , i ≥ 1} are the jump times which jump

size is greater than ε, yεi denotes the amplitude of jump τεi , and Nε
t is the number of

jumps before t, with size bigger than ε.

Proposition 3.2. Assume (H1) and (H2) hold. For each t ∈ [0, T ], the process Xε
t ,

defined in (3.1), converges almost surely to

Xt = X0(A0,t) exp

{∫ t

0

bs(As,t) ds

}
L0,t exp

{
−
∫ t

0

∫
R0

vs(y,As,t) ν(dy) ds

}
×

∏
s≤t,y∈R0

[
1 + vs(y,As,t)∆N(s, y)

]
. (3.2)

Remark 3.3. In the proof of this result we will see that the representation

Xt = X0(A0,t) exp

{∫ t

0

bs(As,t) ds

}
L0,t exp

{∫ t

0

∫
R0

vs(y,As,t) dÑ(s, y)

}
×

∏
s≤t,y∈R0

[
1 + vs(y,As,t)∆N(s, y)

]
e−vs(y,As,t)∆N(s,y)

also holds. We observe that the stochastic integral with respect to Ñ is pathwise de-
fined.

Proof of Proposition 3.2. First of all, the hypotheses on X0 and b yield∣∣∣∣X0(A0,t) exp

{∫ t

0

bs(As,t) ds

}∣∣∣∣ ≤ C.
Secondly, as the factor L0,t is a density, it is finite a.s. So it remains to see the conver-
gence of the following quantities:

M1 = exp

{∫ t

0

∫
|y|>ε

vs(y,As,t) dÑ(s, y)

}
,

M2 =
∏

s≤t,ε<|y|

[
1 + vs(y,As,t)∆N(s, y)

]
e−vs(y,As,t)∆N(s,y).
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Using the relation dÑ(t, y) = dN(t, y)− ν(dy)dt and (H2), we have∫ t

0

∫
R0

|vs(y,As,t)| dN(s, y) +

∫ t

0

∫
R0

|vs(y,As,t)| ν(dy)ds

≤
∫ t

0

∫
R0

g(y) dN(s, y) +

∫ t

0

∫
R0

g(y) ν(dy)ds

=

∫ t

0

∫
R0

g(y) dÑ(s, y) + 2

∫ t

0

∫
R0

g(y) ν(dy)ds.

(3.3)

This quantity is finite a.s. because (H2) implies

E

[(∫ t

0

∫
R0

g(y) dÑ(s, y)

)2
]

=

∫ t

0

∫
R0

g(y)2 ν(dy)ds <∞.

Then, M1 converges a.s., as ε→ 0, to exp{
∫ t

0

∫
R0
vs(y,As,t)dÑ(s, y)}.

On the other hand, for any constant c > 0,

M2 = M2,1 ×M2,2,

with

M2,1 =
∏

s≤t,ε<|y|<c∨ε

[
1 + vs(y,As,t)∆N(s, y)

]
e−vs(y,As,t)∆N(s,y),

M2,2 =
∏

s≤t,c∨ε≤|y|

[
1 + vs(y,As,t)∆N(s, y)

]
e−vs(y,As,t)∆N(s,y).

M2,2 is well-defined and converges as ε→ 0 to∏
s≤t,c≤|y|

[
1 + vs(y,As,t)∆N(s, y)

]
e−vs(y,As,t)∆N(s,y),

because it is a product of a finite number of factors. To deal with M2,1 we use the
following argument: Hypothesis (H2) implies that for small enough y, |vs(y, ω)| ≤ 1

2 .
Then, choosing c > 0 such that |g(y)| < 1

2 , for |y| < c,

logM2,1 =
∑

s≤t,ε<|y|<c

[log (1 + vs(y,As,t)∆N(s, y))− vs(y,As,t)∆N(s, y)] ,

and this series is absolutely convergent since∑
s≤t,ε<|y|<c

|log (1 + vs(y,As,t)∆N(s, y))− vs(y,As,t)∆N(s, y)|

≤
∑

s≤t,0<|y|<c

[vs(y,As,t)∆N(s, y)]
2 ≤

∑
s≤t,0<|y|<c

1

2
|vs(y,As,t)∆N(s, y)|

≤ 1

2

∑
s≤t,0<|y|<c

g(y)∆N(s, y).

So, M2,1 also converges as ε→ 0 since
∫ t

0

∫
R0
g(y) dN(s, y) is finite by (3.3).

We can conclude that the processes Xε
t and Xt are well-defined and Xε

t converges
a.s. to Xt as ε goes to zero.

Proposition 3.4. Assume (H1), (H2) and (H3). Then, the processes Xε and X belong
to L1(Ω× [0, T ]) and

Xε
t → Xt, (3.4)

in L1(Ω× [0, T ]), as ε goes to zero.
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Proof. Since X0 and b are bounded and (H2) is true, it is immediate to check that

|Xε
t | = |X0(A0,t)| exp

{∫ t

0

bs(As,t) ds

}
L0,t

∣∣∣∣∣∣
∏

s≤t,ε<|y|

[
1 + vs(y,As,t)∆N(s, y)

]∣∣∣∣∣∣
× exp

{
−
∫ t

0

∫
{|y|>ε}

vs(y,As,t) ν(dy)ds

}

≤ CL0,t

∏
s≤t,ε<|y|

[
1 + g(y)∆N(s, y)

]
exp

{∫ t

0

∫
{|y|>ε}

g(y) ν(dy)ds

}

≤ CL0,t

∏
s≤t,ε<|y|

[
1 + g(y)∆N(s, y)

]
,

due to g ∈ L1(R0, ν). Moreover, using that 1 + x ≤ ex for x > 0, we get

|Xε
t | ≤ CL0,t exp

 ∑
s≤t,ε<|y|

g(y)∆N(s, y)

 ≤ CL0,t exp

{∫ T

0

∫
R0

g(y)dN(s, y)

}
.

