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Abstract

We consider N × N Hermitian random matrices with independent identically distributed entries
(Wigner matrices). We assume that the distribution of the entries have a Gaussian component
with variance N−3/4+β for some positive β > 0. We prove that the local eigenvalue statistics
follows the universal Dyson sine kernel.
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1 Introduction

Certain spectral statistics of broad classes of N ×N random matrix ensembles are believed to follow
a universal behavior in the limit N →∞. Wigner has observed [30] that the density of eigenvalues
of large symmetric or hermitian matrices H with independent entries (up to the symmetry require-
ment) converges, as N →∞, to a universal density, the Wigner semicircle law. Dyson has observed
that the local correlation statistics of neighboring eigenvalues inside the bulk of the spectrum follows
another universal pattern, the Dyson sine-kernel in the N → ∞ limit [10]. Moreover, any k-point
correlation function can be obtained as a determinant of the two point correlation functions. The
precise form of the universal two point function in the bulk seems to depend only on the symmetry
class of the matrix ensemble (a different universal behavior emerges near the spectral edge [28]).

Dyson has proved this fact for the Gaussian Unitary Ensemble (GUE), where the matrix elements are
independent, identically distributed complex Gaussian random variables (subject to the hermitian
constraint). A characteristic feature of GUE is that the distribution is invariant under unitary conju-
gation, H → U∗HU for any unitary matrix U . Dyson found an explicit formula for the joint density
function of the N eigenvalues. The formula contains a characteristic Vandermonde determinant and
therefore it coincides with the Gibbs measure of a particle system interacting via a logarithmic po-
tential analogously to the two dimensional Coulomb gas. Dyson also observed that the computation
of two point function can be reduced to asymptotics of Hermite polynomials.

His approach has later been substantially generalized to include a large class of random matrix
ensembles, but always with unitary (orthogonal, symplectic, etc.) invariance. For example, a general
class of invariant ensembles can be given by the measure Z−1 exp(−Tr V (H))dH on the space of
hermitian matrices, where dH stands for the Lebesgue measure for all independent matrix entries,
Z is the normalization and V is a real function with certain smoothness and growth properties. For
example, the GUE ensemble corresponds to V (x) = x2.

The joint density function is explicit in all these cases and the evaluation of the two point function
can be reduced to certain asymptotic properties of orthogonal polynomials with respect to the weight
function exp(−V (x)) on the real line. The sine kernel can thus be proved for a wide range of
potentials V . Since the references in this direction are enormous, we can only refer the reader to
the book by Deift [9] for the Riemann-Hilbert approach, the paper by Levin and Lubinsky [23]
and references therein for approaches based on classical analysis of orthogonal polynomials, or the
paper by Pastur and Shcherbina [26] for a probabilistic/statistical physics approach. The book by
Anderson et al [1] or the book by Metha [25] also contain extensive lists of literatures.

Since the computation of the explicit formula of the joint density relies on the unitary invariance,
there have been very little progress in understanding non-unitary invariant ensembles. The most
prominent example is the Wigner ensemble or Wigner matrices, i.e., hermitian random matrices with
i.i.d. entries. Wigner matrices are not unitarily invariant unless the single entry distribution is
Gaussian, i.e. for the GUE case. The disparity between our understanding of the Wigner ensembles
and the unitary invariant ensembles is startling. Up until the very recent work of [14], there was
no proof that the density follows the semicircle law in small spectral windows unless the number of
eigenvalues in the window is at least

p
N . This is entirely due to a serious lack of analytic tools for

studying eigenvalues once the mapping between eigenvalues and Coulomb gas ceases to apply. At
present, there are only two rigorous approaches to eigenvalue distributions: the moment method
and Green function method. The moment method is restricted to studying the spectrum near the
edges [28]; the precision of the Green function method seems to be still very far from getting
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information on level spacing [6].

Beyond the unitary ensembles, Johansson [21] proved the sine-kernel for a broader category of
ensembles, i.e., for matrices of the form H + sV where H is a Wigner matrix, V is an independent
GUE matrix and s is a positive constant of order one. (Strictly speaking, in the original work [21],
the range of the parameter s depends on the energy E. This restriction was later removed by
Ben Arous and Péché [3], who also extended this approach to Wishart ensembles). Alternatively
formulated, if the matrix elements are normalized to have variance one, then the distribution of the
matrix elements of the ensemble H+ sV is given by ν ∗Gs, where ν is the distribution of the Wigner
matrix elements and Gs is the centered Gaussian law with variance s2. Johasson’s work is based on
the analysis of the explicit formula for the joint eigenvalue distribution of the matrix H + sV (see
also [7]).

Dyson has introduced a dynamical version of generating random matrices. He considered a matrix-
valued process H + sV where V is a matrix-valued Brownian motion. The distribution of the eigen-
values then evolves according to a process called Dyson’s Brownian motions. For the convenience of
analysis, we replace the Brownian motions by an Ornstein-Uhlenbeck process so that the distribu-
tion of GUE is the invariant measure of this modified process, which we still call Dyson’s Brownian
motion. Dyson’s Brownian motion thus can be viewed as a reversible interacting particle system
with a long range (logarithmic) interaction. This process is well adapted for studying the evolution
of the empirical measures of the eigenvalues, see [18]. The sine kernel, on the other hand, is a very
detailed property which typically cannot be obtained from considerations of interacting particle sys-
tems. The Hamiltonian for GUE, however, is strictly convex and thus the Dyson’s Brownian motion
satisfies the logarithmic Sobolev inequality (LSI). It was noted in the derivation of the Navier-Stokes
equations [12; 27] that the combination of the Guo-Papanicolaou-Varadhan [20] approach and LSI
provides very detailed estimates on the dynamics.

The key observation of the present paper is that this method can also be used to estimate the
approach to local equilibria so precisely that, after combining it with existing techniques from or-
thogonal polynomials, the Dyson sine kernel emerges. In pursuing this approach, we face two major
obstacles: 1. Good estimate of the initial entropy, 2. Good understanding of the structure of local
equilibria. It turns out that the initial entropy can be estimated using the explicitly formula for the
transition kernel of the Dyson’s Brownian motion (see [7] and [21]) provided strong inputs on the
local semicircle law [14] and level repulsion [15] are available.

The structure of local equilibria, however, is much harder to analyze. Typically, the local equilibrium
measures are finite volume Gibbs measures with short range interaction and the boundary effects
can be easily dealt with in the high temperature phase. In the GUE case, the logarithmic poten-
tial does not even decay at large distance and the equilibrium measure can depend critically on the
boundary conditions. The theory of orthogonal polynomials provides explicit formulae for the corre-
lation functions of this highly correlated Gibbs measure. These formulae can be effectively analyzed
if the external potential (or logarithm of the weight function in the terminology of the orthogonal
polynomials) is very well understood. Fortunately, we have proved the local semicircle law up to
scales of order 1/N and the level repulsion, which can be used to control the boundary effects. By
invoking the theorem of Levin and Lubinsky [23] and the method of Pastur and Shcherbina [26] we
are led to the sine kernel.

It is easy to see that adding a Gaussian component of size much smaller than N−1 to the original
Wigner matrix would not move the eigenvalues sufficiently to change the local statistics. Our re-
quirement that the Gaussian component is at least of size N−3/4 comes from technical estimates
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to control the initial global entropy and it does not have any intrinsic meaning. The case that the
variance is of order N−1, however, is an intrinsic barrier which is difficult to cross. Nevertheless,
we believe that our method may offer a possible strategy to prove the universality of sine kernel for
general Wigner matrices.

After this manuscript had been completed, we found a different approach to prove the Dyson sine
kernel [16], partly based on a contour integral representation for the two-point correlation function
[7; 21]. Shortly after our manuscripts were completed, we learned that our main result was also
obtained by Tao and Vu in [29] with a different method under no regularity conditions on the initial
distribution ν provided the third moment of ν vanishes.

Although the results in this paper are weaker than those in [16] and [29], we believe that the
method presented here has certain independent interest. Unlike [16] and [29], this approach does
not use the contour integral representation of the two point correlation function. Hence, it may
potentially have a broader applicability to other matrix ensembles for which such representation is
not available.

Acknowledgements. We would like to thank the referees for suggesting several improvements of the
presentation.

2 Main theorem and conditions

Fix N ∈ N and we consider a Hermitian matrix ensemble of N × N matrices H = (h`k) with the
normalization

h`k = N−1/2z`k, z`k = x`k + i y`k, (2.1)

where x`k, y`k for ` < k are independent, identically distributed random variables with distribution
ν = ν (N) that has zero expectation and variance 1

2
. The diagonal elements are real, i.e. y`` = 0

and and x`` are also i.i.d., independent from the off-diagonal ones with distribution eν = eν (N) that
has zero expectation and variance one. The superscript indicating the N -dependence of ν , eν will be
omitted.

We assume that the probability measures ν and eν have a small Gaussian component of variance
N−3/4+β where β > 0 is some fixed positive number. More precisely, we assume there exist proba-
bility measures ν0 and eν0 with zero expectation and variance 1

2
and 1, respectively, such that

ν = νs ∗ Gs/
p

2, eν = eνs ∗ Gs, (2.2)

where Gs(x) = (2πs)−1 exp(−x2/2s) is the Gaussian law with variance s2 and νs, eνs are the rescaling
of the laws ν0, eν0 to ensure that ν and eν have variance 1/2 and 1; i.e, explicitly

νs(dx) = (1− s2)−1/2ν0(dx(1− s2)−1/2), eνs(dx) = (1− s2)−1/2
eν0(dx(1− s2)−1/2).

This requirement is equivalent to considering random matrices of the form

H = (1− s2)1/2 bH + sV, (2.3)

where bH is a Wigner matrix with single entry distribution ν0 and eν0, and V is a GUE matrix whose
elements are centered Gaussian random variables with variance 1/N .
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Furthermore, we assume that ν is absolutely continuous with positive density functions h(x) > 0,
i.e. we can write it as dν(x) = h(x)dx = exp(−g(x))dx with some real function g. We assume the
following conditions:

• The measure dν satisfies the logarithmic Sobolev inequality, i.e. there exists a constant S such
that

∫

R
u log u dν ≤ S

∫

R
|∇
p

u|2dν (2.4)

holds for any density function u> 0 with
∫

u dν = 1.

• The Fourier transform of the functions h and h(∆g) satisfy the decay estimates

|bh(t, s)| ≤
1

�

1+ω(t2+ s2)
�9 , |Õh∆g(t, s)| ≤

1
�

1+ eω(t2+ s2)
�9 (2.5)

with some constants ω, eω> 0.

• There exists a δ0 > 0 such that for the distribution of the diagonal elements

D0 :=

∫

R
exp
�

δ0 x2�deν(x)<∞ . (2.6)

Although the conditions are stated directly for the measures ν and eν , it is easy to see that it is
sufficient to assume that ν0 satisfies (2.4) and (2.5) and eν0 satisfies (2.6). We remark that (2.4)
implies that (2.6) holds for ν instead of eν as well (see [22]).

The eigenvalues of H are denoted by λ1,λ2, . . .λN . The law of the matrix ensemble induces a proba-
bility measure on the set of eigenvalues whose density function will be denoted by p(λ1,λ2, . . . ,λN ).
The eigenvalues are considered unordered for the moment and thus p is a symmetric function. For
any k = 1,2, . . . , N , let

p(k)(λ1,λ2, . . .λk) :=

∫

RN−k

p(λ1,λ2, . . . ,λN )dλk+1 . . . dλN

be the k-point correlation function of the eigenvalues. The k = 1 point correlation function (density)
is denoted by %(λ) := p(1)(λ). With our normalization convention, the density %(λ) is supported in
[−2, 2] and in the N →∞ limit it converges to the Wigner semicircle law given by the density

%sc(x) =
1

2π

p

4− x2 1[−2,2](x). (2.7)

The main result of this paper is the following theorem:

Theorem 2.1. Fix arbitrary positive constants β > 0 and κ > 0. Consider the Wigner matrix ensemble
with a Gaussian convolution of variance s2 = N−3/4+β given by (2.3) and assume (2.4)–(2.6). Let p(2)

be the two point correlation function of the eigenvalues of this ensemble. Let |E0|< 2−κ and

O(a, b) = g(a− b)h
�a+ b

2

�

(2.8)
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with g, h smooth and compactly supported functions such that h≥ 0 and
∫

h= 1. Then we have

lim
δ→0

lim
N→∞

1

2δ

∫ E0+δ

E0−δ
dE

∫ ∫

dadb O(a, b)
1

ρ2
sc(E)

p(2)
�

E +
a

ρsc(E)N
, E +

b

ρsc(E)N

�

=

∫

R
g(u)

�

1−
�sinπu

πu

�2
�

du.

(2.9)

The factor g in the observable (2.8) tests the eigenvalue differences. The factor h, that disappears
in the right hand side of (2.9), is only a normalization factor. Thus the special form of observable
(2.8) directly exhibits the fact that the local statistics is translation invariant.

Conventions. All integrations with unspecified domains are on R. We will use the letters C and c to
denote general constants whose precise values are irrelevant and they may change from line to line.
These constants may depend on the constants in (2.4)–(2.6).

2.1 Outline of the proof

Our approach has three main ingredients. In the first step, we use the entropy method from hydro-
dynamical limits to establish a local equilibrium of the eigenvalues in a window of size N−1+ε (with
some small ε > 0), i.e. window that typically contains n= N ε eigenvalues. This local equilibrium is
subject to an external potential generated by all other eigenvalues. In the second step we then prove
that the density of this equilibrium measure is locally constant by using methods from orthogonal
polynomials. Finally, in the third step, we employ a recent result [23] to deduce the sine-kernel. We
now describe each step in more details.

Step 1.

We generate the Wigner matrix with a small Gaussian component by running a matrix-valued
Ornstein-Uhlenbeck process (3.1) for a short time of order t ∼ N−ζ, ζ > 0. This generates a
stochastic process for the eigenvalues which can be described as Ornstein-Uhlenbeck processes for
the individual eigenvalues with a strong interaction (3.10).

This process is the celebrated Dyson’s Brownian motion (DBM) [11] and the equilibrium measure
is the GUE distribution of eigenvalues. The transition kernel can be computed explicitly (5.12)
and it contains the determinantal structure of the joint probability density of the GUE eigenvalues
that is responsible for the sine-kernel. This kernel was analyzed by Johansson [21] assuming that
the time t is of order one, which is the same order as the relaxation time to equilibrium for the
Dyson’s Brownian motions. The sine-kernel, however, is a local statistics, and local equilibrium can
be reached within a much shorter time scale. To implement this idea, we first control the global
entropy on time scale N−1 by N1+α, with α > 1/4 (Section 5.2).

More precisely, recall that the entropy of f µ with respect to a probability measure µ is given by

S( f ) = Sµ( f ) := S( f µ|µ) =
∫

f (log f )dµ.
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In our application, the measure µ is the Gibbs measure for the equilibrium distribution of the (or-
dered) eigenvalues of the GUE, given by the Hamiltonian

H (λ) = N







N
∑

i=1

λ2
i

2
−

2

N

∑

i< j

log |λ j −λi|






. (2.10)

If ft denotes the joint probability density of the eigenvalues at the time t with respect to µ, then the
evolution of ft is given by the equation

∂t ft = L ft , (2.11)

where the generator L is defined via the Dirichlet form

D(g) =

∫

g(−L)gdµ=
1

2N

N
∑

j=1

∫

(∇λ j
g)2dµ.

The evolution of the entropy is given by the equation

∂tS( ft) =−D(
p

ft).

The key initial entropy estimate is the inequality that

Sµ( fs) := S( fsµ|µ)≤ CαN1+α, s = 1/N (2.12)

for any α > 1
4

and for sufficiently large N . The proof of this estimate uses the explicit formula for
the transition kernel of (2.11) and several inputs from our previous papers [13; 14; 15] on the local
semicircle law and on the level repulsion for general Wigner matrices. We need to strengthen some
of these inputs; the new result will be presented in Section 4 with proofs deferred to Appendix A,
Appendix B and Appendix C.

It is natural to think of each eigenvalue as a particle and we will use the language of interacting
particle systems. We remark that the entropy per particle is typically of order one in the interacting
particle systems. But in our setting, due to the factor N in front of the Hamiltonian (2.10), the typical
size of entropy per particle is of order N . Thus for a system bearing little relation to the equilibrium
measure µ, we expect the total entropy to be O(N2). So the bound (2.12) already contains nontrivial
information. However, we believe that one should be able to improve this bound to α ∼ 0 and the
additional α > 1/4 power in (2.12) is only for technical reasons. This is the main reason why our
final result holds only for a Gaussian convolution with variance larger than N−3/4. The additional Nα

factor originates from Lemma 5.3 where we approximate the Vandermonde determinant appearing
in the transition kernel by estimating the fluctuations around the local semicircle law. We will
explain the origin of α > 1/4 in the beginning of Appendix D where the proof of Lemma 5.3 is
given.

From the initial entropy estimate, it follows that the time integration of the Dirichlet form is bounded
by the initial entropy. For the DBM, due to convexity of the Hamiltonian of the equilibrium measure
µ, the Dirichlet form is actually decreasing. Thus for t = τN−1 with some τ≥ 2 we have

D(
p

f t)≤ 2S( fN−1)t−1 ≤ CN2+ατ−1.

The last estimate says that the Dirichlet form per particle is bounded by N1+ατ−1. So if we take
an interval of n particles (with coordinates given by x = (x1, . . . , xn)), then on average the total
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Dirichlet form of these particles is bounded by nN1+ατ−1. We will choose n = N ε with some very
small ε > 0. As always in the hydrodynamical limit approach, we consider the probability law
of these n particles given that all other particles (denoted by y) are fixed. Denote by µy(dx) the
equilibrium measure of x given that the coordinates of the other N − n particles y are fixed. Let fy,t
be the conditional density of ft w.r.t. µy(dx) with y given. The Hamiltonian of the measure µy(dx)
is given by

Hy(x) = N







n
∑

i=1

1

2
x2

i −
2

N

∑

1≤i< j≤n

log |x j − x i| −
2

N

∑

k

n
∑

i=1

log |x i − yk|







and it satisfies the convexity estimate

HessHy(x)≥
∑

k

|x − yk|−2.

If y are regularly distributed, we have the convexity bound

HessHy(x)≥
cN2

n2 .

This implies the logarithmic Sobolev inequality

Sµy
( fy)≤ Cn2N−1Dy(

p

fy)≤ Cn6Nατ−1,

where in the last estimate some additional n-factors were needed to convert the local Dirichlet form
estimate per particle on average to an estimate that holds for a typical particle. Thus we obtain

�
∫

| fy− 1|dµy

�2

≤ Sµy
( fy)≤ Cn6Nατ−1 ≤ n−4� 1,

provided we choose t = N−1τ = Nβ−1 with β ≥ 10ε + α (Section 6). The last inequality asserts
that the two measures fyµy and µy are almost the same and thus we only need to establish the
sine kernel for the measure µy. At this point, we remark that this argument is valid only if y
is regularly distributed in a certain sense which we will call good configurations (Definition 4.1).
Precise estimates on the local semicircle law can be used to show that most external configurations
are good. Although the rigorous treatment of the good configurations and estimates on the bad
configurations occupy a large part of this paper, it is of technical nature and we deferred the proofs
of several steps to the appendices.

Step 2.

