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Large deviations and slowdown asymptotics for
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Abstract

We study the large deviations of excited random walks on Z. We prove a large devia-
tion principle for both the hitting times and the position of the random walk and give
a qualitative description of the respective rate functions. When the excited random
walk is transient with positive speed v0, then the large deviation rate function for the
position of the excited random walk is zero on the interval [0, v0] and so probabilities
such as P (Xn < nv) for v ∈ (0, v0) decay subexponentially. We show that rate of
decay for such slowdown probabilities is polynomial of the order n1−δ/2, where δ > 2
is the expected total drift per site of the cookie environment.

Keywords: Excited random walk; large deviations.
AMS MSC 2010: Primary 60K35, Secondary 60F10; 60K37.
Submitted to EJP on January 12, 2012, final version accepted on June 13, 2012.
Supersedes arXiv:1201.0318v2.

1 Introduction

In this paper we study the large deviations for one-dimensional excited random
walks. Excited random walks are a model for a self-interacting random walk, where
the transition probabilities depend on the number of prior visits of the random walk to
the current site. The most general model for excited random walks on Z is the follow-
ing. Let Ω = [0, 1]Z×N, and for any element ω = {ωi(j)}i∈Z, j≥1 ∈ Ω we can define an
excited random walk Xn by letting ωi(j) be the probability that the random walk moves
to the right upon its j-th visit to the site i ∈ Z. More formally, we will let Pω(X0 = 0)

and

Pω(Xn+1 = Xn + 1| Fn) = 1− Pω(Xn+1 = Xn − 1| Fn) = ωx (#{k ≤ n : Xk = x}) ,

where Fn = σ(X0, X1, . . . , Xn). Note that the excited random walk Xn is not a Markov
chain since the transition probabilities depend on the entire past of the random walk
and not just the current location.

Excited random walks are also sometimes called cookie random walks, since one
imagines a stack of “cookies” at every site which each induce a specific bias to the
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Large deviations and slowdowns

walker. When the walker visits the site x for the i-th time, he eats the i-th cookie which
causes his next step to be as a simple random walk with parameter ωx(i). For this
reason we will also refer to ω = {ωi(j)}i∈Z, j≥1 as a cookie environment.

We can also assume that the cookie environment ω is first chosen randomly. That is,
let P be a probability distribution on the space of cookie environments Ω, and define
a new measure on the space of random walk paths ZZ+ by averaging over all cookie
environments. That is, let

P (·) =

∫
Ω

Pω(·)P(dω).

For a fixed cookie environment ω, the law Pω is referred to as the quenched law of the
excited random walk, and P is called the averaged law of the excited random walk.

Most of the results for excited random walks make the assumption that there are
only finitely many cookies per site. That is, there exists an M such that ωi(j) = 1/2 for
any i ∈ Z and j > M so that after M visits to any site the transitions are like a simple
symmetric random walk.

Assumption 1. There exists an integer M <∞ such that there are almost surely only
M cookies per site. That is, P(ΩM ) = 1, where

ΩM = Ω ∩ {ω : ωi(j) = 1/2, ∀i ∈ Z, ∀j > M}.

We will also make the common assumption that the cookie environment is i.i.d. in the
following sense.

Assumption 2. The distribution P is such that the sequence of cookie environments at
each site {ωi(·)}i∈Z is i.i.d.

Finally, we will make the following non-degeneracy assumption on cookie environ-
ments.

Assumption 3. With M as in Assumption 1,

E

 M∏
j=1

ω0(j)

 > 0 and E

 M∏
j=1

(1− ω0(j))

 > 0.

Excited random walks were first studied by Benjamini and Wilson in [3], where they
considered the case of deterministic cookie environments with one cookie per site (that
is M = 1). The focus of Benjamini and Wilson was mainly on the Zd case, but in the
special case of d = 1 they showed that excited random walks with one cookie per site
are always recurrent. The model was further generalized by Zerner in [21] to allow for
multiple cookies per site and for randomness in the cookie environment, but with the
restriction that all cookies induced a non-negative drift (that is ωi(j) ≥ 1/2). Recently
the model of excited random walks was further generalized by Zerner and Kosygina to
allow for cookies with both positive and negative drifts [14].

The recurrence/transience and limiting speed for one-dimensional excited random
walks have been studied in depth under the above assumptions. A critical parameter
for describing the behavior of the excited random walk is the expected total drift per
site

δ = E

∑
i≥1

(2ω0(j)− 1)

 = E

[
M∑
i=1

(2ω0(j)− 1)

]
. (1.1)

Zerner showed in [21] that excited random walks with all cookies ωi(j) ≥ 1/2 are tran-
sient to +∞ if and only if δ > 1. Additionally, Zerner showed that the limiting speed
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Large deviations and slowdowns

v0 = limn→∞Xn/n exists, P -a.s., but was not able to determine when the speed is non-
zero. Basdevant and Singh solved this problem in [1] where they showed that v0 > 0 if
and only if δ > 2. These results for recurrence/transience and the limiting speed were
given only for cookies with non-negative drift but were recently generalized by Kosygina
and Zerner [14] to the general model we described above that allows for cookies with
both positive and negative drifts. In summary, under Assumptions 1 – 3, the following
results are known.

• Xn is recurrent if and only if δ ∈ [−1, 1]. Moreover,

lim
n→∞

Xn =

{
−∞ if δ < −1

+∞ if δ > 1,
P -a.s.

• There exists a constant v0 such that limn→∞Xn/n = v0, P -a.s. Moreover, v0 = 0 if
and only if δ ∈ [−2, 2].

Limiting distributions for excited random walks are also known with the type of rescal-
ing and limiting distribution depending only on the parameter δ given in (1.1). The
interested reader is referred to the papers [2, 10, 11, 13, 14] for more information on
limiting distributions.

1.1 Main Results

In this paper, we are primarily concerned with the large deviations of excited random
walks. In a similar manner to the approach used for large deviations of random walks
in random environments, we deduce a large deviation principle for Xn/n from a large
deviation principle for Tn/n, where

Tn = inf{k ≥ 0 : Xk = n}, n ∈ Z

are the hitting times of the excited random walk. However, we do not prove a large de-
viation principle for the hitting times directly. Instead, we use an associated branching
process with migration Vi that has been used previously in some of the above mentioned
papers on the speed and limiting distributions for excited random walks [1, 13, 14]. We
prove a large deviation principle for n−1

∑n
i=1 Vi and use this to deduce a large devia-

tion principle for Tn/n which in turn implies the following large deviation principle for
Xn/n.

Theorem 1.1. The empirical speed of the excited random walk Xn/n satisfies a large
deviation principle with rate function IX defined in (5.1). That is, for any open set
G ⊂ [−1, 1],

lim inf
n→∞

1

n
logP (Xn/n ∈ G) ≥ − inf

x∈G
IX(x), (1.2)

and for any closed set F ⊂ [−1, 1],

lim sup
n→∞

1

n
logP (Xn/n ∈ F ) ≤ − inf

x∈F
IX(x).

Remark 1.2. After the initial draft of this paper was completed, it was noted that a gen-
eral large deviation principle for certain non-Markovian random walks due to Rassoul-
Agha [19] can be used to prove Theorem 1.1 in certain cases. Thus, it is necessary to
point out some of the differences with the current paper.

• In [19] the random walks are assumed to be uniformly elliptic, which in the context
of this paper would require ωi(j) ∈ [c, 1− c] for all i ∈ Z, j ≥ 1 and some c > 0. In
contrast, we only assume the weaker condition in Assumption 3.
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Large deviations and slowdowns

• The results of [19] only apply directly to excited random walks with determinis-
tic cookie environments. If the cookie environments are allowed to be random
and satisfying Assumption 2, then a technical difficulty arises in satisfying one
of the conditions for the large deviation principle in [19]. Specifically, the tran-
sition probabilities q(w, z) for the shifted paths as defined in [19] do not appear
to be continuous in w for the required topology. We suspect, however, that the
techniques of [19] could be adapted to apply to this case as well.

• The formulation of the large deviation rate function in [19] is difficult to work with
and the only stated properties of the rate function are convexity and a description
of the zero set. In contrast, our method gives a more detailed description of the
rate function (see Lemma 5.1 and Figure 3).

• The method in [19] does not also give a large deviation principle for the hitting
times of the random walk, though one could use an argument similar to that in
Section 5 below to deduce a large deviation principle for the hitting times from
the large deviation principle for the location of the random walk.