Finally, the result follows from Proposition 3.2, Hypothesis (H3) and the dominated
convergence theorem. Indeed, the facts that N is a Poisson random measure with Lévy

measure ν and EW (L0,t) = 1 imply that L0,t exp
{∫ T

0

∫
R0
g(y)dN(s, y)

}
∈ L1(Ω).

4 Existence and uniqueness of solution of the approximated equa-
tion

The goal of this section is to prove the following theorem.

Theorem 4.1. Assume (H1), (H2) and (H3). Also assume that a, b and v(y), for any
y ∈ R0, belong to L∞(Ω× [0, T ]) and DWa belongs to L∞(Ω× [0, T ]2). Then, the process
Xε defined in (3.1) is the unique solution in L1(Ω× [0, T ]) of

Xε
t = X0 +

∫ t

0

bsX
ε
sds+

∫ t

0

asX
ε
sδWs +

∫ t

0

∫
{|y|>ε}

vs(y)Xε
s− dÑ(s, y). (4.1)

Remark 4.2. Note that Equation (1.2) can be rewritten as an equation of the form
(4.1).

Proof of Theorem 4.1. The proof is divided into three steps.

Step 1. We first analyze the right-continuity of Xε. As we have seen before

Xε
t = X0(A0,t) exp

{∫ t

0

bεs(As,t) ds

}
L0,t

Nε
t∏

i=1

[
1 + vτε

i
(yεi , Aτε

i ,t
)
]
.

Observe that under the hypotheses of the theorem, X0(A0,t) exp
{∫ t

0
bεs(As,t) ds

}
L0,t is

continuous on t, for a.a. ω′′ ∈ ΩN , as a consequence of Theorem 2.10. On other hand,
ω′′−a.s.,

∏Nε
t

i=1[1 + vτε
i
(yεi , Aτε

i ,t
)] is a finite product with all the terms well defined and

continuous on t as a consequence of (H1), Lemma 2.6 and Proposition 2.3. So, Xε has
a.s. right continuous trajectories with left limits. Moreover recall that by Proposition
3.4 the process Xε belongs to L1(Ω× [0, T ]).

Step 2. We now prove that Xε is a solution of (4.1).
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Assume that G is an element of the set of L2(ΩN )-smooth Wiener functionals de-
scribed as G =

∑n
i=1HiZi, with Hi ∈ SW and Zi ∈ L2(ΩN ). Denote

Φεs(ω) =
∏

r≤s,ε<|y|

[
1 + vr(y, Tr)∆N(r, y)

]
.

Due to Girsanov’s theorem (2.7) and Proposition 2.5, we have

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
= E

[ ∫ t

0

asX0(A0,s) exp

{∫ s

0

bεr(Ar,s)dr

}
L0,sΦ

ε
s(As)D

W
s Gds

]
= E

[ ∫ t

0

as(Ts)X0 exp

{∫ s

0

bεr(Tr)dr

}
Φεs (DW

s G)(Ts)ds

]
.

Lemma 2.2.4 in [6] shows that d
dsG(Ts) = as(Ts)(D

W
s G)(Ts). So,

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
= E

[ ∫ t

0

(
d

ds
G(Ts)

)
X0 exp

{∫ s

0

bεr(Tr)dr

}
Φεsds

]
.

Since
∫ t

0

∫
{|y|>ε} dN(s, y) <∞ a.s., we have

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
=

∞∑
i=1

E

[ ∫ τε
i ∧t

τε
i−1∧t

(
d

ds
G(Ts)

)
X0 exp

{∫ s

0

bεr(Tr)dr

}
Φετε

i−1∧tds

]
.

Then, integration by parts implies

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
=

∞∑
i=1

E

[
G(Tτε

i ∧t)X0 exp

{∫ τε
i ∧t

0

bεr(Tr)dr

}
Φετε

i−1∧t

−G(Tτε
i−1∧t)X0 exp

{∫ τε
i−1∧t

0

bεr(Tr)dr

}
Φετε

i−1∧t

−
∫ τε

i ∧t

τε
i−1∧t

G(Ts)X0b
ε
s(Ts) exp

{∫ s

0

bεr(Tr)dr

}
Φετε

i−1∧tds

]
.

Using that Φετε
i

= Φετε
i−1

(1 + vτε
i
(yεi , Tτε

i
)), we have that the previous quantity is equal to

∞∑
i=1

E

[
G(Tτε

i ∧t)X0 exp

{∫ τε
i ∧t

0

bεr(Tr)dr

}
Φετε

i ∧t

−G(Tτε
i−1∧t)X0 exp

{∫ τε
i−1∧t

0

bεr(Tr)dr

}
Φετε

i−1∧t

]
−
∑
i;τi≤t

E

[
G(Tτε

i ∧t)X0 exp

{∫ τε
i ∧t

0

bεr(Tr)dr

}
vτε

i ∧t(y
ε
i , Tτε

i ∧t)Φ
ε
τε
i−1∧t

]
−
∞∑
i=1

E

[ ∫ τε
i ∧t

τε
i−1∧t

G(Ts)X0b
ε
s(Ts) exp

{∫ s

0

bεr(Tr)dr

}
Φετε

i−1∧tds

]
.

