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Abstract

We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given g,

we consider, for every n≥ 1, a random quadrangulation qn uniformly distributed over the set of

all rooted bipartite quadrangulations of genus g with n faces. We view it as a metric space by

endowing its set of vertices with the graph distance. We show that, as n tends to infinity, this

metric space, with distances rescaled by the factor n−1/4, converges in distribution, at least along

some subsequence, toward a limiting random metric space. This convergence holds in the sense

of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the

choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal

to 4.

Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadran-

gulations we consider and objects they call well-labeled g-trees. An important part of our study

consists in determining the scaling limits of the latter .
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1 Introduction

1.1 Motivation

The aim of the present work is to investigate scaling limits for random maps of arbitrary genus. Re-

call that a map is a cellular embedding of a finite graph (possibly with multiple edges and loops) into

a compact connected orientable surface without boundary, considered up to orientation-preserving

homeomorphisms. By cellular, we mean that the faces of the map—the connected components of

the complement of edges—are all homeomorphic to discs. The genus of the map is defined as the

genus of the surface into which it is embedded. For technical reasons, it will be convenient to deal

with rooted maps, meaning that one of the half-edges—or oriented edges—is distinguished.

We will particularly focus on bipartite quadrangulations: a map is a quadrangulation if all its faces

have degree 4; it is bipartite if each vertex can be colored in black or white, in such a way that no

edge links two vertices that have the same color. Although in genus g = 0, all quadrangulations are

bipartite, this is no longer true in positive genus g ≥ 1.

A natural way to generate a large random bipartite quadrangulation of genus g is to choose it uni-

formly at random from the set Qn of all rooted bipartite quadrangulations of genus g with n faces,

and then consider the limit as n goes to infinity. From this point of view, the planar case—that is

g = 0—has largely been studied for the last decade. Using bijective approaches developed by Cori

and Vauquelin [8] between planar quadrangulations and so-called well-labeled trees, Chassaing and

Schaeffer [7] exhibited a scaling limit for some functionals of a uniform random planar quadran-

gulation. They studied in particular the so-called profile of the map, which records the number of

vertices located at every possible distance from the root, as well as its radius, defined as the max-

imal distance from the root to a vertex. They showed that the distances in the map are of order

n1/4 and that these two objects, once the distances are rescaled by the factor n−1/4, admit a limit in

distribution.

Marckert and Mokkadem [21] addressed the problem of convergence of quadrangulations as a

whole, considering them as metric spaces endowed with their graph distance. They constructed

a limiting space and showed that the discrete spaces converged toward it in a certain sense. The

natural question of convergence in the sense of the Gromov-Hausdorff topology [14] remained,

however, open. It is believed that the scaling limit of a uniform random planar quadrangulation

exists in that sense. An important step toward this result has been made by Le Gall [17] who

showed the tightness of the laws of these metric spaces, and that every possible limiting space—

commonly called Brownian map, in reference to Marckert and Mokkadem’s terminology—is in fact

almost surely of Hausdorff dimension 4. He also proved, together with Paulin [19], that every

Brownian map is almost surely homeomorphic to the two-dimensional sphere. Miermont [22] later

gave a variant proof of this fact.

In positive genus, Chapuy, Marcus, and Schaeffer [6] extended the bijective approaches known for

the planar case, leading Chapuy [5] to establish the convergence of the rescaled profile of a uniform

random bipartite quadrangulation of fixed genus. A different approach consists in using Boltzmann

measures. The number of faces is then random: a quadrangulation is chosen with a probability

proportional to a certain fixed weight raised to the power of its number of faces. Conditionally

given the number of faces, a quadrangulation chosen according to this probability is then uniform.

Miermont [23] showed the relative compactness of a family of these measures, adapted in the right

scaling, as well as the uniqueness of typical geodesics in the limiting spaces.
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The present work generalizes a part of the above results to any positive genus: we will show the

tightness of the laws of rescaled uniform random bipartite quadrangulations of genus g with n faces

in the sense of the Gromov-Hausdorff topology. These results may be seen as a conditioned version

of some of Miermont’s results appearing in [23]. We will also prove that the Hausdorff dimension

of every possible limiting space is almost surely 4.

1.2 Main results

We will work in fixed genus g. On the whole, we will not let it figure in the notations, in order to

lighten them. As the case g = 0 has already been studied, we suppose g ≥ 1.

We use the classic formalism for maps, which we briefly remind here. For any map m, we denote by

V (m) and E(m) respectively its sets of vertices and edges. We also call ~E(m) its set of half-edges. By

convention, we will note e∗ ∈ ~E(m) the root of m. For any half-edge e, we write ē its reverse—so that

E(m) = {{e, ē} : e ∈ ~E}—as well as e− and e+ its origin and end. Finally, we say that Ě(m)⊂ ~E(m) is

an orientation of the half-edges if for every edge {e, ē} ∈ E(m) exactly one of e or ē belongs to Ě(m).

Recall that the Gromov-Hausdorff distance between two compact metric spaces (S ,δ) and (S ′,δ′)
is defined by

dGH
�
(S ,δ), (S ′,δ′)

�
:= inf

�
dHaus

�
ϕ(S ),ϕ′(S ′)

�	
,

where the infimum is taken over all embeddings ϕ : S →S ′′ and ϕ′ : S ′→S ′′ of S and S ′ into

the same metric space (S ′′,δ′′), and dHaus stands for the usual Hausdorff distance between compact

subsets of S ′′. This defines a metric on the set of isometry classes of compact metric spaces ([4,

Theorem 7.3.30]), making it a Polish space1.

Any map m possesses a natural graph metric dm: for any a, b ∈ V (m), the distance dm(a, b) is defined

as the number of edges of any shortest path linking a to b. Our main result is the following.

Theorem 1. Let qn be uniformly distributed over the set Qn of all bipartite quadrangulations of genus
g with n faces. Then, from any increasing sequence of integers, we may extract a subsequence (nk)k≥0

such that there exists a random metric space (q∞, d∞) satisfying

�
V (qnk

),
1

γn1/4
k

dqnk

�
(d)−−−→

k→∞
(q∞, d∞)

in the sense of the Gromov-Hausdorff topology, where

γ :=

�
8

9

� 1

4

.

Moreover, the Hausdorff dimension of the limit space (q∞, d∞) is almost surely equal to 4, regardless of
the choice of the sequence of integers.

The limiting spaces (q∞, d∞) appearing in Theorem 1 are expected to have similar properties as in

the case g = 0. For instance, they are expected to have the same topology as the torus with g holes,

and to possess the property of uniqueness of their geodesic paths. In an upcoming work, we will

show that the topology is indeed that of the g-torus.

1This is a simple consequence of Gromov’s compactness theorem [4, Theorem 7.4.15].
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We call g-tree a map of genus g with only one face. This generalizes the notion of tree: note that a

0-tree is merely a (plane) tree. In order to show Theorem 1, we will code quadrangulations by g-

trees via a bijection introduced by Chapuy, Marcus, and Schaeffer [6], which we expose in Section 2.

We then study the scaling limits of g-trees: we first decompose them in Section 3 and study their

convergence in Section 4 and 5. Finally, Section 6 is dedicated to the proof of Theorem 1.

Along the way, we will recover an asymptotic expression, already known from [6], for the cardinality

of the set Qn of all rooted bipartite quadrangulations of genus g with n faces. Following [6], we

call dominant scheme a g-tree whose vertices all have degree exactly 3. We write S∗ the (finite) set

of all dominant schemes of genus g. It is a well-known fact that there exists a constant tg (only

depending on g) such that |Qn| ∼ tg n
5

2
(g−1) 12n (see for example [1, 6, 23]). This constant plays

an important part in enumeration of many classes of maps [1, 13] .

Theorem 2 ([6]). The following expression holds

tg =
3g

211g−7 (6g − 3)Γ
�

5g−3

2

�
∑

s∈S∗

∑

λ∈O
s

4g−3∏

i=1

1

d(λ, i)
, (1)

where the second sum is taken over all (4g − 2)! orderings λ of the vertices of a dominant scheme
s ∈S∗, i.e. bijections from ¹0,4g − 3º onto V (s), and

d(λ, k) :=

���
¦
e ∈ ~E(s), λ−1

e−
< k ≤ λ−1

e+

©��� . (2)

As the proof of this expression is more technical, we postpone it to the last section. By convention,

we will suppose that all the random variables we consider are defined on a common probability

space (Ω,F ,P).

2 The Chapuy-Marcus-Schaeffer bijection

The first main tool we use consists in the Chapuy-Marcus-Schaeffer bijection [6, Corollary 2 to

Theorem 1], which allows us to code (rooted) quadrangulations by so-called well-labeled (rooted)

g-trees.

It may be convenient to represent a g-tree t with n edges by a 2n-gon whose edges are pairwise

identified (see Figure 1). We note e1 := e∗, e2, . . . , e2n the half-edges of t sorted according to the

clockwise order around this 2n-gon. The half-edges are said to be sorted according to the facial

order of t. Informally, for 2 ≤ i ≤ 2n, ei is the “first half-edge to the left after ei−1.” We call

facial sequence of t the sequence t(0), t(1), . . . , t(2n) defined by t(0) = t(2n) = e−1 = e+2n and for

1≤ i ≤ 2n− 1, t(i) = e+i = e−i+1
. Imagine a fly flying along the boundary of the unique face of t. Let

it start at time 0 by following the root e∗ and let it take one unit of time to follow each half-edge,

then t(i) is the vertex where the fly is at time i.

Let t be a g-tree. The two vertices u, v ∈ V (t) are said to be neighbors, and we write u ∼ v, if there

is an edge linking them.

Definition 1. A well-labeled g-tree is a pair (t, l) where t is a g-tree and l : V (t)→ Z is a function
(thereafter called labeling function) satisfying:
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e10

e1e2

e3

e4

e5

e6

e7
e8

e9

t(0), t(2)

t(1)

t(3)

t(4), t(7), t(9)

t(5)
t(6)

t(8)

Figure 1: On the left, the facial order and facial sequence of a g-tree. On the right, its representation as a polygon
whose edges are pairwise identified.

i. l(e−∗ ) = 0, where e∗ is the root of t,

ii. if u∼ v, then |l(u)− l(v)| ≤ 1.

We call Tn the set of all well-labeled g-trees with n edges.

A pointed quadrangulation is a pair (q, v•) consisting in a quadrangulation q together with a dis-

tinguished vertex v• ∈ V (q). We call

Q•n :=
�
(q, v•) : q ∈ Qn, v• ∈ V (q)

	

the set of all pointed bipartite quadrangulations of genus g with n faces.

The Chapuy-Marcus-Schaeffer bijection is a bijection between the sets Tn × {−1,+1} and Q•n. As a

result, because every quadrangulation q ∈ Qn has exactly n+2−2g vertices, we obtain the relation

(n+ 2− 2g) |Qn| = 2 |Tn|. (3)

Let us now briefly describe the mapping from Tn×{−1,+1} ontoQ•n. We refer the reader to [6] for

a more precise description. Let (t, l) ∈ Tn be a well-labeled g-tree with n edges and ǫ ∈ {−1,+1}.
As above, we write t(0), t(1), . . . , t(2n) its facial sequence. The pointed quadrangulation (q, v•)
corresponding to ((t, l),ǫ) is then constructed as follows. First, shift all the labels in such a way that

the minimal label is 1. Let us call l̃ := l −min l + 1 this shifted labeling function. Then, add an

extra vertex v• carrying the label l̃(v•) := 0 inside the only face of t. Finally, following the facial

sequence, for every 0 ≤ i ≤ 2n − 1, draw an arc—without crossing any edge of t or arc already

drawn—between t(i) and its successor, defined as follows:

⋄ if l̃(t(i)) = 1, then its successor is the extra vertex v•,

⋄ if l̃(t(i)) ≥ 2, then its successor is the first following vertex whose shifted label is l̃(t(i))− 1,

that is t( j), where

j =

¨
inf{k ≥ i : l̃(t(k)) = l̃(t(i))− 1} if {k ≥ i : l̃(t(k)) = l̃(t(i))− 1} 6= ∅,

inf{k ≥ 1 : l̃(t(k)) = l̃(t(i))− 1} otherwise.
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(t, l) (t, l̃)

q

-1

-1

0

0

0

0

0

0

0

1

1

1

1 1

1

1

1

2

2

2
2

2

2

2

2
2

2

2

2
2

3

3

3

3

3

3
4

4

4

1

3

3

3

Figure 2: The Chapuy-Marcus-Schaeffer bijection. In this example, ǫ = 1. On the bottom-left picture, the vertex
v• has a thicker (red) borderline.

The quadrangulation q is then defined as the map whose set of vertices is V (t)∪ {v•}, whose edges

are the arcs we drew and whose root is the first arc drawn, oriented from t(0) if ǫ = −1 or toward
t(0) if ǫ = +1 (see Figure 2).

Because of the way we drew the arcs of q, we see that for any vertex v ∈ V (q), l̃(v) = dq(v•, v).
When seen as a vertex in V (q), we write q(i) instead of t(i). In particular,

{q(i), 0 ≤ i ≤ 2n}= V (q)\{v•}.

We end this section by giving an upper bound for the distance between two vertices q(i) and q( j),
in terms of the labeling function l:

dq(q(i),q( j))≤ l(t(i)) + l(t( j))− 2 max

 
min

k∈
−−−→
¹i, jº

l(t(k)), min
k∈
−−−→
¹ j,iº

l(t(k))

!
+ 2 (4)

where we note, for i ≤ j, ¹i, jº := [i, j]∩Z = {i, i + 1, . . . , j}, and

−−−→
¹i, jº :=

¨
¹i, jº if i ≤ j,

¹i, 2nº∪¹0, jº if j < i.

We refer the reader to [23, Lemma 4] for a detailed proof of this bound. The idea is the following:

we consider the paths starting from t(i) and t( j) and made of the successive arcs going from vertices
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to their successors without crossing the g-tree. They are bound to meet at a vertex with label m−1,

where

m := min
k∈
−−−→
¹i, jº

l(t(k)).

On Figure 3, we see that the (red) plain path has length l(t(i))−m+1 and that the (purple) dashed

one has length l(t( j))−m+ 1.

l(t(i))
l(t( j))l(t(i))− 1

l(t( j))− 1 m

m m− 1

Figure 3: Visual proof for (4). Both paths are made of arcs constructed as explained above.

3 Decomposition of a g-tree

We investigate here more closely the structure of a g-tree t. We call scheme a g-tree with no vertices

of degree 1 or 2. Roughly speaking, a g-tree is a scheme in which every half-edge is replaced by a

forest.

3.1 Forests

3.1.1 Formal definitions

We adapt the standard formalism for plane trees—as found in [24] for instance—to forests. Let

U :=

∞⋃

n=1

N
n

where N := {1,2, . . . }. If u ∈ Nn, we write |u| := n. For u= (u1, . . . ,un), v = (v1, . . . , vp) ∈ U , we let

uv := (u1, . . . ,un, v1, . . . , vp) be the concatenation of u and v. If w = uv for some u, v ∈ U , we say

that u is a ancestor of w and that w is a descendant of u. In the case where v ∈ N, we may also use

the terms parent and child instead.