In Sections 8, 9 and 10, we refine the precision on the local density and prove that the density is
essentially constant pointwise. Direct probabilistic arguments to establish the local semicircle law in
[15] rely on the law of large numbers and they give information on the density on scales of much
larger than N−1, i.e. on scales that contain many eigenvalues. The local equilibrium is reached in
a window of size n/N and within this window, we can conclude that the local semicircle law holds
on scales of size nγ/N with an arbitrary small γ > 0. However, this still does not control the density
pointwise. To get this information, we need to use orthogonal polynomials.
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The density in local equilibrium can be expressed in terms of sum of squares of orthogonal polyno-
mials p1(x), p2(x), . . . with respect to the weight function exp (−nUy(x)) generated by the external
configuration y (see Section 8 for precise definitions). To get a pointwise bound from the appropri-
ate bound on average, we need only to control the derivative of the density, that, in particular, can
be expressed in terms of derivatives of the orthogonal polynomials pk. Using integration by parts
and orthogonality properties of pk, it is possible to control the L2 norm of p′k in terms of the L2 norm
of pk(x)U ′y(x). Although the derivative of the potential is singular, ‖pkU ′y‖2 can be estimated by a
Schwarz inequality at the expense of treating higher Lp norms of pk (Lemma 8.1). In this content,
we will exploit the fact that we are dealing with polynomials by using the Nikolskii inequality which
estimates higher Lp norms in terms of lower ones at the expense of a constant depending on the
degree. To avoid a very large constant in the Nikolskii inequality, in Section 7 we first cutoff the
external potential and thus we reduce the degree of the weight function.

We remark that our approach of using orthogonal polynomials to control the density pointwise was
motivated by the work of Pastur and Shcherbina [26], where they proved sine-kernel for unitary
invariant matrix ensembles with a three times differentiable potential function on the real line.
In our case, however, the potential is determined by the external points and it is logarithmically
divergent near the edges of the window.

Step 3.

Finally, in Section 11, we complete the proof of the sine-kernel by applying the main theorem
of [23]. This result establishes the sine-kernel for orthogonal polynomials with respect to an n-
dependent sequence of weight functions under general conditions. The most serious condition to
verify is that the density is essentially constant pointwise – the main result we have achieved in the
Step 2 above. We also need to identify the support of the equilibrium measure which will be done
in Appendix F.

We remark that, alternatively, it is possible to complete the third step along the lines of the argument
of [26] without using [23]. Using explicit formulae from orthogonal polynomials and the pointwise
control on the density and on its derivative, it is possible to prove that the local two-point correla-
tion function p(2)n (x , y) is translation invariant as n→∞. After having established the translation
invariance of p(2), it is easy to derive an equation for its Fourier transform and obtain the sine-kernel
as the unique solution of this equation. We will not pursue this alternative direction in this paper.

3 Dyson’s Brownian motion

3.1 Ornstein-Uhlenbeck process

We can generate our matrix H (2.3) from a stochastic process with initial condition bH. Consider the
following matrix valued stochastic differential equation

dHt =
1
p

N
dβ t −

1

2
Htdt (3.1)

where β t is a hermitian matrix-valued stochastic process whose diagonal matrix elements are stan-
dard real Brownian motions and whose off-diagonal matrix elements are standard complex Brown-
ian motions.
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For completeness we describe this matrix valued Ornstein-Uhlenbeck process more precisely. The
rescaled matrix elements zi j = N1/2hi j evolve according to the complex Ornstein-Uhlenbeck process

dzi j = dβi j −
1

2
zi jdt, i, j = 1, 2, . . . N . (3.2)

For i 6= j, β = βi j is a complex Brownian motion with variance one. The real and imaginary parts of
z = x + i y satisfy

dx =
1
p

2
dβx −

1

2
xdt, dy =

1
p

2
dβy −

1

2
ydt

with β = 1p
2
(βx + iβy) and where βx ,βy are independent standard real Brownian motions. For the

diagonal elements i = j in (3.2), βii is a standard real Brownian motion with variance 1.

To ensure zi j = z̄ ji , for i < j we choose βi j to be independent complex Brownian motion with
E |βi j|2 = 1, we set β ji := β̄i j and we let βii to be a real Brownian motion with Eβ2

ii = 1. Then

(dzik)(dz` j) = (dβik)(dβ̄ j`) = δi jδk`dt. (3.3)

We note that dTr H2 = 0, thus
Tr H2 = N (3.4)

remains constant for all time.

If the initial condition of (3.1) is distributed according to the law of bH, then the solution of (3.1) is
clearly

Ht = e−t/2
bH + (1− e−t)1/2V

where V is a standard GUE matrix (with matrix elements having variance 1/N) that is independent
of bH. With the choice of t satisfying (1 − e−t) = s2 = N−3/4+β , i.e. t = − log(1 − N−3/4+β) ≈
N−3/4+β , we see that H given in (2.3) has the same law as Ht .

3.2 Joint probability distribution of the eigenvalues

We will now analyze the eigenvalue distribution of Ht . Let λ(t) = (λ1(t),λ2(t), . . . ,λN (t)) ∈ RN

denote the eigenvalues of Ht . As t → ∞, the Ornstein-Uhlenbeck process (3.1) converges to the
standard GUE. The joint distribution of the GUE eigenvalues is given by the following measure eµ on
RN

eµ= eµ(dλ) =
e−H (λ)

Z
dλ, H (λ) = N







N
∑

i=1

λ2
i

2
−

2

N

∑

i< j

log |λ j −λi|






. (3.5)

The measure eµ has a density with respect to Lebesgue measure given by

eu(λ) =
N N2/2

(2π)N/2
∏N

j=1 j!
exp






−

N

2

N
∑

j=1

λ2
j






∆N (λ)

2, eµ(dλ) = eu(λ)dλ, (3.6)

where ∆N (λ) =
∏

i< j(λi − λ j). This is the joint probability distribution of the eigenvalues of the
standard GUE ensemble normalized in such a way that the matrix elements have variance 1/N (see,
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e.g. [25]). With this normalization convention, the bulk of the one point function (density) is
supported in [−2,2] and in the N →∞ limit it converges to the Wigner semicircle law (2.7).

For any finite time t <∞ we will represent the joint probability density of the eigenvalues of Ht as
ft(λ)eu(λ), with limt→∞ ft(λ) = 1. In particular, we write the joint distribution of the eigenvalues of
the initial Wigner matrix bH as f0(λ)eµ(dλ) = f0(λ)eu(λ)dλ.

3.3 The generator of Dyson’s Brownian motion

The Ornstein-Uhlenbeck process (3.1) induces a stochastic process for the eigenvalues.

Let L be the generator given by

L =
N
∑

i=1

1

2N
∂ 2

i +
N
∑

i=1

�

−
1

2
λi +

1

N

∑

j 6=i

1

λi −λ j

�

∂i (3.7)

acting on L2(eµ) and let

D( f ) =−
∫

f L f deµ=
N
∑

j=1

1

2N

∫

(∂ j f )2deµ (3.8)

be the corresponding Dirichlet form, where ∂ j = ∂λ j
. Clearly eµ is an invariant measure for the

dynamics generated by L.

Let the distribution of the eigenvalues of the Wigner ensemble be given by f0(λ)eµ(dλ). We will
evolve this distribution by the dynamics given by L:

∂t ft = L ft (3.9)

The corresponding stochastic differential equation for the eigenvalues λ(t) is now given by (see,
e.g. Section 12.1 of [19])

dλi =
dBip

N
+






−

1

2
λi +

1

N

∑

j 6=i

1

λi −λ j






dt, 1≤ i ≤ N , (3.10)

where {Bi : 1 ≤ i ≤ N} is a collection of independent Brownian motions and with initial condition
λ(0) that is distributed according to the probability density f0(λ)eµ(dλ).

We remark that eu(λ) and ft(λ) are symmetric functions of the variables λ j and eu vanishes whenever
two points coincide. By the level repulsion we also know that f0(λ)eu(λ) vanishes whenever λ j = λk
for some j 6= k. We can label the eigenvalues according to their ordering, λ1 < λ2 < . . . < λN , i.e.
one can consider the configuration space

Ξ(N) :=
n

λ= (λ1,λ2, . . . ,λN ) : λ1 < λ2 < . . .< λN

o

⊂ RN . (3.11)

instead of the whole RN . With an initial point in Ξ(N), the equation (3.10) has a unique solution and
the trajectories do not cross each other, i.e. the ordering of eigenvalues is preserved under the time
evolution and thus the dynamics generated by L can be restricted to Ξ(N); see, e.g. Section 12.1 of
[19]. The main reason is that near a coalescence point λi = λ j , i > j, the generator is

1

N

h1

2
∂ 2
λi
+

1

2
∂ 2
λ j
+

1

λi −λ j
(∂λ j
− ∂λi

)
i

=
1

2N

h1

2
∂ 2

a +
1

2
∂ 2

b +
1

b
∂b

i
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with a = 1
2
(λi+λ j), b = 1

2
(λi−λ j). The constant 1 in front of the drift term is critical for the Bessel

process 1
2
∂ 2

b +
1
b
∂b not to reach the boundary point b = 0.

Note that the symmetric density function eu(λ) defined on RN can be restricted to Ξ(N) as

u(λ) = N ! eu(λ)1(λ ∈ Ξ(N)). (3.12)

The density function of the ordered eigenvalues is thus ft(λ)u(λ) on Ξ(N). Throughout this paper,
with the exception of Section 5.2, we work on the space Ξ(N), i.e., the equilibrium measure µ(dλ) =
u(λ)dλ with density u(λ) and the density function ft(λ) will be considered restricted to Ξ(N).

4 Good global configurations

Several estimates in this paper will rely on the fact that the number of eigenvalues NI in intervals I
with length much larger than 1/N is given by the semicircle law [15]. In this section we define the
set of good global configurations, i.e. the event that the semicircle law holds on all subintervals in
addition to a few other typical properties.

Let

ω(dx) =
1

N

N
∑

j=1

δ(x −λ j) (4.1)

be the empirical density of the eigenvalues. For an interval I = [a, b] we introduce the notation

NI =N [a; b] = N

∫ b

a

ω(dx)

for the number of eigenvalues in I . For the interval [E −η/2, E +η/2] of length η and centered at
E we will also use the notation

Nη(E) :=N [E −η/2; E +η/2] .

Let

ωη(x) := (θη ∗ω)(x), with θη(x) =
1

π

η

x2+η2 (4.2)

be the empirical density smoothed out on scale η. Furthermore, let

m(z) =
1

N

N
∑

j=1

1

λ j − z
=

∫

R

ω(dx)
x − z

be the Stieltjes transform of the empirical eigenvalue distribution and

msc(z) =

∫

R

%sc(x)
x − z

dx =−
z

2
+

r

z2

4
− 1 (4.3)

be the Stieljes transform of the semicircle law. The square root here is defined as the analytic
extension (away from the branch cut [−2, 2]) of the positive square root on large positive numbers.
Clearly ωy(x) = π−1Im m(x + i y) for y > 0.

We will need an improved version of Theorem 4.1 from [15] that is also applicable near the spectral
edges. The proof of the following theorem is given in Appendix A.
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Theorem 4.1. Assume that the Wigner matrix ensemble satisfies conditions (2.4)–(2.6) and assume
that y is such that (log N)4/N ≤ |y| ≤ 1.

(i) For any q ≥ 1 we have
E |m(x + i y)|q ≤ Cq (4.4)

E [ωy(x)]
q ≤ Cq (4.5)

where Cq is independent of x and y.

(ii) Assume that |x | ≤ K for some K > 0. Then there exists c > 0 such that

P
��

�m(x + i y)−msc(x + i y)
�

�≥ δ
�

≤ C e−cδ
p

N |y| |2−|x || (4.6)

for all δ > 0 small enough and all N large enough (independently of δ). Consequently, we have

E |m(x + i y)−Em(x + i y)|q ≤
Cq

(N |y||2− |x ||)q/2
+ Cq1

�

N |y||2− |x || ≤ (log N)4
�

(4.7)

with some q-dependent constant Cq. Moreover,

|Em(x + i y)−msc(x + i y)| ≤
C

N |y|3/2|2− |x ||1/2
(4.8)

for all N large enough (independently of x , y).

(iii) Assuming |x | ≤ K and that
p

N |y||2− |x || ≥ (log N)2 we also have

|Em(x + i y)−msc(x + i y)| ≤
C

N |y||2− |x ||3/2
. (4.9)

As a corollary to Theorem 4.1, the semicircle law for the density of states holds locally on very short
scales. The next proposition can be proved, starting from Theorem 4.1, exactly as Eq. (4.3) was
shown in [13].

Proposition 4.1. Assuming (2.4)–(2.6), for any sufficiently small δ and for any η∗ with

Cδ−2(log N)4/N ≤ η∗ ≤ C−1 min{κ,δ
p
κ}

(with a sufficiently large constant C) we have

P
n

sup
E∈[−2+κ,2−κ]

�

�

�

Nη∗(E)
2Nη∗

−%sc(E)
�

�

�≥ δ
o

≤ Ce−cδ2
p

Nη∗κ. (4.10)

We also need an estimate directly on the number of eigenvalues in a certain interval, but this will be
needed only away from the spectral edge. The following two results estimate the deviation of the
normalized empirical counting function 1

N
N [−∞, E] = 1

N
#{λ j ≤ E} and its expectation

N(E) :=
1

N
EN [−∞, E] (4.11)

from the distribution function of the semicircle law, defined as

Nsc(E) :=

∫ E

−∞
%sc(x)dx . (4.12)
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Proposition 4.2. Assume that the Wigner matrix ensemble satisfies conditions (2.4)–(2.6). Let κ > 0
be fixed. For any 0< δ < 1 and |E| ≤ 2−κ, we have

P
n
�

�

�

N [−∞, E]
N

−Nsc(E)
�

�

�≥ δ
o

≤ C e−cδ
p

N (4.13)

with κ-dependent constants. Moreover, there exists a constant C > 0 such that
∫ ∞

−∞
|N(E)−Nsc(E)|dE ≤

C

N6/7
. (4.14)

The proof of this proposition will be given in Appendix B.

Next we define the good global configurations; the idea is that good global configurations are con-
figurations for which the semicircle law holds up to scales of the order (log N)4/N (and so that some
more technical conditions are also satisfied). By Proposition 4.1 and Proposition 4.2, we will see
that set of these configurations have, asymptotically, a full measure. As a consequence, we will be
able to neglect all configurations that are not good.

Let
n := 2[N ε/2] + 1, η∗m = 2mnγN−1, δm = 2−m/4n−γ/6 (4.15)

with some small constants 0 < ε,γ ≤ 1
10

and m = 0,1, 2, . . . , log N . Here [x] denotes the integer

part of x ∈ R. Note that within this range of m’s, Cδ−2
m (log N)4/N ≤ η∗m ≤ κ

3/4δ1/2
m is satisfied if

ε,γ are sufficiently small. Let

Ω(m) :=
n

sup
E∈[−2+κ/2,2−κ/2]

�

�

�

Nη∗m(E)

Nη∗m
−%sc(E)

�

�

�≤
1

(Nη∗m)
1/4

nγ/12
o

(4.16)

then we have
P(Ω(m))≥ 1− Ce−cnγ/6 (4.17)

with respect to any Wigner ensemble. This gives rise to the following definition.

Definition 4.1. Let η∗m = 2mnγN−1 with some small constant γ > 0, m = 0,1, 2, . . . log N, and let K
be a fixed big constant. The event

Ω :=
log N
⋂

m=0

Ω(m) ∩
n

�

�

N [−∞, 0]
N/2

− 1| ≤ n−γ/6
o

∩
n

sup
E
Nη∗0(E)≤ KNη∗0

o

∩
n

N (−K , K) = N
o

(4.18)

will be called the set of good global configurations.

Lemma 4.2. The probability of good global configurations satisfies

P(Ω)≥ 1− Ce−cnγ/6 (4.19)

with respect to any Wigner ensemble satisfying the conditions (2.4) and (2.5)
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Proof. The probability of Ω(m) was estimated in (4.17). The probability of the second event in
(4.18) can be estimated by (4.13) from Proposition 4.2 and from Nsc(0) = 1/2. The third event
is treated by the large deviation estimate on NI for any interval I with length |I | ≥ (log N)2/N
(see Theorem 4.6 from [15]; note that there is a small error in the statement of this theorem,
since the conditions y ≥ (log N)/N and |I | ≥ (log N)/N should actually be replaced by the stronger
assumptions y ≥ (log N)2/N and |I | ≥ (log N)2/N which are used in its proof):

P{NI ≥ KN |I |} ≤ e−c
p

KN |I |. (4.20)

The fourth event is a large deviation of the largest eigenvalue, see, e.g. Lemma 7.4. in [13]. �

In case of good configurations, the location of the eigenvalues are close to their equilibrium localition
given by the semicircle law. The following lemma contains the precise statement and it will be
proven in Appendix C.

Lemma 4.3. Let λ1 < λ2 < . . . < λN denote the eigenvalues in increasing order and let κ > 0. Then
on the set Ω and if N ≥ N0(κ), it holds that

|λa −N−1
sc (aN−1)| ≤ Cκ−1/2n−γ/6 (4.21)

for any Nκ3/2 ≤ a ≤ N(1−κ3/2) (recall the definition of Nsc from (4.12)), and
�

�

�N%sc(λa)(λb −λa)− (b− a)
�

�

�≤ Cκ−1/2�nγ|b− a|3/4+ N−1|b− a|2
�

(4.22)

for any Nκ3/2 ≤ a < b ≤ N(1−κ3/2) and |b− a| ≤ CNn−γ/6.

4.1 Bound on the level repulsion and potential for good configurations

Lemma 4.4. On the set Ω and with the choice n given in (4.15), we have

1

N
E
(1−κ3/2)N
∑

`=Nκ3/2

∑

j 6=`

1Ω
[N(λ j −λ`)]2

≤ Cn2γ. (4.23)

and
1

N
E
(1−κ3/2)N
∑

`=Nκ3/2

∑

j 6=`

1Ω
N(λ`−λ j)

≤ Cn2γ (4.24)

with respect to any Wigner ensemble satisfying the conditions (2.4) and (2.5)

Proof. First we partition the interval [−2+κ, 2−κ] into subintervals

Ir =
�

nγN−1(r −
1

2
), nγN−1(r +

1

2
)
�

, r ∈ Z, |r| ≤ r1 := (2−κ)Nn−γ, (4.25)

that have already been used in the proof of Lemma 4.3. On the set Ω we have the bound

N (Ir)≤ KN |Ir | ≤ Cnγ (4.26)
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on the number of eigenvalues in each interval Ir . Moreover, the constraint Nκ3/2 ≤ `≤ N(1−κ3/2)
implies, by (4.21), that |λ`| ≤ 2−κ for sufficiently small κ, thus λ` ∈ Ir with |r| ≤ r1.