Taking into account that the two first summands form a telescopic series, Girsanov’s
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theorem (2.7) and (3.1) imply that

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
= E

[
G(Tt)X0 exp

{∫ t

0

bεr(Tr)dr

}
Φεt −GX0

]
−
∑
i;τi≤t

E

[
GX0(Aτε

i ∧t) exp

{∫ τε
i ∧t

0

bεr(Ar,τε
i ∧t)dr

}
L0,τε

i ∧t

× vτε
i ∧t(y

ε
i )Φ

ε
τε
i−1∧t(Aτ

ε
i ∧t)

]
−
∞∑
i=1

E

[ ∫ τε
i ∧t

τε
i−1∧t

GbεsX
ε
sds

]
= E

[
GXε

t −GX0

]
− E

[
G

∫ t

0

∫
{|y|>ε}

vs(y)Xε
s− dN(s, y)

]
−E
[
G

∫ t

0

bεsX
ε
s ds

]
.

So,

E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
= E

[
G
(
Xε
t −X0 −

∫ t

0

∫
{|y|>ε}

vs(y)Xε
s− dÑ(s, y)−

∫ t

0

bsX
ε
sds
)]
.

(4.2)
That means that Xε defined in (3.1) is solution of (4.1).

Step 3. Now we prove the uniqueness of the solution to (4.1). We argue it by induction
with respect to the jump times τεi . Notice that if t ∈ [0, τε1 ), by Theorem 2.9, there exists
a unique solution. We now suppose that t ∈ [τε1 , τ

ε
2 ). Assume that Y ε is a solution of the

stochastic differential equation (4.1) such that Y ε ∈ L1(Ω× [0, T ]) and a·Y ε· 11[τε
1 ,τ

ε
2 )(·) is

Skorohod integrable. For any t ∈ [τε1 , τ
ε
2 ), Y εt satisfies

Y εt = Xε
τε
1

+

∫ t

τε
1

bεsY
ε
s ds+

∫ t

τε
1

asY
ε
s δWs, (4.3)

where by Step 1, we can write

Xε
τε
1

= X0(A0,τε
1
)
[
1 + vτε

1
(yε1)

]
exp

{∫ τε
1

0

bεs(As,τε
1
) ds

}
L0,τε

1
. (4.4)

Note that Lemma 2.1 implies that, for a.a. ω′′ ∈ ΩN , a(·, ω′′)Y (·, ω′′) 11]τε
i ,t]
∈ Dom δW ,

and a(·, ω′′), X0(·, ω′′), b(·, ω′′), v(y, ·, ω′′) satisfy (H1) when we write DW1,∞ and DW2,∞
instead of DW1,∞(L∞(ΩN )) and DW2,∞(L∞(ΩN )), respectively. Now we fix a such ω′′ and
in the following calculations we avoid to write it to simplify the notation.

By Buckdahn [7] (Proposition 2.1) there is a sequence {an : n ∈ N} of smooth func-
tionals of the form an =

∑mn

i=1 Fi,nhi,n, with Fi,n ∈ SW and hi,n ∈ L2([0, T ]) satisfying the
following three statements:

• an converges to a in L2([0, T ],DW1,2).

• For every n ≥ 1, | ||an||∞ |2 ≤ | ||a||∞ |2 and∫ T

0

|| |Dant |2 ||2∞dt ≤ 1 +

∫ T

0

|| |Dat|2 ||2∞dt.

• |an|L∞(ΩW×[0,T ]) ≤ |a|L∞(ΩW×[0,T ]) and |Dan|L∞(ΩW×[0,T ]2) ≤ 1 + |Da|L∞(ΩW×[0,T ]2),
for every n ≥ 1.
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Anticipating linear stochastic differential equations

Fix n ∈ N and consider the transformation An given by (2.6), when we change a and
A by an and An, respectively. Let G be a smooth functional defined by the right-hand
side of (2.1). Then, Buckdahn [6] (Proposition 2.2.13) leads to establish

d

dt
G(Anτε

1 ,t
) = −antDW

t

[
G(Anτε

1 ,t
)
]
. (4.5)

Taking into account (4.3), we get

EW

[
Y εt G(Anτε

1 ,t
)
]

= EW

[
Xε
τε
1
G(Anτε

1 ,t
)
]

+ EW

[∫ t

τε
1

asY
ε
s D

W
s

[
G(Anτε

1 ,t
)
]
ds

]

+EW

[∫ t

τε
1

bεsY
ε
s G(Anτε

1 ,t
)ds

]
.

Now, replacing G(Anτε
1 ,t

) by G(Anτε
1 ,s

) +
∫ t
s
d
drG(Anτε

1 ,r
)dr, for s ∈ [τε1 , t], and using (4.5), we

obtain

EW

[
Y εt G(Anτε

1 ,t
)
]

= EW

[
Xε
τε
1
G
]

+ EW

[
Xε
τε
1

∫ t

τε
1

d

ds
G(Anτε

1 ,s
)ds

]

+EW

[∫ t

τε
1

asY
ε
s D

W
s

[
G(Anτε

1 ,s
) +

∫ t

s

d

dr
G(Anτε

1 ,r
)dr

]
ds

]

+EW

[∫ t

τε
1

bεsY
ε
s

(
G(Anτε

1 ,s
) +

∫ t

s

d

dr
G(Anτε

1 ,r
)dr

)
ds

]

= EW

[
Xε
τε
1
G
]
− EW

[
Xε
τε
1

∫ t

τε
1

ansD
W
s

[
G(Anτε

1 ,s
)
]
ds

]

+EW

[∫ t

τε
1

asY
ε
s D

W
s

[
G(Anτε

1 ,s
)
]
ds

]

−EW

[∫ t

τε
1

asY
ε
s D

W
s

[∫ t

s

anrD
W
r

(
G(Anτε

1 ,r
)
)
dr

]
ds

]

+EW

[∫ t

τε
1

bεsY
ε
s G(Anτε

1 ,s
)ds

]

−EW

[∫ t

τε
1

bεsY
ε
s

∫ t

s

anrD
W
r

(
G(Anτε

1 ,r
)
)
drds

]
.