Definition 2. A forest is a finite subset f⊂U satisfying:

i. there is an integer t(f) ≥ 1 such that f∩N = ¹1, t(f) + 1º,

ii. if u ∈ f, |u| ≥ 2, then its parent belongs to f,

iii. for every u ∈ f, there is an integer cu(f)≥ 0 such that ui ∈ f if and only if 1≤ i ≤ cu(f),

iv. ct(f)+1(f) = 0.

The integer t(f) encountered in i. and iv. is called the number of trees of f.
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We will see in a moment why we require t(f) + 1 to lie in f. For u = (u1, . . . ,up) ∈ f, we call

a(u) := u1 its oldest ancestor. A tree of f is a level set for a: for 1 ≤ j ≤ t(f), the j-th tree of f

is the set {u ∈ f : a(u) = j}. The integer a(u) hence records which tree u belongs to. We call

f∩N = {a(u), u ∈ f} the floor of the forest f.

For u, v ∈ f, we write u∼ v if either

⋄ u is a parent or child of v, or

⋄ u, v ∈ N and |u− v| = 1.

It is convenient, when representing a forest, to draw edges between parents and their children, as

well as between i and i + 1, for i = 1,2, . . . , t(f), that is between u’s and v ’s such that u ∼ v (see

Figure 4). We say that an edge drawn between a parent and its child is a tree edge whereas an edge

drawn between an i and an i + 1 will be called a floor edge.

We call Fm
σ the set of all forests with σ trees and m tree edges, that is

Fm
σ

:= {f : t(f) = σ, |f|= m+σ+ 1} .

Definition 3. A well-labeled forest is a pair (f, l) where f is a forest and l : f → Z is a function
satisfying:

i. for all u ∈ f∩N, l(u) = 0,

ii. if u∼ v, |l(u)− l(v)| ≤ 1.

Let

Fm
σ

:=
¦
(f, l) : f ∈ Fm

σ

©

be the set of well-labeled forests with σ trees and m tree edges.

11 1

1 22

0

0000 0 0 00

00

0 0

-1 -1 -1-1

-1 -1

-1

-2 -2

Figure 4: An example of well-labeled forest from F20
7

.

Remark. For every forest inFm
σ , there are exactly 3m admissible ways to label it: for all tree edges,

one may choose any increment in {−1,0,1}. As a result, |Fm
σ | = 3m|Fm

σ |.
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3.1.2 Encoding by contour and spatial contour functions

There is a very convenient way to code forests and well-labeled forests. Let f ∈ Fm
σ be a forest. Let

us begin by defining its facial sequence f(0), f(1), . . . , f(2m+σ) as follows (see Figure 5): f(0) := 1,

and for 0≤ i ≤ 2m+σ− 1,

⋄ if f(i) has children that do not appear in the sequence f(0), f(1), . . . , f(i), then f(i + 1) is the

first of these children, that is f(i+ 1) := f(i) j0 where

j0 =min
�

j ≥ 1 : f(i) j /∈ {f(0), f(1), . . . , f(i)}
	

,

⋄ otherwise, if f(i) has a parent (that is |f(i)| ≥ 2), then f(i+ 1) is this parent,

⋄ if neither of these cases occur, which implies that |f(i)|= 1, then f(i+ 1) := f(i) + 1.

11 1

1 22

0

0000 0 0 00

00

0 0

-1 -1 -1-1

-1 -1

-1

-2 -2

f(0), f(8)

f(1), f(5), f(7)

f(2), f(4)

f(3)
f(6)

f(9)

f(10)

Figure 5: The facial sequence associated with the well-labeled forest from Figure 4.

It is easy to see that each tree edge is visited exactly twice—once going from the parent to the child,

once going the other way around—whereas each floor edge is visited only once—from some i to

i + 1. As a result, f(2m+σ) = t(f) + 1.

The contour function of f is the function Cf : [0,2m+σ]→ R+ defined, for 0≤ i ≤ 2m+σ, by

Cf(i) := |f(i)|+ t(f)− a (f(i))

and linearly interpolated between integer values (see Figure 6).

We can easily check that the function Cf entirely determines the forest f. We see that Cf ranges in

the set of paths of a simple random walk starting from t(f) and conditioned to hit 0 for the first time

at 2m+σ. This allows us to compute the cardinality of Fm
σ :

Lemma 3. Let σ ≥ 1 and m ≥ 0 be two integers. The number of forests with σ trees and m tree edges
is:

��Fm
σ

��=
σ

2m+σ
22m+σ

P(S2m+σ = σ) =
σ

2m+σ

�
2m+σ

m

�
,

where (Si)i≥0 is a simple random walk on Z.
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Proof. Shifting the contour functions, we see that
��Fm
σ

�� is the number of different paths of a simple

random walk starting from 0 and conditioned to hit −σ for the first time at 2m+σ. We have
��Fm
σ

�� = 22m+σ
P
�
S2m+σ = −σ ; ∀i ∈ ¹0,2m+σ− 1º, Si > −σ

�

=
σ

2m+σ
22m+σ

P(S2m+σ = σ),

where the second equality is an application of the so-called cycle lemma (see for example [2, Lemma

2]). The second equality of the lemma is obtained by seeing that S2m+σ = σ if and only if the walk

goes exactly m+σ times up and m times down. �

Now, if we have a well-labeled forest (f, l), the contour function Cf enables us to recover f. To record

the labels, we use the spatial contour function Lf,l : [0,2m+σ]→ R defined, for 0≤ i ≤ 2m+σ,

by

Lf,l(i) := l(f(i))

and linearly interpolated between integer values (see Figure 6). The contour pair (Cf, Lf,l) then

entirely determines (f, l).

Cf

Lf,l

Figure 6: The contour pair of the well-labeled forest appearing in Figures 4 and 5. The paths are dashed on the
intervals corresponding to floor edges.

3.2 Scheme

3.2.1 Extraction of the scheme out of a g-tree

Definition 4. We call scheme of genus g a g-tree with no vertices of degree one or two. A scheme is
said to be dominant when it only has vertices of degree exactly three.

Remark. The Euler characteristic formula easily shows that the number of schemes of genus g is

finite. We call S the set of all schemes of genus g and S∗ the set of all dominant schemes of genus g.

It was explained in [6] how to extract the scheme out of a g-tree t. Let us recall now this operation.

By iteratively deleting all its vertices of degree 1, we are left with a—non-necessarily rooted—g-tree.

1603



If the root has been removed, we root this new g-tree on the first remaining half-edge following the

actual root in the facial order of t.

The vertices of degree 2 in the new g-tree are organized into maximal chains connected together at

vertices of degree at least 3. We replace each of these maximal chains by a single new edge. The edge

replacing the chain containing the root is chosen to be the final root (with the same orientation).

By construction, the map s we obtain is a scheme of genus g, which we call the scheme of the g-

tree t. The vertices of t that remain vertices in the scheme s are called the nodes of t. See Figure 7.

t

s

Figure 7: Extraction of the scheme s out of the g-tree t.

3.2.2 Decomposition of a g-tree

When iteratively removing vertices of degree 1, we actually remove whole trees. Let c1, c2, . . . , ck

be one of the maximal chains of half-edges linking two nodes. The trees that we remove, appearing

on the left side of this chain, connected to one of the c−i ’s, form a forest—with k trees—as defined

in Section 3.1. Beware that the tree connected to c+k is not a part of this forest; it will be the first

tree of some other forest. Remember that the forests we consider always end by a single vertex not

considered to be a tree. This chain being later replaced by a single half-edge of the scheme, we see

that a g-tree t can be decomposed into its scheme s and a collection of forests (fe)e∈~E(s). Recall that

~E(s) is the set of all half-edges of s.

For e ∈ ~E(s), let us define the integers me ≥ 0 and σe ≥ 1 by

fe ∈ Fme

σe , (5)

so that me records the “size” of the forest attached on the half-edge e and σe its “length.”
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In order to recover t from s and these forests, we need to record the position its root. It may be seen

as a half-edge of the forest fe∗ corresponding to the root e∗ of s. We code it by the integer

u ∈ ¹0, 2me∗ +σe∗¹ (6)

for which this half-edge links fe∗(u) to fe∗(u+ 1).

For every half-edge e ∈ ~E(s), if we call ē its reverse, we readily obtain the relation:

σē = σe. (7)

This decomposition may be inverted. Let us suppose that we have a scheme s and a collection of

forests (fe)e∈~E(s). Let us define the integers me’s and σe’s by (5) and suppose they satisfy (7). Let

again 0≤ u < 2me∗+σe∗ be an integer. Then we may construct a g-tree as follows. First, we replace

every edge {e, ē} by a chain of σe = σē edges. Then, for every half-edge e ∈ ~E(s), we replace the

chain of half-edges corresponding to it by the forest fe, in such a way that its floor2 matches with the

chain. Finally, we find the root inside fe∗ thanks to the integer u.

This discussion is summed up by the following proposition. The factor 1/2 in the last statement

comes from the fact that the floor of fe and that of fē are overlapping in the g-tree, thus their edges

should be counted only once.

Proposition 4. The above construction provides us with a bijection between the set of all g-trees and
the set of all triples

�
s, (fe)e∈~E(s),u

�
where s ∈ S is a scheme (of genus g), the forests fe ∈ Fme

σe satisfy
(7) and u satisfies (6).

Moreover, g-trees with n edges correspond to triples satisfying
∑

e∈~E(s)
�

me + 1

2
σe
�
= n.

3.2.3 Decomposition of a well-labeled g-tree

We now deal with a well-labeled g-tree. We will need the following definitions:

Definition 5. We call Motzkin path a sequence of the form (Mn)0≤n≤σ for some σ ≥ 0 such that
M0 = 0 and for 0 ≤ i ≤ σ − 1, Mi+1 − Mi ∈ {−1,0,1}. We write σ(M) := σ its lifetime, and
M̂ := Mσ(M) its final value.

A Motzkin bridge of lifetime σ from l1 ∈ Z to l2 ∈ Z is an element of the set

M l1→l2
[0,σ]

:=
�

l1 +M : M Motzkin path such that σ(M) = σ, M̂ = l2 − l1
	

.

We say that (Mn)n≥0 is a simple Motzkin walk if it is defined as the sum of i.i.d. random variables

with law 1

3
(δ−1 + δ0 + δ1).

2The floor of a forest f is naturally oriented from 1 to t(f)+ 1. The forest fe is then grafted “to the left side” of e.
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Remark. We then have ��M l1→l2
[0,σ]

��= 3σ P(Mσ = l2 − l1)

where (Mi)i≥0 is a simple Motzkin walk.

When decomposing a well-labeled g-tree (t, l) into a triple (s, (fe),u) according to Proposition 4,

every forest fe naturally inherits a labeling function noted l̃e from l. In general, the forest (fe, l̃e) is

not well-labeled, because the labels of its floor have no reason to be equal to 0. We will transform

it into a Motzkin bridge Me starting from 0 and a well-labeled forest (fe, le). The Motzkin bridge

records the floor labels shifted in order to start from 0: for 0 ≤ i ≤ t(fe), Me(i) := l̃e(i + 1)− l̃e(1),

where, on the right-hand side, we used the notation {1,2, . . . , t(fe) + 1} for the floor of fe. The

well-labeled forest is obtained by shifting all the labels tree by tree in such a way that the root label

of any tree is 0: for all w ∈ fe, le(w) := l̃e(w)− l̃e(a(w)).

We thus decompose the well-labeled g-tree (t, l) into its scheme s, a collection (Me)e∈~E(s) of Motzkin

bridges started at 0, a collection (fe, le)e∈~E(s) of well-labeled forests and an integer u, as shown on

Figure 8.
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Figure 8: Decomposition of a well-labeled g-tree t into its scheme s, the collection of Motzkin bridges (Me)
e∈~E(s),

and the collection of well-labeled forests (fe, le)
e∈~E(s). In this example, the integer u = 50. The two nodes of t are

more thickly outlined.

For e ∈ ~E(s), we define the integer le ∈ Z to be such that

Me ∈M 0→le

[0,σe]
. (8)

It records the spatial displacement made along the half-edge e. Because the floor of fe overlaps the

floor of fē in the g-tree, Me and Mē read the same labels in opposite direction:

Mē(i) =Me(σe− i)− le. (9)

In particular, l ē = −le. But this is not the only constraints on the family (le)e∈~E(s). These will be

easier to understand while looking at vertices instead of edges. For every vertex v ∈ V (s), we let l v

be the label of the corresponding node shifted in such a way that le
−
∗ = 0. We have the following

relation between (le)e∈~E(s) and (l v)v∈V (s): for all e ∈ ~E(s),

le = le
+ − le

−
, (10)
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so that the family (l v)v∈V (s) entirely determines (le)e∈~E(s). Because of the choice we made, le
−
∗ = 0,

it is easy to see that (le)e∈~E(s) determines (l v)v∈V (s) as well.

It now becomes clear that the only constraint on (le)e∈~E(s) is to be obtained from a family (l v)v∈V (s)

by the relations (10).

Let s be a scheme, (Me)e∈~E(s) be a family of Motzkin bridges started from 0, (fe, le)e∈~E(s) be a family

of well-labeled forests, and u be an integer. Let the integers me’s, σe’s and le’s be defined by (5) and

(8). We will say that the quadruple
�
s, (Me)e∈~E(s), (f

e, le)e∈~E(s),u
�

is compatible if the integers σe’s

satisfy the constraints (7), the Motzkin bridges Me’s satisfy (9), the integers le’s can be obtained

from a family (l v)v∈V (s) by the relations (10), and u satisfies (6).

Let suppose now that we have a compatible quadruple
�
s, (Me)e∈~E(s), (f

e, le)e∈~E(s),u
�
. We may re-

construct a well-labeled g-tree as follows. We begin by suitably relabeling the forests. For every

half-edge e, first, we shift the labels of Me by le
−

so that it becomes a bridge from le
−

to le
+

. Then,

we shift all the labels of (fe, le) tree by tree according to the Motzkin bridge: precisely, we change le

into w ∈ fe 7→ le
−
+Me(a(w)− 1) + le(w). Then, we replace the half-edge e by this forest, as in the

previous section. As before, we find the root thanks to u. Finally, we shift all the labels for the root

label to be equal to 0. This discussion is summed up by the following proposition.

Proposition 5. The above construction provides us with a bijection between the set of all well-labeled
g-trees and the set of all compatible quadruples

�
s, (Me)e∈~E(s), (f

e, le)e∈~E(s),u
�
.

Moreover, g-trees with n edges correspond to quadruples satisfying
∑

e∈~E(s)
�

me+ 1

2
σe
�
= n.

If we call (C e, Le) the contour pair of (fe, le), then we may retrieve the oldest ancestor of fe(i) thanks

to C e by the relation

a
�
fe(i)

�
− 1= σe − C e(i),

where we use the notation

X s := inf
[0,s]

X

for any process (X s)s≥0. The function

Le :=
�

Le(t) +Me
�
σe− C e(t)

��
0≤t≤2me+σe

(11)

then records the labels of the forest fe, once shifted tree by tree according to the Motzkin bridge Me.

This function will play an important part in Section 6.