As mentioned in the above remark, the formulation of the rate function IX given in
the proof of Theorem 1.1 allows us to give a good qualitative description of the rate
function (see Lemma 5.1). One particularly interesting property is that if δ > 2 (so
that the limiting speed v0 > 0) then IX(x) = 0 when x ∈ [0, v0]. Thus, probabilities of
the form P (Xn < nx) decay subexponentially if x ∈ (0, v0). In fact, as the following
example shows, one can see quite easily that such slowdown probabilities must have a
subexponential rate of decay.

Example 1.3. We exhibit a naive strategy for obtaining a slowdown of the excited
random walk. Consider the event where the excited random walk first follows a de-
terministic path that visits every site in [0, n1/3) M times (so that no cookies remain in
the interval) and then the random walk stays in the interval [0, n1/3) for n steps. The
probabilistic cost of forcing the random walk to follow the deterministic path at the
beginning is e−c

′Mn1/3

for some c′ > 0. Then, since there are no cookies left in the
interval, the probability of then staying in [0, n1/3) for n steps before exiting to the right
is a small deviation computation for a simple symmetric random walk. The probability
of this event can be bounded below by Ce−c

′′n1/3

for some C, c′′ > 0 (see Theorem 3 in
[16]). Thus, the total probability of the above event for the excited random walk is at
least Ce−cn

1/3

.

The example above shows that P (Xn < xn) decays slower than a stretched expo-
nential. However, this strategy turns out to be far from the optimal way for obtaining
such a slowdown. The second main result of this paper is that the true rate of decay for
slowdowns is instead polynomial of the order n1−δ/2.

Theorem 1.4. If δ > 2, then

lim
n→∞

logP (Xn < nx)

log n
= 1− δ

2
, ∀x ∈ (0, v0), (1.3)

and

lim
n→∞

logP (Tn > nt)

log n
= 1− δ

2
, ∀t > 1/v0. (1.4)

1.2 Comparison with RWRE

Many of the prior results for one-dimensional excited random walks are very similar
to the corresponding statements for random walks in random environments (RWRE).
For instance, both models can exhibit transience with sublinear speed and they have the
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same types limiting distributions for the hitting times and the location of the random
walk [14, 20, 12]. Thus, it is interesting to compare the results of this paper with what
is known for one-dimensional RWRE.

Large deviations for one-dimensional RWRE (including a qualitative description of
the rate functions) were studied in [6] and subexponential slowdown asymptotics for
ballistic RWRE similar to Theorem 1.4 were studied in [8]. The similarities to the cur-
rent paper are greatest when the excited random walk has δ > 2 and the RWRE is
transient with positive speed and “nestling” (i.e., the environment has positive and neg-
ative drifts). In this case, the large deviation rate function for either model is zero
on the interval [0, v0], where v0 = limn→∞Xn/n is the limiting speed. Moreover, the
polynomial rates of decay of the slowdown probabilities are related to the limiting dis-
tributions of the random walks in the same way. For instance, in either model if the
slowdown probabilities decay like n1−α with α ∈ (1, 2) then n−1/α(Xn − nv0) converges
in distribution to an α-stable random variable [14, 12].

An interesting difference in the rate functions for excited random walks and RWRE
is that I ′X(0) = 0 in the present paper, while for transient RWRE the left and right
derivatives of the rate function are not equal at the origin [6]. Since (in both models)
IX is defined in terms of the large deviation rate function IT (t) for the hitting times
Tn/n, this is related to the fact that inft IT (t) = 0 for excited random walks (see Lemma
4.1) while the corresponding rate function for the hitting times of RWRE is uniformly
bounded away from 0 if the walk is transient to the left.

1.3 Outline

The structure of the paper is as follows. In Section 2 we define the associated
branching process with migration Vi, mention its relationship to the hitting times of the
excited random walk, and prove a few basic properties about the process Vi. Then in
Section 3 we prove a large deviation principle for the empirical mean of the process
Vi and prove some properties of the corresponding rate function. The large deviation
principle for the empirical mean of the process Vi is then used to deduce large deviation
principles for Tn/n and Xn/n in Sections 4 and 5, respectively. Finally, in Section 6 we
prove the subexponential rate of decay for slowdown probabilities.

2 A related branching process with random migration

In this section we recall how the hitting times Tn of the excited random walk can be
related to a branching process with migration. We will construct the related branching
process with migration using the “coin tossing” construction that was given in [14]. Let
a cookie environment ω = {ωi(j)}i∈Z,j≥1 be fixed, and let {ξi,j}i∈Z,j≥1 be an independent
family of Bernoulli random variables with P (ξi,j = 1) = ωi(j). For i fixed, we say that

the j-th Bernoulli trial is a “success” if ξi,j = 1 and a “failure” otherwise. Then, let F (i)
m

be the number of failures in the sequence {ξi,j}j≥1 before the m-th success. That is,

F (i)
m = min

` ≥ 1 :
∑̀
j=1

ξi,j = m

−m.
Finally, we define the branching process with migration {Vi}i≥1 by

V0 = 0, and Vi+1 = F
(i)
Vi+1, for i ≥ 0.

If the ωi(j) were all equal to 1/2 then the process {Vi} would be a critical Galton-Watson
branching process with one additional immigrant per generation. Allowing the first
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M cookie strengths at each site to be different than 1/2 has the effect of making the
migration effect more complicated (in particular, the migration in each generation is
random and can depend on the current population size). We refer the interested reader
to [1] for a more detailed description of the interpretation of Vi as a branching process
with migration.

In addition to the above branching process with migration, we will also need an-
other branching process with a random initial population and one less migrant each
generation. For any n ≥ 1, let V (n)

0 = Vn where Vn is constructed as above and let

V
(n)
i = F

(n+i−1)

V
(n)
i−1

, where we let F (i)
0 = 0. Note that with this construction, we have that

V
(n)
i ≤ Vn+i for all i. Moreover, while the Markov chain Vi is irreducible, the lack of the

extra migrant each generation makes 0 an absorbing state for V (n)
i .

The relevance of the processes {Vi}i≥0 and {V (n)
i }i≥0 to the hitting times Tn of the

excited random walk is the following.

Tn
D
= n+ 2

n∑
i=1

Vi + 2

∞∑
i=1

V
(n)
i . (2.1)

To explain this relation let Uni = #{k ≤ Tn : Xk = i, Xk+1 = i − 1} be the number of
times the random walk jumps from i to i− 1 before time Tn. Then, it is easy to see that
Tn = n+ 2

∑
i≤n U

n
i and (2.1) follows from the fact that

(Unn , U
n
n−1, . . . U

n
1 , U

n
0 , U

n
−1, U

n
−2, . . .)

D
= (V1, V2, . . . , Vn−1, Vn, V

(n)
1 , V

(n)
2 , . . .). (2.2)

The details of the above joint equality in distribution can be found in [1] or [13].

Remark 2.1. Technically, the relation (2.1) is proved in [1] and [13] only in the cases
where Tm < ∞ with probability one. However, an examination of the proof shows that
P (Tn = k) = P (n+

∑n
i=1 Vi + 2

∑∞
i=1 V

(n)
i = k) for any finite k and so both sides of (2.1)

are infinite with the same probability as well.

2.1 Regeneration structure

We now define a sequence of regeneration times for the branching process Vi. Let
σ0 = 0 and for k ≥ 1

σk = inf{i > σk−1 : Vi = 0}.
Also, for k ≥ 1 let

Wk =

σk∑
i=1

Vi

be the total offspring of the branching process by the kth regeneration time. The tails
of σ1 and W1 were analyzed in [13] in the case when δ > 0.

Lemma 2.2 (Theorems 2.1 and 2.2 in [13]). If δ > 0 then,

P (σ1 > x) ∼ C1x
−δ and P (W1 > x) ∼ C2x

−δ/2 as x→∞. (2.3)

Note that if the Markov chain Vi is transient, then eventually σk = Wk =∞ for all k
large enough. The following Lemma specifies the recurrence/transience properties of
the Markov chain Vi.

Lemma 2.3. The Markov chain Vi is recurrent if and only if δ ≥ 0 and positive recurrent
if and only if δ > 1.
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Proof. The tail decay of σ1 shows that E[σ1] < ∞ if δ > 1 and E[σ1] = ∞ if δ ∈ (0, 1].
Therefore, it is enough to show that Vi is recurrent if and only if δ ≥ 0. This can be
proven by an appeal to some previous results on branching proceses with migration as
was done in [14]. A small difficulty arises in that the distribution of the migration that
occurs before the generation of the (i + 1)-st generation depends on the population of
i-th generation. However, this can be dealt with in the same manner as was done in
[14]. To see this, let V̂i be defined by

V̂0 = 0, and V̂i+1 = F
(i)

(V̂i+1)∨M
.