Therefore, the Fubini theorem allows us to state

EW

[
Y εt G(Anτε

1 ,t
)
]

= EW

[
Xε
τε
1
G
]
− EW

[
Xε
τε
1

∫ t

τε
1

ansD
W
s

[
G(Anτε

1 ,s
)
]
ds

]

+EW

[∫ t

τε
1

asY
ε
s D

W
s

[
G(Anτε

1 ,s
)
]
ds

]

−EW

[∫ t

τε
1

∫ r

τε
1

asY
ε
s D

W
s

[
anrD

W
r

(
G(Anτε

1 ,r
)
)]
dsdr

]

+EW

[∫ t

τε
1

bεsY
ε
s G(Anτε

1 ,s
)ds

]
− EW

[∫ t

τε
1

∫ r

τε
1

bεsY
ε
s a

n
rD

W
r

(
G(Anτε

1 ,r
)
)
dsdr

]
.
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By Lemma 2.2.13 in [6] we have that anrD
W
r

(
G(Anτε

1 ,r
)
)

is a smooth functional for fixed

r ∈ [τε1 , t]. Therefore, applying (4.3) to this smooth functional we get that

EW

[
Y εt G(Anτε

1 ,t
)
]

= EW

[
Xε
τε
1
G
]

+ EW

[∫ t

τε
1

(as − ans )Y εs D
W
s

[
G(Anτε

1 ,s
)
]
ds

]

+EW

[∫ t

τε
1

bεsY
ε
s G(Anτε

1 ,s
)ds

]
.

The hypotheses assumed allow us to use the dominated convergence theorem. Thus,
taking limit as n→∞,

E
[
Y εt G(Aτε

1 ,t
)
]

= E
[
Xε
τε
1
G
]

+ E

[∫ t

τε
1

bεsY
ε
s G(Aτε

1 ,s
)ds

]
.

From Girsanov’s argument (2.8) and Proposition 2.5 we have

E
[
Y εt (Tτε

1 ,t
)Lτε

1 ,t
G
]

= E
[
Xε
τε
1
G
]

+ E

[∫ t

τε
1

bεs(Tτε
1 ,s

)Y εs (Tτε
1 ,s

)Lτε
1 ,s
Gds

]
.

Since this is true for any smooth functional G, it implies

Y εt (Tτε
1 ,t

)Lτε
1 ,t

= Xε
τε
1

+

∫ t

τε
1

bεs(Tτε
1 ,s

)Y εs (Tτε
1 ,s

)Lτε
1 ,s
ds.

So,

Y εt (Tτε
1 ,t

)Lτε
1 ,t

= Xε
τε
1

exp

{∫ t

τε
1

bεs(Tτε
1 ,s

)ds

}
,

and, by (2.11) and (4.4), this means that

Y εt = Xε
τε
1
(Aτε

1 ,t
) exp

{∫ t

τε
1

bεs(As,t)ds

}
Lτε

1 ,t

= X0(A0,t) exp

{∫ τε
1

0

bεs(As,t) ds

}
exp

{∫ t

τε
1

bεs(As,t)ds

}
×L0,τε

1
(Aτε

1 ,t
)Lτε

1 ,t

[
1 + vτε

1
(yε1, Aτε

1 ,t
)
]
.

Finally, using (2.12), we have that

Y εt = X0(A0,t) exp

{∫ t

0

bεs(As,t)ds

}
L0,t

[
1 + vτε

1
(yε1, Aτε

1 ,t
)
]
.

This completes the proof for t ∈ [τε1 , τ
ε
2 ). The rest of the cases can be treated similarly.

5 Existence and uniqueness of solution for the main equation

The main goal of this section is to prove the following theorem:

Theorem 5.1. Assume (H1), (H2) and (H4). Suppose also that a, b, v(y) ∈ L∞(Ω×[0, T ]),
for any y ∈ R0, and DWa ∈ L∞(Ω× [0, T ]2). Then, the process X defined in (3.2) is the
unique solution in L1(Ω× [0, T ]) of

Xt = X0 +

∫ t

0

bsXsds+

∫ t

0

asXsδWs +

∫ t

0

∫
R0

vs(y)Xs− dÑ(s, y), t ∈ [0, T ], (5.1)
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such that ∫ T

0

∫
R0

|vs(y)Xs−|dN(s, y) ∈ L1(Ω).

Here, the stochastic integrals with respect to Ñ and N are pathwise defined.

Remark 5.2. As an immediate consequence of the proof of this result, equation (1.1)
can be rewritten as an equation of the form (5.1).

Proof of Theorem 5.1. This proof is divided into two parts.

Step 1. First of all, by means of a limit argument we will show that X defined in (3.2)
is a solution of (5.1). Towards this end, we prove the convergence of (4.2), as ε tends to
zero.

Using that a and b belong to L∞(Ω×[0, T ]) and that G is a smooth element, we obtain
that

lim
ε↓0
E

[ ∫ t

0

asX
ε
sD

W
s Gds

]
= E

[ ∫ t

0

asXsD
W
s Gds

]
,

and

lim
ε↓0
E

[
G
(
Xε
t −X0 −

∫ t

0

bsX
ε
sds
)]

= E

[
G
(
Xt −X0 −

∫ t

0

bsXsds
)]
.