Through the Chapuy-Marcus-Schaeffer bijection, a uniform random quadrangulation corresponds to

a uniform random well-labeled g-tree. In order to investigate the scaling limit of the latter, we will

proceed in two steps. First, we consider the scaling limit of its structure, consisting in its scheme

along with the integers me’s, σe’s, l v ’s and u previously defined. Then, we deal with its Motzkin

bridges and forests conditionally given its structure.
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4 Convergence of the structure of a uniform well-labeled g-tree

4.1 Preliminaries

We investigate here the convergence of the integers previously defined, suitably rescaled, in the case

of a uniform random well-labeled g-tree with n vertices. Let (tn, ln) be uniformly distributed over

the set Tn of well-labeled g-trees with n vertices. We call its scheme sn and we define

(Me
n)e∈~E(sn)

, (fen, len)e∈~E(sn)
, (me

n)e∈~E(sn)
, (σe

n)e∈~E(sn)
, (len)e∈~E(sn)

, (l v
n)v∈V(sn)

, and un

as in the previous section. We know that the right scalings are 2n for sizes,
p

2n for distances in the

g-tree, and γn
1

4 for spatial displacements3, so we set:

me
(n) :=

2me
n +σ

e
n

2n
, σe

(n) :=
σe

np
2n

, le
(n) :=

len

γn
1

4

, l v
(n) :=

l v
n

γn
1

4

and u(n) :=
un

2n
.

Remark. Throughout this paper, the notations with a parenthesized n will always refer to suitably

rescaled objects—as in the definitions above.

As sensed in the previous section, it will be more convenient to work with l v ’s instead of le’s. We use

the notation Z+ := {0,1, . . . } for the set of non-negative integers. For any scheme s ∈ S, we define

the set Cn(s) of quadruples (m,σ, l,u) lying in Z
~E(s)
+ ×N

~E(s) ×ZV(s) ×Z+ such that:

⋄ ∀e ∈ ~E(s), σē = σe,

⋄ le
−
∗ = 0,

⋄ 0≤ u ≤ 2me∗ +σe∗ − 1,

⋄
∑

e∈~E(s)
�

me+ 1

2
σe
�
= n.

This is the set of integers satisfying the constraints discussed in the previous section for a well-

labeled g-tree with n edges. For (m,σ, l,u) ∈ Cn(s), we will compute the probability that sn = s and

(mn,σn, ln,un) = (m,σ, l,u). A g-tree has such features if and only if its scheme is s and, for every

e ∈ ~E(s), the path Me is a Motzkin bridge from 0 to le = le
+− le

−
on [0,σe], and the well-labeled

forest (fe, le) lies in Fme

σe .

Moreover, because of the relation (9), the Motzkin bridges (Me)e∈~E(s) are entirely determined by

(Me)e∈Ě(s), where Ě(s) is any orientation of ~E(s). Using Lemma 3, we obtain

P
�
sn = s, (mn,σn, ln,un) = (m,σ, l,u)

�

=
1��Tn

��
∏

e∈Ě(s)

��M 0→le

[0,σe]

����Fme

σe

����Fmē

σē

��

=
12n

��Tn

��
∏

e∈~E(s)

σe

2me+σe
P(S2me+σe = σe)

∏

e∈Ě(s)

P(Mσe = le) (12)

3Recall that γ :=
�

8

9

� 1
4
.
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where (Si)i≥0 is a simple random walk on Z and (Mi)i≥0 is a simple Motzkin walk.

We will need the following local limit theorem (see [25, Theorems VII.1.6 and VII.3.16]) to estimate

the probabilities above. We call p the density of a standard Gaussian random variable: p(x) =
1p
2π

e−
x2

2 .

Proposition 6. Let (X i)i≥0 be a sequence of i.i.d. integer-valued centered random variables with a
moment of order r0 for some r0 ≥ 3. Let η2 := Var(X1), h be the maximal span4 of X1 and the integer
a be such that a.s. X1 ∈ a+ hZ. We define Σk :=

∑k
i=0 X i, and we write QΣk (i) := P(Σk = i).

1. We have

sup
i∈ka+hZ

�����
η

h

p
k QΣk (i)− p

�
i

η
p

k

������= o
�

k−1/2
�

.

2. For all 2≤ r ≤ r0, there exists a constant C such that for all i ∈ Z and k ≥ 1,

���
η

h

p
k QΣk (i)

��� ≤
C

1+

��� i
η
p

k

���
r .

Proof. The first part of this theorem is merely [25, Theorem VII.1.6] applied to the variables
1

h
(Xk− a), which have 1 as maximal span. The second part is an easy consequence of [25, Theorem

VII.3.16]. �

In what follows, we will always use the notation S for simple random walks, M for simple Motzkin

walks, and Σ for any other random walks. We will use this theorem with S and M : we find (η,h) =

(1,2) for S and (η,h) = (
p

2/3,1) for M . In both cases, we may take r as large as we want.

4.2 Result

Recall that S∗ is the set of all dominant schemes of genus g, that is schemes with only vertices of

degree 3. We call pa the density of a centered Gaussian variable with variance a, as well as p′a its

derivative:

pa(x) :=
1
p

a
p

�
x
p

a

�
and p′a(x) = −

x

a3/2
p

�
x
p

a

�
.

For any s ∈ S, we identify an element (m,σ, l,u) ∈ R~E(s)\{e∗}+ × (R∗+)Ě(s) ×RV (s)\{e−∗ } × R+ with an

element of R
~E(s)
+ × (R∗+)

~E(s) ×RV(s) ×R+ by setting:

⋄ me∗ := 1−
∑

e∈~E(s)\{e∗}m
e, (13.1)

⋄ for every e ∈ Ě(s), σē := σe, (13.2)

⋄ le
−
∗ := 0. (13.3)

4We call maximal span of an integer-valued random variable X the greatest h ∈ N for which there exists an integer a
such that a.s. X ∈ a+ hZ.
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We write

∆s :=
n
(xe)e∈~E(s) ∈ [0,1]

~E(s),
∑

e∈~E(s) xe = 1
o

the simplex of dimension |~E(s)|−1. Note that the vector m lies in the simplex ∆s as long as me∗ ≥ 0.

We define the probability µ by, for all non-negative measurable function ϕ on
⋃

s∈S{s} × ∆s ×
(R∗+)

~E(s) ×RV(s) × [0,1],

µ(ϕ) =
1

Υ

∑

s∈S∗

∫

S s

dL s 1{me∗≥0, u<me∗} ϕ (s, m,σ, l,u)
∏

e∈~E(s)
−p′me (σ

e)
∏

e∈Ě(s)

pσe (le) ,

where dL s = d(me) d(σe) d(l v) du is the Lebesgue measure on the set

S s := [0,1]
~E(s)\{e∗}× (R∗+)

Ě(s) ×RV (s)\{e−∗ }× [0,1]

and

Υ =
∑

s∈S∗

∫

S s

dL s 1{me∗≥0, u<me∗}
∏

e∈~E(s)
−p′me (σ

e)
∏

e∈Ě(s)

pσe (le) (14)

is a normalization constant. We may now state the main result of this section.

Proposition 7. The law of the random variable
�
sn,
�
me
(n)

�
e∈~E(sn)

,
�
σe
(n)

�
e∈~E(sn)

,
�
l v
(n)

�
v∈V (sn)

,u(n)
�

converges weakly toward the probability µ.

Proof. Let ϕ be a bounded continuous function on the set

⋃

s∈S
{s} ×∆s× (R∗+)

~E(s) ×RV(s) × [0,1].

We need to look at the convergence of

En := E
h
ϕ
�
sn,
�
me
(n)

�
e∈~E(sn)

,
�
σe
(n)

�
e∈~E(sn)

,
�
l v
(n)

�
v∈V (sn)

,u(n)
�i

.

1) Let n ∈ N. For the time being, we identify (m,σ, l,u) ∈ Z~E(s)\{e∗}+ ×NĚ(s)×ZV(s)\{e−∗ }×Z+ with an

element of Z
~E(s)
+ ×N

~E(s) ×ZV (s) ×Z+ by (13.2), (13.3), and

⋄ me∗(n) := n−
∑

e∈~E(s)\{e∗}m
e −
∑

e∈Ě(s)σ
e, (13.1’)

instead of (13.1), which may be seen as its discrete counterpart. This is an element of Cn(s) provided

that me∗(n) ≥ 0 and 0 ≤ u < 2me∗(n) + σe∗ . Beware that here the definition of me∗(n) actually

depends on n. It also depends on σ but we chose not to let it figure in the notation for space

reasons.

For any vector x = (x1, x2, . . . , xk) ∈ Rk, we note ⌊x⌋ the vector
��

x1

�
,
�

x2

�
, . . . ,

�
xk
��
∈ Zk. Note

that for m ∈ R~E(s)\{e∗}+ , ⌊m⌋e∗(n) is well defined through (13.1’). Until further notice, we will write
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⌊m⌋e∗ for ⌊m⌋e∗(n), which n being implicit. So when we write ⌊m⌋, we mean the vector such that

⌊m⌋e = ⌊me⌋ for e 6= e∗ and ⌊m⌋e∗ = ⌊m⌋e∗(n). Using (12), we find

En =
12n

��Tn

��
∑

s∈S

∑

(m,σ,l ,u)∈Cn(s)

ϕ

 
s,

2m+σ

2n
,
σ
p

2n
,

l

γn
1

4

,
u

2n

! ∏

e∈~E(s)
h1(m

e,σe)
∏

e∈Ě(s)

h2(σ
e, le),

where

h1(m
e,σe) :=

σe

2me+σe
QS

2me+σe(σ
e)1{σe≥1} and h2(σ

e, le) := QM
σe(le)1{σe≥1}.

Writing the sum over Cn(s) in the form of an integral, we obtain

En =
12n

��Tn

��
∑

s∈S

∫

S̃ s

dL̃ s 1E sn (m,σ,u) ϕ⌊·⌋
∏

e∈~E(s)
h1(⌊m⌋e, ⌊σ⌋e)

∏

e∈Ě(s)

h2

�
⌊σ⌋e , ⌊l⌋e+− ⌊l⌋e−

�
,

where ϕ⌊·⌋ stands for

ϕ

�
s,

2 ⌊m⌋+ ⌊σ⌋
2n

,
⌊σ⌋
p

2n
,
⌊l⌋
γn

1

4

,
⌊u⌋
2n

�
,

dL̃ s is the Lebesgue measure on the set S̃ s := R
~E(s)\{e∗}
+ × (R∗+)Ě(s) ×RV (s)\{e−∗ }×R+ and

E sn :=
n
(m,σ,u) ∈ R~E(s)\{e∗}+ × (R∗+)

Ě(s) ×R+ : ⌊m⌋e∗(n)≥ 0, u < 2 ⌊m⌋e∗(n)+ ⌊σ⌋e∗
o

.

Finally, the changes of variables m 7→ nm, σ 7→
p

2nσ, l 7→ γn
1

4 l, and u 7→ 2nu yields

En =
12n

��Tn

��
∑

s∈S
n
|E(s)|−g

2 2
|E(s)|−3g+2

2 3g

∫

S s

dL s As
n

∏

e∈~E(s)
Bs,e

n

∏

e∈Ě(s)

Cs,e
n (15)

where

As
n = 1E sn (nm,

p
2nσ, 2n u) ϕ

�
s,

2 ⌊nm⌋+ ⌊
p

2nσ⌋
2n

,
⌊
p

2nσ⌋
p

2n
,
⌊γn

1

4 l⌋
γn

1

4

,
⌊2nu⌋

2n

�
,

Bs,e
n = n h1

�
⌊nm⌋e, ⌊

p
2nσ⌋e

�
,

Cs,e
n = γn

1

4 h2

�
⌊
p

2nσ⌋e, ⌊γn
1

4 l⌋e+−⌊γn
1

4 l⌋
e−�

.

2) We are now going to see that every integral term of the sum appearing in the equation (15)

converges, by dominated convergence. We no longer use (13.1’) but (13.1) in the identification

(13). Because

2 ⌊nm⌋e∗(n) + ⌊
p

2nσe⌋
2n

= 1−
∑

e∈~E(s)\{e∗}

2⌊nme⌋+ ⌊
p

2nσe⌋
2n

−−−→
n→∞

1−
∑

e∈~E(s)\{e∗}
me = me∗ ,

we see that As
n→ 1{me∗≥0, u<me∗} ϕ (s, m,σ, l,u). Thanks to Proposition 6, we then obtain

Bs,e
n →−p′me(σ

e) and Cs,e
n → pσe(le).
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It remains to prove that the convergence is dominated. To that end, we use the second part of

Proposition 6. In the remainder of the proof, C will denote a constant in (0,∞), the value of which

may differ from line to line. First, notice that

As
n ≤ ‖ϕ‖∞.

Then, applying Proposition 6 with r = 3, we obtain, for n≥ 2,

Bs,e
n =

2n ⌊
p

2nσ⌋e
�
2⌊nm⌋e+ ⌊

p
2nσ⌋e

� 3

2

1

2

�
2⌊nm⌋e + ⌊

p
2nσ⌋e

� 1

2 QS
2⌊nm⌋e+⌊

p
2nσ⌋e

�
⌊
p

2nσ⌋e
� 1{p2nσe≥1}

≤ C

�
⌊
p

2nσ⌋e
p

2n

�−2

�
(⌊
p

2nσ⌋e)
2

2⌊nm⌋e+⌊
p

2nσ⌋e

�3/2

1+

�
(⌊
p

2nσ⌋e)
2

2⌊nm⌋e+⌊
p

2nσ⌋e

�3/2
1{p2nσe≥1}

≤ C (me)−1 ∧ (σe)−2 ,

where we used the fact that for x ≥ 1, ⌊x⌋−1 ≤ 2/x . The case ⌊nm⌋ = 0 is to be treated separately,

and is left to the reader. Applying now Proposition 6 with r = 2, we find that, for n≥ 2,

Cs,e
n =

(2n)
1

4

�
⌊
p

2nσ⌋e
� 1

2

r
2

3

�
⌊
p

2nσ⌋e
� 1

2 QM
⌊
p

2nσ⌋e
�
⌊γn

1

4 l⌋
e+

− ⌊γn
1

4 l⌋
e−� 1{p2nσe≥1}

≤
C
p
σe


1+

3

2

�
⌊γn

1

4 l⌋
e+

− ⌊γn
1

4 l⌋
e−�2

⌊
p

2nσ⌋e




−1

≤
C
p
σe

 
1+

���le+− le
−��− 1

�2

σe
1§���le+−le

−
���>1

ª

!−1

.

Any integrand in the equation (15) is then bounded by

C
∏

e∈~E(s)
(me)−1 ∧ (σe)−2

∏

e∈Ě(s)

(σe)−1/2

 
1+

���le+− le
− ��− 1

�2

σe
1§���le+−le

−
���>1

ª

!−1

. (16)

We have to see that this expression is integrable. First, note that we integrate with respect to u on a

compact set. Moreover,

∫

R

dle
−

 
1+

���le+− le
−��− 1

�2

σe
1§���le+−le

−
���>1

ª

!−1

= 2+π
p
σe

≤ C 1∨
p
σe,

and we have the same bound if we integrate with respect to le
+

instead of le
−
.