Note that Vi and V̂i have the same transition probabilities when starting from a site
k ≥M − 1, and thus Vi and V̂i are either both recurrent or both transient.

Next, let Zi = V̂i+1 − F
(i)
M . We claim that Zi is recurrent if and only if V̂i is also

recurrent. Since 0 ≤ Zi ≤ V̂i+1, Zi is recurrent if V̂i is recurrent. To see the other

implication, note that Zi = F
(i)

(V̂i+1)∨M
−F (i)

M is the number of failures in {ξi,j}j≥1 between

the M -th success and success number (V̂i+1)∨M . Therefore, Zi is independent of F (i)
M .

Since F (i)
M is an i.i.d. sequence, then∑
i≥0

P
(
V̂i+1 = 0

)
≥
∑
i≥0

P
(
Zi = 0, F

(i)
M = 0

)
= P

(
F

(0)
M = 0

)∑
i≥0

P (Zi = 0),

and thus V̂i is recurrent if Zi is recurrent.
Finally, it can be shown that Zi is a branching process with migration where the

migration component has mean 1 − δ and the branching component has offspring dis-
tribution that is Geometric(1/2) (see Lemmas 16 and 17 in [14]). Then, previous results
in the branching process with migration literature show that Zi is recurrent if and only
if δ ≥ 0 (see Theorem A and Corollary 4 in [14] for a summary of these results).

We close this section by noting that the above regeneration structure for the process
Vi can be used to give a representation for the limiting speed of the excited random
walk. First note that, as was shown in [1], the representation (2.1) can be used to show
that when δ > 1,

1

v0
= lim
n→∞

Tn
n

= 1 + 2 lim
n→∞

1

n

n∑
i=1

Vi.

To compute the last limit above, first note that {(Wk −Wk−1, σk − σk−1)}k≥1 is an i.i.d.
sequence and that the tail decay of σ1 given in Theorem 2.1 of [13] implies that E[σ1] <

∞ whenever δ > 1. Let k(n) be defined by σk(n)−1 < n ≤ σk(n). A standard renewal
theory argument implies that

lim
n→∞

k(n)

n
=

1

E[σ1]
.

Since Wk(n)−1 ≤
∑n
i=1 Vn ≤Wk(n) and limk→∞Wk/k = E[W1], this implies that

lim
n→∞

1

n

n∑
i=1

Vi =
E[W1]

E[σ1]
.

Therefore, we obtain the following formula for the limiting speed of transient excited
random walks.

Lemma 2.4. If δ > 1, then

v0 =
E[σ1]

E[σ1 + 2W1]
. (2.4)
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Remark 2.5. The tail decay of W1 in (2.3) implies that E[W1] = ∞ when δ ∈ (1, 2].
However, the limiting speed v0 = 0 when δ ∈ (1, 2] so that the equality (2.4) still holds
in this case.

3 Large Deviations for the Branching Process

In this section we discuss the large deviations of n−1
∑n
i=1 Vi. Let

ΛW,σ(λ, η) = logE
[
eλW1+ησ11{σ1<∞}

]
, λ, η ∈ R, (3.1)

be the logarithmic moment generating function of (W1, σ1), and let

ΛV (λ) = − sup{η : ΛW,σ(λ, η) ≤ 0} and IV (x) = sup
λ
λx− ΛV (λ). (3.2)

The relevance of these functions is seen by the following Theorem, which is a direct
application of a more general result of Nummelin and Ney (see remark (ii) at the bottom
of page 594 in [18]).

Theorem 3.1. Let IV (x) be defined as in (3.2). Then,

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Vi ∈ G, Vn = j

)
≥ − inf

x∈G
IV (x),

for all open G and any j ≥ 0, and

lim sup
n→∞

1

n
logP

(
1

n

n∑
i=1

Vi ∈ F, Vn = j

)
≤ − inf

x∈F
IV (x),

for all closed F and any j ≥ 0.

In order to obtain large deviation results for the related excited random walk, it
will also be necessary to obtain large deviation asymptotics of n−1

∑n
i=1 Vi without the

added condition on the value of Vn.

Theorem 3.2. Let IV (x) be defined as in (3.2). Then, n−1
∑n
i=1 Vi satisfies a large

deviation principle with rate function IV (x). That is,

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Vi ∈ G
)
≥ − inf

x∈G
IV (x),

for all open G, and

lim sup
n→∞

1

n
logP

(
1

n

n∑
i=1

Vi ∈ F
)
≤ − inf

x∈F
IV (x), (3.3)

for all closed F .

Remark 3.3. There are many results in the large deviations literature that imply a large
deviation principle for the empirical mean of a Markov chain. However, we were not
able to find a suitable theorem that implied Theorem 3.2. Some of the existing results
required some sort of fast mixing of the Markov chain [5, 9], but the Markov chain
{Vi}i≥0 mixes very slowly since if V0 is large it typically takes a long time to return to
0 (on the order of O(V0) steps). Moreover, it is very important that the rate functions
are the same in Theorems 3.1 and 3.2, and many of the results for the large deviations
for the empirical mean of a Markov chain formulate the rate function in terms of the
spectral radius of an operator [7] instead of in terms of logarithmic moment generating
functions as in (3.1) and (3.2).
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Proof. Obviously the lower bound in Theorem 3.2 follows from the corresponding lower
bound in (3.1), and so it is enough to prove the upper bound only. Our proof will use the
following facts about the functions ΛV and IV .

(i) ΛV (λ) is convex and continuous on (−∞, 0] and ΛV (λ) =∞ for all λ > 0. Therefore,
IV (x) = supλ<0 (λx− ΛV (λ)).

(ii) IV (x) is a convex, non-increasing function of x, and limx→∞ IV (x) = infx IV (x) = 0.

These properties and more will be shown in Section 3.1 below where we give a qual-
itative description of the rate function IV . By property (ii) above, it will be enough to
prove the large deviation upper bound for closed sets of the form F = (−∞, x]. That is,
we need only to show that

lim sup
n→∞

1

n
logP

(
n∑
i=1

Vi ≤ xn
)
≤ −IV (x), ∀x <∞. (3.4)

This will follow from

lim sup
n→∞

1

n
logE[eλ

∑n
i=1 Vi ] ≤ ΛV (λ), ∀λ < 0. (3.5)

Indeed, combining (3.5) with the usual Chebyshev upper bound for large deviations
gives that for any x <∞ and λ < 0,

lim sup
n→∞

1

n
logP

(
n∑
i=1

Vi ≤ xn
)
≤ lim sup

n→∞

1

n
log(e−λxnE[eλ

∑n
i=1 Vi ]) ≤ −λx+ ΛV (λ).

Optimizing over λ < 0 and using property (i) above proves (3.4).
It remains still to prove (3.5). By decomposing according to the time of the last

regeneration before n we obtain

E[eλ
∑n
i=1 Vi−ΛV (λ)n]

= E[eλ
∑n
i=1 Vi−ΛV (λ)n1{σ1>n}] +

n∑
m=1

n−1∑
t=0

E[eλ
∑n
i=1 Vi−ΛV (λ)n1{σm≤n<σm+1, n−σm=t}]

= E[eλ
∑n
i=1 Vi−ΛV (λ)n1{σ1>n}]

+

n∑
m=1

n−1∑
t=0

E[eλWm−ΛV (λ)σm1{σm=n−t}]E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}]

≤ E[eλ
∑n
i=1 Vi−ΛV (λ)n1{σ1>n}] (3.6)

+

(
n∑

m=1

E[eλWm−ΛV (λ)σm1{σm<∞}]

)(
n−1∑
t=0

E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}]

)
, (3.7)

where we used the Markov property in the second equality. The definition of ΛV and
the monotone convergence theorem imply that ΛW,σ(λ,−ΛV (λ)) ≤ 0. Therefore,

n∑
m=1

E[eλWm−ΛV (λ)σm1{σm<∞}] =

n∑
m=1

emΛW,σ(λ,−ΛV (λ)) ≤ n.

To bound the second sum in (3.7) we need the following lemma, whose proof we
postpone for now.
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Lemma 3.4. For any λ < 0,

sup
t≥0

E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}] <∞.

Lemma 3.4 implies the expectation (3.6) is uniformly bounded in n and that the
second sum in (3.7) grows at most linearly in n. Since the first sum in (3.7) also grows
linearly in n this implies that

lim sup
n→∞

1

n
logE[eλ

∑n
i=1 Vi−ΛV (λ)n] ≤ 0, ∀λ < 0,

which is obviously equivalent to (3.5). It remains only to give the proof of Lemma 3.4.