It only remains to prove that, for any t ∈ [0, T ],

lim
ε↓0
E

[
G

∫ t

0

∫
{|y|>ε}

vs(y)Xε
s− dÑ(s, y)

]
= E

[
G

∫ t

0

∫
{|y|>0}

vs(y)Xs− dÑ(s, y)

]
. (5.2)

In order to prove this convergence and that the right-hand side is well-defined, we
utilize the following estimate:

E

[∣∣∣∣∣
∫ t

0

∫
{|y|>ε}

vs(y)Xε
s− dÑ(s, y)−

∫ t

0

∫
{|y|>0}

vs(y)Xs− dÑ(s, y)

∣∣∣∣∣
]
≤ Iε1 + Iε2 ,

with

Iε1 = E

[∣∣∣∣∣
∫ t

0

∫
{0<|y|≤ε}

vs(y)Xs− dÑ(s, y)

∣∣∣∣∣
]
,

Iε2 = E

[∣∣∣∣∣
∫ t

0

∫
{|y|>ε}

vs(y)
[
Xε
s− −Xs−

]
dÑ(s, y)

∣∣∣∣∣
]
.

First of all, by the definition of Ñ , we can write

Iε1 ≤ Iε1,1 + Iε1,2,

with

Iε1,1 = E

[∣∣∣∣∣
∫ t

0

∫
{0<|y|≤ε}

vs(y)Xs− dN(s, y)

∣∣∣∣∣
]
,

Iε1,2 = E

[∣∣∣∣∣
∫ t

0

∫
{0<|y|≤ε}

vs(y)Xs− ν(dy)ds

∣∣∣∣∣
]
.
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Now, (H2) and the bound of X given in the proof of Proposition 3.4 imply that

Iε1,1 ≤ E

[∫ T

0

∫
{0<|y|≤ε}

g(y) |Xs−| dN(s, y)

]

≤ C E

[∫ T

0

∫
{0<|y|≤ε}

g(y) L0,t exp

{∫ T

0

∫
R0

g(x)dN(r, x)

}
dN(s, y)

]

≤ C EN

[(∫ T

0

∫
{0<|y|≤ε}

g(y) dN(s, y)

)
exp

{∫ T

0

∫
R0

g(x)dN(r, x)

}]
.

Then, by (H4) we obtain that
E
[
Iε1,1
]
−→ 0,

as ε goes to 0.
Proceeding similarly, we also get

E
[
Iε1,2
]
−→ 0,

as ε goes to 0.
Finally, again the relation between of N and Ñ , the fact that

∣∣Xε
s− −Xs−

∣∣ ≤ 2C L0,t exp

{∫ T

0

∫
R0

g(y)dN(s, y)

}
,

which is a consequence of Proposition 3.4, and the dominated convergence theorem
allow us to ensure that, as ε goes to 0,

E [Iε2 ] −→ 0.

So, the convergence (5.2) is satisfied.
Step 2. Now we show the uniqueness of the solution of equation (5.1). Let Y ∈ L1(Ω×
[0, T ]) be a solution of (5.1) satisfying aY 11[0,t] ∈ DomδW , t ∈ [0, T ], and∫ T

0

∫
R0

|vs(y)Ys−|dN(s, y) ∈ L1(Ω).

Recall that the coefficients verify that for any ω′′ ∈ ΩN a.s.

|bt(·, w′′)|+ |at(·, w′′)|+
∣∣DW

s at(·, w′′)
∣∣+ |vt(y, ·, w′′)| ≤ C, (5.3)

for any s, t ∈ [0, T ], ω′ ∈ ΩW and y ∈ R0.
Now fix ω′′ ∈ ΩN , and let an and An be as in the proof of Theorem 4.1. Consequently,

for any G ∈ SW , we have, by Lemma 2.1,

EW [Yt(·, ω′′)G(Ant )] = EW [X0(·, ω′′)G(Ant )] + EW

[
G(Ant )

∫ t

0

bs(·, ω′′)Ys(·, ω′′)ds
]

+EW

[∫ t

0

as(·, ω′′)Ys(·, ω′′)DW
s (G(Ant ))ds

]
+EW

[
G(Ant )

∫ t

0

∫
R0

vs(y, ·, ω′′)Ys−(·, ω′′)dÑ(s, y)

]
. (5.4)

By (2.2.24) in Lemma 2.2.13 of [6],

d

dt
G(Ant ) = −ant (·, ω′′)DW

t (G(Ant )),
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and it implies that

G(Ant ) = G(Ans )−
∫ t

s

anr (·, ω′′)DW
r (G(Anr ))dr.

Taking this last equality into account, we get

EW [Yt(·, ω′′)G(Ant )] = EW [X0(·, ω′′)G]− EW
[
X0(·, ω′′)

∫ t

0

anr (·, ω′′)DW
r (G(Anr ))dr

]
+EW

[∫ t

0

G(Ans )bs(·, ω′′)Ys(·, ω′′)ds
]

−EW
[∫ t

0

(∫ t

s

anr (·, ω′′)DW
r (G(Anr ))dr

)
bs(·, ω′′)Ys(·, ω′′)ds

]
+EW

[∫ t

0

as(·, ω′′)Ys(·, ω′′)DW
s (G(Ans ))ds

]
−EW

[∫ t

0

DW
s

(∫ t

s

anr (·, ω′′)DW
r (G(Anr ))dr

)
as(·, ω′′)Ys(·, ω′′)ds

]
+EW

[∫ t

0

∫
R0

G(Ans )vs(y, ·, ω′′)Ys−(·, ω′′)dÑ(s, y)

]
−EW

[∫ t

0

∫
R0

(∫ t

s

anr (·, ω′′)DW
r (G(Anr ))dr

)
vs(y, ·, ω′′)Ys−(·, ω′′)dÑ(s, y)

]
.