We estimate (4.23) as follows:

A :=
1

N
E1Ω

∗
∑

j<`

1

[N(λ j −λ`)]2

=
1

N
E1Ω

∑

j<`

∑

k∈Z

∑

|r|≤r1

1(λ` ∈ Ir)1(2k ≤ N |λ j −λ`| ≤ 2k+1)

[N(λ j −λ`)]2

≤
1

N
E1Ω

∑

|r|≤r1

∑

j<`

∑

k∈Z
2−2k1

n

λ` ∈ Ir , 2k ≤ N |λ j −λ`| ≤ 2k+1
o

(4.27)

where the star in the first summation indicates a restriction to Nκ3/2 ≤ j < ` ≤ (1− κ3/2)N . By
(4.26), for any fixed r, the summation over ` with λ` ∈ Ir contains at most Cnγ elements. The
summation over j contains at most Cnγ elements if k < 0, since λ` ∈ Ir and |λ j −λ`| ≤ 2k+1N−1 ≤
N−1 imply that λ j ∈ Ir ∪ Ir+1. If k ≥ 0, then the j-summation has at most C(2k+ nγ) elements since
in this case λ j ∈

⋃

{Is : |s− r| ≤ C · 2kn−γ+ 1}. Thus we can continue the above estimate as

A≤
Cn2γ

N

∑

k<0

∑

|r|≤r1

2−2kP
n

∃I ⊂ Ir−1 ∪ Ir ∪ Ir+1 : |I | ≤ 2k+1N−1, NI ≥ 2
o

+
Cnγ

N

∑

k≥0

∑

|r|≤r1

2−2k(nγ+ 2k).
(4.28)

The second sum is bounded by Cn3γ. In the first sum, we use the level repulsion estimate by
decomposing Ir−1 ∪ Ir ∪ Ir+1 =

⋃

m Jm into intervals of length 2k+2N−1 that overlap at least by
2k+1N−1, more precisely

Jm =
h

nγN−1(r − 1−
1

2
) + 2k+1N−1(m− 1), nγN−1(r − 1−

1

2
) + 2k+1N−1(m+ 1)

i

,

where m= 1,2, . . . , 3nγ · 2−k−1. Then

P
n

∃I ⊂ Ir−1 ∪ Ir ∪ Ir+1 : |I | ≤ 2k+1N−1, NI ≥ 2
o

≤
3nγ·2−k−1
∑

m=1

P
�

NJm
≥ 2
	

Using the level repulsion estimate given in Theorem 3.4 of [15] (here the condition (2.5) is used)
and the fact that Jm ⊂ Ir−1 ∪ Ir ∪ Ir+1 ⊂ [−2+κ, 2−κ] since |r| ≤ r1, we have

P
�

NJm
≥ 2
	

≤ C(N |Jm|)4

and thus

A≤
Cn3γ

N

−1
∑

k=−∞

∑

|r|≤r1

2−2k2−k−1(2k+2)4 ≤ Cn2γ.

and this completes the proof of (4.23).
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For the proof of (4.24), we note that it is sufficient to bound the event when N |λ j − λ`| ≥ 1 after
using (4.23). Inserting the partition (4.25), we get

1

N
E1Ω

∗
∑

j<`

1(N |λ`−λ j| ≥ 1)

N(λ`−λ j)
=

1

N

∑

|r|,|s|≤r0

E1Ω
∑

j<`

1(λ j ∈ Ir ,λ` ∈ Is)1(N |λ`−λ j| ≥ 1)

N(λ`−λ j)

≤
C

N

∑

|r|,|s|≤r0

E1Ω
NIr
NIs

nγ[|s− r| − 1]++ 1

≤
Cn2γ

N

∑

|r|,|s|≤r0

1

nγ[|s− r| − 1]++ 1

≤ Cnγ log N .

Recalling the choice of n completes the proof of Lemma 4.4. �

5 Global entropy

5.1 Evolution of the entropy

Recall the definition of the entropy of f µ with respect to µ

Sµ( f ) := S( f µ|µ) =
∫

f (log f )dµ

and let ft solve (3.9). Then the evolution of the entropy is given by the equation

∂tS( ft) =−D(
p

ft)

and thus using that S( ft)> 0 we have

∫ t

s

D(
p

fu)du≤ S( fs). (5.1)

For dynamics with energyH and the convexity condition

Hess(H ) =∇2H ≥ Λ (5.2)

for some constant Λ, the following Bakry-Emery inequality [2] holds:

∂t D(
p

ft)≤−
Λ
N

D(
p

ft)

(notice the additional N factor due to the N−1 in front of the second order term in the generator L,
see (3.7)). This implies the logarithmic Sobolev inequality that for any probability density g, with
respect to µ,

D(
p

g) =−
∫

p
g L
p

gdµ≥
Λ
N

S(g) (5.3)
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In this case, the Dirichlet form is a decreasing function in time and we thus have for any t > s that

D(
p

f t)≤
S( fs)
t − s

(5.4)

In our setting, we have

Hess(H ) =
∂ 2H
∂ λi∂ λ j

= δi j






N +

∑

k 6= j

2

(λ j −λk)2






−δi 6= j

2

(λi −λ j)2
≥ N · Id (5.5)

as a matrix inequality away from the singularities (see remark below how to treat the singular set).
Thus we have

∂t D(
p

f t)≤−D(
p

f t) (5.6)

and by (5.3)
∂tS( ft)≤−S( ft) (5.7)

This tells us that S( ft) in (3.9) is exponential decaying as long as t � 1. But for any time t ∼ 1
fixed, the entropy is still the same order as the initial one. Note that t ∼ 1 is the case considered in
Johasson’s work [21].

Remark 5.1. The proof of (5.5) and the application of the Bakry-Emery condition in (5.6) requires
further justification. Typically, Bakry-Emery condition is applied for Hamiltonians H defined on
spaces without boundary. Although the HamiltonianH (3.5) is defined on RN , it is however convex
only away from any coalescence points λi = λ j for some i 6= j; the Hessian of the logarithmic
terms has a Dirac delta singularity with the wrong (negative) sign whenever two particles overlap.
In accordance with the convention that we work on the space Ξ(N) throughout the paper, we have
to consider H restricted to Ξ(N), where it is convex, i.e. (5.5) holds, but we have to verify that
the Bakry-Emery result still applies. We review the proof of Bakry and Emery and prove that the
contribution of the boundary term is zero.

Recall that the invariant measure exp(−H )dλ and the dynamics L = 1
2N
[∆−(∇H )∇] are restricted

to Ξ = Ξ(N). With h=
p

f we have

∂th
2 = Lh2 = 2hLh+

1

N
(∇h)2, i.e. ∂th= Lh+

1

2N
h−1(∇h)2.

Computing ∂t D(
p

ft), we have

∂t
1

2N

∫

Ξ
(∇h)2e−H dλ=

1

N

∫

Ξ
∇h∇

�

Lh+
1

2N
h−1(∇h)2

�

e−H dλ

=
1

N

∫

Ξ

h

∇hL∇h−
1

2N
∇h(∇2H )∇h+

1

2N
(∇h)∇[h−1(∇h)2]

i

e−H dλ

=
1

2N2

∫

Ξ

h

−∇h(∇2H )∇h−
∑

i, j

�

∂ 2
i jh−

∂ih∂ jh

h

�2i

e−H dλ

≤−D(
p

ft)
(5.8)
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assuming that the boundary term
∫

∂Ξ
∂ih ∂

2
i jh e−H = 0 (5.9)

in the integration by parts vanishes.

To see (5.9), consider a segment λi = λi+1 of the boundary ∂Ξ. From the explicit representation
(5.11), (5.12) in the next section, we will see that ft ≥ 0 is a meromorphic function in each variable
in the domain Ξ for any t > 0. It can be represented as by (λi+1 − λi)β F(λ) with some β ∈ Z,
where F is analytic and 0 < F < ∞ near λi = λi+1. Since ft ≥ 0, we obtain that the exponent
β is non-negative and even. Therefore f 1/2

t behaves as |λi+1 − λi|β/2 with a non-negative integer
exponent β/2 near λi = λi+1. It then follows that ∂i

p

f ∂ 2
i j

p

f e−H vanishes at the boundary due

to the factor (λi+1−λi)2 in e−H , i.e. the integral (5.9) indeed vanishes.

5.2 Bound on the entropy

Lemma 5.1. Let s = N−1. For any α > 1
4

we have

Sµ( fs) := S( fsµ|µ)≤ CN1+α (5.10)

with C depending on α.

Proof. In the proof we consider the probability density u(λ) and the equilibrium measure µ extended
to RN (see (3.12)), i.e. the eigenvalues are not ordered. Clearly S( fsµ|µ) = S( fseµ|eµ) and we
estimate the relative entropy of the extended measures.

Given the density f0(λ)eµ(dλ) of the eigenvalues of the Wigner matrix as an initial distribution, the
eigenvalue density fs(λ) for the matrix evolved under the Dyson’s Brownian motion is given by

fs(λ)eu(λ) =

∫

RN

gs(λ,ν) f0(ν)eu(ν)dν (5.11)

with a kernel

gs(λ,ν) =
N N/2

(2π)N/2cN(N−1)/2(1− c2)N/2
∆N (λ)
∆N (ν)

det

�

exp

�

−N(cλ j − νk)2

2(1− c2)

��

j,k

, (5.12)

where c = c(s) = e−s/2 for brevity. The derivation of (5.12) follows very similarly to Johansson’s
presentation of the Harish-Chandra/Itzykson-Zuber formula (see Proposition 1.1 of [21]) with the
difference that in our case the matrix elements move by the Ornstein-Uhlenbeck process (3.1) in-
stead of the Brownian motion.

In particular, formula (5.12) implies that fs is an analytic function for any s > 0 since

fs(λ) =
hs(λ)
∆N (λ)

∫

RN

det

�

exp

�

−N(cλ j − νk)2

2(1− c2)

��

j,k

f0(ν)
eu(ν)
∆N (ν)

dν

with an explicit analytic function hs(λ). Since the determinant is analytic in λ, we see that fs(λ) is
meromorphic in each variables and the only possible poles of fs(λ) come from the factors (λi−λ j)−1
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in ∆N (λ) near the coalescence points. But fs(λ) is a non-negative function, so it cannot have a
singularity of order −1, thus these singular factors cancel out from a factor (λi − λ j) from the
integral. Alternatively, using the Laplace expansion the determinant, one can explicitly see that
each 2 by 2 subdeterminant from the i-th and j-th columns carry a factor ±(λi −λ j).

Then, by Jensen inequality from (5.11) and from the fact that f0(ν)eu(ν) is a probability density, we
have

S
eµ( fs) =

∫

RN

fs(log fs)deµ≤
∫∫

RN×RN

log
�

gs(λ,ν)
eu(λ)

�

gs(λ,ν) f0(ν)eu(ν)dλdν .

Expanding this last expression we find, after an exact cancellation of the term (N/2) log(2π),

S
eµ( fs) ≤

∫∫

RN×RN

�

N

2
log N −

N(N − 1)
2

log c−
N

2
log(1− c2) + log∆N (λ)− log∆N (ν)

+ logdet

�

exp

�

−N(cλ j − νk)2

2(1− c2)

��

j,k

−
N2

2
log N

+
N

2

N
∑

i=1

λ2
i − 2 log∆N (λ) +

N
∑

j=1

log j!







gs(λ,ν) f0(ν)eu(ν)dλdν .

Since s = N−1, we have log c =−1/2N and log(1− c2) =− log N +O(N−1). Hence

S
eµ( fs) ≤

∫∫

RN×RN

(

CN log N + log∆N (λ)− log∆N (ν) + logdet

�

exp

�

−N(cλ j − νk)2

2(1− c2)

��

j,k

−
N2

2
log N +

N

2

N
∑

i=1

λ2
i − 2 log∆N (λ) +

N
∑

i=1

log j!

)

gs(λ,ν) f0(ν)eu(ν)dλdν . (5.13)

For the determinant term, we use that each entry is at most one, thus

logdet

�

exp

�

−N(cλ j − νk)2

2(1− c2)

��

j,k

≤ log N !.

The last term in (5.13) can be estimated using Stirling’s formula and Riemann integration

N
∑

j=1

log j!≤
N
∑

j=1

�

log
�

j

e

� j

+ C log(2π j)

�

≤
∫ N+1

1

dx x log x −
N
∑

j=1

j+ CN log N

≤
N2 log N

2
−

3

4
N2+ CN log N

(5.14)

thus the 1
2
N2 log N terms cancel. For the N2 terms we need the following approximation
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Lemma 5.2. With respect to any Wigner ensemble whose single-site distribution satisfies (2.4)–(2.6)
and for any α > 1/4 we have

E
hN

2

N
∑

i=1

λ2
i − 2 log∆N (λ)

i

=
3

4
N2+O(N1+α), (5.15)

where the constant in the error term depends on α and on the constants in (2.4)–(2.6).

Note that (2.6), (2.5) hold for both the initial Wigner ensemble with density f0 and for the evolved
one with density ft . These conditions ensure that Theorem 3.5 of [15] is applicable.

Proof of Lemma 5.2. The quadratic term can be computed explicitly using (3.4):

N

2
E

N
∑

i=1

λ2
i =

N

2
ETr H2 =

1

2
N2 =

N2

2

∫

x2%sc(x)dx , (5.16)

The second (determinant) term will be approximated in the following lemma whose proof is post-
poned to Appendix D.

Lemma 5.3. With respect to any Wigner ensemble whose single-site distribution satisfies (2.4)–(2.6)
and for any α > 1/4 we have

E log∆N (λ) =
N2

2

∫ ∫

log |x − y|%sc(x)%sc(y)dx dy +O(N1+α). (5.17)

Finally, explicit calculation then shows that

1

2

∫

x2%sc(x)dx −
∫ ∫

log |x − y|%sc(x)%sc(y)dx dy =
3

4
,

and this proves Lemma 5.2. �

Hence, continuing the estimate (5.13), we have the bound

S
eµ( fs) ≤ CN1+α+

∫∫

RN×RN

�

log∆N (λ)− log∆N (ν)
	

gs(λ,ν) f0(ν)eu(ν)dνdλ

≤ CN1+α+
N

4
E

N
∑

j=1

[λ2
j (s)−λ

2
j (0)] = CN1+α, (5.18)

where we used Lemma 5.2 both for the initial Wigner measure and for the evolved one and finally
we used that the ETr H2 is preserved, see (3.4). This completes the proof of (5.10). �

6 Local equilibrium

6.1 External and internal points

Choose t = τN−1 with some τ≥ 2. Thus from (5.4) with s = N−1, we have

D(
p

f t)≤ 2S( fN−1)t−1 ≤ CN2+ατ−1 (6.1)
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by using (5.10). Recall that the eigenvalues are ordered, λ1 < λ2 < . . . < λN . Let L ≤ N − n (n was
defined in (4.15)) and define

ΠL(λ) := {λL+1,λL+2, . . .λL+n}

and
Πc

L(λ) := {λ1,λ2, . . .λN} \ΠL(λ)

its complement. For convenience, we will relabel the elements of ΠL as x = {x1, x2, . . . xn} in
increasing order. The elements of Πc

L will be denoted by

Πc
L(λ) := y= (y−L , y−L+1, . . . y−1, y1, y2, . . . yN−L−n) ∈ Ξ(N−n),

again in increasing order (Ξ was defined in (3.11)). We set

JL := {−L,−L+ 1, . . . ,−1, 1,2, . . . N − L− n} (6.2)

to be the index set of the y ’s. We will refer to the y ’s as external points and to the x j ’s as internal
points. Note that the indices are chosen such that for any j we have yk < x j for k < 0 and yk > x j

for k > 0. In particular, for any fixed L, we can split any y ∈ Ξ(N−n) as y= (y−,y+) where

y− := (y−L , y−L+1, . . . y−1), y+ := (y1, y2, . . . yN−L−n)

The set Ξ(N−n) with a splitting mark after the L-th coordinate will be denoted by Ξ(N−n)
L and we use

the y ∈ Ξ(N−n)⇐⇒ (y−,y+) ∈ Ξ
(N−n)
L one-to-one correspondance.

For a fixed L we will often consider the expectation of functions O(y) on Ξ(N−n) with respect to µ or
f µ; this will always mean the marginal probability:

EµO :=

∫

O(y)u(y−, x1, x2, . . . xn,y+)dydx, y= (y−,y+). (6.3)

E f O :=

∫

O(y)( f u)(y−, x1, x2, . . . xn,y+)dydx. (6.4)

For a fixed L ≤ N − n and y ∈ Ξ(N−n) let

f L
y (x) = fy(x) = ft(y,x)

�
∫

ft(y,x)µy(dx)

�−1

(6.5)

be the conditional density of x given y with respect to the conditional equilibrium measure

µL
y (dx) = µy(dx) = uy(x)dx, uy(x) := u(y,x)

�
∫

u(y,x)dx

�−1

(6.6)

Here f L
y also depends on time t, but we will omit this dependence in the notation. Note that for any

fixed y ∈ Ξ(N−n), any value x j lies in the interval Iy := [y−1, y1], i.e. the functions uy(x) and fy(x)
are supported on the set

Ξ(n)y :=
n

x= (x1, x2, . . . , xn) : y−1 < x1 < x2 < . . .< xn < y1

o

⊂ In
y .
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Now we localize the good set Ω introduced in Definition 4.1. For any fixed L and y = (y−,y+) ∈
Ξ(N−n)

L we define

Ωy := {ΠL(λ) : λ ∈ Ω,Πc
L(λ) = y}= {x= (x1, x2, . . . , xn) : (y−,x,y+) ∈ Ω}.

Set
Ω1 = Ω1(L) :=

�

y ∈ Ξ(N−n)
L : P fy(Ωy)≥ 1− Ce−nγ/12	

. (6.7)

Since
P(Ω) = P f P fy(Ωy),

from (4.19) we have
P f (Ω1)≥ 1− Ce−nγ/12

. (6.8)

Here P f (Ω1) is a short-hand notation for the marginal expectation, i.e.

P f (Ω1) := P f
�

(Πc
L)
−1(Ω1)

�

,

but we will neglect this distinction.

Note that y ∈ Ω1 also implies, for large N , that there exists an x ∈ In
y such that (y−,x,y+) ∈ Ω.

This ensures that those properties of λ ∈ Ω that are determined only by y’s, will be inherited to the
y’s. E.g. y ∈ Ω1 will guarantee that the local density of y’s is close to the semicircle law on each
interval away from Iy. More precisely, note that for any interval I = [E−η∗m/2, E+η∗m/2] of length
η∗m = 2mnγN−1 and center E, |E| ≤ 2−κ, that is disjoint from Iy, we have, by (4.16),

y ∈ Ω1, I ∩ Iy = ; =⇒
�

�

�

N (I)
N |I |

−%sc(E)
�

�

�≤
1

(N |I |)1/4
nγ/12 . (6.9)

Moreover, for any interval I with |I | ≥ nγN−1 we have, by (4.18),

y ∈ Ω1, I ∩ Iy = ; =⇒ N (I)≤ KN |I |. (6.10)

For any L with Nκ3/2 ≤ L ≤ N(1−κ3/2), let EL =N−1
sc (LN−1), i.e.

N

∫ EL

−2

%sc(λ)dλ= L. (6.11)

Then we have
− 2+ Cκ≤ EL ≤ 2− Cκ, %sc(EL)≥ cκ1/2 (6.12)

Using (4.21) and (4.22) from Lemma 4.3 on the set Ω (see (4.18)), we for any y ∈ Ω1(L) we have

|y−1−N−1
sc (LN−1)| ≤ Cn−γ/6,

�

�

�|Iy| −
n

N%sc(EL)

�

�

�≤ CN−1nγ+3/4 (6.13)

in particular

|y−1|, |y1| ≤ 2−κ/2 and |Iy| ≤
Cn

N
(6.14)

with C = C(κ).

Let
Ω2 = Ω2(L) =

n

(y−,y+) ∈ Ξ
(N−n)
L , : |Iy| ≤ KnN−1

o

(6.15)

with some large constant K . On the set Ω we have |Iy| ≤ Kn/N (see (6.14)), thus Πc
L(Ω) ⊂ Ω2(L),

i.e.
P f (Ω2)≥ 1− Ce−nγ/6 . (6.16)
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6.2 Localization of the Dirichlet form

For any L ≤ N − n and any y ∈ Ξ(N−n)
L , we define the Dirichlet form

DL,y( f ) :=

∫

1

2N
�

∇x f )2dµL
y (x)

for functions f = f (x) defined on Ξ(n)y . Hence from (6.1) we have the inequality

1

N(1− 2κ3/2)

N(1−κ3/2)
∑

L=Nκ3/2

E ft
DL,y(

p

fy(x))≤ CnN−1D(
p

f t)≤ CN1+αnτ−1 (6.17)

where the expectation E ft
is defined similarly to (6.4), with f replaced by ft . In the first inequality

in (6.17), we used the fact that, by (6.5) and (6.6),

E ft
DL,y(

p

fy(x))

=

∫

dxdy ft(y,x)u(y,x)DL,y(
p

fy(x))

=
1

8N

∫

dxdy ft(y,x)u(y,x)





∫

dx′
|∇x ′ ft(y,x′)|2

ft(y,x′)
1

∫

dx′ ft(y,x′)u(y,x′)
u(y,x′)





=
1

8N

n
∑

j=1

∫

dxdy
|∇x j

ft(y,x)|2

ft(y,x)
u(y,x)

and therefore, when we sum over all L ∈ {Nκ3/2, . . . , N(1− κ3/2)} as on the l.h.s. of (6.17), every
local Dirichlet form is summed over at most n times, so we get the total Dirichlet form with a
multiplicity at most n.