Proof of Lemma 3.4. First, note that

1 ≥ E[eλW1−ΛV (λ)σ11{σ1<∞}]

≥ E[eλW1−ΛV (λ)σ11{t<σ1<∞}]

= E
[
eλ

∑t
i=1 Vi−ΛV (λ)t1{σ1>t}e

λ
∑σ1
i=t+1 Vi−ΛV (λ)(σ1−t)1{σ1<∞}

]
= E

[
eλ

∑t
i=1 Vi−ΛV (λ)t1{σ1>t}E

Vt
[
eλW1−ΛV (λ)σ11{σ1<∞}

]]
, (3.8)

where in the last equality we use the notation Em for the expectation with respect to
the law of the Markov chain Vi conditioned on V0 = m. Since Vi is an irreducible Markov
chain and E[eλW1−ΛV (λ)σ11{σ1<∞}] ≤ 1, then the inner expectation in (3.8) is finite for
any value of Vt and can be uniformly bounded below if Vt is restricted to a finite set.
Thus, for any K <∞,

E
[
eλ

∑t
i=1 Vi−ΛV (λ)t1{σ1>t, Vt≤K}

]
≤
(

inf
m∈[1,K]

Em[eλW1−ΛV (λ)σ11{σ1<∞}]

)−1

E[eλW1−ΛV (λ)σ11{σ1<∞}]. (3.9)

Let CK,λ <∞ be defined to be the right side of the inequality above.
Note that the upper bound (3.9) does not depend on t. The key to finishing the proof

of Lemma 3.4 is using the upper bound (3.9) in an iterative way. For any t ≥ 1,

E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}] ≤ CK,λ + E[eλ

∑t
i=1 Vi−ΛV (λ)t1{σ1>t, Vt>K}]

≤ CK,λ + eλK−ΛV (λ)E[eλ
∑t−1
i=1 Vi−ΛV (λ)(t−1)1{σ1>t−1}],

where in the last inequality we used that {σ1 > t, Vt > K} = {σ1 > t − 1, Vt > K}.
Iterating the above bound implies that

E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}] ≤ CK,λ

t−1∑
l=0

el(λK−ΛV (λ)) + et(λK−ΛV (λ)).

By choosing K > ΛV (λ)/λ so that eλK−ΛV (λ) < 1, we thus obtain that

sup
t≥0

E[eλ
∑t
i=1 Vi−ΛV (λ)t1{σ1>t}] ≤

CK,λ
1− eKλ−ΛV (λ)

+ 1 <∞.
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3.1 Properties of the rate function IV

We now turn our attention to a qualitative description of the rate function IV . Since
IV is defined as the Legendre dual of ΛV , these properties will in turn follow from an
understanding of ΛV (and also ΛW,σ). We begin with some very basic properties of ΛV
and the corresponding properties of IV .

Lemma 3.5. ΛV (λ) is non-decreasing, convex, and left-continuous as a function of λ.
Moreover,

(i) ΛV (λ) ∈ (logE[ω0(1)], 0) for all λ < 0, and limλ→−∞ ΛV (λ) = logE[ω0(1)].

(ii) ΛV (λ) =∞ if λ > 0.

Proof. Recall the definitions of ΛW,σ and ΛV in (3.1) and (3.2), respectively. The fact
that ΛV (λ) is non-decreasing follows from the fact that ΛW,σ(λ1, η) ≤ ΛW,σ(λ2, η) for
any λ1 < λ2. Since ΛW,σ is the logarithmic generating function of the joint random
variables (W1, σ1), then ΛW,σ(λ, η) is a convex function of (λ, η) (and strictly convex
on {(λ, η) : ΛW,σ(λ, η) < ∞}). The convexity of ΛV as a function of λ then follows
easily from the convexity of ΛW,σ(λ, η) and the definition of ΛV . Also, left-continuity
follows from the definition of ΛV and the fact that limλ→λ′ ΛW,σ(λ, η) = ΛW,σ(λ′, η) by
the monotone convergence theorem.

Since W1 ≥ 0, ΛW,σ(λ, 0) = logE[eλW11{σ1<∞}] < 0 for all λ < 0. On the other hand,
since W1 ≥ σ1−1 it follows that ΛW,σ(λ,−λ) ≤ −λ <∞ for all λ ≤ 0. Then the continuity
of ΛW,σ and the definition of ΛV (λ) imply that ΛV (λ) < 0 for all λ < 0. Additionally,

E[eλW1+ησ11{σ1<∞}] > eηP (σ1 = 1) = eηE[ω0(1)],

which implies that ΛW,σ(λ,− logE[ω0(1)]) > 0 for all λ < 0. Thus, ΛV (λ) > logE[ω0(1)]

for all λ < 0. To prove the second part of property (i), note that σ1 ≤W1 + 1 implies that
for η ≥ 0,

lim
λ→−∞

E[eλW1+ησ11{σ1<∞}] ≤ lim
λ→−∞

E[e(λ+η)W1+η] = eηP (W1 = 0) = eηE[ω0(1)], (3.10)

where the second to last equality follows from the bounded convergence theorem. From
(3.10) and the definition of ΛV , it follows that limλ→−∞ ΛV (λ) ≤ logE[ω0(1)]. Combining
this with the first part of property (i) implies the second part of property (i).

To show that ΛV (λ) = ∞ for λ > 0 it is actually easiest to refer back to the excited
random walk. Recall the naive strategy for slowdowns of the excited random walk in
Example 1.3. We can modify the strategy slightly by not only consuming all cookies in
[0, n1/3) and then staying in the interval for n steps, but also requiring that the random
walk then exits the interval on the right. This event still has a probability bounded below
by Ce−cn

1/3

. Examining the branching process corresponding to the excited random
walk we see that the event for the random walk described above implies that UNi ≥ 1

for all i ∈ [1, N − 1], UN0 = 0 and
∑N
i=1 U

N
i > n/2, where N = dn1/3e. Then, using (2.2)

we obtain that that P (W1 > n/2, σ1 = dn1/3e) ≥ Ce−cn
1/3

for all n ≥ 1 which implies
that

E[eλW1+ησ11{σ1<∞}] ≥ eλn/2+ηn1/3

P (W1 > n/2, σ1 = dn1/3e) ≥ Ceλn/2+ηn1/3−cn1/3

,

for any λ > 0 and η < 0. Since this lower bound can be made arbitrarily large by taking
n → ∞, this shows that ΛW,σ(λ, η) = ∞ for any λ > 0 and η < 0, and thus ΛV (λ) = ∞
for all λ > 0.

We would like to say that ΛW,σ(λ,−ΛV (λ)) = 0. However, in order to be able to
conclude this is true, we need to show that ΛW,σ(λ, η) ∈ [0,∞) for some η. The next
series of lemmas gives some conditions where we can conclude this is true.
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Lemma 3.6. If λ ≤ logE[ω0(1)], then

ΛW,σ(λ,−ΛV (λ)) = 0. (3.11)

Moreover, ΛV (λ) is strictly convex and analytic on (−∞, logE[ω0(1)]).

Proof. Since W1 ≥ σ1 − 1 we have that for λ ≤ 0,

ΛW,σ(λ,−λ) = logE[eλ(W1−σ1)1{σ1<∞}] ≤ −λ.

Therefore, ΛW,σ(λ, η) < ∞ for all λ < 0 and η ≤ −λ. On the other hand, it was shown
above that ΛW,σ(λ, 0) < 0 and ΛW,σ(λ,− logE[ω0(1)]) > 0 when λ < 0. Since ΛW,σ(λ, η) is
monotone increasing and continuous in η this implies that ΛW,σ(λ, η) = 0 has a unique
solution η ∈ [0,− logE[ω0(1)]] when λ ≤ logE[ω0(1)]. By the definition of ΛV and the fact
that ΛW,σ(λ, η) is strictly increasing in η, this must be η = −ΛV (λ).

LetDW,σ = {(λ, η) : ΛW,σ(λ, η) <∞}. The above argument shows not only that (3.11)
holds but also that (λ,−ΛV (λ)) is in the interior of DW,σ when λ ≤ logE[ω0(1)]. Since
ΛW,σ is analytic on DW,σ, the implicit function theorem implies that ΛV (λ) is analytic on
(−∞, logE[ω0(1)]). Finally, combining (3.11) with the fact that ΛW,σ is strictly convex on
DW,σ implies that ΛV (λ) is strictly convex on (−∞, logE[ω0(1)]).

Lemma 3.7. For every m <∞, there exists a λ0 = λ0(m) < 0 such that ΛW,σ(λ,−λm) <

∞ for all λ ∈ (λ0, 0).