Hence, proceeding as in Step 3 of the proof of Theorem 4.1, we state

EW [Yt(·, ω′′)G(Ant )] = EW [X0(·, ω′′)G] + EW

[∫ t

0

G(Ans )bs(·, ω′′)Ys(·, ω′′)ds
]

+EW

[∫ t

0

∫
R0

G(Ans )vs−(y, ·, ω′′)Ys−(·, ω′′)dÑ(s, y)

]
+EW

[∫ t

0

(as − ans ) (·, ω′′)DW
s (G(Ans ))Ys(·, ω′′)ds

]
.

Therefore, proceeding as in the proof of Theorem 4.1 again, we can write

EW [Yt(·, ω′′)G(At)(·, ω′′)] = EW [X0(·, ω′′)G] + EW

[∫ t

0

G(As)bs(·, ω′′)Ys(·, ω′′)ds
]

+EW

[∫ t

0

∫
R0

G(As)vs(y, ·, ω′′)Ys−(·, ω′′)dÑ(s, y)

]
.

Thus, Girsanov theorem implies

EW [Lt(·, ω′′)Yt(Tt(·, ω′′), ω′′)G]

= EW

[
G

(
X0(·, ω′′) +

∫ t

0

bs(Ts(·, ω′′), ω′′)Ys(Ts(·, ω′′), ω′′)Ls(·, ω′′)ds

+

∫ t

0

∫
R0

vs(y, Ts(·, ω′′), ω′′)Ys−(Ts(·, ω′′), ω′′)Ls(·, ω′′)dÑ(s, y)

)]
,
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which yields

Yt(Tt(ω
′, ω′′), ω′′)Lt(ω′, ω′′)

= X0(ω′, ω′′) +

∫ t

0

bs(Ts(ω
′, ω′′), ω′′)Ys(Ts(ω, ω

′′), ω′′)Ls(ω′, ω′′)ds

+

∫ t

0

∫
R0

vs(y, Ts(ω
′, ω′′), ω′′)Ys−(Ts(ω

′, ω′′), ω′′)Ls(ω′, ω′′)dÑ(s, y), ω′ a.s.

Consequently, by Fubini’s theorem, we also have that, for almost all ω′,

Yt(Tt(ω
′, ω′′), ω′′)Lt(ω′, ω′′)

= X0(ω′, ω′′) +

∫ t

0

bs(Ts(ω
′, ω′′), ω′′)Ys(Ts(ω, ω

′′), ω′′)Ls(ω′, ω′′)ds

+

∫ t

0

∫
R0

vs(y, Ts(ω
′, ω′′), ω′′)Ys−(Ts(ω

′, ω′′), ω′′)Ls(ω′, ω′′)dÑ(s, y), ω′′ a.s.

(5.5)
Finally, we only need to observe that either Protter [23] (Theorem 37, page 84), or
Bojdecki [5] (Theorem 13.12) gives

Yt(Tt(ω
′, ω′′), ω′′)Lt(ω′, ω′′)

= X0(ω) exp

{∫ t

0

bs(Ts(ω), ω′′)ds+

∫ t

0

∫
R0

vs(y, Ts(ω), ω′′)dÑ(s, y)

}
×
∏

0≤s≤t

[1 + vs(y, Ts(ω), ω′′)∆N(s, y)] ,

wich means that X = Y and the proof is complete.

6 Appendix

This section is devoted to presenting the proof of Theorem 2.10. In order to simplify
the notation, we use the convention D = DW and δ = δW because, in this section, the
probability space is the canonical Wiener space. Also, remember that c will denote a
generic constant that may change from line to line.

We begin this section with an auxiliary result.

Lemma 6.1. Under the assumptions of Theorem 2.10, we have that, for s ∈ [0, T ],

(a) ∫ T

0

|Dθ(ar(Ar,s))|2dθ ≤ 2e2c1 || |Dar|2 ||2∞, r ∈ [0, s],

where c1 :=
∫ T

0
|| |Dar|22 ||∞dr.

(b) ∫ s

0

∫ T

0

|Dθ(ar(Ar,s))|2dθdr ≤ 2c1e
2c1 .

(c) ∫ T

0

|(Dθar)(Ar,t)− (Dθar)(Ar,s)|2dθ ≤ |||DDar|22||∞2e2c1

∫ t

s

||ar||2∞dr, r ∈ [0, s].

(d) ∫ s

0

∫ T

0

|(Dθar)(Ar,t)− (Dθar)(Ar,s)|2dθdr ≤ 2e2c1c2

∫ t

s

||ar||2∞dr,

with c2 :=
∫ T

0
|| |DDar|22 ||∞dr.
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Proof. We first observe that, by virtue of Proposition 2.4 and (2.6), we obtain

Dθ(ar(Ar,s)) = (Dθar)(Ar,s)−
∫ s

r

(Duar)(Ar,s)Dθ(au(Au,s))du. (6.1)

Therefore, from Hölder inequality, we have∫ T

0

|Dθ(ar(Ar,s))|2dθ

≤ 2

∫ T

0

|(Dθar)(Ar,s)|2dθ + 2

∫ T

0

∣∣∣∣∫ s

r

(Duar)(Ar,s)Dθ(au(Au,s))du

∣∣∣∣2 dθ
≤ 2|| |Dar|2 ||2∞ + 2

∫ T

0

(∫ s

r

|(Duar)(Ar,s)|2du
)(∫ s

r

|Dθau(Au,s)|2du
)
dθ

≤ 2|| |Dar|2 ||2∞ + 2|| |Dar|2 ||2∞
∫ s

r

(∫ T

0

|Dθ(au(Au,s))|2dθ

)
du.