We define the set

G1 =
n

Nκ3/2 ≤ L ≤ N(1−κ3/2) : E ft
DL,y(

p

fy(x))≤ CN1+αn2τ−1
o

, (6.18)

then the above inequality guarantees that for the cardinality of G1,

|G1|
N(1− 2κ3/2)

≥ 1−
C

n
. (6.19)

For L ∈ G1, we define

Ω3 = Ω3(L) :=
n

(y−,y+) ∈ Ξ
(N−n)
L : DL,y(

p

fy(x))≤ CN1+αn4τ−1
o

, (6.20)

then
P f (Ω

c
3)≤ Cn−2. (6.21)
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6.3 Local entropy bound

Suppose that L ∈ G1 and fix it. For any y ∈ Ξ(N−n)
L denote by

Hy(x) = N







n
∑

i=1

1

2
x2

i −
2

N

∑

1≤i< j≤n

log |x j − x i| −
2

N

∑

k∈JL

n
∑

i=1

log |x i − yk|






(6.22)

Note that
HessHy(x)≥ inf

x∈Iy

∑

k∈JL

|x − yk|−2 (6.23)

for any x ∈ In
y as a matrix inequality. On the set y ∈ Ω2(L) we have

inf
x∈Iy

∑

k∈JL

|x − yk|−2 ≥
1

|y1− y−1|2
≥

cN2

n2 , y ∈ Ω2(L).

We can apply the logarithmic Sobolev inequality (5.3) to the local measure µy, taking into account
Remark 5.1. Thus we have

SµL
y
( fy)≤ c−1n2N−1DL,y(

p

fy(x))≤ Cn6Nατ−1 for any y ∈ Ω2(L)∩Ω3(L), L ∈ G1. (6.24)

Using the inequality
p

S( f )≥ C

∫

| f − 1|dµ (6.25)

for µ= µy and f = fy, we have also have

�
∫

| fy− 1|dµy

�2

≤ Cn6Nατ−1 for any y ∈ Ω2(L)∩Ω3(L), L ∈ G1 (6.26)

We will choose t = N−1τ with τ= Nβ such that

Cn6Nατ−1 ≤ n−4 (6.27)

i.e. β ≥ 10ε+α.

6.4 Good external configurations

Definition 6.1. The set of good L-indices is defined by

G :=
n

L ∈ G1 : E f

∑

j 6=L

1Ω
[N(λ j −λL)]2

≤ Cn3γ, E f

∑

j 6=L+n+1

1Ω
[N(λ j −λL+n+1)]2

≤ Cn3γ
o

∩
n

L ∈ G1 : E f

∑

j 6=L

1Ω
N |λ j −λL|

≤ Cn3γ, E f

∑

j 6=L+n+1

1Ω
N |λL+n+1−λ j|

≤ Cn3γ
o

.
(6.28)
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Lemma 4.4 together with (6.19) imply that

|G |
N(1− 2κ3/2)

≥ 1−
1

nγ
. (6.29)

Notice that for any fixed L we can write

E f

L+n
∑

j=L+1

1Ω
N(λ j −λL)

= E f E fy

n
∑

j=1

1Ωy

N(x j − y−1)

E f

L+n
∑

j=L+1

1Ω
[N(λ j −λL)]2

= E f E fy

n
∑

j=1

1Ωy

[N(x j − y−1)]2

and we also have

E f

∑

j 6=L+1,...L+n

1Ω
N |λ j −λL|

= E f

∑

j∈JL , j 6=−1

1

N |y j − y−1|
P fy(Ωy)≥

1

2
E f

∑

j∈JL , j 6=−1

1(y ∈ Ω1)
N |y j − y−1|

,

and similar formulae hold when λL is replaced with λL+n+1 and y−1 with y1.

We also want to ensure that the density on scale η := η∗0 = nγN−1 is close to the semicircle law. Let

OE(x) = 1(|x − E| ≤ η/2)

be the characteristic function of the interval [E − η/2, E + η/2]. Consider Ω(0) defined in (4.16),
then Ω⊂ Ω(0) and (4.19) imply that

E f 1Ω sup
|E|≤2−κ/2

�

�

�

1

Nη

N
∑

i=1

OE(λi)−%sc(E)
�

�

�≤ (Nη)−1/4nγ/12 = n−γ/6

Fix L ∈ G , consider y ∈ Ξ(N−n)
L and define

I∗y := [y−1+η/2, y1−η/2]

so that if E ∈ I∗y then [E − η/2, E + η/2] ⊂ Iy. Moreover, on the set Ω we know that Iy ⊂ [−2+
κ/2, 2−κ/2] (see (6.14)). Therefore

E f E fy1Ωy
sup
E∈I∗y

�

�

�n−γ
n
∑

i=1

OE(x i)−%sc(E)
�

�

�≤ E f 1Ω sup
|E|≤2−κ/2

�

�

�

1

Nη

N
∑

i=1

OE(λi)−%sc(E)
�

�

�≤ n−γ/6. (6.30)

This gives rise to the following definition:

Definition 6.2. Let L ∈ G . The set of good external points is given by

YL :=Ω1 ∩Ω2 ∩Ω3 ∩
¨

y= (y−,y+) ∈ Ξ
(N−n)
L :

∑

±

∑

k∈JL
k 6=±1

1

|N(y±1− yk)|
≤ Cn3γ,

E fy

∑

±

n
∑

j=1

1Ωy

N |x j − y±1|
≤ Cn4γ, E fy

∑

±

n
∑

j=1

1Ωy

[N(x j − y±1)]2
≤ Cn4γ,

E fy1Ωy
sup
E∈I∗y

�

�

�n−γ
n
∑

i=1

1
�

N |x i − E| ≤
1

2
nγ
�

−%sc(E)
�

�

�≤ n−γ/12

«

(6.31)
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It follows from (6.8), (6.16), (6.21), (6.28) and (6.30) that

P f
�

YL
�

≥ 1− Cn−γ/12. (6.32)

6.5 Bounds in equilibrium

In this section we translate the bounds in the second and third lines of (6.31) into similar bounds
with respect to equilibrium using that the control on the local Dirichlet form also controls the local
entropy for the good indices:

Lemma 6.1. Let A > 0 be arbitrary and y ∈ YL . If τ ≥ n4A+8Nα, i.e. β ≥ (4A+ 8)ε + α, then for
p = 1,2 we have

Eµy

∑

±

n
∑

j=1

1(N |x j − y±1| ≥ n−A)

[N |x j − y±1|]p
≤ Cn4γ (6.33)

Moreover, we also have

Eµy
sup
E∈I∗y

�

�

�n−γ
n
∑

i=1

OE(x i)−%sc(E)
�

�

�≤ Cn−γ/12. (6.34)

Proof. Let O : Rn → R be any observable and Ωy be any event. Then for any fixed y ∈ Ξ(N−n) we
have
�

�E fy1Ωy
O −Eµy

1Ωy
O
�

�

2
=
h

∫

1Ωy
O ( fy− 1)dµy

i2
≤ ‖O‖2∞

h

∫

| fy− 1|dµy

i2
≤ C‖O‖2∞Sµy

( fy)

by the entropy inequality (6.25). If L ∈ G and y ∈ Ω2(L), then we have by (6.26) that

Eµy
1Ωy
O ≤ E fy1Ωy

O + C‖O ‖∞
�

n6Nατ−1
�1/2

. (6.35)

For a given y ∈ YL , we set the observable

O (x) =
∑

±

n
∑

j=1

1(N(x j − y±1)≥ n−A)

[N |x j − y±1|]p
.

with ‖O ‖∞ ≤ CnAp+1 ≤ cn2A+1. Then, for τ≥ n4A+8Nα we obtain from (6.31) and (6.35) that

Eµy

∑

±

n
∑

j=1

1Ωy
1(N |x j − y±1| ≥ n−A)

[N |x j − y±1|]p
≤ Cn4γ+ Cn2A+4Nα/2τ−1/2 ≤ Cn4γ.

On the complement set Ωc
y we just use the crude supremum bound together with the bound on

P fy(Ω
c
y) in the definition of Ω1 (6.7):

Eµy

∑

±

n
∑

j=1

1Ωc
y
1(N |x j − y±1| ≥ n−A)

[N |x j − y±1|]p
≤ Cn4A+1e−nγ/12

≤ Cn4γ.

Combining the last two estimates proves (6.33).

The proof of (6.34) is analogous, here we use that the corresponding observable has an L∞ bound
�

�

�n−γ
n
∑

i=1

OE(x i)−%sc(E)
�

�

�≤ n1−γ.

This completes the proof of Lemma 6.1. �
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7 Cutoff Estimates

In this section, we cutoff the interaction with the far away particles. We fix a good index L ∈ G and
a good external point configuration y ∈ YL . Consider the measure µy = e−Hy/Zy with

Hy(x) = N







n
∑

i=1

x2
i /2− 2N−1

∑

1≤i< j≤n

log |x j − x i| − 2N−1
∑

k,i

log |x i − yk|






(7.1)

The measure µy is supported on the interval Iy = (y−1, y1).

For any fixed y, decompose

Hy =H1+H2, H2(x) =
n
∑

i=1

V2(x i), (7.2)

where

V2(x) =
N

2
x2− 2

∑

|k|≥nB

log |x − yk| (7.3)

and

H1(x) =−2
∑

1≤i< j≤n

log |x j − x i| −
n
∑

i=1

V1(x i) (7.4)

with
V1(x) =−2

∑

|k|<nB

log |x − yk|

where B is a large positive number with Bε < 1/2. We define the measure

µ(1)y (dx) :=
e−H1(x)dx

Z1
. (7.5)

Lemma 7.1. Let L ∈ G and y ∈ YL . For B ≥ 20, we have

sup
x∈In

y

�

�

�

dµ(1)y

dµy
(x)− 1

�

�

�≤ Cn−B/9+2 (7.6)

This lemma will imply that one can cutoff all yk ’s in the potential with |k| ≥ nB.

Proof. Let
δV2 :=max

x∈Iy
V2−min

x∈Iy
V2,

then, by (6.15) and y ∈ YL , we have

δV2 ≤ |Iy|‖V ′2‖∞ ≤ CnN−1‖V ′2‖∞

In Lemma 7.2 we will give an upper bound on ‖V ′2‖∞, and then we have, for B ≥ 20, that

δV2 ≤ Cn−B/9+1.
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Since
�

�

�

dµ(1)y

dµy
(x)− 1

�

�

�=
�

�

�e−
∑n

i=1

�

V2(x i)−min V2

�

− 1
�

�

�≤ CnδV2 ≤ Cn−B/9+2,

we obtain (7.6). �

Lemma 7.2. For B ≥ 20 and for any L ∈ G1, y ∈ YL we have

sup
x∈Iy
|V ′2(x)|= sup

x∈Iy

�

�

�

�

�

�

−2
∑

|k|≥nB

1

x − yk
+ N x

�

�

�

�

�

�

≤ CNnγ/12−B/8. (7.7)

Proof. Recall that y ∈ YL ⊂ Ω1 implies that the density of the y ’s is close the semicircle law in the
sense of (6.9). Let

d :=
nB

N%sc(y−1)
. (7.8)

Since y ∈ Ω1, we know that |y−1|, |y1| ≤ 2− κ/2 (see (6.14)), thus %sc(y−1) ≥ c > 0. Taking the
imaginary part of (4.3) for |z| ≤ 2 and renaming the variables, we have the identity

x = 2

∫

R

%sc(y)
x − y

dy.

Furthermore, with ȳ = 1
2
(y−1+ y1) we have

�

�

�

∫

|y− ȳ|≤d

%sc(y)
x − y

dy
�

�

�≤ Cd

since ȳ is away from the spectral edge thus %sc is continuously differentiable on the interval of
integration [ ȳ − d, ȳ + d]. Thus

�

�

�N x − 2N

∫

|y− ȳ|≥d

%sc(y)
x − y

dy
�

�

�≤ CNd ≤ CnB

therefore to prove (7.7) it is sufficient to show that

sup
x∈Iy

�

�

�

1

N

∑

|k|≥nB

1

x − yk
−
∫

|y− ȳ|≥d

%sc(y)
x − y

dy
�

�

�≤ Cnγ/12−B/8 (7.9)

We will consider only k ≥ nB and compare the sum with the integral on the regime y ≥ ȳ + d, the
sum for k ≤−nB is similar.

Define dyadic intervals

Im = [ ȳ + 2md, ȳ + 2m+1d], m= 0, 1,2, . . . , log N

Since y ∈ YL ⊂ Ω1, i.e. max |yk| ≤ K , there will be no yk above the last interval Ilog N . We subdivide
each Im into nB/2 equal disjoint subintervals of length 2mdn−B/2

Im =
nB/2
⋃

`=1

Im,`, Im,` = [y
∗
m,`−1, y∗m,`] with y∗m,` := y1+ 2md(1+ `n−B/2).
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For y ∈ YL ⊂ Ω1, the estimate (4.22) holds for y1 and ynB , i.e.
�

�

�N%sc(y1)(ynB − y1)− (nB − 1)
�

�

�≤ Cnγ+3B/4 ≤ Cn4B/5

if B ≥ 20, which means that

|ynB − (y1+ d)| ≤
Cn4B/5

N
+

nB

N

�

�

�

1

%sc(y−1)
−

1

%sc(y1)

�

�

�≤
Cn4B/5

N
+

CnB+1

N2 ≤
Cn4B/5

N
(7.10)

(using Bε < 1/2, nB ≤ N1/2), i.e.

|ynB − ( ȳ + d)| ≤
Cn4B/5

N
(7.11)

by using the definition of d from (7.8), the fact that %sc(y±1) is separated away from zero and that
|Iy| ≤ CnN−1 from (6.14).

Therefore we can estimate

�

�

�

1

N

∑

k≥nB

1

x − yk
−

1

N

log N
∑

m=0

nB/2
∑

`=1

∑

j∈JL

1(y j ∈ Im,`)

x − y j

�

�

�

≤
1

N

∑

j∈JL

1( j < nB, y j ≥ ȳ + d)

|x − y j|
+

1

N

∑

j∈JL

1( j ≥ nB, y j < ȳ + d)

|x − y j|

≤ Cn1−B/5.

(7.12)

To see the last estimate, we notice that in the first summand we have ȳ + d ≤ y j ≤ ynB ≤ ȳ + d +
Cn4B/5N−1 by (7.11), i.e. all these y j ’s lie in an interval of length Cn4B/5N−1, so their number is
bounded by Cn4B/5 by (6.10). Thus the first term in the right hand side of (7.12) is bounded by
Cn4B/5N−1d−1 ≤ Cn1−B/5; the estimate of the second term is similar.

Using that

�

�

� max
y∈Im,`

1

x − y
− min

y∈Im,`

1

x − y

�

�

�≤ |Im,`|max
x∈Iy

max
y∈Im,`

1

(x − y)2
≤ C

2mdn−B/2

(2md)2
≤

C

2mdnB/2

we have

�

�

�

1

N

log N
∑

m=0

nB/2
∑

`=1

∑

j∈JL

1(y j ∈ Im,`)

x − y j
−

1

N

log N
∑

m=0

nB/2
∑

`=1

N (Im,`)

x − y∗m,`

�

�

�≤
C

N

log N
∑

m=0

nB/2
∑

`=1

N (Im,`)

2mdnB/2

≤ C
log N
∑

m=0

nB/2
∑

`=1

1

nB

≤ Cn−B/2 log N ≤ Cn−B/4.

(7.13)

In the second line we used that N (Im,`)≤ KN |Im,`| by (6.10) since y ∈ Ω1 and Im,` ∩ Iy = ;.
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We use that for y ∈ Ω1 we can apply (6.9) for I = Im,` and we get

�

�

�

1

N

∑

m≥0

nB/2
∑

`=1

N (Im,`)

x − y∗m,`

−
1

N

log N
∑

m=0

nB/2
∑

`=1

N |Im,`|%sc(y∗m,`)

x − y∗m,`

�

�

�≤
Cnγ/12

N

log N
∑

m=0

nB/2
∑

`=1

(N |Im,`|)3/4

|x − y∗m,`|

≤
Cnγ/12

N

log N
∑

m=0

nB/2
∑

`=1

(2mnB/2)3/4

2mnBN−1

≤ Cnγ/12−B/8,

(7.14)

where we used that |Im,`| = 2mdn−B/2 ≤ C · 2mnB/2N−1 (see (7.8)) and that |x − y∗m,`| ≥ 2m−1d ≥
c · 2mnBN−1.

Finally, the second term on the left hand side of (7.14) is a Riemann sum of the integral in (7.9)
with an error
�

�

�

�

�

log N
∑

m=0

nB/2
∑

`=1

|Im,`|%sc(y∗m,`)

x − y∗m,`

−
∫

|y− ȳ|≥d

%sc(y)
x − y

dy

�

�

�

�

�

≤
log N
∑

m=0

nB/2
∑

`=1

C
� N

2mnB

�2
|Im,`|2 ≤ Cn−B/2 log N , (7.15)

since on each interval Im,` we could estimate the derivative of the integrand as

sup
y∈Im,`

�

�

�

d

dy

%sc(y)
x − y

�

�

�≤ C
� N

2mnB

�2
.

Combining (7.12), (7.13), (7.14) and (7.15), we have proved (7.9) which completes the proof of
Lemma 7.2. �

8 Derivative Estimate of Orthogonal Polynomials

In the next few sections, we will prove the boundedness and small distance regularity of the density.
Our proof follows the approach of [26] (cf: Lemma 3.3 and 3.4 in [26]), but the estimates are done
in a different way due to the singularity of the potential. For the rest of this paper, it is convenient
to rescale the local equilibrium measure to the interval [−1, 1] as we now explain.

Suppose L ∈ G and y ∈ YL . We change variables by introducing the transformation

T : Iy→ [−1, 1], ew = T (w) :=
2(w− ȳ)
|Iy|

, with ȳ :=
y−1+ y1

2

and its inverse

w = T−1(ew) = ȳ +
ew|Iy|

2
,

then T (Iy) = [−1, 1]. Let eµ
ey be the measure µ(1)y (see (7.5)) rescaled to the interval [−1,1], i.e.,

eµ
ey(dex) :=

1
eZn,ey

exp
h

− n
n
∑

i=1

U
ey(ex i) + 2

∑

1≤i< j≤n

log |ex i − ex j|
i

dex (8.1)
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on [−1, 1]n with

U
ey(ex) :=−

2

n

∑

|k|<nB

log |ex − eyk|. (8.2)

The `-point correlation functions of µy and eµ
ey are related by

p(`)n (x1, x2, . . . xn) = p(`)n

�

ȳ +
ex1|Iy|

2
, . . . ȳ +

exn|Iy|
2

�

=
� 2

|Iy|

�`
ep(`)n (ex1, ex2, . . . exn). (8.3)

Let p j(λ), j = 0,1, . . . denote the real orthonormal polynomials on [−1, 1] corresponding to the
weight function e−nU

ey(λ), i.e. deg p j = j and

∫ 1

−1

p j(λ)pk(λ)e
−nU

ey(λ)dλ= δ jk

and define
ψ j(λ) := p j(λ)e

−nU
ey(λ)/2 (8.4)

to be orthonormal functions with respect to the Lebesgue measure on [−1,1]. Everything depends
on y, but y is fixed in this section and we will omit this dependence from the notation.