Proof. We need to show that E[eλW1−λmσ11{σ1<∞}] = E[eλ
∑σ1
i=1(Vi−m)1{σ1<∞}] < ∞ for

λ negative and sufficiently close to zero. Since λ < 0 we need to bound the sum in
the exponent from below. Note that all the terms in the sum except the last one are
larger than −(m − 1) and that the terms are non-negative if Vi ≥ m. Therefore, letting
Nm = #{1 ≤ i ≤ σ1 : Vi < m} we obtain that

E[eλW1−λmσ11{σ1<∞}] ≤ E[e−λ(m−1)Nm ].

To show that this last expectation is finite for λ close to zero, we need to show that Nm
has exponential tails. To this end, note that the event {Nm > n} implies that the first n
times that the process Vi < m, the following step is not to 0. Thus,

P (Nm > n) ≤
(

max
k<m

P (V1 6= 0 |V0 = k)

)n
= P (V1 6= 0 |V0 = dme − 1)n.

Therefore, the statement of the Lemma holds with

λ0(m) =
1

m− 1
logP (V1 6= 0 |V0 = dme − 1).

Corollary 3.8. If δ > 2 (so that E[W1], E[σ1] <∞), then there exists a λ1 < 0 such that
on the interval (λ1, 0)

(i) ΛW,σ(λ,−ΛV (λ)) = 0.

(ii) ΛV (λ) is analytic and strictly convex as a function of λ.

(iii) limλ→0+ Λ′V (λ) = E[W1]/E[σ1] =: m0.

Proof. Let DW,σ = {(λ, η) : ΛW,σ(λ, η) <∞} be the domain where ΛW,σ is finite, and let
D◦W,σ be the interior of DW,σ. Define m0 = E[W1]/E[σ1]. Then, if 0 > λ > λ0(m)m/m0

for some m > m0, it follows that

ΛW,σ(λ,−λm0) ≤ ΛW,σ

(
λm0

m
,−λm0

)
<∞,
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where the first inequality follows from the monotonicity of ΛW,σ and the last inequality
follows from Lemma 3.7. Thus, (λ,−λm0) ∈ D◦W,σ if λ ∈ (λ1, 0) with

λ1 = inf
m>m0

λ0(m)m

m0
.

Since ΛW,σ is analytic and strictly convex inD◦W,σ, the function g(λ) = ΛW,σ(λ,−m0λ)

is strictly convex and analytic on the interval (λ1, 0). In particular, g is differentiable and

g′(λ) =
d

dλ
logE

[
eλ(W1−m0σ1)

]
=
E
[
(W1 −m0σ1)eλ(W1−m0σ1)

]
E
[
eλ(W1−m0σ1)

] .

Since g is strictly convex,

g′(λ) < lim
λ→0−

g′(λ) = E[W1 −m0σ1] = 0, ∀λ ∈ (λ1, 0).

Therefore, g(λ) is strictly decreasing on (λ1, 0). Since, limλ→0− g(λ) = g(0) = 0 we
obtain that g(λ) = ΛW,σ(λ,−m0λ) > 0 for λ ∈ (λ1, 0). Thus, for every λ ∈ (λ1, 0) there
exists an η ∈ (0,−m0λ) such that ΛW,σ(λ, η) = 0, and the definition of ΛV implies that
η = −ΛV (λ). We have shown that ΛW,σ(λ,−ΛV (λ)) = 0 and (λ,−ΛV (λ)) ∈ D◦W,σ for all
λ ∈ (λ1, 0). As was the case in the proof of Lemma 3.6 these facts imply that ΛV (λ) is
analytic and strictly convex on (λ1, 0).

To show that limλ→0− Λ′V (λ) = m0, first note that as was shown above ΛV (λ) > m0λ

for λ < 0. For m < m0 define gm(λ) = ΛW,σ(λ,−mλ). For λ close enough to 0 we have
that gm(λ) is strictly convex and analytic, and that

g′m(λ) =
d

dλ
logE

[
eλ(W1−mσ1)

]
=
E
[
(W1 −mσ1)eλ(W1−mσ1)

]
E
[
eλ(W1−mσ1)

] .

Therefore, limλ→0− g
′
m(λ) = E[W1]−mE[σ1] > 0, and thus there exists a λ2 = λ2(m) < 0

such that gm(λ) = ΛW,σ(λ,−mλ) < 0 for λ ∈ (λ2, 0). This implies thatm0λ < ΛV (λ) < mλ

for all λ ∈ (λ2, 0), and thus limλ→0− Λ′V (λ) ∈ [m,m0]. The proof is finished by noting that
this is true for any m < m0.

We are now ready to deduce some properties of the rate function IV .

Lemma 3.9. infx IV (x) = 0.

Proof. Since IV is the Legendre transform of ΛV and ΛV is lower-semicontinuous, then
it follows that infx IV (x) = −ΛV (0). If δ ≥ 0, then ΛW,σ(0, 0) = logP (σ1 < ∞) = 0 (by
Lemma 2.3) and thus ΛV (0) = 0 when δ ≥ 0.

If δ < 0, then ΛW,σ(0, 0) = logP (σ1 < ∞) < 0 and so we can only conclude a priori1

that ΛV (0) ≤ 0. Instead we will prove infx IV (x) = 0 in a completely different manner.
First note that letting F = G = R in Theorem 3.2 implies that

lim
n→∞

1

n
logP (Vn = 0) = − inf

x
IV (x).

Therefore, we need to show that P (Vn = 0) does not decay exponentially fast in n. The
explanation of the representation (2.1) implies that P (Tn < T−1) = P (Un0 = 0) ≤ P (Vn =

0), and thus we are reduced to showing that P (Tn < T−1) does not decay exponentially
fast in n. In fact, we claim that there exists a constant C > 0 such that

P (Tn < T−1) ≥ Cn−M−1 (3.12)

1Note that we cannot conclude that ΛV (0) < 0 since we do not know if ΛW,σ(0, η) <∞ for some η > 0. In
fact since infx IV (x) = 0 if and only if ΛV (0) = 0, the proof of the lemma shows indirectly that ΛW,σ(0, η) =
∞ for all η > 0 when δ < 0.
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To see this, suppose that the first 2M + 1 steps of the random walk alternate between 0
and 1. The probability of this happening is

P (X2i = 0, X2i+1 = 1, i = 1, 2, . . .M) = E

M+1∏
j=1

ω0(j)

M∏
j=1

(1− ω1(j))


=

1

2
E

 M∏
j=1

ω0(j)

E

 M∏
j=1

(1− ω0(j))

 > 0.

At this point the random walker has consumed all the “cookies” at the sites 0 and 1.
Therefore, by a simple symmetric random walk computation, the probability that the
random walk from this point hits x = 2 before x = −1 is 2/3. Since δ < 0 the random
walk will eventually return from x = 2 to x = 1 again, and then the probability that the
random walk again jumps M more times from x = 1 to x = 2 without hitting x = −1 is
(2/3)M . After jumping from x = 1 to x = 2 a total of M +1 times there are no longer any
cookies at x = 2 either, and thus the probability that the random walk now jumps M + 1

times from x = 2 to x = 3 without visiting x = −1 is (3/4)M+1. We continue this process
at successive sites to the right until the random walk makes M +1 jumps from x = n−2

to x = n − 1 without hitting x = −1 (which happens with probability ((n − 1)/n)M+1).
Upon this last jump to x = n− 1 the random walk has consumed all cookies at x = n− 1

and so the probability that the next step is to the right is 1/2. Putting together the
above information we obtain the lower bound

P (Tn < T−1) ≥

1

2
E

 M∏
j=1

ω0(j)

E

 M∏
j=1

(1− ω0(j))

(2

3

3

4
· · · n− 1

n

)M+1
1

2
.

This completes the proof of (3.12), and thus infx IV (x) = 0 when δ < 0.

Lemma 3.10. The function IV (x) is convex, non-increasing, and continuous on [0,∞).
Moreover,

(i) There exists an m2 > 0 such that IV (x) is strictly convex and analytic on (0,m2).

(ii) IV (0) = − logE[ω0(1)] and limx→0+ I ′V (x) = −∞.

(iii) If δ > 2 then there exists an m1 < m0 = E[W1]/E[σ1] such that IV (x) is strictly
convex and analytic on (m1,m0), IV (x) = 0 for x ≥ m0, and limx→m−0

I ′V (x) = 0 so

that IV is continuously differentiable on (m1,∞).

(iv) If δ ≤ 2 then IV (x) > 0 for all x <∞.