It is possible to injectively associate with every vertex v ∈ V (s)\{e−∗ } a half-edge ev ∈ Ě(s) such that

v is an extremity of ev. Let us call EV the range of such an injection. The integral of the expression

(16) with respect to u and l is then bounded by

C
∏

e∈~E(s)
(me)−1 ∧ (σe)−2

∏

e∈EV

1∨ (σe)−1/2
∏

e∈Ě(s)\EV

(σe)−1/2 .
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Finally, it is easy to see that this expression, once integrated5 with respect to σ, is bounded by

C
∏

e∈~E(s)(m
e)−7/8, which is integrable with respect to m.

3) We just saw that the integral expression in (15) converges toward

∫

S s

dL s 1{me∗≥0, u<me∗ } ϕ (s, m,σ, l,u)
∏

e∈~E(s)
−p′me (σ

e)
∏

e∈Ě(s)

pσe (le) .

The dominant terms in the equation (15) are the ones for which |E(s)| is the largest. The corre-

sponding schemes are exactly the dominant ones: for a scheme, 2 |E(s)|=
∑

v∈V (s) deg(v)≥ 3 |V (s)|
and the Euler characteristic formula gives |E(s)| ≤ 6g − 3, the equality being reached when

2 |E(s)| = 3 |V (s)|, that is when s is dominant. Note that this situation is exactly the same as

the one encountered in [5, 6, 23].

Hence, if ϕ is momentarily chosen to be constantly equal to 1, we obtain that

��Tn

��∼ 12n n
5g−3

2 2
3g−1

2 3g Υ (17)

where Υ is defined by (14). Finally,

En −−−→n→∞

1

Υ

∑

s∈S∗

∫

S s

dL s 1{me∗≥0, u<me∗ } ϕ (s, m,σ, l,u)
∏

e∈~E(s)
−p′me (σ

e)
∏

e∈Ě(s)

pσe (le) ,

which is the result we sought. �

5 Convergence of the Motzkin bridges and the forests

Conditionally given the vector

�
sn,
�

me
n

�
e∈~E(sn)

,
�
σe

n

�
e∈~E(sn)

,
�

l v
n

�
v∈V (sn)

�
,

the Motzkin bridges Me
n, e ∈ Ě(sn) and the well-labeled forests (fen, len), e ∈ ~E(sn) are independent

and

⋄ for every e ∈ Ě(sn), M
e
n is uniformly distributed over the set M 0→len

[0,σe

n]
of Motzkin bridges on

[0,σe
n] from 0 to len = le

+

n − le
−

n ,

⋄ for every e ∈ ~E(sn), (f
e
n, len) is uniformly distributed over the set F

me

n
σe

n
of well-labeled forests

with σe
n trees and me

n tree edges.

The convergence of Motzkin bridges is already known. We will properly state the result we need in

Lemma 10.

The convergence of a uniform well-labeled tree with n edges is well-known, see [7], for example.

We will need a conditioned version of this result: roughly speaking, instead of looking at one large

5Be careful that, when integrating with respect to σe for some e ∈ Ě(s), both half-edges e and ē are to be considered.
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tree with n edges uniformly labeled such that the root label is 0, we look at a forest with n edges, a

number of trees growing like
p

n, that are uniformly labeled provided the root label of every tree is

0. For that matter, we will adapt the arguments provided in [15, Chapter 6].

Let us define the space K of continuous real-valued functions on R+ killed at some time:

K :=
⋃

x∈R+
C ([0, x],R).

For an element f ∈ K , we will define its lifetime σ( f ) as the only x such that f ∈ C ([0, x],R). We

endow this space with the following metric:

dK ( f , g) := |σ( f )−σ(g)|+ sup
y≥0

�� f
�

y ∧σ( f )
�
− g
�

y ∧σ(g)
��� .

Recall that we use the notation X (s) for the infimum up to time s of any process X ∈ K . Throughout

this section, m and σ will denote positive real numbers and l will be any real number.

5.1 Brownian bridge and first-passage Brownian bridge

The results we show in this section are part of the probabilistic folklore. Because of the scarceness

of the references, we will give complete proofs for the sake of self-containment.

We define here the Brownian bridge B0→l
[0,m] on [0, m] from 0 to l and the first-passage Brownian

bridge F0→−σ
[0,m] on [0, m] from 0 to −σ. Informally, B0→l

[0,m] and F0→−σ
[0,m] are a standard Brownian

motion β on [0, m] conditioned respectively on the event {βm = l} and on hitting −σ for the first

time at time m. Of course, both theses events occur with probability 0 so we need to define these

objects properly. There are several equivalent ways do do so (see for example [3, 27, 2]).

Remember that we call pa the Gaussian density with variance a and mean 0, as well as p′a its

derivative. Let (βt)0≤t≤m be a standard Brownian motion. As explained in [12, Proposition 1], the

law of the Brownian bridge is characterized by B0→l
[0,m](m) = l and the formula

E

�
f
��

B0→l
[0,m](t)

�
0≤t≤m′

��
= E

�
f
��
βt
�

0≤t≤m′
� pm−m′(l − βm′)

pm(l)

�
(18)

for all bounded measurable function f on K , for all 0≤ m′ < m.

We define the law of the first-passage Brownian bridge in a similar way, by letting

E

�
f
��

F0→−σ
[0,m] (t)

�
0≤t≤m′

��
= E

�
f
��
βt
�

0≤t≤m′
� p′m−m′(−σ− βm′)

p′m(−σ)
1{βm′>−σ}

�
(19)

for all bounded measurable function f on K , for all 0≤ m′ < m, and

F0→−σ
[0,m] (m) = −σ.

These formulae set the finite-dimensional laws of the first-passage Brownian bridge. It remains to

see that it admits a continuous version. Because its law is absolutely continuous with respect to the
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Wiener measure on every [0, m′], m′ < m, the only problem arises at time m. We will, however,

use the Kolmogorov lemma [27, Theorem 1.8] to obtain the continuity of the whole trajectory. We

will see during the proof of Lemma 14 that, as for the Brownian motion, the trajectories of the

first-passage bridge are α-Hölder for every α < 1/2.

The motivation of these definitions may be found in the following lemma:

Lemma 8. Let (βt)0≤t≤m be a standard Brownian motion. Let (Bεt )0≤t≤m and (Fεt )0≤t≤m have the law
of β conditioned respectively on the events

�
|βm− l| < ǫ

	
and

¦
βm < −σ+ ǫ, βm > −σ− ǫ

©
.

Then, as ε goes to 0,
Bǫ → B0→l

[0,m] and Fǫ → F0→−σ
[0,m]

in law in the space
�
C ([0, m],R),‖ · ‖∞

�
.

The proof of this lemma uses similar methods as those we will use for Lemma 10 so we let the

details to the reader. In what follows, we will use the following lemma, which is a consequence of

the Rosenthal Inequality [26, Theorem 2.9 and 2.10]:

Lemma 9. Let X1, X2,. . . Xk be independent centered random variables and q ≥ 2. Then, there exists a
constant c(q) depending only on q such that

E



�����

k∑

i=1

X i

�����

q
≤ c(q) k

q
2
−1

k∑

i=1

E

���X i

��q� .

In particular, if X1, X2,. . . Xk are i.i.d.,

E



�����

k∑

i=1

X i

�����

q
≤ c(q) k

q
2 E

���X1

��q� .

Discrete bridges

We will see in this paragraph two lemmas showing that these two objects are the limits of their

discrete analogs. These lemmas, in themselves, motivate our definitions of bridges and first-passage

bridges. Let us begin with bridges.

We consider a sequence (Xk)k≥0 of i.i.d. centered integer-valued random variables with a moment

of order q0 for some q0 ≥ 3. We write η2 := Var(X1) its variance and h its maximal span. We define

Σi :=
∑i

k=0 Xk and still write Σ its linearly interpolated version. Let (mn) ∈ ZN+ and (ln) ∈ ZN be

two sequences of integers such that

m(n) :=
mn

n
−−−→
n→∞

m and l(n) :=
ln
η
p

n
−−−→
n→∞

l.

Let (Bn(i))0≤i≤mn
be the process whose law is the law of (Σi)0≤i≤mn

conditioned on the event

{Σmn
= ln},
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which we suppose occurs with positive probability. We let

B(n) :=

�
Bn(ns)

η
p

n

�

0≤s≤m(n)

be its rescaled version.

Lemma 10. As n goes to infinity, the process B(n) converges in law toward the process B0→l
[0,m], in the

space
�
K , dK

�
.

Proof. We note Fi := σ(Σk, 0 ≤ k ≤ i) the natural filtration associated with Σ. Applying the

Skorokhod theorem, we may and will assume that

�
Σns

η
p

n

�

0≤s≤m

converges a.s. toward a standard Brownian motion (βs)0≤s≤m for the uniform topology.

1) Let m′ < m. We begin by looking at B(n) on [0, m′]. For n large enough,
�

nm′
�
< mn. Let f be

continuous bounded from K to R. We have

E

�
f
�
(B(n)(s))0≤s≤m′

��
= E

�
f

��
Σns

η
p

n

�

0≤s≤m′

� ��� Σmn
= ln

�

= E


 f

��
Σns

η
p

n

�

0≤s≤m′

�
P

�
Σmn

= ln
�� F⌈nm′⌉

�

P

�
Σmn

= ln
�


 . (20)

Recall the notation QΣk (i) = P
�
Σk = i

�
. Using the Markov property, we obtain

P

�
Σmn

= ln
�� F⌈nm′⌉

�
= QΣmn−⌈nm′⌉(ln−Σ⌈nm′⌉)

∼
h

η
p

n
pm−m′(l − βm′). (21)

where the second line comes from Proposition 6. Note that the denominator of the fractional term

in (20) is the same as the numerator when m′ is chosen to be 0. So the fractional term in (20)

converges a.s. toward
pm−m′(l − βm′)

pm(l)
,

the convergence being dominated—by Proposition 6. Finally,

E

�
f
�
(B(n)(s))0≤s≤m′

��
−−−→
n→∞
E

�
f
�
(βs)0≤s≤m′

� pm−m′(l − βm′)

pm(l)

�

= E
h

f
�
(B0→l
[0,m](s))0≤s≤m′

�i
.

2) We will use the following lemmas, the proofs of which we postpone right after the end of this

proof.
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Lemma 11. There exists an integer n0 ∈ N such that, for every 2 ≤ q ≤ q0, there exists a constant Cq

satisfying, for all n≥ n0 and 0≤ s ≤ t ≤ m(n),

E

���B(n)(t)− B(n)(s)
��q�≤ Cq |t − s|

q
2 .

Lemma 12. We note B := B0→l
[0,m]. For any q ≥ 2, there exists a constant Cq such that, for all 0 ≤ s ≤

t ≤ m,
E
�
|B(t)− B(s)|q

�
≤ Cq |t − s|

q
2 .

By the Portmanteau theorem [3, Theorem 2.1], we can restrict ourselves to bounded uniformly

continuous functions from K to R. Let f be such a function. Let ǫ > 0, and δ > 0 be such that

dK (X , Y )< δ implies | f (X )− f (Y )| < ǫ.
Let 0< α < 1/2−1/q0. Thanks to Lemmas 11 and 12, Kolmogorov’s criterion [30, Theorem 3.3.16]

provides us with some constant C such that

sup
n
P

�
B(n) /∈ K

�
∨ P (B /∈ K)<

ǫ

‖ f ‖∞
,

where

K :=

¨
X ∈ K : sup

s 6=t

|X (t)− X (s)|
|t − s|α ≤ C

«
.

We take m′ satisfying

|m−m′|+ C |m−m′|α <
δ

2
,

so that, for n sufficiently large,

|m(n) −m′|+ C |m(n) −m′|α < δ.

For any function X = (X (s))0≤s≤x ∈K , we define X |y := (X (s))0≤s≤y ∈K . Hence

E

���� f
�

B(n)
�
− f (B)

���
�
≤ E

���� f
�

B(n)
�
− f

�
B(n) |m′

����
�
+E

���� f
�

B(n) |m′
�
− f

�
B|m′
����
�

+E

���� f
�

B|m′
�
− f (B)

���
�

. (22)

Thanks to point 1), for n large enough, the second term of the right-hand side of (22) is less than ǫ.

The first and third terms are treated in the same way (for the third term, just remove the (n)’s): on

the set
¦

B(n) ∈ K
©

,

dK
�

B(n), B(n) |m′
�
= |m(n) −m′|+ sup

m′≤t≤m(n)

��B(n)(t)− B(n)(m
′)
��

≤ |m(n) −m′|+ C |m(n) −m′|α

< δ,

and

E

���� f
�

B(n)
�
− f

�
B(n) |m′

����
�
≤ E

���� f
�

B(n)
�
− f

�
B(n)|m′

���� 1{B(n)∈K}
�
+ 2‖ f ‖∞ P

�
B(n) /∈ K

�

< 3ǫ.
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All in all, for n large enough

E

���� f
�

B(n)
�
− f (B)

���
�
≤ 7ǫ,

and B(n) converges weakly toward B. �

It remains to prove Lemmas 11 and 12.

Proof of Lemma 11. If |t − s| < 1/n, the fact that Bn is linear on every interval [i, i + 1] implies

that

|B(n)(t)− B(n)(s)| ≤
n(t − s)

η
p

n
≤

1

η

p
t − s,

which gives the desired result. By the triangular inequality, we can restrict ourselves to the cases

where ns and nt are integers, and either t ≤ m(n)/2 or m(n)/2≤ s.

First, let us suppose that 0 ≤ s ≤ t ≤ m(n)/2. Applying (20) with m′ = t and the proper function f ,

we obtain

E

���B(n)(t)− B(n)(s)
��q�= η−qn−

q
2 E


��Σnt −Σns

��q QΣmn−nt(ln−Σnt)

QΣmn
(ln)


 . (23)

The asymptotic formula (21) and the fact that m(n)→ m yield the existence of a positive constant c
and an integer n0 such that for n≥ n0,

p
nQΣmn

(ln)≥ c and m(n) >
m

2
.

Then Proposition 6 ensures us that for n≥ n0,

p
nQΣmn−nt(ln −Σnt)≤

p
n sup

x∈R
sup
y>m

4

QΣny

�
x
p

n
�

≤
2h

η
p

m
sup
x∈R

sup
y>0

sup
n∈N

�η
h
p

ny QΣny

�
x
p

n
��
<∞.

Thus, the fractional term in the equation (23) is uniformly bounded as soon as n≥ n0, and

E

���B(n)(t)− B(n)(s)
��q�≤ C n−

q
2 E

���Σnt −Σns

��q�

≤ C n−
q
2 E

���Σn(t−s)

��q�

≤ Cq |t − s|
q
2

by means of the Rosenthal Inequality (Lemma 9).