We define the n-th reproducing kernel

Kn(λ,ν) =
n−1
∑

j=0

ψ j(λ)ψ j(ν) (8.5)

that satisfies

Kn(λ,ν) =

∫ 1

−1

Kn(λ,ζ)Kn(ζ,ν)dζ. (8.6)

The density is given by
e%n(λ) = ep

(1)
n (λ) = n−1Kn(λ,λ) (8.7)

and the general `-point correlation function is given by

ep(`)n (λ1,λ2, . . . ,λ`) =
(n− `)!

n!
det{Kn(λ j ,λk)}`j,k=1 (8.8)

following the standard identities in orthogonal polynomials. For the rest of the paper we drop the
tilde and all variables will denote the rescaled ones, i.e. all x variables will be on the interval
[−1,1]. All integrals in this section are understood on [−1,1].

The basic ingredients of the approach [26] can be described as follows: Suppose that the following
two properties hold for the normalized function ψ=ψ j , j = n− 1, n, and for some fixed κ > 0

∫

|x |≤1−κ/2
|ψ′(x)|2dx ≤ Cn2+ε̄ (8.9)

nδ
∫

|x−x0|≤n−δ
ψ2(x)dx ≤ Cnσ, |x0| ≤ 1−κ (8.10)

557



for some positive σ,δ, ε̄ with σ < 1. We will take take δ = 1/4, same as in [26]. Let

ψ̄=
1

2`

∫

|x−x0|≤`
ψ(x)dx

be the average of ψ in the interval |x − x0| ≤ ` with some x0, |x0| ≤ 1−κ and `≤ κ/2. We have

|ψ(x0)| ≤ |ψ̄|+ ‖ψ′‖L2`1/2.

Using (8.10) to estimate |ψ̄| ≤ C`−1/2n(σ−δ)/2 (under the assumption that ` < n−δ) and using (8.9),
we obtain

|ψ(x0)| ≤ C`−1/2n(σ−δ)/2+ Cn1+ε̄/2`1/2.

Choosing `= n−1+(σ−δ−ε̄)/2 we have

|ψ(x0)| ≤ n
1
2
+ 1

4
(σ+ε̄−δ). (8.11)

Note that |ψ(x0)|= O(n
1
2
−ε′) with some ε′ > 0 provided that σ+ ε̄ < δ. Suppose we can also prove

that
|%′(x)| ≤ Cnε

′′
(ψ2

n−1(x) +ψ
2
n(x)) (8.12)

with some small power ε′′, then it will follow that |%′(x)| ≤ o(n) and this proves the regularity of the
density over a distance of order 1/n. Together with the fact that the density is well approximated
with the semicircle law on scales bigger than 1/n this will show that the density is close to the
semicirle law pointwise. In [26] the regularity of the density on larger scales followed from the
smoothness of the potential (Theorem 2.2 of [26]). In our case this follows from (6.34) which is
a consequence of the fact [15] that the semicircle law is precise on scales slightly larger than 1/N
that corresponds to scales bigger than 1/n after rescaling.

In proving (8.9), (8.10) and (8.12), one basic assumption in [26] requires the potential to be in C2+ν

for some ν > 0. The potential for our probability measure (8.2), parametrized by the boundary
conditions y, is singular near the boundary points {±1}. In order to control these singularities,
besides using some special properties of orthogonal polynomials, we rely on [15] via (6.33) to
provide essential estimates such as level repulsions. It turns out that we can only establish (8.9)
and (8.10) for ψ j , j ≤ n− 1 following this idea. The case of j = n has to be treated completely
differently. We now start to prove (8.9) for ψ j , j = n− 1, n− 2.

Lemma 8.1. Suppose that L ∈ G , y ∈ YL and, after rescaling that sets y−1 = −1, y1 = 1, let the
y-configuration satisfy

sup
|x |≤1

∑

1<|k|<nB

1

|x − yk|
≤

∑

1<|k|<nB

h 1

|yk − y1|
+

1

|yk − y−1|

i

≤ Cn1+3γ (8.13)

(note that the boundary terms k =±1 are not included in the summations). Furthermore, assume that
the density %n satisfies

∫ 1−n−A

−1+n−A

[(x + 1)−2+ (1− x)−2]%n(x)dx ≤ Cn4γ (8.14)
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for some A≥ 60B. Then for the orthonormal functions ψ j from (8.4) we have

∫ 1

−1

ψ2
j (x)







1

n

∑

|k|<nB

1

|x − yk|







2

dx ≤ n6γ j ≤ n− 1. (8.15)

and
∫ 1

−1

(ψ′j(x))
2dx ≤ Cn2+6γ j ≤ n− 1. (8.16)

Notice that the assumptions (8.13) and (8.14) follow from (6.31) and (6.33).

In this section and in the subsequent Sections 9 and 10 we work with orthogonal polynomials on
[−1, 1] with respect to the potential U

ey(x) (see (8.2)). For brevity, we set V (x) = U
ey(x) in these

three sections and we make the convention that the summation over the index k that labels the
elements of the external configuration y will always run over integers with for 1 ≤ |k| < nB unless
otherwise indicated.

Proof. For simplicity, let p(x) = p j(x) and ψ(x) =ψ j(x). Then

∫ 1

−1

(p′(x))2e−nV (x)dx =

∫ 1

−1

−p′′(x)p(x)e−nV (x)dx + n

∫ 1

−1

p′(x)p(x)V ′(x)e−nV (x)dx .

Note that e−nV (x) is zero at the boundary x = ±1 so the boundary term vanishes in the integration
by parts. Since p(x) is an orthogonal polynomial, it is orthogonal to all polynomials of lower degree,
thus the first integral vanishes. By Schwarz inequality, the second integral is bounded by

n

∫ 1

−1

p′(x)p(x)V ′(x)e−nV (x)dx ≤
1

2

∫ 1

−1

(p′(x))2e−nV (x)dx +
1

2

∫

p2(x)(nV ′(x))2e−nV (x)dx

We have thus proved that

∫ 1

−1

(p′(x))2e−nV (x)dx ≤ 2

∫ 1

−1

p2(x)(nV ′(x))2e−nV (x)dx . (8.17)

The last integral is bounded by

∫ 1

−1

p2(x)(nV ′(x))2e−nV (x)dx ≤ I1+ I2 (8.18)

with

I1 = 2

∫ 1

−1

�

1

(x − 1)2
+

1

(x + 1)2

�

ψ2(x)dx , I2 = 2

∫ 1

−1





∑

k 6=±1

1

x − yk





2

ψ2(x)dx . (8.19)

From (8.13), and the normalization of ψ we have

I2 ≤ Cn2+6γ. (8.20)
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To control the term I1, we separate the integration regimes |x±1| ≤ n−A and−1+n−A ≤ x ≤ 1−n−A

for some big constant A. In the inside regime, we can use |ψ(x)|2 = |ψ j(x)|2 ≤ n%n(x) since
j ≤ n− 1. From (8.14) we obtain

∫ 1−n−A

−1+n−A

�

1

(x − 1)2
+

1

(x + 1)2

�

ψ2(x)dx ≤ Cn1+4γ. (8.21)

To estimate the singular part of the integral in I1 near the boundary points, we can focus in estimat-
ing

∫ −1+n−A

−1

ψ2(x)
(1+ x)2

dx

the other endpoint being similar. Let

g(x) =
ψ(x)
x + 1

.

Notice that g(x) is a polynomial of degree deg g ≤ 2n2B + n. From the Nikolskii inequality (see,
e.g., Theorem A.4.4 of [5])

‖g‖4 ≤ C(deg g)7.5‖g‖1/4 ≤ Cn15B‖g‖1/4 (8.22)

with some universal constant C . Here ‖g‖p is defined as
�

∫ 1

−1
|g(x)|pdx

�1/p for any 0 < p < ∞.
Notice that Nikolskii inequality holds between Lp spaces even with exponents p < 1. By the Hölder
inequality,

‖g‖1/21/4 =

 

∫ 1

−1

|g(x)|1/4dx

!2

≤
�

∫ 1

−1

|g(x)|1/2|x + 1|1/2dx
��

∫ 1

−1

|x + 1|−1/2dx
�

≤ C

�
∫

|g(x)|2(x + 1)2dx

�1/4

= C‖ψ‖1/22 = C .

Thus from (8.22) we have ‖g‖4 ≤ Cn15B and by Hölder inequality we have
∫ −1+n−A

−1

ψ2(x)
(x + 1)2

dx ≤ Cn−A/2‖g‖24 ≤ Cn30B−A/2 ≤ C (8.23)

provided A ≥ 60B. Together with (8.21), this proves I1 ≤ Cn1+4γ. Combining this with (8.20) we
obtain a bound Cn2+6γ for (8.18) which proves (8.15).

Using this estimate and (8.17) we obtain that
∫ 1

−1

|p′(x)|2e−nV (x)dx ≤ Cn2+6γ.

Since
|ψ′(x)|2 ≤ C[p′(x)2+ p2(x)(nV ′(x))2]e−nV (x),

we have thus proved that
∫ 1

−1

|ψ′(x)|2dx ≤ Cn2+6γ+ C

∫ 1

−1

p2(x)(nV ′(x))2e−nV (x)dx ≤ Cn2+6γ (8.24)

by using (8.18). This completes the proof. �
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9 Bound on smeared-out orthogonal polynomials

Lemma 9.1. Let κ,δ0 > 0 be arbitrary positive numbers. Let L ∈ G , y ∈ YL , suppose that the y-
configuration satisfies (8.13), (8.14) and the density %n(x)≥ δ0 > 0 for all |x | ≤ 1−κ. Let ψ=ψn−1
or ψn−2 be an orthogonal function. Then we have

n1/4

∫

|x−x0|≤n−1/4

ψ2(x)dx ≤ Cn3γ, |x0| ≤ 1−κ (9.1)

with a constant C depending on κ and δ0.

Proof. For any z = u+ iη ∈ C with η > 0, let

mn(z) =

∫ 1

−1

%n(x)
x − z

dx

denote the Stieltjes transform of the density and denote by

Gn(x , y) = ep(2)n (x , y)− e%n(x)e%n(y) =−
Kn(x , y)2

n(n− 1)
+
e%n(x)e%n(y)

n− 1
(9.2)

the truncated correlation function, where ep(2)n was defined in (8.3) and computed from (8.8). We
will again drop the tilde in this proof.

We have the identity
∫

V ′(x)%n(x)
x − z

dx =−
n− 1

n
m2

n(z)−
1

n

∫

%n(x)
(x − z)2

dx −
n− 1

n

∫

Gn(x , y)
(x − z)(y − z)

dxdy. (9.3)

This identity follows from expressing %n by an integral over n − 1 variables of the equilibrium
measure and then integrating by parts (see also (2.81) of [26]). Hence, by using (8.6), we have

m2
n(z) +

∫

V ′(x)%n(x)
x − z

dx =−
1

2n2

∫

K2
n(x , y)

�

1

x − z
−

1

y − z

�2

dxdy. (9.4)

The last integral can be bounded by
�

�

�

�

�

∫

K2
n(x , y)

�

1

x − z
−

1

y − z

�2

dxdy

�

�

�

�

�

≤

�

�

�

�

�

∫

K2
n(x , y)

(x − y)2

(x − z)2(y − z)2
dxdy

�

�

�

�

�

≤η−4

∫

K2
n(x , y)(x − y)2dxdy ≤ Cη−4,

where, to estimate the last integral, we have used the Christoffel-Darboux formula

Kn(x , y) = Jn−1
ψn(x)ψn−1(y)−ψn(y)ψn−1(x)

x − y
, Jn−1 =

∫ 1

−1

xψn−1(x)ψn(x)dx . (9.5)

We have thus proved that

m2
n(z) +

∫

V ′(x)%n(x)
x − z

dx = O(n−2η−4), z = u+ iη (9.6)
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We define a new measure µ−y on [−1, 1]n−1 as

µ−
ey (dx1, . . . , dxn−1) =

1

Z−
ey,n

exp
h

− n
n−1
∑

i=1

V (x i) + 2
∑

1≤i< j<n−1

log |x i − x j|
i

where we already omitted the tildes and recall that V (x) = Uy(x). Note that this measure differs
from (8.1) written in n−1 variables in that we kept the prefactor n in front of the potential. Define

%−n (x) =
n− 1

n

∫

µy(x , dx2, dx3, . . . dxn−1)

and note that

%−n (x) =
1

n

n−2
∑

j=0

ψ2
j (x)

where ψ j ’s are defined in (8.4). This latter formula follows from the recursive relation of the
correlation functions for GUE-like ensembles, therefore

ψ2
n−1(x) = n(%n(x)−%−n (x)).

Let

m−n (z) =

∫ 1

−1

%−n (x)
x − z

dx

be the Stieltjes transform of %−n ; then we have the analogue of (9.6)

[m−n (z)]
2+

∫

V ′(x)%−n (x)
x − z

dx = O(n−2η−4).

Subtracting this from (9.6), we have

n(m2
n(z)− [m

−
n (z)]

2) =−
∫

V ′(x)ψ2
n−1(x)

x − z
dx +O(n−1η−4). (9.7)

Assume that u = Re z satisfies |u− x0| ≤ n−1/4. By adding n(mn(z)−m−n (z))V
′(u) to the both sides

of (9.7), we obtain

n(mn(z)−m−n (z))(mn(z) +m−n (z) + V ′(u)) =−
∫

(V ′(x)− V ′(u))ψ2
n−1(x)

x − z
dx +O(n−1η−4).

We divide the integral into |x − x0| ≤ ν/2 and |x − x0| ≥ ν/2. In the first integration regime, since
|x0| ≤ 1− ν , we have

∫

|x−x0|≤ν/2

�

�

�

V ′(x)− V ′(u)
x − z

�

�

�ψ2
n−1(x)dx

≤ sup
|x−x0|≤ν/2

1

n

∑

k

1

|x − u|

�

�

�

�

1

yk − x
−

1

yk − u

�

�

�

�

∫

|x−x0|≤ν/2
ψ2

n−1(x)dx .

(9.8)

562



Since |x | ≤ 1−ν/2, |u| ≤ 1−ν/2, we have |yk−u| ≥ 2ν−1 for any k. Thus, by (8.13), the prefactor
in (9.8) is bounded, uniformly in |x | ≤ 1− ν/2, by

1

n

∑

k

1

|x − u|

�

�

�

�

1

yk − x
−

1

yk − u

�

�

�

�

≤
1

n

∑

k

1

|yk − x ||yk − u|
≤

2

νn

∑

k

1

|yk − x |

≤
C

n

h 1

|1− x |
+

1

|1+ x |
+
∑

k 6=±1

1

|yk − y1|
+
∑

k 6=±1

1

|yk − y−1|

i

≤ Cn3γ, (9.9)

where the constant C depends on ν and we recall that y−1 =−1, y1 = 1 in the rescaled variables.

In the second integration regime we use |x − u| ≥ |x − x0| − |x0− u| ≥ ν/4 and obtain
∫

|x−x0|≥ν/2

�

�

�

�

V ′(x)− V ′(u)
x − z

�

�

�

�

ψ2
n−1(x)dx

≤
C

n

∫

|x−x0|≥ν/2

∑

k

�

�

�

�

1

yk − x
−

1

yk − u

�

�

�

�

ψ2
n−1(x)dx

≤
C

n

∫

∑

k

�

�

�

�

1

yk − x

�

�

�

�

ψ2
n−1(x)dx +

C

n

∑

k

1

|yk − u|
≤ Cn3γ

where we have used (8.15) and Hölder inequality to estimate the first term in the last line and using
(8.13) for the second term.

We have thus proved that

n
�

�(mn(z)−m−n (z))(mn(z) +m−n (z) + V ′(u))
�

�≤ n3γ+ Cn−1η−4.

Hence

n
�

�mn(z)−m−n (z)
�

�≤
n3γ+ Cn−1η−4

Im mn(z)

using that Im m−n (z) > 0. Since %n(x) ≥ δ0 > 0 by assumption, Im mn(z) is bounded from below.
Thus, choosing η= n−1/4, we obtain

�

�

�

∫

ψ2
n−1(x)

x − z
dx
�

�

�≤ Cn3γ.

with C depending on ν and δ0. Taking imaginary part, we have
∫

η

(x − u)2+η2 ψ
2
n−1(x)dx ≤ Cn3γ.

for any u with |u− x0| ≤ η= n−1/4. Integrating over |u− x0| ≤ η and using
∫

|u−x0|≤η

η

(x − u)2+η2 ≥ c · 1(|x − x0| ≤ η)

with some positive constant c, we have proved (9.1) for ψ=ψn−1. The case ψ=ψn−2 can be done
in a similar way. This completes the proof of Lemma 9.1. �
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Corollary 9.2. Suppose that the y-configuration satisfies (8.13), (8.14) and the density satisfies
%n(x) ≥ δ0 for all |x | ≤ 1 − κ for some δ0,κ > 0. Let ψ = ψ j with j = n − 2, n − 1, n be an
orthogonal function. Then

sup
|x |≤1−κ

|ψ(x)|2 ≤ Cn1− 1
8
+11γ (9.10)

with a constant C depending on κ and δ0.

Proof. For the case j = n− 2, n− 1, the estimate (9.10), even with a better exponent, follows from
the argument leading to (8.11) from the two assumptions (8.9) and (8.10) with δ = 1/4, ε̄ = 6γ
and σ = 3γ:

sup
|x |≤1−κ

|ψ j(x)|2 ≤ Cn1− 1
8
+ 9

2
γ j = n− 2, n− 1. (9.11)

The estimate (8.9) was proven in Lemma 8.1, the estimate (8.10) follows from Lemma 9.1.

The proof of (9.10) for ψ = ψn requires a different argument. Let a j be the leading coefficient
of the (normalized) j-th orthogonal polynomial, i.e. p j(x) = a j x

j + . . .. Observe that p′n(x) =
nan xn−1 + . . . = n(an/an−1)pn−1(x) + . . ., where dots mean a polinomial of degree less than n− 1.
Thus

nan

an−1
=

∫

p′n(x)pn−1(x)e
−nV (x)dx

=

∫

pn(x)p
′
n−1(x)e

−nV (x)dx +

∫

pn(x)pn−1(x)nV ′(x)e−nV (x)dx .

The first integral on the right hand side vanishes. By the Schwarz inequality, we have

n|an|
|an−1|

≤
∫

|pn(x)pn−1(x)nV ′(x)|e−nV (x)dx

≤
�
∫

p2
n(x)e

−nV (x)dx

�1/2�∫

|pn−1(x)nV ′(x)|2e−nV (x)dx

�1/2

≤ Cn1+3γ,

(9.12)

where the second integral was estimated in (8.15).

Recall the standard three-term recursion relation for orthogonal polynomials

x pn−1 = apn+ bpn−1+ cpn−2 (9.13)

with some real numbers a, b, c depending on n. By comparing the leading coefficients, we have
an−1 = aan and by orthonormality, we get

a2+ b2+ c2 =

∫ 1

−1

x2p2
n−1(x)e

−nV (x)dx ≤ 1.

In particular
1

|a|
=
�

�

�

an

an−1

�

�

�≤ Cn3γ

from (9.12). Hence, from (9.13),

|pn(x)| ≤
�

�a−1[(x − b)pn−1(x)− cpn−2(x)]
�

�≤ Cn3γ[|pn−1(x)|+ |pn−2(x)|].