Proof. Since IV is the Legendre transform of ΛV , IV (x) is lower-semicontinuous and
convex as a function in x. It follows easily from Lemma 3.5 and the definition of IV that
IV (x) < ∞ if and only if x ∈ [0,∞), and since IV is convex and lower-semicontinuous
this shows that IV is continuous on [0,∞). The fact that IV (x) is non-increasing follows
from the fact that ΛV (λ) =∞ for any λ > 0. Indeed, if x1 ≤ x2 then

IV (x1) = sup
λ≤0
{λx1 − ΛV (λ)} ≥ sup

λ≤0
{λx2 − ΛV (λ)} = IV (x2).

Next, recall from Lemma 3.6 that on (−∞, logE[ω0(1)]) the function ΛV (λ) is strictly
convex and analytic and let m2 = limλ→log E[ω0(1)])− Λ′V (λ). The fact that ΛV (λ) is non-
decreasing and uniformly bounded below also implies that limλ→−∞ Λ′V (λ) = 0. There-
fore, for every x ∈ (0,m2) there exists a unique λ = λ(x) such that Λ′V (λ(x)) = x and
so

IV (x) = λ(x)x− ΛV (λ(x)) for x ∈ (0,m2). (3.13)
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Since ΛV (λ) is analytic on (−∞, logE[ω0(1)]) the inverse function theorem implies that
λ(x) is analytic on (0,m2) and thus (3.13) implies that IV (x) is analytic on (0,m2) as
well. To see that IV (x) is strictly convex on (0,m2), we differentiate (3.13) with respect
to x and use the fact that Λ′V (λ(x)) = x for x ∈ (0,m2) to obtain

I ′V (x) = λ(x), for x ∈ (0,m2). (3.14)

Since λ(x) is strictly increasing on (0,m2), it follows that IV is strictly convex on (0,m2).
Moreover, (3.14) implies that limx→0+ I ′V (x) = limx→0+ λ(x) = −∞ and Lemma 3.5 (i)
implies that that IV (0) = − infλ ΛV (λ) = − logE[ω0(1)].

When δ > 2, Lemma 3.8 implies that ΛV (λ) is analytic and strictly convex on (λ1, 0).
Let m1 = limλ→λ+

1
Λ′V (λ) and recall that limλ→0− Λ′V (λ) = m0 = E[W1]/E[σ1]. Then the

same argument as above shows that IV (x) is strictly convex and analytic on (m1,m0)

and that limx→m−0
I ′V (x) = 0. Now, since Λ′V (λ) increases tom0 as λ→ 0− and ΛV (0) = 0,

then ΛV (λ) ≥ m0λ for all λ ≤ 0. Therefore

IV (x) = sup
λ≤0
{λx− ΛV (λ)} ≤ sup

λ≤0
{λm0 − ΛV (λ)} = 0, for all x ≥ m0,

where the first equality follows from the fact that ΛV (λ) = ∞ if λ > 0. However, since
IV (x) ≥ −ΛV (0) = 0 it must be that IV (x) = 0 for x ≥ m0.

It remains only to show that IV (x) > 0 for all x when δ ≤ 2. We will divide the proof
into two cases: δ ∈ (1, 2] and δ ≤ 1.
Case I: δ ∈ (1, 2].
For any m <∞ let gm(λ) = ΛW,σ(λ,−mλ). Then, as in the proof of Corollary 3.8, gm(λ)

is analytic and strictly convex for λ < 0 close enough to zero. Moreover,

lim
λ→0−

g′m(λ) = E[W1 −mσ1] =∞,

where the last equality holds since the tail decay of W1 and σ1 in (2.3) implies that
E[W1] = ∞ and E[σ1] < ∞ when δ ∈ (1, 2]. Since gm(0) = ΛW,σ(0, 0) = 0 this im-
plies that gm(λ) = ΛW,σ(λ,−mλ) < 0 for λ < 0 sufficiently close to 0, and therefore
lim supλ→0− ΛV (λ)/λ ≥ m. Since this is true for any m < ∞ and since ΛV (λ) is convex,
it follows that limλ→0− ΛV (λ)/λ = ∞. Thus, for any x < ∞ there exists a λ′ < 0 such
that ΛV (λ′) < λ′x and so IV (x) ≥ λ′x− ΛV (λ′) > 0.
Case II: δ ≤ 1.
As in Case I we could proceed by arguing that g′m(λ)→ E[(W1−mσ1)1{σ1<∞}]. However,
we would need to then show that this last expectation is infinite, and this would require
an analysis of the joint tail behavior of (W1, σ1). This could probably be achieved in the
case δ ∈ (0, 1) by adapting the arguments of Kosygina and Mountford in [13], however
when δ < 0 it would be more difficult since in that case the Markov chain is transient
and we would need to analyze the tails of σ1 conditioned on σ1 < ∞. It is possible that
such an approach would work, but we will give a softer argument instead.

Let Λ1(λ) = lim supn→∞
1
n logE[eλ

∑n
i=1 Vi ]. Then, the standard Chebyshev large de-

viation upper bound implies that

lim sup
n→∞

1

n
logP

(
n∑
i=1

Vi < xn

)
≤ − sup

λ<0
(λx− Λ1(λ)).

On the other hand, Theorem 3.1 and the fact that IV is non-increasing implies that

lim
n→∞

1

n
logP

(
n∑
i=1

Vi < xn, Vn = 0

)
= −IV (x).
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Thus, we see that IV (x) ≥ supλ<0(λx − Λ1(λ)) for any x < ∞. Then, similar to the
case δ ∈ (1, 2] above, it will follow that IV (x) > 0 for all x < ∞ if we can show that
limλ→0− Λ1(λ)/λ =∞.

Fix an integer K ≥ 1. If λ < 0, then λ
∑n
i=1 Vi ≤ λK

∑n
i=1 1{Vi≥K}. Thus,

E[eλ
∑n
i=1 Vi ] ≤ eλK(1−θ)n + P

(
n∑
i=1

1{Vi<K} > θn

)
. (3.15)

Recall the construction of the process Vi in Section 2 and define Ṽi by Ṽ0 = 0 and

Ṽi+1 = F
(i)

Ṽi+1
1{F (i)

Ṽi+1
≥K}.

That is, jumps are governed by the same process as the jumps of the Markov chain Vi
with the exception that any attempted jump to a site in [1,K − 1] is replaced by a jump
to 0. Note that the above construction of Ṽi gives a natural coupling with Vi so that
Ṽi ≤ Vi for all i. Let σ̃k, k = 1, 2, . . . be the successive return times to 0 of the Markov
chain Ṽi. Then, since Ṽi < K implies that Ṽi = 0,

P

(
n∑
i=1

1{Vi<K} > θn

)
≤ P

(
n∑
i=1

1{Ṽi<K} > θn

)
≤ P (σ̃dθne ≤ n).

Since σ̃k is the sum of k i.i.d. random variables, Cramer’s Theorem implies that this
last probability decays on an exponential scale like e−nθIσ̃(1/θ), where Iσ̃ is the large
deviation rate function for σ̃k/k.

Recalling (3.15), we see that Λ1(λ) ≤ −min{λK(θ − 1), θIσ̃(1/θ)}. Optimizing over
θ ∈ (0, 1) gives

Λ1(λ) ≤ − sup
θ∈(0,1)

min{λK(θ − 1), θIσ̃(1/θ)}. (3.16)

The modified Markov chain Ṽi inherits the same recurrence/transience properties that
Vi has. In particular, Ṽi is null-recurrent if δ ∈ [0, 1] and transient if δ < 0. In either case
E[σ̃1] = ∞ and so it can be shown that Iσ̃(x) is convex, non-increasing, and Iσ̃(x) > 0

for x ∈ [1,∞). Therefore, the function θ 7→ θIσ̃(1/θ) is convex and strictly increasing
on (0, 1) and approaches 0 as θ → 0. Thus, there exists an inverse function h so that
h(x)Iσ̃(1/h(x)) = x and h(x) → 0 as x → 0. We will use this information to analyze the
upper bound in (3.16).

−λK

θ

θIσ̃(1/θ)

h(−λK) 1

Figure 1: For any fixed λ < 0, the supremum in (3.16) is attained at the intersection
of the two curves. A lower bound for the supremum is obtained by evaluating the line
λK(θ − 1) at θ = h(−λK).

Since the first term in the minimum of (3.16) is decreasing in θ and the second
term in the minimum is increasing in θ, the supremum is obtained for the value of θ
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that makes the two terms in the minimum equal. Thus, the supremum is greater than
λK(h(−λK) − 1) (see Figure 1) which in turn implies that Λ1(λ) ≤ λK(1 − h(−λK)).
Therefore,

lim inf
λ→0−

Λ1(λ)

λ
≥ lim
λ→0−

K(1− h(−λK)) = K.

Since the above argument works for any finite K, this implies that limλ→0− Λ1(λ)/λ =

∞.