Now, if m(n)/2≤ s ≤ t ≤ m(n), we use the following time reversal invariance:

�
B(n)(s)

�
0≤s≤m(n)

(law)
=
�

l(n) − B(n)(m(n) − s)
�

0≤s≤m(n)
. (24)

We have

E

���B(n)(t)− B(n)(s)
��q�= E

���B(n)(m(n) − s)− B(n)(m(n) − t)
��q�

and we are back in the case we just treated. Note that it is important that m(n) be a deterministic

time. �
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Proof of Lemma 12. We show the inequality for 2≤ q ≤ q0. As B appears as the limit of B(n) (in a

certain sense), we may choose the Xk’s to have arbitrarily large moments, and we see that it actually

holds for any value of q ≥ 2. For 0≤ s ≤ t < m, point 1) in the proof of Lemma 10 shows that

�
B(n)(s), B(n)(t)

� (d)−−−→
n→∞

(B(s), B(t)),

and

E
�
|B(t)− B(s)|q

�
= lim

M→∞
E
�
|B(t)− B(s)|q ∧M

�

= lim
M→∞

lim
n→∞
E

���B(n)(t)− B(n)(s)
��q ∧M

�

≤ Cq |t − s|
q
2 ,

where Cq is the constant of Lemma 11. It only remains to see that B(n)(m ∧ m(n)) → B(m) in

probability in order to obtain the same inequality for t = m. The time reversal invariance (24)

implies that

B(n)(m∧m(n))
(law)
= l(n) − B(n)

�
(m(n) −m)∨ 0

�
,

and, thanks to 1),

���B(n)
�
(m(n) −m)∨ 0

���� ≤
���B(n)

�
(m(n) −m)∨ 0

�
− B

�
(m(n) −m)∨ 0

����+
���B
�
(m(n) −m)∨ 0

����

→ 0

in probability, so that B(n)(m∧m(n))→ l = B(m) in probability. �

Discrete first-passage bridges

We now see a lemma similar to Lemma 10 for first-passage bridges, in which we will only consider

simple random walks. Let (mn) ∈ ZN+ and (σn) ∈ NN be two sequences of integers such that

m(n) :=
mn

n
−−−→
n→∞

m and σ(n) :=
σnp

n
−−−→
n→∞

σ.

We consider a sequence (Xk)k≥1 of i.i.d. random variables with law (δ−1 + δ1)/2 and define Si :=∑i
k=1 Xk (and, by convention, S0 = 0). We still write S its linearly interpolated version. We call

(Bn(i))0≤i≤mn
and (Fn(i))0≤i≤mn

the two processes whose laws are the law of (Si)0≤i≤mn
conditioned

respectively on the events

{Smn
= −σn} and {Smn

= −σn, Smn−1 > −σn},

which we suppose occur with positive probability. Finally, we define

B(n) :=

�
Bn(ns)
p

n

�

0≤s≤m(n)

and F(n) :=

�
Fn(ns)
p

n

�

0≤s≤m(n)

their rescaled versions.
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There is actually a very convenient way to construct Fn from Bn. For 0≤ k ≤ mn, the shifted path of

Bn is defined by

Θk(Bn)(x) =

¨
Bn(k+ x)− Bn(k) if 0≤ x ≤ mn− k,

Bn(k+ x −mn) + Bn(mn)− Bn(k) if mn − k ≤ x ≤ mn.

For 0≤ k ≤ σn − 1, the first time at which Bn reaches its minimum plus k is noted

rk(Bn) := inf

�
i : Bn(i) = inf

0≤ j≤mn

Bn( j)+ k

�
.

The following proposition [2, Theorem 1] gives a construction of Fn from Bn.

Proposition 13 (Bertoin - Chaumont - Pitman). Let νn be a random variable independent of S and
uniformly distributed on {0,1, . . . ,σn− 1}. Then, the process Θrνn (Bn)

(Bn) has the same law as Fn.

Using this construction, we may show that the first-passage Brownian bridge is the limit of its

discrete analog:

Lemma 14. As n goes to infinity, the process F(n) converges in law toward the process F0→−σ
[0,m] , in the

space
�
K , dK

�
.

Proof. We begin as in the proof of Lemma 10. We noteFi := σ(Sk, 0 ≤ k ≤ i) the natural filtration

associated with S, and by the Skorokhod theorem, we may and will assume that
�

Snsp
n

�

0≤s≤m

converges a.s. toward a standard Brownian motion (βs)0≤s≤m for the uniform topology.

1) Let m′ < m. For n large enough,
�

nm′
�
< mn. Let f be continuous bounded from K to R. We

have

E

�
f
�
(F(n)(s))0≤s≤m′

��

= E

�
f

��
Snsp

n

�

0≤s≤m′

� ��� Smn
= −σn, Smn−1 > −σn

�

= E


 f

��
Snsp

n

�

0≤s≤m′

�
P

�
Smn
= −σn, Smn−1 > −σn

�� F⌈nm′⌉
�

P

�
Smn
= −σn, Smn−1 > −σn

�


 . (25)

Recall the notation QS
k(i) = P(Sk = i). We have to deal with terms of the form

P(Sk = −i, Sk−1 > −i) =
i

k
P(Sk = −i) =

i

k
QS

k(−i),

where the first equality is an application of the so-called cycle lemma (see e.g. [2, Lemma 2]). Using

the Markov property, we obtain

P

�
Smn
= −σn, Smn−1 > −σn

�� F⌈nm′⌉
�

=
σn + S⌈nm′⌉
mn − ⌈nm′⌉ QS

mn−⌈nm′⌉
�
−σn− S⌈nm′⌉

�1n
S⌈nm′⌉>−σn

o.
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Here again, the denominator of the fractional term in (25) is the same as the numerator when m′ is
chosen to be 0. The fractional term in (25) converges a.s. toward

p′m−m′(−σ− βm′)

p′m(−σ)
1{βm′>−σ},

and Proposition 6 ensures that this convergence is dominated. So,

E

�
f
�
(F(n)(s))0≤s≤m′

��
−−−→
n→∞
E

�
f
�
(βs)0≤s≤m′

� p′m−m′(−σ− βm′)

p′m(−σ)
1{βm′>−σ}

�

= E
h

f
�
(F0→−σ
[0,m] (s))0≤s≤m′

�i
.

2) For any α > 0 and X = (X (s))0≤s≤x ∈ K , we write

‖X‖α := sup
0≤s<t≤x

|X (t)− X (s)|
|t − s|α

its α-Hölder norm. Proposition 13 gives a stochastic domination of the α-Hölder norm of F(n) by

that of B(n): we may assume that Fn = Θrνn (Bn)
(Bn). If 0≤ s < t ≤ m(n) − rνn

(Bn),

��F(n)(t)− F(n)(s)
�� =

1
p

n

���Θrνn (Bn)
(Bn)(nt)−Θrνn (Bn)

(Bn)(ns)
���

=
1
p

n

���Bn

�
rνn
(Bn) + nt

�
− Bn

�
rνn
(Bn) + ns

����

=

�����B(n)
�

rνn
(Bn)

n
+ t

�
− B(n)

�
rνn
(Bn)

n
+ s

������

≤
B(n)


α
|t − s|α .

We obtain the same inequality when m(n)− rνn
(Bn)≤ s < t ≤ m(n), and by the triangular inequality,

we find F(n)

α
≤ 2

B(n)

α

.

3) We now suppose that 0 < α < 1/2. Let ǫ > 0. Thanks to Lemma 11—for which we now have q0

arbitrarily large—and Kolmogorov’s criterion, we can find some constant C such that

sup
n
P

�
F(n) /∈ K

�
< ǫ with K :=

�
X ∈ K : ‖X‖α ≤ C

	
. (26)

Ascoli’s theorem [29, Chapter XX] shows that K is a compact set, so that the laws of the F(n) ’s are

tight.

4) We almost have the convergence of the finite-dimensional marginals of F(n) toward those of

F := F0→−σ
[0,m] . Point 1) shows that for any p ≥ 1, 0≤ s1 < s2 < · · ·< sp < m,

�
F(n)(s1), F(n)(s2), . . . , F(n)(sp)

�
→
�

F(s1), F(s2), . . . , F(sp)
�

.
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It only remains to deal with the point m. Let δ > 0. For n large enough, on
¦

F(n) ∈ K
©

,

��F(n)(m∧m(n)) +σ
�� ≤
��σ(n) −σ

��+ C
��m(n) −m

��α < δ,

therefore

P

�
|F(n)

�
m∧m(n)

�
+σ| > δ

�
≤ P

�
F(n) /∈ K

�
< ǫ.

We have shown that F(n)
�

m∧m(n)
�

converges in law toward the deterministic value−σ so Slutzky’s

lemma allows us to conclude that the finite-dimensional marginals of F(n) converge toward those of

F . This, together with the tightness of the laws of the F(n) ’s, yields the result thanks to Prokhorov’s

lemma. �

For any real numbers m1, m2, l1, l2, we define the bridge on [m1, m2] from l1 to l2 by

�
Bl1→l2
[m1,m2]

(s)
�

m1≤s≤m2

:= l1 +
�

B0→l2−l1
[0,m2−m1]

(s−m1)
�

m1≤s≤m2

,

and for σ1 > σ2, we define the first-passage bridge on [m1, m2] from σ1 to σ2 by

�
Fσ1→σ2

[m1,m2]
(s)
�

m1≤s≤m2

:= σ1+
�

F0→σ2−σ1

[0,m2−m1]
(s−m1)

�
m1≤s≤m2

.

5.2 The Brownian snake

We need a version of the Brownian snake’s head driven by a first-passage Brownian bridge. There

are several ways to define such an object.

We may define it as a the head of a Brownian snake with lifetime process a first-passage Brownian

bridge Fσ→0
[0,m] and starting from the path 0σ := t ∈ [0,σ] 7→ 0 (see [16, Chapter IV] or [9, Chapter

4] for a proper definition).

Let (Fs)0≤s≤m be a first-passage Brownian bridge from σ to 0. The Brownian snake driven by F and

started at 0σ is the path-valued process (Fs, (W (s, t), 0≤ t ≤ Fs))0≤s≤m whose law is defined by:

⋄ for all 0≤ t ≤ σ, W (0, t) = 0,

⋄ for all 0≤ s ≤ m, W (s, 0) = 0,

⋄ the conditional law of W (s, ·) given F is the law of an inhomogeneous Markov process whose

transition kernel is described as follows: for 0≤ s ≤ s′ ≤ m,

– W (s′, t) =W (s, t) for all 0≤ t ≤ inf[s,s′] F ,

–
�

W (s′, inf[s,s′] F + t)
�

0≤t≤Fs′−inf[s,s′] F
is independent of W (s, ·) and distributed as a real

Brownian motion started from W (s, inf[s,s′] F) and stopped at time Fs′ − inf[s,s′] F .

The head of this process is then defined by

�
Fσ→0
[0,m], Z[0,m]

�
:=
��

Fs
�

0≤s≤m ,
�
W (s, Fs)

�
0≤s≤m

�
.

1622



Figure 9: An approximation of the conditioned Brownian snake. The first-passage bridge from σ to 0 is repre-
sented by the shadowy part of the figure. In order to see W (s, ·), one must “cut” the surface at s and look at the
edge of the cut piece.

This description has the advantage of being very visual: W (0, ·) is the function 0σ. Then, every

time F decreases, we erase the tip of the previous path, and when F increases, we glue a part of an

independent Brownian motion (see Figure 9).

In the following, we will only need the head and not the whole process. The following description

gives a direct construction of this head. Conditionally given F = Fσ→0
[0,m], we define a Gaussian process

(Γs)0≤s≤m with covariance function

cov(Γs,Γs′) = inf
[s,s′]
(F − F).

The processes (F,Γ) then has the same law as the process
�

Fσ→0
[0,m], Z[0,m]

�
defined above.

We easily see that we can derive the law of the head from the law of the snake, and it is actually also

possible to recover the whole snake from its head (see [20, Section 2]): starting from the process

(F, Z) =
�

Fσ→0
[0,m], Z[0,m]

�
, we define

W (s, t) := Z
�

inf{r ≥ s, F(r) = t}
�
, 0≤ t ≤ F(s), 0≤ s ≤ m.

The process
�

F(s), (W (s, t), 0 ≤ t ≤ F(s))
�

0≤s≤m then has the law of the Brownian snake defined

above. In particular, for s ∈ [0, m] fixed, the process

�
Z
�

inf{r ≥ s, F(r) = t}
��

F(s)≤t≤F(s)

has the law of a real Brownian motion started from 0. Using time reversal invariance, we see that

the process �
Z
�

inf{r ≥ s, F(r) = F(s)− x}
�
− Z(s)

�
0≤x≤F(s)−F(s)

has the same law. This fact will be used in Section 6.
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5.3 The discrete snake

We will describe here an analog of the Brownian snake in the discrete setting. Let us first consider

three sequences of integers (σn), (mn) and (ln) such that

σ(n) :=
σnp
2n
→ σ, m(n) :=

2mn+σn

2n
→ m and l(n) :=

ln

γn
1

4

→ l.

We call (Cn, Ln) the contour pair of a random forest uniformly distributed over the set F
mn
σn

of well-

labeled forests with σn trees and mn tree edges. We define

C(n) :=

�
Cn(2nt)
p

2n

�

0≤t≤m(n)

and L(n) :=

 
Ln(2nt)

γn
1

4

!

0≤t≤m(n)

their scaled versions.

We define the discrete snake
�
Wn(i, j), 0≤ j ≤ Cn(i)

�
0≤i≤2mn+σn

by (see Figure 10)

Wn(i, j) := Ln
�
sup
�
k ≤ i : Cn(k) = j

	�
= Ln

�
inf
�
k ≥ i : Cn(k) = j

	�
.

Let (f, l) be the well-labeled forest coded by (Cn, Ln). Then for 0≤ i ≤ 2mn+σn,

�
Wn(i, j)

�
0≤ j≤Cn(i)

records the labels of the unique path going from t(f) + 1 to f(i). As a result, Wn(i, j) = 0 for

0≤ j ≤ t(f) + 1− a(f(i)).

Cn

i

j

Figure 10: Discrete snake

We then extend Wn to {(s, t) : s ∈ [0,2mn +σn], t ∈ [0, Cn(s)]} by linear interpolation and we let,

for 0≤ s ≤ m(n), 0≤ t ≤ C(n)(s),

W(n)(s, t) :=
Wn(2ns,

p
2n t)

γn
1

4

.

For each 0≤ s ≤ m(n), W(n)(s, ·) is a path lying in

K0 :=
�

f ∈K | f (0) = 0
	

,
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so that we can see W(n) as an element of

W0 :=
⋃

x∈R+
C ([0, x],K0).

For X ∈ W0, we call ξ(X ) the real number such that X ∈ C ([0,ξ(X )],K0), and we endow W0 with

the metric

dW0
(X , Y ) := |ξ(X )− ξ(Y )|+ sup

s≥0
dK (X (s ∧ ξ(X ), ·), Y (s ∧ ξ(Y ), ·)) .

5.4 Convergence of a uniform well-labeled forest

We will prove the following result.

Proposition 15. The pair (C(n),W(n)) converges weakly toward the pair
�

Fσ→0
[0,m],W

�
, in the space

�
K , dK

�
×
�
W0, dW0

�
.

We readily obtain the following corollary:

Corollary 16. The pair (C(n), L(n)) converges weakly toward the pair
�

Fσ→0
[0,m], Z[0,m]

�
, in the space

�
K , dK

�2.

Proposition 15 may appear stronger than Corollary 16, but is actually not, because of the strong link

between the whole snake and its head [20]. We begin by a lemma.

Lemma 17. For all 0< δ < 1/4, for all ǫ > 0, there exist a constant C and an integer n0 such that, as
soon as n≥ n0, P(W(n) /∈ A)< ǫ, where

A :=

¨
X ∈ W0 : sup

s 6=s′

dK
�
X (s, ·)− X (s′, ·)

�

|s− s′|δ
≤ C

«
.