Using the bound (9.11), we obtain (9.10) for ψ=ψn as well. �
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10 Regularity of Density

Lemma 10.1. Let L ∈ G , y ∈ YL . Suppose that the external y-configuration satisfies (8.13) and (8.14)
and assume that γ < 1

150
. Then for any κ > 0 we have

sup
|x |≤1−κ

|%′n(x)| ≤ Cn3γ(ψ2
n−1(x) +ψ

2
n(x) + 1)≤ Cn1− 1

8
+14γ (10.1)

and
sup

|x |≤1−2κ
|%n(x)−%sc( ȳ)| ≤ Cn−γ/12 (10.2)

where the constant C depends on κ.

Proof. The derivative of the density can be computed explicitly (see, e.g., (3.63) of [26]) as

%′n(x) =

∫ 1

−1

[V ′(z)− V ′(x)]K2
n(x , z)dz. (10.3)

In our case

V ′(z)− V ′(x) =
1

n

∑

k

�

1

x − yk
−

1

z− yk

�

and
1

x − yk
−

1

z− yk
=−

x − z

(x − yk)2
−

(x − z)2

(z− yk)(x − yk)2
. (10.4)

From the Christoffel-Darboux formula, we have
�

�

�

�

�

∫ 1

−1

(x − z)αK2
n(x , z)dz

�

�

�

�

�

≤ C(ψ2
n−1(x) +ψ

2
n(x)), α= 1, 2.

Since |x | ≤ 1−κ, we can estimate the contribution to (10.3) from the first term in (10.4) by

∑

k

1

n(x − yk)2

�

�

�

�

�

∫ 1

−1

(x − z)K2
n(x , z)dz

�

�

�

�

�

≤ Cn3γ(ψ2
n−1(x) +ψ

2
n(x)),

where we have used (8.13) to bound the factor in front of the integral

sup
|x |≤1−κ

∑

k

1

n(x − yk)2
≤
∑

k 6=±1

1

nκ|y−1− yk|
+
∑

k 6=±1

1

nκ|y1− yk|
+

C

κ2n
≤ Cn3γ. (10.5)

The contribution from the second term in (10.4) is bounded by
�

�

�

�

�

1

n

∑

k

C

(x − yk)2

∫ 1

−1

(x − z)2

(z− yk)
K2

n(x , z)dz

�

�

�

�

�

≤ Cn3γκ−2

∫ 1

−1

1

n

∑

k

1

|z− yk|
�

ψn(x)ψn−1(z)−ψn(z)ψn−1(x)
�2 dz

≤ Cn3γ
∑

j=0,1

ψ2
n− j(x)

∫ 1

−1

1

n

∑

k

1

|z− yk|
ψ2

n+ j−1(z)dz.
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The integral is estimated as

∫ 1

−1

1

n

∑

k

1

|z− yk|
ψ2

n+ j−1(z)dz ≤
∫ 1

−1

1

n

∑

k 6=±1

h 1

|y−1− yk|
+

1

|y1− yk|

i

ψ2
n+ j−1(z)dz

+

∫ 1

−1

1

n

∑

k±1

h 1

|1− z|
+

1

|1+ z|

i

ψ2
n+ j−1(z)dz.

(10.6)

The first term on the right hand side is bounded by Cn3γ using (8.13). In the second term, we split
the integration into two regimes: |z| ≤ 1−n−A and 1−n−A ≤ |z| ≤ 1 with some A≥ 60B. In the first
regime, we use the bound (9.10) to obtain CAn−1/8+11γ log n ≤ C if γ < 1

88
. In the second regime

we use the bound (8.23). This proves (10.1).

For the proof of (10.2) we use the derivative estimate and the fact that the density is close to the
semicircle law on scale n−1+γ as given in (6.34). For any x , y ∈ [−1+ 2κ, 1− 2κ] we have

%(x) = %(y) +

∫ y

x

%′(u)du

Taking the average on the interval I = [x − 1
2
n−1+γ, x + 1

2
n−1+γ], we get

�

�

�%(x)− n1−γ
∫

I

%(y)dy
�

�

�≤ n−1+γ‖%′‖∞ ≤ Cn−1/8+15γ. (10.7)

Using (6.34), we have

n1−γ
∫

I

%(y)dy = Eµy

N (I∗)
N |I∗|

= %sc(T
−1(x)) +O(n−γ/12) = %sc( ȳ) +O(n−γ/12)

with I∗ := T−1(I), where we also used that

|%sc(T
−1(x))−%sc( ȳ)| ≤ |Iy| sup

|x |≤2−κ
|%′(x)| ≤ CnN−1.

Combining these inequalities, we arrive at (10.2) and this completes the proof of Lemma 10.1. �

11 Proof of the Main Theorem 2.1

Let V (x) = U
ey(x) be the external potential on I = [−1,1] given by (8.2) after rescaling. Notice that

V is continuous on (−1, 1) and lim|x |→1 V (x) =∞. Let ν(dx) be the equilibrium measure, defined
as the unique solution to the variational problem

inf
ν∈M 1

n

∫ 1

−1

∫ 1

−1

log |s− t|−1ν(ds)ν(dt) +

∫ 1

−1

V (s)ν(ds)
o

, (11.1)

whereM 1 is the space of probability measures on [−1, 1]. For general properties of the equilibrium
measure, see, e.g. Chapter 2 of [24] (and references therein) that specifically discusses the case
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of compact interval I and continuous potential going to infinity at the endpoints. We point out
however, that we follow the convention of [9] and [26] in what we call external potential; the
potential in [24] and [23], denoted by q(x) and Q(x), respectively, differs by a factor of two from
our convention: q(x) =Q(x) = 1

2
V (x).

The equilibrium measure ν with support S(ν) satisfies the Euler-Lagrange equations
∫

log |s− t|−1ν(ds) +
1

2
V (t) = C t ∈ S(ν)

∫

log |s− t|−1ν(ds) +
1

2
V (t)≥ C t ∈ I \ S(ν)

and S(ν) ⊂ (−1, 1) (Theorem 2.1 of [24]). Moreover, since V is convex in (−1, 1) such that
lim|x |→1 V (x) = ∞, the support S(ν) is an interval, S(ν) = [a, b], whose endpoints satisfy
−1< a < b < 1 and they are uniquely determined by the equations

∫ b

a

V ′(s)ds
p

(s− a)(b− s)
= 0,

1

2π

∫ b

a

V ′(s) s ds
p

(s− a)(b− s)
= 1. (11.2)

according to Theorem 2.4 [24] (after adjusting a factor of 2).

In our case, the potential V and thus the equilibrium measure ν depend on n and the external
configuration y in a non-trivial way. The main result of the recent work of Levin and Lubinsky [23]
proves the universal sine-kernel behavior for the correlation function of the orthogonal polynomials
with respect to a general n-dependent potential. This result fits exactly our situation, after the
conditions of [23] are verified.

We recall the main result of [23] in a special form we will need.

Theorem 11.1. For each n ≥ 1, consider a positive Borel measure µn on the real line whose 2n+ 1
moment is finite. Let I = [−1,1] and assume that each µn is absolutely continuous on I and they can
be written as

µn(dx) =W 2n
n (x)dx

where the non-negative functions Wn are continuous on I. We define the potential Qn =− log Wn : I →
(−∞,+∞] and let νn be the solution of the variational problem (11.1) with V = Vn = 2Qn. Let J be a
compact subinterval of (−1, 1). Assume the following conditions

(a) The equilibrium measure is absolutely continuous with νn(dx) = gn(x)dx, where gn is positive
and uniformly bounded in some open interval containing J;

(b) The family {Q′n}n=1,2,... is equicontinuous and uniformly bounded in some open interval contain-
ing J;

(c) The density %n(x) of the first n orthogonal polynomials with respect to µn on I (defined in (8.7))
satisfies C−1 ≤ %n(x)≤ C in some open interval containing J;

(d) The following limit holds uniformly for E ∈ J and a in any fixed compact subset of R:

lim
n→∞

%n(E)
%n(E +

x
n
)
= 1.
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Then for the n-th reproducing kernel of the measure µn on I (defined in (8.5)) we have

lim
n→∞

1

n%n(E)
Kn

�

E +
a

n%n(E)
, E +

b

n%n(E)

�

=
sinπ(a− b)
π(a− b)

(11.3)

uniformly for E ∈ J and for a, b in compact subsets of R.

First we verify the conditions of this theorem for our case. We consider the sequence of measures
µn on R that vanish outside of I = [−1,1] and that are given by µn(dx) = e−nUy(x)dx on I , where
y ∈ YL is a sequence of good external configurations after rescaling for some L ∈ G . Recall that
the concept of good external configurations depends on N , i.e. G = GN and we recall the relation
(4.15) between n and N . We set J = [−1+σ, 1−σ] for some σ > 0. The measure µn is clearly
absolutely continuous (actually it has a polynomial density), and since it is compactly supported, all
moments are finite. Conditions (a) and (b) will be verified separately in Appendix F. Conditions (c)
and (d) follow directly from (10.2) in Lemma 10.1.

Now we start the proof of the main Theorem 2.1. Throughout this proof, E is the expectation for
the Wigner ensemble with a small Gaussian component, i.e. E = E ft

with the earlier notation.
All constants in this proof may depend on κ. We will use the results obtained in Sections 4–10.
In these sections, various small exponents α,β ,γ,ε, and various large exponents A, B need to be
specified. The exponent β is given in the theorem and it can be an arbitrary positive constant. The
other exponents are determined in terms of β subject to the following requirements: β ≥ 10ε + α
(6.27), β ≥ (4A+ 8)ε + α (Lemma 6.1), Bε < 1/2 (Section 7), B ≥ 20 (Lemma 7.1) and A≥ 60B
(Lemma 8.1). Finally, γ ≤ 1

10
can be an arbitrary positive number, independent of β . Obviously,

these conditions can be simultaneously satisfied for any β > 0 if α,γ,ε are chosen sufficiently small
and A, B sufficiently large. All constants in the proof depend on this choice.

Let O(a, b) be a bounded function and δ < κ/2. In (2.9) we have to compute the limit of

1

2δ

∫ E0+δ

E0−δ
dE

∫

dadb %sc(E)
−2p(2)N

�

E +
a

N%sc(E)
, E +

b

N%sc(E)

�

O
�

a, b
�

=
N2

2δ

∫ E0+δ

E0−δ
dE

∫

dudv p(2)N (u, v)O
�

(u− E)N%sc(E), (v− E)N%sc(E)
�

=
N

N − 1

1

2δ

∫ E0+δ

E0−δ
dE E

N
∑

j 6=k

O
�

(λ j − E)N%sc(E), (λk − E)N%sc(E)
�

,

=:
N

N − 1
T (N ,δ),

(11.4)

where we have changed variables. Using the form of O given in (2.8), we have

T (N ,δ) = E
N
∑

j 6=k

1

2δ

∫ E0+δ

E0−δ
dE g

�

(λ j −λk)N%sc(E))h
�

�
λ j +λk

2
− E
�

N%sc(E)
�

. (11.5)

We first show that
sup
δ≤κ/2

sup
N∈N

T (N ,δ)≤ C (11.6)
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with a constant depending on κ. To see this, let R be a large number so that g(x) = h(x) = 0 for
|x | ≥ R, then

T (N ,δ)≤ CE
N
∑

j 6=k

1

2δ

∫ E0+δ

E0−δ
dE

∏

`= j,k

1
�

|λ`− E| ≤ CR/N
�

≤ C
1

2δ

∫ E0+δ

E0−δ
dE EN 2[E − CR/N , E + CR/N]≤ C ,

(11.7)

where we have used that inf{%sc(E) : |E − E0| ≤ δ} ≥ c > 0 and that

EN k
I ≤ Ck(N |I |)k (11.8)

for any interval I of length |I | ≥ 1/N . The bound (11.8) follows from Eq. (3.11) in [15] after
cutting the interval I into subintervals of size 1/(2N).

The estimate (11.6) and similar ideas allow us to perform many cutoffs and approximations. For
example, we can replace %sc(E) in g and h by % := %sc(E0) in the definition of T (N ,δ), see (11.5),
at the expense of an error that vanishes in the limit δ→ 0. We shall give a proof in case we perform
the change for, say, g:

E
N
∑

j 6=k

1

2δ

∫ E0+δ

E0−δ
dE
�

�

�g
�

(λ j −λk)N%sc(E))− g
�

(λ j −λk)N%sc(E0))
�

�

�h
�

�
λ j +λk

2
− E
�

N%sc(E)
�

≤ CδE
N
∑

j 6=k

1

2δ

∫ E0+δ

E0−δ
dE
∏

`= j,k

1
�

|λ`− E| ≤ CR/N
�

≤ Cδ,

where we used that %′sc(E) is uniformly bounded on [E0−δ, E0+δ]⊂ [−2+κ/2,2−κ/2]. We will
not repeat this type of simple argument in this proof.

After this replacement, we can perform the dE integration using that
∫

h= 1:

T (N ,δ) = E
N
∑

j 6=k

g
�

(λ j −λk)N%)
1

2δ

∫ E0+δ

E0−δ
dE h

�

�
λ j +λk

2
− E
�

N%
�

+O(δ)

=
1

2N%δ
E

N
∑

j 6=k

g
�

(λ j −λk)N%
�

∏

`= j,k

1
�
�

�

�λ`− E0

�

�

�≤ δ
�

+O(δ) +O(δ−1N−1),

(11.9)

where the last error comes from the contribution of eigenvalues within CR/N distance to E0 ± δ.
With the notation

T ∗(N ,δ) :=
1

2N%δ
E

N
∑

j 6=k

g
�

(λ j −λk)N%
�

∏

`= j,k

1
�
�

�

�λ`− E0

�

�

�≤ δ
�

,

and using (11.4), we thus need to prove that

lim
δ→0

lim
N→∞

T ∗(N ,δ) =

∫

g(a− b)
h

1−
�sinπ(a− b)
π(a− b)

�2i

dadb.
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Recall the definition of Nsc(E) from (4.12) and its inverse function N−1
sc (E). Note that

(N−1
sc )
′(E)≤ Cκ−1/2 if − 2+κ≤ E ≤ 2−κ. (11.10)

We define
χN ,E0,δ( j) := 1(M− ≤ j ≤ M+), M± = N ·Nsc(E0±δ),

and write
1
�

�

�λ j − E0

�

�≤ δ
�

= χN ,E0,δ( j) + U j , (11.11)

where U j is the error term, defined as the difference of 1
�

�

�

�λ j − E0

�

�

� ≤ δ
�

and χN ,E0,δ( j). We thus

have

T ∗(N ,δ) =
1

2N%δ
E

N
∑

j 6=k

g
�

(λ j −λk)N%
�

χN ,E0,δ( j)1
�

�

�λk − E0

�

�≤ δ
�

+
1

2N%δ
E

N
∑

j 6=k

g
�

(λ j −λk)N%
�

U j1
�

�

�λk − E0

�

�≤ δ
�

.

(11.12)

The last term is bounded by









E
1

2N%δ

∑

j







N
∑

k:k 6= j

1
�

�

�λk − E0

�

�≤ δ
�

g
�

(λ j −λk)N%
�







2

E







1

2N%δ

∑

j

U2
j















1/2

. (11.13)

The first expectation is bounded by

1

2N%δ
E
∑

k,k′, j

1
�

�

�λk − E0

�

�≤ δ
�

1
�

�

�λk′ − E0

�

�≤ δ
�

1
�

�

�λ j −λk

�

�≤ C/N
�

1
�

�

�λ j −λk′
�

�≤ C/N
�

Splitting the interval [E0−δ−C/N , E0+δ+C/N] into overlapping subintervals I` of length 4C/N
with an overlap at least 2C/N , we get that this last expectation is bounded by

1

2N%δ

∑

`

EN 3
I`
≤ C ,

where we used the moment bound (11.8) with k = 3 and the fact that the number of subintervals is
CNδ.

Since Nsc is monotonic, the second expectation in (11.13) is bounded by

1

2N%δ

∑

j

E
h

1
�
�

�

�λ j − E0

�

�

�≤ δ
�

− 1(|N−1
sc ( j/N)− E0| ≤ δ)

i2
.

On the set Ωc we estimate the difference of the two characteristic functions by 2, and we get from
(4.19) that the contribution is subexponentially small in n. On the set Ω we can use (4.21) and we
see that the difference of the two characteristic functions can be nonzero only if

δ− Cn−γ/6 ≤ |N−1
sc ( j/N)− E0| ≤ δ+ Cn−γ/6
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i.e. the number of j’s this can happen is bounded by CNn−γ/6. Recalling (4.15), we get

lim
N→∞
E







1

2N%δ

∑

j

U2
j






= 0,

therefore the second term in (11.12) vanishes in the N →∞ limit.

This shows that we can replace 1
�
�

�

�λ j − E0

�

�

� ≤ δ
�

by χN ,E0,δ( j) in the definition of T ∗ a with

negligible error and we can do similarly for k instead of j. Therefore, we need to prove that

lim
δ→0

lim
N→∞

1

2N%δ
E

∑

M−≤ j,k≤M+ ,
j 6=k

g
�

(λ j −λk)N%
�

=

∫

g(a− b)
h

1−
�sinπ(a− b)
π(a− b)

�2i

dadb.

and without loss of generality, we can assume that g ≥ 0.

We define
X L := n−1

∑

L≤ j,k≤L+n
j 6=k

g
�

(λ j −λk)N%
�

.

and let
QL := EX L .

We claim that

1

2N%δ
E

∑

M−≤ j,k≤M+ ,
j 6=k

g
�

(λ j −λk)N%
�

=
1+O(nγ−1)

2N%δ

∑

M−≤L≤M+

QL +O
�

N2e−cnγ/6�. (11.14)

To see this, we consider the expectation value separately onΩ andΩc . Since the double sum contains
at most N2 terms and P(Ωc) is subexponentially small (4.19), it is sufficient to check (11.14) when
the expectations are restricted to the set Ω. On the set Ω we have

(1− Cnγ−1)
∑

M−≤L≤M+

X L ≤
∑

M−≤ j,k≤M+ ,
j 6=k

g
�

(λ j −λk)N%
�

≤ (1+ Cnγ+1)
∑

M−≤L≤M+

X L , (11.15)

where C depends on ‖g‖∞. This follows from the fact that, by the support of g, only those ( j, k)
index pairs give nonzero contribution for which |λ j −λk| ≤ C/N , and thus | j − k| ≤ Cnγ by (4.22).
Therefore the sum

∑

L X L contains each pair ( j, k) at least [n− Cnγ]-times and at most [n+ Cnγ]-
times. Taking the expectation of (11.15) on Ω, we obtain (11.14).

Since QL is bounded by using (11.8), and

lim
δ→0

lim
N→∞

1

2N%δ

∑

M−≤L≤M+

1= 1, (11.16)

we only have to estimate QL for a typical L. Additionally to L ∈ {M−, M−+ 1, . . . , M+}, we can thus
assume that L ∈ G , since the relative proportion of good indices approaches one within any index
set with cardinality proportional with N and which is away from the boundary (see (6.29)). More
precisely, we fix two sequences L−(N) and L+(N) such that L±(N) ∈ G = GN

QL−(N) =min{QL , L ∈ GN}, QL+(N) =max{QL , L ∈ GN},
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then it follows from (11.16) that

(1− εN ,δ)QL−(N) ≤
1

2N%δ

∑

M−≤L≤M+

QL ≤ (1+ εN ,δ)QL+(N)

where limδ→0 limN→∞ εN ,δ = 0. We thus have to show that QL±(N) converges to the sine kernel. We
will actually prove that QL converges to the sine-kernel for any sequence L = L(N) ∈ G = GN . The
dependence on N will be omitted from the notation.