4 Large Deviations for Hitting Times

The large deviation principles for n−1
∑n
i=1 Vi in Theorems 3.1 and 3.2 imply a large

deviation principle for the hitting times.

Theorem 4.1. Let IT (t) = IV ((t−1)/2). Then, Tn/n satisfies a large deviation principle
with convex rate function IT (t). That is,

lim inf
n→∞

1

n
logP (Tn/n ∈ G) ≥ − inf

x∈G
IV (x), (4.1)

for all open G, and

lim sup
n→∞

1

n
logP (Tn/n ∈ F ) ≤ − inf

x∈F
IV (x), (4.2)

for all closed F . Moreover, the following qualitative properties are true of the rate
function IT .

(i) IT (t) is convex, non-increasing, and continuous on [1,∞), and there exists a t2 > 1

such that IT (t) is strictly convex and analytic on (1, t2).

(ii) IT (1) = − logE[ω0(1)] and limt→1+ I ′T (t) = −∞.

(iii) If δ > 2, then IT (t) = 0 ⇐⇒ t ≥ 1/v0. Moreover, there exists a t1 < 1/v0 such that
IT (t) is strictly convex and analytic on (t1, 1/v0) and continuously differentiable on
(t1,∞).

(iv) If δ ≤ 2, then IT (t) > 0 for all t <∞ and limt→∞ IT (t) = 0.

1 t2 t1 1/v0

− logE[ω0(1)]

1 t2

− logE[ω0(1)]

δ > 2 δ ≤ 2

analytic and strictly convex

analytic and strictly convex

Figure 2: A visual depiction of the rate function IT in the cases δ > 2 and δ ≤ 2 showing
the qualitative properties stated in Lemma 4.1.

Proof. The properties of the rate function IT follow directly from the corresponding
properties of IV proved above in Lemmas 3.9 and 3.10. Note that when δ > 2 we use
that the formula for the limiting speed of the excited random walk in (2.4) implies that
1/v0 = E[σ1 + 2W1]/E[σ1] = 1 + 2m0.
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Recall the relationship between the hitting times Tn and the processes Vi and V
(n)
i

given in (2.1). Then,

P (Tn/n ∈ G) ≥ P
(

1 +
2

n

n∑
i=1

Vi ∈ G, Vn = 0

)
,

since V (n)
i = 0 for all i ≥ 1 if V (n)

0 = Vn = 0. The large deviation lower bound (4.1) then
follows from Theorem 3.1.

Since IT is non-increasing and inft IT (t) = 0, as in the proof of Theorem 3.2 the large
deviation upper bound will follow from

lim sup
n→∞

1

n
logP (Tn ≤ nt) = −IT (t). (4.3)

Again, the relationship between the hitting times Tn and the processes Vi and V (n)
i given

in (2.1) implies that

P (Tn ≤ tn) ≤ P
(

n∑
i=1

Vi ≤
(t− 1)n

2

)
,

and Theorem 3.2 implies that (4.3) holds.

To obtain a large deviation principle for the position of the excited random walk we
will also need a large deviation principle for the hitting times to the left. However, this is
obtained directly as a Corollary of Theorem 4.1 by switching the direction of the cookie
drifts. To be more precise, for any cookie environment ω = {ωi(j)}, let ω = {ωi(j)} be
the associated cookie environment given by ωi(j) = 1 − ωi(j). Let Tn be the hitting
times of the excited random walk in the cookie environment ω. An obvious symmetry
coupling gives T−n = Tn.

Corollary 4.2. The random variables T−n/n satisfy a large deviation principle with
convex rate function IT , where IT is the rate function given by Theorem 4.1 for the
hitting times Tn/n.

Remark 4.3. Since δ = E[
∑M
j=1(2ω0(j)− 1)] = −E[

∑M
j=1(2ω0(j)− 1)] = −δ, the proper-

ties of the rate function IT are the same as the properties of the rate function IT given
by Theorem 4.1 when δ is replaced by −δ. For instance, IT (t) > 0 for all t <∞ if δ ≥ −2.

5 Large deviations for the random walk

In this section will show a large deviation principle for Xn/n. We begin by defining
the rate function IX(x).

IX(x) =


xIT (1/x) x > 0

0 x = 0

|x|IT (1/|x|) x < 0.

(5.1)

Before stating the large deviation principle for Xn/n we will prove some simple facts
about the rate function IX .

Lemma 5.1. The function IX is non-negative and continuous on [−1, 1] and has the
following additional properties

(i) IX(x) is non-increasing on [−1, 0] and non-decreasing on [0, 1].

(ii) IX(x) is a convex function.

(iii) IX(−1) = − logE[1− ω0(1)] and IX(1) = − logE[ω0(1)].
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(iv) There exist x2 ∈ (−1, 0) and x2 ∈ (0, 1) such that IX is strictly convex and analytic
on (−1, x2) and (x2, 1).

(v) limx→−1+ I ′X(x) = −∞ and limx→1− I
′
X(x) =∞.

(vi) I ′X(0) = limx→0 IX(x)/x = 0.

(vii) If δ ∈ [−2, 2], then IX(x) = 0 if and only if x = 0.

(viii) If δ > 2, then IX(x) = 0 if and only if x ∈ [0, v0], and there exists an x1 ∈ (v0, 1) such
that IX is strictly convex and analytic on (v0, x1) and continuously differentiable
on [0, x1).

(ix) If δ < −2 then IX(x) = 0 if and only if x ∈ [v0, 0], and there exists an x1 ∈
(−1, v0) such that IX is strictly convex and analytic on (x1, v0) and continuously
differentiable on (x1, 0]..

1−1 x2 v0 x1 x2

δ > 2

− logE[ω0(1)]

− logE[1− ω0(1)]

1−1 x2 x2

δ ∈ [−2, 2]

− logE[ω0(1)]

− logE[1− ω0(1)]

analytic and strictly convex
analytic and
strictly convex

Figure 3: A visual depiction of the rate function IX in the cases δ > 2 and δ ∈ [−2, 2]

showing the qualitative properties stated in Lemma 5.1.

Proof. Most of the properties in the statement of the Lemma follow directly from the
corresponding properties of IT (or IT ) given by Theorem 4.1, and thus we will content
ourselves with only discussing property (ii) from the statement of the Lemma.

It is a general fact of convex analysis that if f(x) is a convex function on [1,∞)

then g(x) = xf(1/x) is also a convex function on (0, 1]. Therefore, the convexity of
IT and IT imply that IX is convex on [−1, 0) and (0, 1], respectively. Next, note that
limx→0+ IX(x) = limx→0+ xIT (1/x) = 0 since IT is finite and non-increasing, and simi-
larly limx→0− IX(x) = 0. Therefore, IX is continuous at x = 0 which in turn implies that
IX is convex on [−1, 0] and [0, 1], respectively. Finally, the convexity of IX on all of [−1, 1]

follows from the convexity on [−1, 0] and [0, 1] and the monotonicity properties in in part
(i) of the lemma.

We now are ready to prove the large deviation principle for the position of the excited
random walk.

Proof of Theorem 1.1. Since the rate function IX is non-increasing on [−1, 0), IX(0) = 0,
and IX is non-decreasing on (0, 1], it is enough to prove the large deviation upper bound
for closed sets of the form F = [x, 1] with x > 0 or F = [−1, x] with x < 0. To this end,
let x > 0 and note that {Xn ≥ nx} ⊂ {Tdnxe ≤ n}. Then, Theorem 4.1 implies that

lim sup
n→∞

1

n
logP (Xn ≥ nx) ≤ lim sup

n→∞

1

n
logP (Tdnxe ≤ n) = −xIT (1/x), ∀x ∈ (0, 1].

EJP 17 (2012), paper 48.
Page 19/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1726
http://ejp.ejpecp.org/


Large deviations and slowdowns

Similarly, if x < 0 then {Xn ≤ nx} ⊂ {T−dn|x|e ≤ n} and Corollary 4.2 implies that

lim sup
n→∞

1

n
logP (Xn ≤ nx) ≤ lim sup

n→∞

1

n
logP (T−dn|x|e ≤ n) = −|x|IT (1/|x|), ∀x ∈ [−1, 0).

Recalling the definition of IX(x) in (5.1) and the monotonicity properties of IX in Lemma
5.1 finishes the proof of the large deviation upper bound.

To prove the large deviations lower bound it is enough to show that

lim
ε→0+

lim inf
n→∞

1

n
logP (|Xn − nx| < εn) ≥ −IX(x), ∀x ∈ [−1, 1], (5.2)

First consider the case where x ∈ (0, 1]. Then, since the random walk is a nearest
neighbor walk

P (|Xn − nx| < εn) ≥ P (|Tdnxe − n| < εn− 1).