Proof. It is based on (26) and a similar inequality for Motzkin paths (which is merely Rosenthal

Inequality). The fact that the steps of the random walks we consider are bounded allows us to take

the q of Lemma 9 arbitrary large.

Let 0≤ s < s′ ≤ m(n). Conditionally given C(n),

dK
�

W(n)(s, ·),W(n)(s′, ·)
�

=
��C(n)(s)− C(n)(s

′)
��+ sup

t≥an

���W(n)
�

s, t ∧ C(n)(s)
�
−W(n)

�
s′, t ∧ C(n)(s

′)
���� ,

where an := inf[s,s′] C(n).

We need to distinguish two cases:
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⋄ if bn := inf[0,s] C(n) ≤ an, then

�
W(n)(s, t)−W(n)(s, an)

�
an≤t≤C(n)(s)

is merely a rescaled Motzkin path.

⋄ if bn > an, then W(n)(s, t) = 0 for an ≤ t ≤ bn and

�
W(n)(s, t)−W(n)(s, bn)

�
bn≤t≤C(n)(s)

is a rescaled Motzkin path.

In both cases, �
W(n)(s

′, t)−W(n)(s
′, an)

�
an≤t≤C(n)(s′)

is also a rescaled Motzkin path—independent from
�

W(n)(s, t)−W(n)(s, an)
�

an≤t≤C(n)(s)
.

Treating both cases separately, we obtain that there exists a constant M , independent of s, such that

for n large enough,

E


 sup

an≤t≤C(n)(s)

��W(n)(s, t)−W(n)(s, an)
��q
��� C(n)


≤ M

��C(n)(s)− an

�� q
2 ,

by Lemma 9. The same inequality holds with s′ instead of s. We have

E

�
dK
�

W(n)(s, ·),W(n)(s′, ·)
�q
��� C(n)

�
≤ M ′

�C(n)
q
α
|s− s′|αq +

C(n)
 q

2

α
|s− s′|α

q
2

�

≤ Mq

�C(n)
q
α
∨ 1
�
|s− s′|α

q
2 .

For C ≥ 1,

E

�
dK
�

W(n)(s, ·),W(n)(s′, ·)
�q
���
C(n)


α
≤ C

�
≤ Mq Cq|s− s′|α

q
2 . (27)

Let 0< δ < 1

4
. Then, let 0< α < 1/2 be such that δ < α/2, and ǫ > 0. Thanks to (26), we may find

a constant C such that, for n sufficiently large,

P

�C(n)

α
> C

�
< ǫ.

For this C , the inequality (27) allows us to apply Kolmogorov’s criterion [30, Theorem 3.3.16]: we

find a constant C ′ such that, for n large enough,

P

 
sup
s 6=s′

dK
�

W(n)(s, ·)−W(n)(s
′, ·)
�

|s− s′|δ
> C ′

���
C(n)


α
≤ C

!
< ǫ.

Finally,

P

 
sup
s 6=s′

dK
�

W(n)(s, ·)−W(n)(s
′, ·)
�

|s− s′|δ
> C ′

!
<

ǫ

1− ǫ + ǫ,

which is what we needed. �
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Proof of Proposition 15. We begin by showing the convergence of a finite number of trajectories,

together with the whole contour process, and then conclude by a tightness argument using Lemma

17.

Convergence of the finite-dimensional laws. Let p ≥ 1 and 0≤ s1 < · · · < sp < m. We will show

by induction on p that
�
(C(n)(s))0≤s≤m(n),W(n)(s1, ·), . . . ,W(n)(sp, ·)

�
(d)−−−→

n→∞

�
Fσ→0
[0,m],W (s1, ·), . . . ,W (sp, ·)

�
. (28)

Because m(n)→ m, for n sufficiently large, sp ≤ m(n) and the vector we consider is well-defined.

1) For p = 1, we may only consider the case s1 = 0. (Cn(i))0≤i≤2mn+σn
is a discrete first-passage

bridge on [0,2mn +σn] from σn to 0 and Wn(0, j) = 0 for 0 ≤ j ≤ σn. Lemma 14 thus ensures us

that �
(C(n)(s))0≤s≤m(n) , (W(n)(0, t))0≤t≤σ(n)

�
(d)−−−→

n→∞

�
(Fσ→0
[0,m](s))0≤s≤m, (W (0, t))0≤t≤σ

�
.

2) Let us assume (28) with p− 1 instead of p. There exists a Motzkin path M , independent of C(n)
and W(n)(si, ·), 1≤ i ≤ p− 1, such that conditionally given

�
(C(n)(s))0≤s≤m(n) ,W(n)(s1, ·), . . . ,W(n)(sp−1, ·)

�
,

for 0≤ t ≤ C(n)(sp),

W(n)(sp, t) =W(n)(sp−1, t ∧ an) +
Mp2n(t−an)

+

γn
1

4

where an := inf[sp−1,sp]
C(n) and x+ := x .1{x≥0} stands for the positive part of x . The Donsker

Invariance Principle [3] ensures that  
Mp2nt

γn
1

4

!

t≥0

converges weakly toward a Brownian motion β for the uniform topology on every compact sets.

By means of the Skorokhod representation theorem (see e.g. [10, Theorem 3.1.8]), we may and

will assume that this convergence holds almost surely. We also suppose that (28) holds for p − 1.

Then, a.s., �
W(n)(sp, t)

�
0≤t≤C(n)(sp)

→
�

W (sp−1, t ∧ a) + β(t−a)+
�

0≤t≤Fσ→0
[0,m](sp)

where a := inf[sp−1,sp]
Fσ→0
[0,m]. To see this, observe that

���C(n)(sp)− Fσ→0
[0,m](sp)

���→ 0

and

sup
t

��W(n)(sp−1, t ∧ an)−W (sp−1, t ∧ a)
��≤ sup

0≤t≤an

��W(n)(sp−1, t)−W (sp−1, t)
��

+ sup
an∧a≤t≤an∨a

��W (sp−1, t)−W (sp−1, an ∧ a)
��

→ 0,
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by continuity of W (sp−1, ·). A similar inequality holds for M .

Finally, the law of �
W (sp−1, t ∧ a) +β(t−a)+

�
0≤t≤Fσ→0

[0,m](sp)

is that of W (sp, ·), conditionally given

�
(Fσ→0
[0,m](s))0≤s≤m′ ,W (s1, ·), . . . ,W (sp−1, ·)

�
,

which is precisely what we wanted.

Tightness. Let 0< δ < 1/4 and ǫ > 0. Lemma 17 provides us with a constant C and an integer n0

such that for all n≥ n0, P(W(n) /∈ A)< ǫ, where

A :=

¨
X ∈ W0 : sup

s 6=s′

dK
�
X (s, ·)− X (s′, ·)

�

|s− s′|δ
≤ C

«
.

Let (sk)k≥1 be a countable dense subset of [0, m). As for every k ≥ 1,
�

W(n)(sk, ·)
�

n
is tight, we can

find compact sets Kk ⊆W0 such that for all k ≥ 1, for all n≥ n0,

P

�
W(n)(sk, ·) /∈ Kk

�
<
ǫ

2k
.

The set

K := A∩
�

X ∈W0 : ∀k ≥ 1, X (sk, ·) ∈ Kk
	

.

is a compact subset of W0 by Ascoli’s theorem [29, XX] and for n ≥ n0, P
�

W(n) /∈K
�
< 2ǫ, hence

the tightness of the sequence of W(n)’s laws. �

6 Proof of Theorem 1

We adapt the proof given in [17] for the case g = 0 to our case g ≥ 1.

6.1 Setting

Let qn be uniformly distributed over the set Qn of bipartite quadrangulations of genus g with n
faces. Conditionally given qn, we take vn uniformly over V (qn) so that (qn, vn) is uniform over the

set Q•n of pointed bipartite quadrangulations of genus g with n faces. Recall that every element of

Qn has the same number of vertices: n+ 2− 2g. Through the Chapuy-Marcus-Schaeffer bijection,

(qn, vn) corresponds to a uniform well-labeled g-tree with n edges (tn, ln). The parameter ǫ ∈ {−1,1}
appearing in the bijection will be irrelevant to what follows.

Recall the notations tn(0), tn(1), . . . , tn(2n) and qn(0), qn(1), . . . , qn(2n) from Section 2. For

technical reasons, it will be more convenient, when traveling along the g-tree, not to begin by its

root but rather by the first edge of the first forest. Precisely, we define

ṫn(i) :=

¨
tn(i− un + 2n) if 0≤ i ≤ un,

tn(i − un) if un ≤ i ≤ 2n,
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and

q̇n(i) :=

¨
qn(i− un + 2n) if 0≤ i ≤ un,

qn(i− un) if un ≤ i ≤ 2n,

where un is the integer recording the position of the root in the first forest of tn. We endow ¹0,2nº
with the pseudo-metric dn defined by

dn(i, j) := dqn

�
q̇n(i), q̇n( j)

�
.

We define the equivalence relation ∼n on ¹0,2nº by declaring that i ∼n j if q̇n(i) = q̇n( j), that

is if dn(i, j) = 0. We call πn the canonical projection from ¹0,2nº to ¹0,2nº/∼n
and we slightly

abuse notation by seeing dn as a metric on ¹0,2nº/∼n
defined by dn(πn(i),πn( j)) := dn(i, j). In

what follows, we will always make the same abuse with every pseudo-metric. The metric space�
¹0,2nº/∼n

, dn

�
is then isometric to

�
V (qn)\{vn}, dqn

�
, which is at dGH -distance 1 from the space�

V (qn), dqn

�
.

We extend the definition of dn to non integer values by linear interpolation: for s, t ∈ [0,2n],

dn(s, t) := s t dn(⌈s⌉ , ⌈t⌉) + s t dn(⌈s⌉ , ⌊t⌋) + s t dn(⌊s⌋ , ⌈t⌉) + s t dn(⌊s⌋ , ⌊t⌋), (29)

where ⌊s⌋ := sup{k ∈ Z, k ≤ s}, ⌈s⌉ := ⌊s⌋ + 1, s := s − ⌊s⌋ and s := ⌈s⌉ − s. Beware that dn

is no longer a pseudo-metric on [0,2n]: indeed, dn(s, s) = 2 s s dn(⌈s⌉ , ⌊s⌋) > 0 as soon as s /∈ Z.
The triangular inequality, however, remains valid for all s, t ∈ [0,2n]. Using the Chapuy-Marcus-

Schaeffer bijection, it is easy to see that dn(⌈s⌉ , ⌊s⌋) is equal to either 1 or 2, so that dn(s, s) ≤ 1/2.

As usual, we define the rescaled version: for s, t ∈ [0,1], we let

d(n)(s, t) :=
1

γn
1

4

dn(2ns, 2nt), (30)

so that

dGH

 �
1

2n
¹0,2nº/∼n

, d(n)

�
,

 
V (qn),

1

γn
1

4

dqn

!!
≤

1

γn
1

4

. (31)

6.2 Tightness of the distance processes

The first step is to show the tightness of the processes d(n)’s laws. For that matter, we use the bound

(4). We define

d◦n(i, j) := ln
�
ṫn(i)

�
+ ln

�̇
tn( j)

�
− 2 max

 
min

k∈
−−−→
¹i, jº

ln
�
ṫn(k)

�
, min

k∈
−−−→
¹ j,iº

ln
�̇
tn(k)

�
!
+ 2,

we extend it to [0,2n] as we did for dn by (29), and we define its rescaled version d◦
(n) as we did for

dn by (30). We readily obtain the following bound,

d(n)(s, t) ≤ d◦
(n)(s, t). (32)
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Expression of d◦
(n) in terms of the spatial contour function of the g-tree

Although it is not straightforward to define a contour function for the whole g-tree, we may define

its spatial contour function Ln : [0,2n]→ R by,

Ln(i) := ln
�
ṫn(i)

�
− ln

�̇
tn(0)

�
, 0≤ i ≤ 2n,

and by linearly interpolating it between integer values. The rescaled version is then defined by

L(n) :=

 
Ln(2nt)

γn
1

4

!

0≤t≤1

,

and we easily see that

d◦
(n)(s, t) = L(n)(s) +L(n)(t)− 2 max

 
min

x∈
−−→
[s,t]

L(n)(x), min
x∈
−−→
[t,s]

L(n)(x)

!
+O

�
n

1

4
�

where
−−→
[s, t] :=

¨
[s, t] if s ≤ t,

[s, 1]∪ [0, t] if t < s.

Convergence results

As in Section 3, we call sn the scheme of tn, (fen, len)e∈~E(sn)
its well-labeled forests, (me

n)e∈~E(sn)
and

(σe
n)e∈~E(sn)

respectively their sizes and lengths, (l v
n)v∈V(sn)

the shifted labels of its nodes, (Me
n)e∈~E(sn)

its Motzkin bridges, and un the integer recording the position of the root in the first forest f
e∗
n . We

call (C e
n, Le

n) the contour pair of the well-labeled forest (fen, len) and we extend the definition of Me
n to

[0,σe
n] by linear interpolation.

As usual, we define the rescaled versions of these objects

me
(n) :=

2me
n +σ

e
n

2n
, σe

(n) :=
σe

np
2n

, l v
(n) :=

l v
n

γn
1

4

, u(n) :=
un

2n

and

C e
(n) :=

�
C e

n(2nt)
p

2n

�

0≤t≤me

(n)

, Le
(n) :=

 
Le

n(2nt)

γn
1

4

!

0≤t≤me

(n)

, Me
(n) :=

 
Me

n(
p

2n t)

γn
1

4

!

0≤t≤σe

(n)

.

Combining the results of Proposition 7, Lemma6 10 and Corollary 16, we find that the vector
�
sn,
�
me
(n)

�
e∈~E(sn)

,
�
σe
(n)

�
e∈~E(sn)

,
�
l v
(n)

�
v∈V (sn)

,u(n),
�

C e
(n), Le

(n)

�
e∈~E(sn)

,
�
Me
(n)

�
e∈~E(sn)

�

converges in law toward the random vector
�
s∞,
�

me
∞
�
e∈~E(s∞)

,
�
σe
∞
�
e∈~E(s∞)

,
�

l v
∞
�

v∈V (s∞)
,u∞,

�
C e
∞, Le
∞
�
e∈~E(s∞)

,
�
Me
∞
�
e∈~E(s∞)

�

whose law is defined as follows:

6Remark that γn
1
4 =

Æ
2

3

pp
2n.
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⋄ the law of the vector

I∞ :=
�
s∞,
�

me
∞
�
e∈~E(s∞)

,
�
σe
∞
�
e∈~E(s∞)

,
�

l v
∞
�

v∈V (s∞)
,u∞

�

is the probability µ defined before Proposition 7,

⋄ conditionally given I∞,

– the processes
�

C e
∞, Le
∞
�

, e ∈ ~E(s∞) and
�
Me
∞
�

, e ∈ Ě(s∞) are independent,

– the process
�

C e
∞, Le
∞
�

has the law of a Brownian snake’s head on [0, me
∞] going from

σe
∞ to 0:

�
C e
∞, Le
∞
� (law)
=
�

F
σe

∞→0

[0,me

∞]
, Z[0,me

∞]

�
,

– the process
�
Me
∞
�

has the law of a Brownian bridge on [0,σe
∞] from 0 to le∞ := le

+

∞− le
−
∞ :

�
Me
∞
� (law)
= B

0→le∞
[0,σe

∞]
,

– the Motzkin bridges are linked through the relation

Mē
∞(s) =Me

∞(σ
e
∞− s)− le∞.