Consequently, by Gronwall’s lemma, we deduce∫ T

0

|Dθ(ar(Ar,s))|2dθ ≤ 2|| |Dar|2 ||2∞ exp

{∫ s

r

2|| |Dau|2 ||2∞du
}
≤ 2e2c1 || |Dar|2 ||2∞,

which shows that Statement (a) is satisfied.

Now, using Proposition 2.3, Lemma 2.6 and the definition of constant c1 we obtain∫ T

0

|(Dθar)(Ar,t)− (Dθar)(Ar,s)|2dθ ≤ |||DDar|22||∞ sup
r≤s
|Ar,t −Ar,s|2CM

≤ |||DDar|22||∞2e2c1

∫ t

s

||au||2∞du.

Thus, Statement (c) holds.

Finally, Statements (b) and (d) are an immediate consequence of (a) and (b), and the
proof is complete.

Now we are ready to prove Theorem 2.10

Proof of Theorem 2.10. From (2.9) and (2.14), we only need to show the continuity of
the processes Z0(A0,·),

∫ ·
0
hs(As,·)ds,

∫ ·
0
a2
s(As,·) ds,

∫ ·
0
as(As,·) δWs, and∫ ·

0

∫ ·
s

(Duas)(As,·) Ds(au(Au,·)) duds.

So now we divide the proof in several steps and we assume that 0 ≤ s ≤ t ≤ T .

(1) Taking into account Proposition 2.3, we get

|Z0(A0,t)− Z0(A0,s)| ≤

∥∥∥∥∥∥
(∫ T

0

|DsZ0|2ds

) 1
2

∥∥∥∥∥∥
∞

|A0,tω −A0,sω|CM ,

which, together with the definition of the space DW1,∞ and Lemma 2.6, implies that
the process {Z0(A0,t) : t ∈ [0, T ]} has continuous paths.
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(2) We show now the continuity of {
∫ t

0
gr(Ar,t)dr : t ∈ [0, T ]}, with g ∈ L1([0, T ],D1,∞).

Note that, in this proof, gr := hr or gr := a2
r. From Proposition 2.3, we can conclude∣∣∣∣∫ t

0

gr(Ar,t)dr −
∫ s

0

gr(Ar,s)dr

∣∣∣∣
≤
∫ t

s

||gr||∞dr +

∫ s

0

|| |Dgr|2 ||∞|Ar,t −Ar,s|CMdr

≤
∫ t

s

||gr||∞dr +

(∫ T

0

|| |Dgr|2 ||∞dr

)
sup
r≤s
|Ar,t −Ar,s|CM ,

which gives the desired continuity due to Lemma 2.6.

(3) Next step is to check the continuity of {
∫ t

0
ar(Ar,t) δWr : t ∈ [0, T ]}. So, by the

Kolmogorov-Centsov continuity criterion (see [20], for example), it is sufficient to
show that for some p ∈ (2,∞),

E

∣∣∣∣∫ t

0

ar(Ar,t) δWr −
∫ s

0

ar(Ar,s) δWr

∣∣∣∣2p ≤ c(t− s)p−1,

where c is a constant that only depends on p and a.

Remember that a·(A·,t)11[0,t](·) belongs to L2([0, T ],D1,2) as a consequence of Propo-
sitions 2.4 and 2.5 (see also [6, 7, 8]). In particular this guarantees that the pro-
cess δ(a·(A·,t)11[0,t](·)) is well-defined. We can apply Hölder inequality and Propo-
sition 3.2.1 in [20] to derive

E

∣∣∣∣∫ t

0

ar(Ar,t) δWr −
∫ s

0

ar(Ar,s) δWr

∣∣∣∣2p
≤ c E

(∣∣∣∣∫ t

s

ar(Ar,t) δWr

∣∣∣∣2p
)

+ c E

(∣∣∣∣∫ s

0

[ar(Ar,t)− ar(Ar,s)] δWr

∣∣∣∣2p
)

≤ c

(∫ t

s

(E(ar(Ar,t)))
2dr

)p
+ c E

(∫ t

s

∫ T

0

(Dθar(Ar,t))
2dθdr

)p
+c

(∫ s

0

(E(ar(Ar,t)− ar(Ar,s)))2dr

)p
+c E

(∫ s

0

∫ T

0

(Dθ(ar(Ar,t)− ar(Ar,s)))2dθdr

)p
= c {A+B + C +D}.

In order to finish this step, we are going to see that these four terms are bounded
by c(t − s)p−1. Towards this end, we observe that Hölder inequality and Lemma
6.1 (a) allow us to conclude

A ≤

(∫ T

0

(E(ar(Ar,t)))
2pdr

)
(t− s)p−1 ≤ | ||ar||∞ |2p2p (t− s)p−1

and

B ≤ c

(∫ T

0

|| |Dar|2 ||2p∞dr

)
(t− s)p−1.
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Using Hölder inequality again, together with Proposition 2.3, Lemma 2.6 and the
definition of c1 given in the previous lemma, we have

C ≤
(∫ s

0

E(|ar(Ar,t)− ar(Ar,s)|2)dr

)p
≤

(∫ s

0

|| |Dar|2 ||2∞E(|Ar,t −Ar,s|2CM )dr

)p
≤

(∫ s

0

|| |Dar|2 ||2∞2

(∫ t

s

||au||2∞du
)

exp

{
2

∫ s

r

|| |Dau|22 ||∞du
}
dr

)p
≤ 2pcp1e

2pc1

(∫ t

s

||aθ||2∞dθ
)p

≤ 2pcp1e
2pc1

(∫ T

0

||aθ||2p∞dθ

)
(t− s)p−1.