For L ∈ G , we can compute the expectation as

QL = E ft
E fy X L = EE fy X L

according to the convention that E = E ft
. Recall that definition of the sets Ω1 = Ω1(L), Ω2 = Ω2(L)

and Ω3(L) from (6.7),(6.15) and (6.20). Setting eΩ := Ω1 ∩Ω2 ∩Ω3, we see that the probability of
its complement is P(eΩc) ≤ Cn−2 (see (6.8), (6.16) and (6.21)). Since X L ≤ Cn, we only have to
consider external configurations such that y ∈ eΩ. Thus

QL =E1(y ∈ eΩ)E fy X L +O(n−1)

=E1(y ∈ eΩ)
�

Eµy
X L +

∫

( fy− 1)X Ldµy

�

+O(n−1).
(11.17)

The second term in the square bracket will be an error term since it is bounded by

E1(y ∈ eΩ)
∫

| fy− 1||X L|dµy ≤ CnE1(y ∈ eΩ)
∫

| fy− 1|dµy.

Since y ∈ eΩ and L ∈ G , we have
∫

| fy− 1|dµy ≤ n−2

from (6.26) and (6.27) and we thus obtain

QL = E1(y ∈ eΩ)Eµy
X L +O(n−1).

For the main term, by using (7.6) and assuming that B is large enough, we can also replace the
measure µy by its cutoff version µ(1)y with a negligible error. Let %y = p(1)y := p(1)

µ
(1)
y

denote the density

and p(2)y := p(2)
µ
(1)
y

denote the two point marginal of this measure. Thus we have

QL = (n− 1)E1(y ∈ eΩ)
∫ y1

y−1

dα

∫ y1

y−1

dβ p(2)y (α,β)g
�

(α− β)N%
�

+O(n−1). (11.18)

Since µ(1)y is an equilibrium measure, its correlation functions can be obtained as determinants of
the appropriate K kernels, see (8.8). In particular

0≤ p(2)y (u, v) =
n− 1

n
p(1)y (u)p

(1)
y (v)−

1

n(n− 1)
K2(u, v)≤ %y(u)%y(v) (11.19)
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holds for the marginals of the measure µ(1)y . The lower bound on p(2) follows from the fact that K is
the kernel of a positive operator, i.e. |K(u, v)|2 ≤ K(u, u)K(v, v).

Let 0 < κ ≤ 1/10. We now show that, up to an error of order κ, the dα integration in (11.18) can
be restricted from Iy = [y−1, y1] onto

I∗y = [y
∗
−, y∗+] :=

h

ȳ −
1− 2κ

2
|Iy|, ȳ +

1− 2κ

2
|Iy|
i

, ȳ =
y−1+ y1

2
,

i.e. onto an interval in the middle of Iy with length (1− 4κ)|Iy|. Similarly, the dβ integration will
be restricted to

I∗∗y = [y
∗∗
− , y∗∗+ ] :=

h

ȳ −
1−κ

2
|Iy|, ȳ +

1−κ
2
|Iy|
i

, ȳ =
y−1+ y1

2
,

i.e. onto an interval in the middle of Iy with length (1− 2κ)|Iy|. We show how to restrict the dα
integration, the other one is analogous.

The difference between the full dα integral and the restricted one is given by

CnE1(y ∈ eΩ)
∫

Iy\I∗y

dα

∫ y1

y−1

dβ p(2)y (α,β)g
�

(α− β)N%
�

. (11.20)

To do this estimate, we go back from the equilibrium measure µ(1)y to fy and we also remove the

constraint eΩ. As above, all these changes result in negligible errors. Moreover, we can insert Ω at the
expense of a negligible error since P(Ω) is subexponentially small. Thus (11.20) can be estimated
by

C

n
E1Ω

∑

L≤ j,k≤L+n
j 6=k

g
�

(λ j−λk)N%)

�

1
�

λ j−λL ≤ 2κ(λL+n−λL)
�

+1
�

λ j−λL ≥ (1−2κ)(λL+n−λL)
�

�

(11.21)
up to negligible errors. On the set Ω we know from (4.22) that

N%(λL+n−λL) = n+O(n4/5), N%(λ j −λL) = ( j− L) +O(n4/5)

assuming that γ≤ 1/20. Thus the first term in the square bracket of (11.20) can be estimated by

Cn−1E1Ω
∑

L≤k≤L+n

∑

j 6=k

1
�

L ≤ j ≤ L+ 2κn+ Cn4/5
�

g
�

(λ j −λk)N%)≤ Cκ (11.22)

taking into account (11.8) as before. Similar estimate holds for the second term in (11.21). Thus,
restricting the dα-integration to I∗y results in an error of order O(κ).

Doing the same restriction for the dβ integral, we can from now on assume that both integrations
in (11.18) are restricted to I∗y , i.e. it is separated away from the boundary. In particular, from
(10.2) and after rescaling, we know that %y(α) and %y(β) are essentially constant and equal to

|Iy|−1(1+O(n−γ/12). Moreover, on the set eΩ, we know from (6.13) that |Iy|−1 = N%
n
(1+O(nγ−1/4)),

i.e.

%y(β) =
N%

n
�

1+O(n−γ/12)
�

, for any β ∈ I∗∗y (11.23)
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Since I∗y ⊂ I∗∗y , the same formula holds for %y(α) for all α ∈ I∗y .

We now compute the restricted integrals in (11.18). Changing variables from β to b with β =
α+ b(n%y(α))−1, we have

QL =E1(y ∈ eΩ)
∫ y∗+

y∗−

dα
n− 1

n%y(α)

∫ (y∗∗+ −α)n%y(α)

(y∗∗− −α)n%y(α)
db p(2)y

�

α,α+
b

n%y(α)

�

g
�−N%b

n%y(α)

�

+O(n−1) +O(κ).

(11.24)

Since g is smooth and has compact support, we have

g
�−N%b

n%y(α)

�

= g(−b) + ξ, |ξ| ≤ C

�

�

�

�

�

N%

n%y(α)
− 1

�

�

�

�

�

≤ Cn−γ/12 (11.25)

from (11.23). Therefore, when we insert (11.25) into (11.24) and use (11.19), the error term
involving ξ is bounded by

CE1(y ∈ eΩ)
∫

I∗y

dα
1

%y(α)

∫ (y∗∗+ −α)n%y(α)

(y∗∗− −α)n%y(α)
db p(2)y

�

α,α+
b

n%y(α)

�

�

�

�

�

�

N%

n%y(α)
− 1

�

�

�

�

�

≤Cn−γ/12E1(y ∈ eΩ)
∫

I∗y

dα

∫ (y∗∗+ −α)n%y(α)

(y∗∗− −α)n%y(α)
db%y

�

α+
b

n%y(α)

�

≤Cn−γ/12E1(y ∈ eΩ)
∫

I∗y

%y(α)dα

∫

I∗∗y

%y(β)dβ

≤Cn−γ/12,

(11.26)

using that, by definition,
∫

I∗y

%y(α)dα≤
∫

Iy

%y(α)dα= 1

and similar bound holds for the β-integral.

Thus we can replace the variable of g in (11.24) by −b with negligible errors. Now Theorem 11.1
states that

1

%y(α)
2 p(2)y

�

α,α+
b

n%y(α)

�

→
�

1−
�sinπb

πb

�2
�

Clearly, as n→∞,
(y∗∗± −α)n%y(α)→±∞

for all α ∈ I∗y , i.e. the integration limits can be extended to infinity, noting that g is compactly
supported. Finally, from (11.23) we have

∫

I∗y

%y(α)dα≥ 1−O(κ)−O(nγ−1).

Combining all these estimates with Theorem 11.1, we obtain

QL =

∫ ∞

−∞
db
�

1−
�sinπb

πb

�2
�

g(−b) +O(n−γ/12) +O(κ) + o(1),
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where the last term error term is from Theorem 11.1 that goes to zero as N → ∞. Taking the
N →∞, δ→ 0 and κ→ 0 limits in this order, we arrive at the proof of Theorem 2.1.

A Proof of Theorem 4.1

We start with the proof of (4.4) and (4.5). From Theorem 4.6 of [15], we have

P
�

|m(x + i y)| ≥ K
�

≤ Ce−c
p

KN |y|

for all K > 0 sufficiently large, and |y| ≥ (log N)4/N . Since moreover |m(x + i y)| ≤ |y|−1 with
probability one, we obtain, under the assumption N |y| ≥ (log N)4,

E|m(x + i y)|q ≤ Kq + C |y|−qe−c
p

KN |y| ≤ Cq

uniformly in N , x . The bound (4.5) follows because ωy(x) = π−1Im m(x + i y).

To prove the results about the closeness of m(z) or Em(z) to msc(z), we first recall the key identity
about the trace of a resolvent in terms of resolvents of minors (see, e.g., (4.5) of [13]):

m(z) =
1

N
Tr

1

H − z
=

1

N

N
∑

k=1

1

−m(z)− z+δk(z)
(A.1)

with

δk(z) = hkk +m(z)−
�

1−
1

N

�

m(k)(z)− X (k)(z), (A.2)

and

m(k)(z) =
1

N − 1
Tr

1

B(k)− z
, X (k)(z) =

1

N

∑

α

ξ(k)α − 1

λ
(k)
α − z

, ξ(k)α = N |a(k) · v(k)α |
2 .

Here B(k) is the (kk)-minor of H (the (N − 1)× (N − 1) matrix obtained by removing the k-th row
and the k-th column from H), λ(k)α ,v(k)α are the eigenvalues and the eigenvectors of B(k), and a(k) =
(hk1, . . . , hk,k−1, hk,k+1, . . . hkN ). Throughout the proof we let x , y denote the real and imaginary
parts of z = x+ i y . Moreover, we will restrict our attention to y > 0. The case y < 0 can be handled
similarly.

Step 1. Lower bound on |m(z) + z|. There exist constants C , c > 0 such that

P
�

|m(x + i y) + (x + i y)| ≤ c
�

≤ e−C
p

N y (A.3)

for all x ∈ R, y ≥ (log N)4/N , and for all N large enough (depending only on the choice of C , c).
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To show (A.3), we use a continuity argument. We claim that there exist positive constants
C1, C2, C3, c > 0 such that the following four conditions are satisfied:

inf
z∈C\[−2,2]

|z+msc(z)| ≥ 2c,

P
�

|m(x + i y)| ≥
1

2c

�

≤
e−C1
p

N y

3
for all x ∈ R, y ≥ (log N)4/N

P
�

sup
1≤k≤N

|δk(x + i y)| ≥
c

16

�

≤
e−C2
p

N y

3
for all x ∈ R, y ≥ (log N)4/N

P
�

|m(x + i y)−msc(x + i y)| ≥ c
�

≤
e−C3
p

N y

3
for all |x | ≤ 1, y ≥ (log N)4/N .

(A.4)

The first condition can be checked explicitly from (4.3). The second condition follows from the
upper bound in Theorem 4.6 of [15]. The third condition can be satisfied because of Lemma 4.2 in
[15], combined with the fact that P(maxk |hkk| ≤ (c/48))≤ e−CN and with the observation that

�

�

�m(z)−
�

1−
1

N
�

m(k)(z)
�

�

�≤
C

N y
(A.5)

with probability one (see, for example (2.7) in [14]). Finally, the last condition can be ver-
ified by Theorem 4.1 of [15]. Note that the last three conditions only need to hold for all
N > N0(c, C1, C2, C3) large enough. Fix C =min(C1, C2, C3).

For |x | ≤ 1, y ≥ (log N)4/N we have (using the first and the last equation in (A.4))

P
�

|m(x + i y) + (x + i y)| ≤ c
�

≤ P
�

|m(x + i y)−msc(x + i y)| ≥ c
�

≤ e−C
p

N y .

Hence (A.3) holds true (with the defined constants c, C) for every |x | ≤ 1, y ≥ (log N)4/N . Suppose
now that (A.3) holds for a given z = x + i y ∈ C. Then we claim that (A.3) holds true for all

z′ = x ′+ i y ′ ∈ Bz = {z′ ∈ C : |z− z′| ≤ DN−2, Im z′ ≥ (log N)4/N}

for a constant D depending only on c, and for all N > N0; this implies immediately that (A.3) holds
true for all x ∈ R, y ≥ (log N)4/N and N > N0.

To prove (A.3) for z′ ∈ Bz , notice that |m′(z)| ≤ N2 for all z ∈ C with Im z ≥ (log N)4/N with
probability one. Therefore, using (A.3) for z, we find that

P
�

|m(z′) + z′| ≤
c

2

�

≤ e−C
p

N y ′ (A.6)

for all z′ ∈ Bz . Expanding (A.1), we obtain that

m(z′) +
1

m(z′) + z′
=−

1

N

N
∑

k=1

1

m(z′) + z′
δk(z

′)
1

m(z′) + z′−δk(z′)
.
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Therefore,

P
� 1

|m(z′) + z′|
≥

1

c

�

≤ P
�

|m(z′)| ≥
1

2c

�

+ P

 

1

N

N
∑

k=1

|δk(z′)|
|m(z′) + z′||m(z′) + z′−δk(z′)|

≥
1

2c

!

≤ P
�

|m(z′)| ≥
1

2c

�

+ P
�

|m(z′) + z′| ≤
c

2

�

+ P
�

sup
1≤k≤N

|δk(z
′)| ≥

c

16

�

≤ e−C
p

N y

where we used (A.4) and (A.6). This implies (A.3) for z′ ∈ Bz , and completes the proof of Step 1.

Step 2. Convergence to the semicircle in probability. Suppose that |x | ≤ K , (log N)4/N ≤ y ≤ 1. Then
there exist constants c, C ,δ0, only depending on K , such that

P
�

|m(x + i y)−msc(x + i y)| ≥ δ
�

≤ C e−cδ
p

N y |2−|x || (A.7)

for all δ < δ0, and all N ≥ 2.

To show (A.7), we first observe that, by increasing the constant C , we can assume N to be sufficiently
large. Then we expand (A.1) into

m(z) +
1

m(z) + z
=−

1

N

N
∑

k=1

1

m(z) + z
δk(z)

1

m(z) + z−δk(z)
. (A.8)

We define the complex random variable

Y (z) =
1

N

N
∑

k=1

1

m(z) + z
δk(z)

1

m(z) + z−δk(z)
.

From (A.3) and since, by Theorem 4.2 of [15],

P
�

sup
1≤k≤N

|δk(z)| ≥ δ
�

≤ Ce−c min(δ
p

N y ,δ2N y) (A.9)

for all y ≥ (log N)4/N and δ > 0, we find

P (|Y (z)| ≥ δ)≤ P (|m(z) + z| ≤ c) + P
�

sup
k≤N
|δk(z)| ≥min

�

c2δ

2
,

c

2

��

≤ Ce−cδ
p

N y (A.10)

for δ small enough, y ≥ (log N)4/N , and N large enough (independently of δ).

To prove (A.7) for |x |< 2, we use that, from (6.14) in [15],
�

�

�

�

m+
1

m+ z

�

�

�

�

≤ δ ⇒ |m−msc| ≤
Cδ

(2− |x |)1/2

for all z = x + i y with |x |< 2 and 0< y < 1. This implies, using (A.10), that

P
�

|m(z)−msc(z)| ≥ δ
�

≤ P
�

|Y (z)| ≥ cδ(2− |x |)1/2
�

≤ Ce−cδ
p

N y(2−|x |)
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for all δ small enough, N large enough, |x | ≤ 2, (log N)4/N ≤ y ≤ 1.

It remains to show (A.7) for 2 ≤ |x | ≤ K . To this end, for (log N)4/N ≤ y ≤ 1 and 2 ≤ |x | ≤ K , we
consider the event

Ω∗ =
n

|m(z) + z| ≥ c, sup
1≤k≤N

|δk(z)| ≤ δ, |Y (z)| ≤ δ
p

|2− |x ||
o

, z = x + i y .

From (A.3), (A.9) and (A.10), we have P ([Ω∗]c) ≤ e−cδ
p

N y|2−|x || for all δ small and N large
enough. Solving (A.8) for m on the set Ω∗, we get

m(z) =−
z

2
−

Y (z)
2
+

r

z2

4
− 1−

zY (z)
2
+

Y (z)2

4
.

Since m(z) is the Stieltjes transform of an empirical measure with finite support, it is analytic away
from a compact subset of the real axis. Similarly, on the set Ω∗, Y (z) is bounded and analytic away
from a compact subset of the real axis. The square root in the above formula is therefore uniquely
defined as the branch analytic on C\(−∞, 0], characterized by the property that the real part of the
square root is non-negative. Hence, on Ω∗,

m(z)−msc(z) =−
Y (z)

2
+

r

z2

4
− 1−

zY (z)
2
+

Y (z)2

4
−

r

z2

4
− 1

=−
Y (z)

2
−

1

4

2zY (z)− Y (z)2
q

z2

4
− 1− zY (z)

2
+ Y (z)2

4
+
q

z2

4
− 1

using the explicit formula (2.7) for msc(z), and therefore

|m(z)−msc(z)| ≤
|Y (z)|

2
+

2|z||Y (z)|+ |Y (z)|2

4Re
q

z2

4
− 1

≤ C
|Y (z)|+ |Y (z)|2
p

|2− |x ||
(A.11)

using the fact that

Re

r

z2

4
− 1≥ C |2− |x || for all 2≤ |x | ≤ K , |y| ≤ 1 .

From (A.11), we obtain that

P
��

�m(z)−msc(z)
�

�≥ δ
�

≤ P
�

|Y (z)|+ |Y (z)|2 ≥ cδ
p

|2− |x ||
�

≤ e−cδ
p

N y|2−|x ||

for all δ small enough, 2≤ |x | ≤ K , (log N)4/N ≤ y ≤ 1, and N large enough.

Step 3. Fluctuations of m(z). Suppose that |x | ≤ K , (log N)4/N ≤ y ≤ 1 and N y|2− |x || ≥ (log N)4.
Then there exist constants C , c > 0 such that

P (|m(z)−Em(z)| ≥ δ)≤ C e−cδ
p

N y|2−|x || (A.12)

for all 0< δ ≤ δ0, with δ0 small enough and all N large enough.

578



To show (A.12), we observe first that

�

�Em(z)−msc(z)
�

�≤ E|m(z)−msc(z)| ≤
∫ 1/y

0

dt P
�

|m(z)−msc(z)| ≥ t
�

,

where we used that |m(z)| ≤ y−1. Using (A.7), we obtain

�

�Em(z)−msc(z)
�

�≤
C

p

N y|2− |x ||
+

1

y
e−c
p

N y|2−|x || ≤
2C

p

N y|2− |x ||
(A.13)

for N large enough. For δ
p

N y|2− |x || ≥ 4C we thus obtain

P (|m(z)−Em(z)| ≥ δ)≤ P
�

|m(z)−msc(z)| ≥
δ

2

�

≤ C e−cδ
p

N y|2−|x ||

where we used (A.7) again. For δ
p

N y|2− |x || ≤ 4C the bound (A.12) is trivial.

As a consequence of (A.12), we immediately obtain (4.7). If N y|2− |x || ≤ (log N)4, we directly use
(4.4). Otherwise, we use

E |m(z)−Em(z)|q ≤ Cq

∫ δ0

0

t p−1P(|m(z)−Em(z)| ≥ t)dt + C y−qe−cδ0

p
N y|2−|x ||

from (A.12), and we obtain the first term on the r.h.s. of (4.7).

Step 4. Convergence to the semicircle in expectation. Assume that |x | ≤ K , (log N)4/N ≤ y ≤ 1 and
N y|2− |x || ≥ (log N)4. Then

�

�Em(z)−msc(z)
�

�≤
C

N y|2− |x ||3/2
(A.14)

for a universal constant C . Note that this bound gains an additional (Nη)−1/2 factor on the precision
of the estimates compared with Step 2 and Step 3, but the negative power of |2−|x || has increased.