Applying the Skorokhod theorem, we may and will assume that this convergence holds almost surely.

As a result, note that for n large enough, sn = s∞.

Decomposition of L(n) along the forests

In order to study the convergence of L(n), we will express it in terms of the Le
(n)’s and Me

(n) ’s. First,

the labels in the forest (fen, len) are to be shifted by the value of the Motzkin path Me
n at the time

telling which subtree is visited: recall the definition (11) of the process

Le
n :=

�
Le

n(t) +Me
n

�
σe

n − C e
n(t)
��

0≤t≤2me

n+σ
e

n

.

We define its rescaled version

Le
(n) :=

 
Le

n(2nt)

γn
1

4

!

0≤t≤me

(n)

=
�

Le
(n)(t) +Me

(n)

�
σe
(n) − C e

(n)(t)
��

0≤t≤me

(n)

,

as well as its limit in the space
�
K , dK

�
,

Le
(n) −−−→n→∞

Le
∞ :=

�
Le
∞(t) +Me

∞
�
σe
∞ − C e

∞(t)
��

0≤t≤me

∞
.

We then need to concatenate these processes. For f , g ∈ K0 two functions started at 0, we call

f • g ∈K0 their concatenation defined by σ( f • g) := σ( f ) +σ(g) and, for 0≤ t ≤ σ( f • g),

f • g(t) :=

¨
f (t) if 0≤ t ≤ σ( f ),

f (σ( f )) + g(t −σ( f )) if σ( f )≤ t ≤ σ( f ) +σ(g).
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We sort the half-edges of sn according to its facial order, beginning with the root: e1 = e∗, . . . ,

e2(6g−3) and we see that

L(n) = L
e1

(n) •L
e2

(n) • · · · •L
e2(6g−3)

(n) .

We also sort the half-edges of s∞ in the same way and define L∞ := L
e1
∞ •Le2

∞ • · · · •L
e2(6g−3)

∞ .

Lemma 18. The concatenation is continuous from (K0, dK )
2 to (K0, dK ).

Proof. Let ( fn, gn) be a sequence of functions in K 2
0 converging toward ( f , g) ∈ K 2

0 and ǫ > 0.

There exist an 0< η < ǫ and an n0 such that

|s− t| < η⇒ | f • g(s)− f • g(t)| < ǫ and n≥ n0⇒ dK ( fn, f ) ∨ dK (gn, g) < η.

Let 0 ≤ t ≤ σ( f • g) ∧σ( fn • gn) and n ≥ n0 be fixed. If t ≤ σ( fn), we call t̃ := t ∧σ( f ). In that

case,

| fn • gn(t)− f • g( t̃)| = | fn(t)− f (t ∧σ( f ))| ≤ dK ( fn, f )< ǫ.

If σ( fn)< t, we call t̃ := σ( f ) + (t −σ( fn))∧σ(g) and we have

| fn • gn(t)− f • g( t̃)| = |gn((t −σ( fn))∧σ(gn))− g((t −σ( fn))∧σ(g))| ≤ dK (gn, g)< ǫ.

In both cases, |t − t̃ |< η, so that | f • g( t̃)− f • g(t)| < ǫ. Hence 86

dK ( fn • gn, f • g)< |σ( fn)−σ( f )|+ |σ(gn)−σ(g)|+ 2ǫ < 4ǫ.

This ensures us that L(n) converges in (K , dK ) toward L∞, so that
�

d◦
(n)(s, t)

�
0≤s,t≤1

converges in
�
C ([0,1]2,R),‖ · ‖∞

�
toward

�
d◦∞(s, t)

�
0≤s,t≤1

defined by

d◦∞(s, t) := L∞(s) +L∞(t)− 2 max

 
min

x∈
−−→
[s,t]

L∞(x), min
x∈
−−→
[t,s]

L∞(x)

!
.

Tightness

Lemma 19. The sequence of the laws of the processes
�

d(n)(s, t)
�

0≤s,t≤1

is tight in the space of probability measure on C ([0,1]2,R).
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Proof. First observe that, for every s, s′, t, t′ ∈ [0,1],

��d(n)(s, t)− d(n)(s
′, t′)

��≤ d(n)(s, s
′) + d(n)(t, t′)≤ d◦

(n)(s, s
′) + d◦

(n)(t, t′).

By Fatou’s lemma, we have for every k ∈ N and δ > 0,

lim sup
n→∞
P

�
sup
|s−s′|≤δ

d◦
(n)(s, s

′)≥ 2−k

�
≤ P

�
sup
|s−s′|≤δ

d◦∞(s, s
′)≥ 2−k

�
.

Since d◦∞ is continuous and null on the diagonal, for ǫ > 0, we may find δk > 0 such that, for n
sufficiently large,

P

 
sup
|s−s′|≤δk

d◦
(n)(s, s

′)≥ 2−k

!
≤ 2−kǫ. (33)

By taking δk even smaller if necessary, we may assume that the inequality (33) holds for all n ≥ 1.

Summing over k ∈ N, we find that for every n≥ 1,

P

�
d(n) ∈Kǫ

�
≥ 1− ǫ,

where

Kǫ :=

�
f ∈ C ([0,1]2,R) : f (0,0) = 0, ∀k ∈ N, sup

|s−s′|∧|t−t ′|≤δk

�� f (s, t)− f (s′, t′)
�� ≤ 21−k

�

is a compact set. �

6.3 The genus g Brownian map

Proof of the first assertion of Theorem 1

Thanks to Lemma 19, there exist a subsequence (nk)k≥0 and a function d∞ ∈ C ([0,1]2,R) such that

�
d(nk)

(s, t)
�

0≤s,t≤1

(d)−−−→
k→∞

�
d∞(s, t)

�
0≤s,t≤1 . (34)

By the Skorokhod theorem, we will assume that this convergence holds almost surely. As the d(n)
functions, the function d∞ obeys the triangular inequality. And because d(n)(s, s) = O(n−1/4) for all

s ∈ [0,1], the function d∞ is actually a pseudo-metric. We define the equivalence relation associated

with it by saying that s ∼∞ t if d∞(s, t) = 0, and we call q∞ := [0,1]/∼∞ .

We will show the convergence claimed in Theorem 1 along the same subsequence (nk)k≥0. Thanks

to (31), we only need to see that

dGH

��
(2nk)

−1¹0,2nkº/∼nk
, d(nk)

�
,
�
q∞, d∞

��
−−−→
k→∞

0.

For that matter, we will use the characterization of the Gromov-Hausdorff distance via correspon-

dences. Recall that a correspondence between two metric spaces (S ,δ) and (S ′,δ′) is a subset
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R ⊆ S ×S ′ such that for all x ∈ S , there is at least one x ′ ∈ S ′ for which (x , x ′) ∈ R and vice

versa. The distortion of the correspondence R is defined by

dis(R) := sup
�
|δ(x , y)− δ(x ′, y ′)| : (x , x ′), (y, y ′) ∈ R

	
.

Then we have [4, Theorem 7.3.25]

dGH(S ,S ′) =
1

2
inf
R

dis(R)

where the infimum is taken over all correspondences between S and S ′.

We define the correspondence Rn between
�
(2n)−1¹0,2nº/∼n

, d(n)
�

and
�
q∞, d∞

�
as the set

Rn :=
¦�
(2n)−1πn(⌊2nt⌋),π∞(t)

�
, t ∈ [0,1]

©

where πn : ¹0,2nº→ ¹0,2nº/∼n
and π∞ : [0,1]→ q∞ are both canonical projections. Its distor-

tion is

dis(Rn) = sup
0≤s,t≤1

���d(n)
�⌊2ns⌋

2n
,
⌊2nt⌋

2n

�
− d∞(s, t)

���,

and, thanks to (34),

dGH

��
(2nk)

−1¹0,2nkº/∼nk
, d(nk)

�
,
�
q∞, d∞

��
≤

1

2
dis
�
Rnk

�
−−−→
k→∞

0.

A bound on d∞

If we take the limit of the inequality (32) along the subsequence (nk)k≥0, we find d∞(s, t) ≤ d◦∞(s, t).
Because d◦∞ does not satisfy the triangular inequality, we may improve this bound by considering

the largest metric on q∞ that is smaller than d◦∞: for all a and b ∈ q∞, we have

d∞(a, b)≤ d∗∞(a, b) := inf

(
k∑

i=0

d◦∞(si, t i)

)

where the infimum is taken over all integer k ≥ 0 and all sequences s0, t0, s1, t1,. . . , sk, tk satisfying

a = π∞(s0), for all 0≤ i ≤ k− 1, t i ∼∞ si+1, and b = π∞(tk).

6.4 Hausdorff dimension of the genus g Brownian map

We now prove the second assertion of Theorem 1. We follow the method provided by Le Gall and

Miermont [18]. As usual, we proceed in two steps.

Upper bound

Let 0 < α < 1

4
. For every e ∈ ~E(s∞), Lemmas 12 and 17, together with (26), imply that Le

∞ is

α-Hölder. The same goes for L∞ by finite concatenation. This yields that the canonical projection

π∞ : ([0,1], | · |)→ (q∞, d∞) is α-Hölder as well: for 0≤ s, t ≤ 1,

d∞(π∞(s),π∞(t)) = d∞(s, t) ≤ d◦∞(s, t) ≤ 2‖L∞‖α |s− t|α.

It follows that dimH(q∞, d∞)≤ 1

α
dimH([0,1]). Taking the infimum over α ∈ (0,1/4), we have

dimH(q∞, d∞)≤ 4.
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Lower bound

We start with a lemma giving a lower bound on d∞(s, t). Let us first define a contour function

Cn : [0,2n]→ R+ for the g-tree tn by

Cn :=
�
C e1

n −σe1
n

�
•
�
C e1

n −σe2
n

�
• · · · •

�
C e1

n −σ
e2(6g−3)

n
�
+

2(6g−3)∑

i=1

σei
n

where the half-edges e1 = e∗, . . . , e2(6g−3) are sorted according to the facial order of sn. This function

is actually the contour function of the “large” forest consisting in the concatenation of f
e1
n , f

e2
n , . . . ,

f
e2(6g−3)

n . As usual, we define its rescaled version C(n), as well as its limit

C(n) −−−→n→∞
C∞ :=

�
C e1
∞ −σ

e1
∞
�
•
�
C e1
∞ −σ

e2
∞
�
• · · · •

�
C e1
∞ −σ

e2(6g−3)

∞
�
+

2(6g−3)∑

i=1

σei
∞

where, this time, the half-edges are sorted according to the facial order of s∞.

For 0≤ s, t ≤ 1, we define the set

L∞(s, t) :=

�
s ∧ t ≤ x ≤ s ∨ t : C∞(x) = C∞(s), C∞(x) = inf

[x∧s, x∨s]
C∞

�
.

It will become clearer in a moment what this set represents, while looking at its discrete analog.

Lemma 20. The following bound holds

d∞(s, t) ≥ L∞(s)− min
L∞(s,t)

L∞

Proof. This inequality follows easily by approximation, once we have shown its discrete analog:

dn(i, j) ≥ Ln(i)− min
Ln(i, j)

Ln (35)

where the set

Ln(i, j) :=

�
i ∧ j ≤ k ≤ i ∨ j : Cn(k) = Cn(i), Cn(k) = inf

[k∧i, k∨i]
Cn

�

represents the ancestral lineage of ṫn(i) between i and j. An integer k belongs toLn(i, j) if and only

if k is between i and j (first constraint), ṫn(k) lies in the same subtree as ṫn(i) (second constraint),

and ṫn(k) is an ancestor of ṫn(i) (third constraint). Beware that Ln( j, i) is in general a totally

different set.

We can suppose i 6= j. In order to show (35), we consider a geodesic path γ0, γ1, . . . , γdn(i, j) from

ṫn(i) to ṫn( j) and call k ∈ Ln(i, j) an integer for which Ln(k) = minLn(i, j)Ln. Let us call p the

order of the vertex ṫn(k). Then removing the edges incident to ṫn(k) breaks tn into p+ 1 connected

components: {̇tn(k)}, p − 1 trees, and a (p + 1)-th component (which is a g-tree, unless if ṫn(k)
belongs to the floor of a forest). One of these components contains ṫn(i) and another one contains

ṫn( j). Say that γr , r < dn(i, j) is the last vertex of the geodesic path lying in the same component

as ṫn(i). Then γr is linked by an edge of qn to γr+1, which lies in another component. Moreover,
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the facial sequence of tn must visit ṫn(k) between any time it visits γr and any time it visits γr+1 (in

that order or the other). The way we construct edges in the Chapuy-Marcus-Schaeffer bijection thus

imposes ln(̇tn(k))≥ ln(γr)∨ ln(γr+1). Finally,

dn(i, j)≥ dqn
(q̇n(i),γr)≥ dqn

(q̇n(i), vn)− dqn
(vn,γr) = ln(̇tn(i))− ln(γr),

and the same holds with r + 1 instead of r, yielding 1110

dn(i, j) ≥ ln(̇tn(i))− ln(̇tn(k)) = Ln(i)− min
Ln(i, j)

Ln.

Let us define the measure λ on q∞ as the image of the Lebesgue measure on [0,1] by the canonical

projection π∞ : [0,1]→ q∞. From now on, we work conditionally given the parameters vector I∞.

Let 0 ≤ s ≤ 1 be a point that is not of the form
∑k

i=1 mei
∞ for some k = 0, . . . , 2(6g − 3). This

means that it is not 0, 1, or a point at which two functions are being concatenated. Such points will

thereafter be called junction points.

Suppose that for some δ > 0, we can find two positive numbers r− and r+ such that

L∞(s)− min
L∞(s,s−r−)

L∞ > δ and L∞(s)− min
L∞(s,s+r+)

L∞ > δ. (36)

For a ∈ q∞ and r > 0, we call B∞(a, r) the open ball centered at a with radius r for the metric d∞.

Using Lemma 20 and the elementary fact thatL∞(s, t) ⊆L∞(s, t′) as soon as |t−s| ≤ |t′−s|, we find

that B∞(π∞(s),δ)⊆ π∞
�
(s− r−, s+ r+)

�
. As a result, we would have λ(B∞(π∞(s),δ))≤ r− + r+.

For all 0≤ x ≤ C∞(s)− C∞(s), we define

τx := inf
�

r ≥ s, C∞(r) = C∞(s)− x
	

and we see that L∞(s,τx ) = {τy , 0≤ y ≤ x}. The discussion preceding Section 5.3 shows that the

process �
L∞(τx)−L∞(s)

�
0≤x≤C∞(s)−C∞(s)

has the law of a real Brownian motion started from 0. Let η > 0. Almost surely, provided that

C∞(s)− C∞(s)> 0, the law of the iterated logarithm ensures us that for x small enough,

inf
0≤y≤x

(L∞(τy)−L∞(s))< −x
1

2
+η,

so that

L∞(s)− min
L∞(s,τx)

L∞ = L∞(s)− inf
0≤y≤x

L∞(τy)> x
1

2
+η.