In order to manage term D, we observe that equation (6.1), Lemma 6.1 and
Cauchy-Schwarz inequality lead to establish∫ T

0

|Dθ[ar(Ar,t)− ar(Ar,s)]|2dθ

≤ 2

∫ T

0

|(Dθar)(Ar,t)− (Dθar)(Ar,s)|2dθ

+4

(∫ t

s

|(Duar)(Ar,t)|2du
)∫ t

s

∫ T

0

|Dθ(au(Au,t))|2dθdu

+8

(∫ s

r

∫ T

0

|Dθ(au(Au,t))|2dθdu

)∫ s

r

|(Duar)(Ar,t)− (Duar)(Ar,s)|2du

+8

(∫ s

r

|(Duar)(Ar,s)|2du
)∫ s

r

∫ T

0

|Dθ(au(Au,t))−Dθ(au(Au,s))|2dθdu

≤ 4e2c1 |||DDar|22||∞
∫ t

s

||au||2∞du+ 8e2c1 |||Dar|22||∞
∫ t

s

|||Dau|22||∞du

+32e4c1c1|||DDar|22||∞
∫ t

s

||au||2∞du

+8|||Dar|22||∞
∫ s

r

∫ T

0

|Dθ(au(Au,s))−Dθ(au(Au,t))|2dθdu.

Let v ∈ [0, s]. Joining the first and the third terms in the right hand side of the last
expression and integrating both sides with respect to r between v and s we obtain∫ s

v

∫ T

0

|Dθ[ar(Ar,t)− ar(Ar,s)]|2dθdr

≤ c̃1
(∫ s

v

|||DDar|22||∞dr
)∫ t

s

||ar||2∞dr

+8e2c1

(∫ s

v

|||Dar|22||∞dr
)(∫ t

s

|||Dar|22||∞dr
)

+8

∫ s

v

|||Dar|22||∞
∫ s

r

∫ T

0

|Dθ[au(Au,t)− au(Au,s)]|2dθdudr,

where c̃1 := 4e2c1 + 32e4c1c1.
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Now, applying Gronwall’s lemma,

∫ s

v

∫ T

0

(Dθ(ar(Ar,t)− ar(Ar,s)))2dθdr ≤ c
{∫ t

s

||ar||2∞dr +

∫ t

s

|||Dar|22||∞dr
}
.

(6.2)
Therefore, using Minkowski and Hölder inequalities we state

D ≤ 2p−1c

(∫ T

0

||ar||2p∞dr +

∫ T

0

|||Dar|2||2p∞dr

)
(t− s)p−1.

Thus, the claim of this step is satisfied.

(4) Finally, we consider the process t 7→
∫ t

0

∫ t
s
(Duas)(As,t) Ds(au(Au,t)) duds.

We have∣∣∣∣∫ t

0

∫ t

r

(Duar)(Ar,t) Dr(au(Aut)) dudr −
∫ s

0

∫ s

r

(Duar)(Ar,s) Dr(au(Au,s)) dudr

∣∣∣∣
≤
∫ t

s

∫ t

r

|(Duar)(Ar,t) Dr(au(Au,t))|dudr

+

∫ s

0

∫ t

s

|(Duar)(Ar,t) Dr(au(Au,t))|dudr

+

∫ s

0

∫ s

r

|[(Duar)(Ar,t)− (Duar)(Ar,s)]Dr(au(Au,t))|dudr

+

∫ s

0

∫ s

r

|(Duar)(Ar,s)[Dr(au(Au,t))−Dr(au(Au,s))]|dudr

= J1 + J2 + J3 + J4.

Now, Cauchy-Schwarz inequality and Lemma 6.1 yield

J1 ≤

(∫ t

s

∫ T

0

|(Duar)(Ar,t)|2dudr

) 1
2
(∫ T

0

∫ t

0

|(Dr(au(Au,t))|2dudr

) 1
2

≤
√

2c1e2c1

(∫ t

s

|| |Dar|22 ||∞dr
) 1

2

,

J2 ≤
(∫ s

0

∫ t

s

|(Duar)(Ar,t)|2dudr
) 1

2
(∫ s

0

∫ t

s

|Dr(au(Au,t))|2dudr
) 1

2

≤ c1
√

2e2c1

(∫ t

s

|| |Dau|22 ||∞du
) 1

2

and

J3 ≤
(∫ s

0

∫ s

0

|(Duar)(Ar,t)− (Duar)(Ar,s)|2dudr
) 1

2

×
(∫ s

0

∫ s

0

|Dr(au(Au,t))|2dudr
) 1

2

≤ 2
√
c1c2e

2c1

(∫ t

s

||ar||2∞dr
) 1

2

.
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Finally, by means of inequality (6.2), we have

J4 ≤
(∫ s

0

∫ s

r

|Dr(au(Au,t))−Dr(au(Au,s))|2dudr
) 1

2

×
(∫ s

0

∫ s

r

|(Duar)(Ar,s)|2dudr
) 1

2

≤
√
c1

(∫ s

0

∫ T

0

|Dr(au(Au,t))−Dr(au(Au,s))|2drdu

) 1
2

≤ c

(∫ t

s

||ar||2∞dr +

∫ t

s

|| |Dar|22 ||∞dr
) 1

2

.

Thus, the proof is complete.
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