Then, Theorem 4.1 implies that for any x ∈ (0, 1],

lim
ε→0+

lim inf
n→∞

1

n
logP (|Xn − nx| < εn) ≥ lim

ε→0+
lim inf
n→∞

1

n
logP (|Tdnxe − n| < εn− 1)

≥ −xIT (1/x) = −IX(x),

and a similar argument shows that (5.2) also holds for x ∈ [−1, 0). Finally, to show that
(5.2) holds when x = 0 note that the naive slowdown strategy in Example 1.3 implies
that P (|Xn| ≤ n1/3) ≥ Ce−cn1/3

and thus

lim
ε→0+

lim inf
n→∞

1

n
logP (|Xn| < εn) = 0 = −IX(0).

6 Slowdowns

If δ > 2, then Lemma 5.1 shows that the rate function IX is zero in the interval [0, v0].
Thus, probabilities such as P (Xn < nx) decay to zero sub-exponentially for x ∈ (0, v0).
Similarly, since IT is zero in [1/v0,∞) probabilities of the form P (Tn > nt) decay sub-
exponentially if t > 1/v0. The main goal of this section is to prove Theorem 1.4 which
gives the correct polynomial rate of decay for these probabilities.

In order to prove Theorem 1.4 we will need the following bound on backtracking
probabilities for transient excited random walks.

Lemma 6.1. Let δ > 1. Then there exists a constant C > 0 such that for any n, r ≥ 1,

P

(
inf

k≥Tn+r

Xk ≤ n
)
≤ Cr1−δ.

Remark 6.2. In [2], Basdevant and Singh showed that such backtracking probabilities
could be bounded uniformly in n by a term that vanishes as r → ∞. However, their ar-
gument uses an assumption of non-negativity of the cookie strengths, and their bounds
do not give any information on the rate of decay of the probabilities in r. Our argument
is more general (allowing positive and negative cookie drifts) and gives a quantitative
rate of decay in r.

Proof. First, note that

P

(
inf

k≥Tn+r

Xk ≤ n
)

= lim
m→∞

P

(
inf

Tn+r≤k<Tm
Xk ≤ n

)
(6.1)
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The event {infTn+r≤k<Tm Xk ≤ n} implies that for every site i ∈ [n+ 1, n+ r] the excited
random walk jumps from i to i− 1 at least one time before time Tm. Therefore,

P

(
inf

Tn+r≤k<Tm
Xk ≤ n

)
≤ P (Umi ≥ 1, ∀i ∈ [n+ 1, n+ r])

= P (Vi ≥ 1, ∀i ∈ [m− n− r,m− n− 1]). (6.2)

Now, the asymptotic age distribution for a discrete renewal process (see Section 6.2 of
[15]) implies that for any k ≥ 1

lim
m→∞

P (Vi 6= 0 for all m < i ≤ m+ k) =
E[(σ1 − k)+]

E[σ1]
.

Applying this to (6.1) and (6.2) we obtain

P

(
inf

k≥Tn+r

Xk ≤ n
)
≤ E[(σ1 − r)+]

E[σ1]
.

The tail decay of σ1 in (2.3) implies that when δ > 1 there exists a constant C > 0 such
that E[(σ1 − r)+] ≤ Cr1−δ for any r ≥ 1.

We will also need the following large deviation asymptotics for heavy tailed random
variables.

Lemma 6.3. Let {Zk}k≥1 be i.i.d. non-negative random variables with P (Z1 > t) ∼
Ct−κ for some κ > 1 and C > 0. Then,

lim
n→∞

logP (
∑n
k=1 Zk > xn)

log n
= 1− κ, ∀x > E[Z1].

Remark 6.4. Lemma 6.3 is not new, but we provide a quick proof here for the conve-
nience of the reader since we could not find a statement of this lemma in the literature.

Proof. The statement of the Lemma follows easily from [17, equation (0.3)] when κ > 2.
Indeed, if κ > 2 then in fact

P

(
n∑
k=1

Zk > xn

)
∼ nP (Z1 − E[Z1] > n(x− E[Z1]))

∼ C(x− E[Z1])−κn1−κ, as n→∞,

for any x > E[Z1].
When κ ∈ (1, 2] we can no longer use [17, equation (0.3)] and so a different approach

is needed. To this end, first note that since the Zk are non-negative a simple lower bound
is

P

(
n∑
k=1

Zk > xn

)
≥ P (∃k ≤ n : Zk > xn) = 1− (1− P (Z1 > xn))n.

Since 1− (1− p)n ≥ np+ (np)2/2 for any n ≥ 1 and p ∈ [0, 1] this implies that

P

(
n∑
k=1

Zk > xn

)
≥ nP (Z1 > xn) +

1

2
n2P (Z1 > xn)2 ∼ Cx−κn1−κ.

To obtain a corresponding upper bound when κ ∈ (1, 2], note that E[Zγ1 ] <∞ for any
γ ∈ (0, κ). Then, [4] implies that P (

∑n
k=1 Zk > xn) = o(n1−γ) for any γ ∈ (0, κ) and any

x > E[Z1], and this is enough to complete the proof of the lemma.
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We are now ready to give the proof of the main result of this section.

Proof of Theorem 1.4. We first prove the polynomial rate of decay for the hitting time
probabilities in (1.4). Since σk andWk are sums of k i.i.d. non-negative random variables
with tail decay given by (2.3), Lemma 6.3 implies that

lim
k→∞

1

log k
P (σk > ky) = 1− δ, if y > E[σ1], (6.3)

and

lim
k→∞

1

log k
P (Wk > ky) = 1− δ/2, if y > E[W1]. (6.4)

Recall the relationship between the hitting times Tn and the branching processes Vi
and V (n)

i given in (2.1). Also, note that the branching process V (n)
i starts with V (n)

0 = Vn
and has the same offspring distribution as the branching process Vi but without the
extra immigrant each generation. Thus, V (n)

i = 0 implies that V (n)
j for all j ≥ i and

the processes are naturally coupled so that V (n)
i ≤ Vn+i for all i ≥ 1. Therefore, Tn

is stochastically dominated by n + 2
∑σk(n)

i=1 Vi = n + 2Wk(n), where k(n) is defined by
σk(n)−1 < n ≤ σk(n). Thus, for any c > 0

P (Tn > nt) ≤ P (k(n) > cn) + P

(
Wbcnc >

n(t− 1)

2

)
≤ P (σbcnc < n) + P

(
Wbcnc >

n(t− 1)

2

)
. (6.5)

While (6.3) implies that the right tail large deviations of σk/k decay polynomially, the
left tail large deviations decay exponentially since σk is the sum of non-negative random
variables (use Cramer’s theorem). That is,

lim
k→∞

1

k
logP (σk < ky) < 0, if y < E[σ1].

Therefore, if we can choose c such that 1/c < E[σ1] and (t − 1)/(2c) > E[W1] the first
term in (6.5) will decay exponentially in n while the second term will decay polynomially
on the order n1−δ/2. The assumption that t > 1/v0 = 1 + 2E[W1]/E[σ1] implies that
(t− 1)/2 > E[W1]/E[σ1] and so such a c may be found.

For a matching lower bound on the polynomial rate of decay of P (Tn > nt), we again
use the relationship between the hitting times and the branching process in (2.1) to
obtain

P (Tn > nt) ≥ P
(

n∑
i=1

Vi >
n(t− 1)

2

)

≥ P
(
∃k ≤ n : Wk >

n(t− 1)

2
, σk ≤ n

)
≥ P

(
Wcn >

n(t− 1)

2

)
− P (σcn > n).

If c < (E[σ1])−1 then the assumption that t > 1/v0 implies that (t− 1)/(2c) > E[W1], and
so (6.4) and (6.3) imply that P (Tn > nt) ≥ n1−δ/2+o(1) − n1−δ+o(1) = n1−δ/2+o(1). This
completes the proof of (1.4).

We now turn to the subexponential rate of decay for P (Xn < xn). A lower bound
follows immediately from (1.4) since P (Xn < xn) ≥ P (Tdxne > n). To obtain a corre-
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sponding upper bound, note that

P (Xn < xn) ≤ P (Tdn(x+ε)e > n) + P

(
inf

k>Tdn(x+ε)e
Xk < xn

)
≤ P (Tdn(x+ε)e > n) + C(nε)1−δ, (6.6)

where the last inequality follows from Lemma 6.1. Now, if ε > 0 is sufficiently small
(so that x + ε < v0) then (1.4) implies that the probability in (6.6) is n1−δ/2+o(1). Since
n1−δ/2 is much larger than n1−δ this completes the proof of the upper bound needed for
(1.3).
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