We choose δ = x
1

2
+η and r+ = τx − s so that the second part of (36) holds. Moreover, because

s is not a junction point, on one of its neighborhoods, the function C∞ is a first-passage Brownian

bridge, and is then absolutely continuous with respect to the Wiener measure on this neighborhood.

It therefore obeys the law of the iterated logarithm as well. So, a.s., for r small enough,

inf
0≤t≤r

(C∞(s+ t)− C∞(s))< −r
1

2
+η.
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It follows that r+ ≤ x (
1

2
+η)−1

= δ(
1

2
+η)−2

= δ4−η′ for some η′ > 0. In a similar way, we can find

an r− < δ
4−η′ satisfying the first part of (36). This yields, for all δ > 0 small enough,

λ(B∞(π∞(s),δ))≤ 2δ4−η′ ,

which implies that, for all η′ > 0,

lim sup
δ→0

λ(B∞(π∞(s),δ))

δ4−η′ ≤ 2. (37)

Once again, because C∞ is absolutely continuous with respect to the Wiener measure on a neigh-

borhood of s, a.s. C∞(s)− C∞(s) > 0. For the record, note that if s was a junction point, we would

always have C∞(s) = C∞(s) by definition of a first-passage bridge. We obtain that for every s that

is not a junction point, (37) holds almost surely. Finally, as there are only 2(6g − 3) + 1 junction

points, Fubini-Tonelli’s theorem shows that a.s., for λ-almost every a,

lim sup
δ→0

λ(B∞(a,δ))

δ4−η′ ≤ 2.

We then conclude that dimH(q∞, d∞) ≥ 4 − η′ for all η′ > 0 by standard density theorems for

Hausdorff measures ([11, Theorem 2.10.19]).

7 An expression of the constant t g

This section is dedicated to the proof of Theorem 2. Recall that the constant tg is defined by:

|Qn| ∼ tg n
5

2
(g−1) 12n. The relation (3) gives that |Tn| ∼ 1

2
tg n

5g−3

2 12n, so that, thanks to (17),

tg = 2
3g+1

2 3g Υ

where Υ was defined by (14). For a given s ∈S∗, we will concentrate on

∫

S s

dL s 1{me∗≥0, u<me∗}
∏

e∈~E(s)
−p′me (σ

e)
∏

e∈Ě(s)

pσe (le) . (38)

First, notice that by integrating with respect to u, only a factor me∗ appears.

7.1 Integrating with respect to (me)e∈~E(s)\{e∗}

For e 6= e∗, me is only present in the factor

me∗
�
−p′me∗ (σ

e∗)
��
−p′me(σ

e)
�
= σe∗ pme∗ (σ

e∗)
�
−p′me(σ

e)
�

, (39)

so we have to compute an integral of the form given in the following lemma:

Lemma 21. Let a, b, and t be three positive numbers. Then
∫ t

0

pt−m(a)
�
−p′m(b)

�
dm= pt(a+ b).
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Proof. Let us call ft(a, b) the integral we have to compute, that is

ft(a, b) =
b

2π

∫ t

0

(t −m)−
1

2 m−
3

2 e
− 1

2

�
a2

t−m
+ b2

m

�

dm.

By doing the change of variable m 7→ m
t−m

, we find

ft(a, b) =
b

2πt

∫ ∞

0

x−
3

2 e−
1

2t

�
a2(1+x)+b2

�
1+ 1

x

��
d x

The change of variable x 7→ a2

b2 x in this integral yields the identity

ft(a, b) = ft(b, a). (40)

When differentiating with respect to a, a factor − a
t
(1+ x) appears inside the integral. We may split

it into two terms, the first one being merely − a
t

ft(a, b) and the second one being

−
b

t

a

2πt

∫ ∞

0

x−
1

2 e−
1

2t

�
a2(1+x)+b2

�
1+ 1

x

��
d x = −

b

t
ft(b, a) = −

b

t
ft(a, b),

thanks to the change of variable x 7→ 1

x
. All in all, we obtain

∂a ft(a, b) = −
a+ b

t
ft(a, b),

so that there exists a function gt satisfying

ft(a, b) = e−
1

2t
(a+b)2 gt(b).

Because of (40), the function gt is actually constant and

gt(b) = e
1

2t ft(0,1) =
1

2πt

∫ ∞

0

x−
3

2 e−
1

2t x d x =
1

2πt

∫ ∞

0

e−
1

2t
y2

d y =
1
p

2πt
.

Putting all this together, we obtain the result. �

The first time we integrate with respect to an me, for an e 6= e∗, we apply Lemma 21 with a = σe∗ ,

b = σe and t = me∗ +me (t does not depend on me) and the factor (39) is changed into

σe∗ pme∗+me(σe∗ +σe).

We may then apply Lemma 21 again, with a = σe∗ + σe, b = σe′ and t = me∗ + me + me′ when

integrating with respect to me′ and so on. In the end, after integrating with respect to u and (me)e 6=e∗ ,
the 1{me∗≥0, u<me∗ }

∏

e∈~E(s)
−p′me (σ

e)

part in the integrand of (38) merely becomes

σe∗ p1

�∑
e∈~E(s)σ

e
�
= σe∗ p

�
2
∑

e∈Ě(s)σ
e
�
=
σe∗

p
2π

e
−2
�∑

e∈Ě(s)σ
e

�2

.
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7.2 Integrating with respect to (σe)e∈Ě(s)

We call s =
∑

e∈Ě(s)σ
e. In order to integrate with respect to (σe)e∈Ě(s), we will integrate with respect

to s and with respect to (σe)e∈Ě(s) on the simplex, precisely,

d(σe)e∈Ě(s) = ds1{σe∗>0} d(σ
e)e∈Ě(s)\{e∗},

where σe∗ = s−
∑

e∈Ě(s)\{e∗}σ
e.

We then do the changes of variables σe 7→ sσe and l v 7→ ps l v for all e 6= e∗ and v 6= e−∗ , so that σe∗

becomes 1−
∑

e∈Ě(s)\{e∗}σ
e and the integral (38) becomes

∫
d(l v)

1
p

2π

∫ ∞

0

ds s5g−3 e−2s2

∫
d(σe)e 6=e∗1{σe∗>0} σ

e∗
∏

e∈Ě(s)

pσe (le) .

The first part is easily enough dealt with,

∫ ∞

0

ds s5g−3 e−2s2

= 2−
5g
2 Γ

�
5g

2
− 1

�
.

We then focus on ∫
d(σe)e 6=e∗1{σe∗>0} σ

e∗
∏

e∈Ě(s)

pσe (le) = ϕ
�
(|le|)e∈Ě(s)

�
,

where the function ϕ is defined, for x e > 0, e ∈ Ě(s) by

ϕ
�
(x e)e∈Ě(s)

�
:=

∫
d(σe)e 6=e∗1{σe∗>0} σ

e∗
∏

e∈Ě(s)

pσe (x e) .

If we differentiate this function ϕ with respect to every variables x e, we recognize the same integral

we treated while integrating with respect to (me),

∏

e∈Ě(s)

�
−∂xe

�
ϕ
�
(x e)e∈Ě(s)

�
=

∫
d(σe)e 6=e∗1{σe∗>0} σ

e∗
∏

e∈Ě(s)

�
−p′σe (x e)

�

= x e∗ p1

�∑
e∈Ě(s) x e

�
.

Integrating back, we obtain

ϕ
�
(x e)e∈Ě(s)

�
= p[6g−1]

�∑
e∈Ě(s) x e

�
+ x e∗ p[6g−2]

�∑
e∈Ě(s) x e

�
,

where, for all n≥ 1, the functions p[n] are defined by

p[n](y) :=

∫ ∞

y

d yn−1

∫ ∞

yn−1

d yn−2 . . .

∫ ∞

y2

d y1 p1(y1). (41)

The integral (38) is now equal to some constant times
∫

d(l v)v 6=e−∗ p[6g−1]
�∑

e∈Ě(s) |le|
�
+ |le∗ | p[6g−2]

�∑
e∈Ě(s) |le|

�
. (42)
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7.3 Integrating with respect to (l v)v∈V (s)\{e−∗ }

We follow here the ideas of [6]. The term
∑

e∈Ě(s) |le| is a linear combination of l v ’s. We will break

the integral (42) into parts on which these coefficients are constant. This happens when the vertex

labels are sorted according to a given ordering: we call Os the set of bijections from ¹0,4g−3º into

V (s).

Let λ ∈ Os be an ordering and v ∈ V (s). Because s is dominant, v is connected to exactly three other

vertices—not necessarily distinct—that we call v′, v′′, and v′′′. When the labels are sorted according

to λ, that is when lλ0 < lλ1 < · · ·< lλ4g−3 , the coefficient of l v in the sum
∑

e∈Ě(s) |le| is

c(λ, v) := 2

�1n
λ−1

v′ <λ
−1
v

o + 1n
λ−1

v′′<λ
−1
v

o+ 1n
λ−1

v′′′<λ
−1
v

o
�
− 3.

For 0≤ k ≤ 4g − 3, we let

d(λ, k) :=

4g−3∑

i=k

c(λ,λi).

Let e ∈ Ě(s) be a half-edge and i (resp. j) be the smaller (resp. larger) of λ−1
e−

and λ−1
e+

. Then

|le| = lλ j − lλi and e will contribute to the sum by a factor +1 for lλ j and −1 for lλi . So e will

contribute to d(λ, k) by a factor +1 for k ≤ j plus a factor −1 for k ≤ i. Thus the definition we just

gave for d(λ, k) is consistent with (2). This, by the way, also prove that d(λ, k)> 0 for k 6= 0.

We have
∑

e∈Ě(s)

|le| =
∑

v∈V (s)

c(λ, v) l v =

4g−3∑

i=1

d(λ, i)
�

lλi − lλi−1

�
.

Let us call k = λ−1
e−∗

. We will write 1λ := 1{lλ0<lλ1<···<lλ4g−3} for short. We integrate1λ p[6g−1]

 
4g−3∑

i=1

d(λ, i)
�

lλi − lλi−1

�
!

with respect to lλ4g−3, then lλ4g−4, and so on up to lλk+1. We then integrate with respect to lλ0, lλ1, . . . ,

lλk−1. By doing so, factors
�
d(λ, 4g − 3)

�−1
,
�
d(λ, 4g − 4)

�−1
, . . . , (d(λ, k+ 1))−1 then (d(λ, 1))−1,

(d(λ, 2))−1, . . . , (d(λ, k))−1 successively appear and every time we integrate, p[n] is changed into

p[n+1]. All in all,

∫
d(l v)v 6=e−∗ 1λ p[6g−1]

�∑
e∈Ě(s) |le|

�
= p[10g−4](0)

4g−3∏

i=1

1

d(λ, i)
.

The second part of (42) is a little bit trickier because it distinguishes the root from the other vertices.

In order to circumvent this, we will consider the sum over all scheme with the same “unrooted”

structure (we do not consider an ordering λ at this time). For any scheme s ∈ S, we note s
9

the

non-rooted scheme corresponding to s, and for any non-rooted scheme u, we note ue the scheme u

rooted at the half-edge e.
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Let u be a non-rooted scheme. We look at
∑

s, s
9
=uψ(s) where

ψ(s) :=

∫
d(l v)v 6=e−∗ |l

e∗ | p[6g−2]
�∑

e∈Ě(s) |le|
�

.

This is
∑

s, s
9
=u

ψ(s) =
1

Aut(u)

∑

e∈~E(u)
ψ(ue)

=
1

|{s, s9 = u}|
∑

s, s
9
=u

1

Aut(u)

∑

e∈~E(u)
ψ(ue)

=
∑

s, s
9
=u

1

6g − 3

∑

e∈~E(u)
ψ(ue).

We chose the convention to fix le
−
∗ to be 0 because we needed one of the l v ’s to be 0 and e−∗ was

already distinguished as the root. This choice was totally arbitrary and we could have taken any

other vertex v0. This translates in the fact that, for any function χ,
∫

d(l v)v 6=e−∗ χ
�
(le)e∈Ě(s)

�

does not actually depend on e−∗ . In order to see this properly, we do the following change of vari-

ables:

for every v /∈ {v0, e−∗ }, l̃ v := l v − l v0 , l̃e
−
∗ := −l v0 and l̃ v0 := 0,

so that l̃e = le; and
∫

d(l v)v 6=e−∗ χ
�
(le)e∈Ě(s)

�
=

∫
d(l v)v 6=v0

χ
�
(le)e∈Ě(s)

�
.

Using this fact, we see that

ψ(ue) =

∫
d(l v)v 6=e− |le| p[6g−2]

�∑
e′∈Ě(s) |le

′ |
�
=

∫
d(l v)v 6=e−∗ |l

e| p[6g−2]
�∑

e′∈Ě(s) |le
′ |
�

,

and ∑

s, s
9
=u

ψ(s) =
∑

s, s
9
=u

1

6g − 3

∫
d(l v)v 6=e−∗

�∑
e∈Ě(s) |le|

�
p[6g−2]

�∑
e∈Ě(s) |le|

�
.

We now consider an ordering λ ∈ Os. A computation very similar to the one we conducted above

(just change p[6g−1] into x 7→ x p[6g−2](x), which becomes, after 4g − 3 successive integrations,

x 7→ x p[10g−5](x)+ (4g − 3)p[10g−4](x)) yields

1

6g − 3

∫
d(l v)v 6=e−∗ 1λ ∑

e∈Ě(s)

|le| p[6g−2]
�∑

e∈Ě(s) |le|
�
=

4g − 3

6g − 3
p[10g−4](0)

4g−3∏

i=1

1

d(λ, i)
.

The sum over all dominant schemes of (42) then becomes

2(5g − 3)

6g − 3
p[10g−4](0)

∑

s∈S

∑

λ∈O
s

4g−3∏

i=1

1

d(λ, i)
.
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7.4 Conclusion

We still have to compute p[10g−4](0). For that matter, we may use Fubini-Tonnelli’s theorem and

rewrite (41), for n≥ 4, as

p[n](0) =

∫ ∞

0

d y1

∫ y1

0

d y2 . . .

∫ yn−2

0

d yn−1 p1(y1) =

∫ ∞

0

d y1

yn−2
1

(n− 2)!
p1(y1)

=
1

n− 2

∫ ∞

0

d y1

yn−4
1

(n− 4)!
p1(y1) =

1

n− 2
p[n−2](0),

where the second line is obtained from an integration by parts (we differentiate y 7→ yn−3 and

integrate y 7→ y p1(y)). As p[2](0) = 1

2
, we find that

p[10g−4](0) =
�

25g−2(5g − 3)!
�−1

.

Taking into account everything we have done so far, we find

tg =
1
p
π

3g Γ
�

5g
2
− 1
�

26g−3 (6g − 3) (5g − 2)!

∑

s∈S∗

∑

λ∈O
s

4g−3∏

i=1

1

d(λ, i)
.

The expression we claimed in (1) is then obtained by using the identity

Γ

�
5g

2
− 1

�
Γ

�
5g − 3

2

�
=
(5g − 2)!

25g−4

p
π.
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