To prove (A.14), with c0 := infz |msc(z) + z|> 0, we have

|Em(z) + z| ≥ |msc(z) + z| − |Em(z)−msc(z)| ≥ c0−
C

p

N y|2− |x ||
≥

c0

2
(A.15)

for N large enough (here we used (A.13)). Expanding the denominator in the r.h.s. of (A.1) around
Em(z) + z, we find

m(z) = −
1

Em(z) + z
−

1

N

N
∑

k=1

1

(Em(z) + z)2
�

m(z)−Em(z) +δk(z)
�

+
1

N

N
∑

k=1

1

(Em(z) + z)2
�

m(z)−Em(z) +δk(z)
�2 1

m(z) + z−δk(z)
.

(A.16)
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Taking expectation, we find

Em(z) +
1

Em(z) + z
= −

1

(Em(z) + z)2
Eδ1(z)

+
1

(Em(z) + z)2
E
�

(m(z)−Em(z) +δ1(z))
2 1

m(z) + z−δ1(z)

�

.
(A.17)

With a Schwarz inequality, we get
�

�

�

�

Em(z) +
1

Em(z) + z

�

�

�

�

≤
1

|Em(z) + z|2
|Eδ1(z)|

+ 2

�

E|m(z)−Em(z)|4+E|δ1(z)|4
�1/2

|Em(z) + z|2

�

E
1

|m(z) + z−δ1(z)|2

�1/2

.

(A.18)

From (A.12), we find

E |m(z)−Em(z)|q ≤
Cq

(N y|2− |x ||)q/2
(A.19)

for arbitrary q ≥ 1. Moreover, with c fixed in (A.3), we have

P
�

|m(z) + z−δ1(z)| ≤
c

2

�

≤ P(|m(z) + z| ≤ c) + P
�

|δ1(z)| ≥
c

2

�

≤ e−C
p

N y ≤ e−C(log N)2

using (A.9), and hence

E
1

|m(z) + z−δ1(z)|q
≤

1

yq e−C(log N)2 +
2q

cq ≤
2q+1

cq (A.20)

if N is large enough. Here we used the fact that Im m(z) + z − δ1(z) ≥ Im z = y . From (A.9), we
also have

E|δ1(z)|q ≤
Cq

(N y)q/2
. (A.21)

From the definition of δ1(z) in (A.2), from EX (k) = 0 and from (A.5), we get

�

�Eδ1(z)
�

�≤
1

N y
(A.22)

Combining this bound with (A.19), we find, from (A.18), that
�

�

�

�

Em(z) +
1

Em(z) + z

�

�

�

�

≤
C

N y|2− |x ||
. (A.23)

Recall that msc(z) solves the equation

msc(z) +
1

msc(z) + z
= 0.

This equation is stable in a sense that the inverse of the function m→ m+ (m+ z)−1 near zero is
Lipschitz continuous with a constant proportional to |2− |x ||1/2. Thus we obtain

|Em(z)−msc(z)| ≤
C

N y|2− |x ||3/2
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and this completes Step 4.

Step 5. Alternative bound on |Em(z)− msc(z)|. Assuming |x | ≤ K and (log N)4/N ≤ y ≤ 1, there
exists a constant C > 0 such that

�

�Em(z)−msc(z)
�

�≤
C

N y3/2|2− |x ||1/2
(A.24)

for all N large enough (independently of z = x + i y).

To prove (A.24), we use the bound

E |m(z)−Em(z)|q ≤
Cq

(N y3/2)q
(A.25)

which is valid for all q ≥ 1 and it follows from Theorem 3.1 in [13]. Expanding again the denomi-
nator in the r.h.s. of (A.1) around Em(z) + z, we get

m(z) = −
1

Em(z) + z
−

1

N

N
∑

k=1

m(z)−Em(z) +δk(z)
�

Em(z) + z
� �

m(z) + z−δk(z)
�

= −
1

Em(z) + z
−

1

N

N
∑

k=1

m(z)−Em(z)
�

Em(z) + z
� �

m(z) + z−δk(z)
� −

1

N

N
∑

k=1

δk(z)
(Em(z) + z)2

−
1

N

N
∑

k=1

δk(z) (Em(z)−m(z) +δk(z))
�

Em(z) + z
�2 �m(z) + z−δk(z)

�

.

(A.26)

Taking the expectation, we find

�

�

�Em(z)+
1

Em(z) + z

�

�

�

≤
1

|Em(z) + z|
�

E |m(z)−Em(z)|2
�1/2

�

E
1

|m(z) + z−δ1(z)|2

�1/2

+

�

�Eδ1(z)
�

�

|Em(z) + z|2
+

�

E|δ1(z)|4
�1/2

|Em(z) + z|2

�

E
1

|m(z) + z−δ1(z)|2

�1/2

+

�

E|δ1(z)|4
�1/4 �
E|m(z)−Em(z)|4

�1/4

|Em(z) + z|2

�

E
1

|m(z) + z−δ1(z)|2

�1/2

.

(A.27)

Using (A.20) with q = 2, (A.25) with q = 2 and q = 4, (A.21) with q = 4 and (A.22), we find, by
the stability argument, that

�

�

�Em(z) +
1

Em(z) + z

�

�

�≤
C

N y3/2

which implies (A.24). This completes the proof of Theorem 4.1.
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B Proof of Proposition 4.2

We start with the proof of (4.14). From the moment method, we know that if λmin(H) and λmax(H)
denote the smallest and the largest eigenvalues of the hermitian Wigner matrix H, and if K is large
enough, then

P
�

λmin(H)≤−K
�

= P
�

λmax(H)≥ K
�

≤ K−cN2/3

(for example, one can use the bound ETr HN2/3
≤ C from [28]; the symmetry condition on the

distribution can be removed by symmetrization). This implies that N(E) ≤ NK−cN2/3
for E < −K

and 1−N(E)≤ NK−cN2/3
for all E > K . Therefore

∫ ∞

−∞
|N(E)−Nsc(E)|dE ≤

∫ K

−K

�

�[N(E)−N(−K)]−Nsc(E)
�

�dE + 2NK−cN2/3
(B.1)

for K > 0 large enough. The last term is negligible. The main estimate is contained in the following
lemma whose proof is given at the end of this section.

Lemma B.1. Let %∗ = %+−%− be a difference of two finite measures with support in [−K , K] for some
K > 0. Let

m∗(z) =

∫

R

%∗(dx)
x − z

, N∗(E) :=

∫ E

−K

%∗(dx)

be the Stieltjes transform and the distribution function of %∗, respectively. Denote moreover by m∗±(z)
the Stieltjes transforms of %∗±. We assume that m∗, m∗+, m∗− satisfy the following bounds for |x | ≤ K+1:

|m∗+(x + i y)|+ |m∗−(x + i y)| ≤ L1 for all (log N)4/N ≤ |y| ≤ 1 (B.2)

|m∗(x + i y)| ≤
L2

N |y|3/2|2− |x ||1/2
for all (log N)4/N ≤ |y| ≤ 1 (B.3)

|m∗(x + i y)| ≤
L3

N |y||2− |x ||3/2
for all N |y||2− |x || ≥ (log N)4, (B.4)

with some constants L1, L2, L3. Then

∫ K

−K

|N∗(E)|dE ≤
C L

N6/7
. (B.5)

with L =max{L1, L2, L3}. The constant C in (B.5) depends only on K.

We apply this lemma for the signed measure %∗(dx) = 1(|x | ≤ K)
�

%(x)−%sc(x)
�

dx . The bounds
(B.2), (B.3), and (B.4) follow from (4.4), (4.8) and (4.9) (choosing K+1 instead of K), respectively.
From (B.5) we obtain

∫ K

−K

�

�[N(E)−N(−K)]−Nsc(E)
�

�dE ≤
C

N6/7
,

which, together with (B.1), completes the proof of (4.14).
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For the proof of (4.13), we fix |E| ≤ K and we choose N−3/4 ≤ η≤ 1 to be optimized later. Define a
function f = fE : R→ R such that f (x) = 1 for x ≤ E−η, f (x) = 0 for x > E+η with | f ′| ≤ Cη−1

and | f ′′| ≤ Cη−2. We have

�

�

�

�N (−∞, E)
N

−N(E)
�

−
∫ ∞

−∞
fE(λ)[ω(dλ)−%(λ)dλ]

�

�

�≤
N [E −η, E +η]

N
+E
N [E −η, E +η]

N
.

(B.6)
The second term on the r.h.s is estimated by Cη, using (4.5). For the first term we use Theorem 4.6
of [15]:

P
�N [E −η, E +η]

N
≥ δ/4

�

≤ Ce−c
p
δN (B.7)

with some positive c > 0.

Now we consider the fluctuation of the smoothed distribution function

W :=

∫ ∞

−∞
fE(λ)[ω(dλ)−%(λ)dλ] =

1

N

N
∑

α=1

�

fE(λα)−E fE(λα)
�

.

We partition [−K − 2, K + 2] into intervals Ir of length η. For M ≥ M0 with a sufficiently large M0,
and set

Ωk :=
n

kMNη≤ sup
r
N (Ir)< (k+ 1)MNη

o

, k = 0, 1,2, . . . ,η−1,

then from Theorem 4.6 of [15] we know that

P{Ωk} ≤ Ce−c
p

kMNη.

Analogously to the calculation (D.16), the size of the variance of W is determined by the size of
|∇W |. On the event Ωk, we have

|∇W |2 =
1

N

∑

1≤i≤ j≤N

�

�

�

∂W

∂ Re hi j

�

�

�

2
+
�

�

�

∂W

∂ Im hi j

�

�

�

2

=
1

N

∑

1≤i≤ j≤N

�

�

�

1

N

∑

α

f ′E(λα)Re uα(i) · uα( j)
�

�

�

2
+
�

�

�

1

N

∑

α

f ′E(λα)Re uα(i) · uα( j)
�

�

�

2

=
1

N3

∑

α

| f ′(λα)|2 ≤
kM

N2η

(B.8)

(Note that the derivative in∇W is with respect to the original random variables zi j =
p

Nhi j). From
the concentration inequality (Theorem 2.1 of [4]) we obtain that

P(W ≥ δ/4)≤ e−Tδ/4 E eTW

≤ e−Tδ/4 Eexp
h

ST2|∇W |2
i

≤Ce−Tδ/4
1/η
∑

k=0

E1Ωk
eST2kMN−2η−1

≤Ce−Tδ/4
1/η
∑

k=0

e−c
p

kMNη eST2kMN−2η−1
.

(B.9)
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Choosing T = cN1/2, and η= N−3/4, it follows that

P(W ≥ δ/4)≤ e−δ
p

N .

Repeating the same argument with W replaced by −W , we conclude that

P(|W | ≥ δ/4)≤ e−cδ
p

N .

Combining this with (B.6) and (B.7), we have

P(|N(E)−Nsc(E)| ≥ δ)≤ Ce−cδ
p

N .

which completes the proof of Proposition 4.2.

Proof of Lemma B.1. For simplicity, in the proof we omit the star from the notation. First notice that
(B.2) implies that, after taking imaginary part,

|%|(I)≤ C L1|I | (B.10)

for any interval of length |I | ≥ (log N)4/N , I ⊂ [−K − 1, K + 1].

Let (log N)4/N ≤ η ≤ 1 to be chosen later. Fix E ∈ [−K , K] and define a function f = fE : R→ R
such that f (x) = 1 for x ∈ [−K , E −η], f (x) = 0 for x > E +η and x < −K − 1 with | f ′| ≤ Cη−1

and | f ′′| ≤ Cη−2. We have

�

�

�N(E)−
∫ ∞

−∞
fE(λ)%(dλ)

�

�

�≤ |%|(E −η, E +η)≤ C L1η . (B.11)

To express f (λ) in terms of the Stieltjes transform, we use the Helffer-Sjöstrand functional calculus,
see, e.g., [8]. Let χ(y) be a smooth cutoff function with support in [−1, 1], with χ(y) = 1 for
|y| ≤ 1/2 and with bounded derivatives. Let

ef (x + i y) = ( f (x) + i y f ′(x))χ(y),

then

f (λ) =
1

2π

∫

R2

∂z̄
ef (x + i y)
λ− x − i y

dxdy =
1

2π

∫

R2

i y f ′′(x)χ(y) + i( f (x) + i y f ′(x))χ ′(y)
λ− x − i y

dxdy, (B.12)

and therefore, since f is real,

�

�

�

∫ ∞

−∞
f (λ)%(dλ)

�

�

�=
�

�

�Re

∫ ∞

−∞
f (λ)%(dλ)

�

�

�

≤

�

�

�

�

�

1

2π

∫

R2

y f ′′(x)χ(y) Im m(x + i y)dxdy

�

�

�

�

�

+ C

∫

R2

�

| f (x)|+ |y|| f ′(x)|
�

|χ ′(y)|
�

�m(x + i y)
�

�dxdy .

(B.13)
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Using (B.3) and the support properties of χ ′ and f , the second contribution is bounded by

L2

∫

|x |≤K+1

dx

∫

1
2
≤|y|≤1

dy

�

| f (x)|+ |y|| f ′(x)|
�

N |y|3/2|2− |x ||1/2
≤

C L2

N
+

C L2

Nη

∫ E+η

E−η

dx

|2− |x ||1/2

≤
C L2

N |2− |E||1/2
.

(B.14)

For the first term in (B.13), we split the integration:
�

�

�

∫

R2

y f ′′(x)χ(y) Im m(x + i y)dxdy
�

�

�

≤ C

∫

|y|≤η

∫

|x |≤K+1

|y|| f ′′(x)|
�

|Im m+(x + i y)|+ |Im m−(x + i y)|
�

dxdy

+
�

�

�

∫

η≤|y|≤1

∫

|x |≤K+1

y f ′′(x)χ(y)m(x + i y)dxdy
�

�

�

(B.15)

where, in the second term, we dropped the imaginary part since f and χ are real. To bound the first
term we note that, for every fixed x , the functions

|y||Im m±(x + i y)|=
∫

ρ±(ds)
y2

(s− x)2+ y2

are monotonically increasing in |y|. This implies that, for all |y| ≤ η,

|y||Im m±(x + i y)| ≤ η|Im m±(x + iη)| ≤ Cη

by (B.2). Therefore, we find
∫

|y|≤η

∫

|x |≤K+1

|y|| f ′′(x)|
�

|Im m+(x + i y)|+ |Im m−(x + i y)|
�

dxdy ≤ C L1η. (B.16)

As for the second term on the r.h.s. of (B.15), we integrate by parts first in x , then in y . It is
sufficient to consider the regime η≤ y ≤ 1, the case of negative y ’s is treated identically. We find

∫

η≤y≤1

∫

|x |≤K+1

i y f ′′(x)χ(y)m(x + i y)dydx

=−
∫

η≤y≤1

∫

|x |≤K+1

i y f ′(x)χ(y)m′(x + i y)dydx

=

∫

η≤y≤1

∫

|x |≤K+1

∂y(yχ(y)) f
′(x)m(x + i y)dydx

+

∫

|x |≤K+1

η f ′(x)χ(η)m(x + iη)dx .

(B.17)

Using (B.2), the second term is bounded in absolute value by

C L1

∫

|x |≤K+1

η| f ′(x)|dx ≤ C L1η . (B.18)
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The absolute value of the first term on the r.h.s. of (B.17) is estimated by

Cη−1

∫ 1

η

∫ E+η

E−η
|m(x + i y)|dxdy. (B.19)

Putting all terms together, we find from (B.11), (B.13), (B.14), (B.16) and (B.18) that

∫

|E|≤K

|N(E)|dE ≤ C L
�

η+ N−1+

∫ 1

η

dy

∫

|x |≤K+1

dx
�

�m(x + i y)
�

�

�

. (B.20)

We will use the bounds (B.2)–(B.4) and we split the integration into separate regions:

∫ 1

η

dy

∫

|x |≤K+1

dx
�

�m(x + i y)
�

�

≤ C L

∫ 1

η

dy

∫

dx 1
�

|2− |x || ≤
(log N)4

N y

�

+ C L

∫

dy

∫

|x |≤K+1

dx min

�

1,
1

N |y|3/2|2− |x ||1/2
,

1

N |y||2− |x ||3/2

�

=: C L (I+ II) .

(B.21)

Clearly

I≤
∫ 1

η

dy

∫

dx 1

�

|2− |x || ≤
(log N)4

N y

�

≤ C
(log N)5

N
.

As for the second term on the r.h.s. of (B.21), we divide the integral into several pieces:

II≤
∫ N−4/7

η

dy





∫

|2−|x ||≤(N y)−2/3

dx +

∫

(N y)−2/3≤|2−|x ||≤K+3

dx
1

N y|2− |x ||3/2





+

∫ 1

N−4/7

dy





∫

|2−|x ||≤y1/2

dx
1

N y3/2|2− |x ||1/2
+

∫

y1/2≤|2−|x ||≤K+3

dx
1

N y|2− |x ||3/2





≤
∫ N−4/7

η

dy
1

(N y)2/3
+

∫ 1

N−4/7

dy
1

N y5/4

≤ CN−6/7

(B.22)

independently of η. Inserting in (B.20), and choosing η= N−6/7, we conclude the proof of (B.5). �

C Proof of Lemma 4.3.

We partition the interval [−2+κ, 2−κ] into a disjoint union of intervals

Ir =
h

nγN−1(r −
1

2
), nγN−1(r +

1

2
)
i

(C.1)
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of length nγN−1 and center wr = rnγN−1, where r ∈ Z, |r| ≤ r1 := Nn−γ(2−κ). Then, for any r,

�

�

N (Ir)
nγ

−%sc(wr)
�

�≤ n−γ/6 (C.2)

by (4.16). To prove (4.21), first we locate middle eigenvalue. Let r0 be the index such that

∑

r<r0

N (Ir)<
N

2
≤
∑

r≤r0

N (Ir)

in other words
λN/2 ∈ Ir0

. (C.3)

For definiteness, we can assume that r0 ≥ 0. Using the second event in (4.18) we obtain that

r0−1
∑

r=1

N (Ir)≤ N/2−N [(−∞, 0)]≤ CNn−γ/6. (C.4)

On the other hand, with the notation r1 :=min{(r0− 1)+, Nn−γ}, we have by (C.2) that

r0−1
∑

r=1

N (Ir)≥
r1
∑

r=1

N (Ir)≥ nγ(1− n−γ/6)
r1
∑

r=1

%sc(wr)≥ cr1nγ, (C.5)

where we used that wr ≤ 1 for any r ≤ r1 ≤ Nn−γ and thus %sc(wr) ≥ %sc(1) ≥ c. From (C.4) and
(C.5) we conclude that r0 ≤ CNn−7γ/6, i.e. wr0

≤ Cn−γ/6. Thus we proved that

|wr0
| ≤ Cn−γ/6, |λN/2| ≤ Cn−γ/6. (C.6)

Starting the proof of (4.21), we can assume that a ≥ N/2 by symmetry. Suppose first that λa ∈
[−2+κ, 2−κ], i.e. λa ∈ Ir for some |r| ≤ r1, i.e. a ≥ N/2 implies r ≥ r0. Then we have

r−1
∑

u=r0+1

N (Iu)≤ a− N/2≤
r
∑

u=r0

N (Iu)

i.e.
r−1
∑

u=r0+1

N (Iu)≤ a− N

∫ 0

−∞
%sc(E)dE ≤

r
∑

u=r0

N (Iu) (C.7)

using
∫ 0

−∞%sc(E)dE = 1/2.

Note that
r
∑

u=r0

N (Iu)≤ nγ(1+ Cn−γ/6)
r
∑

u=r0

%sc(wu)≤ (1+ Cn−γ/6)N

∫ wr

0

%sc(E)dE (C.8)

using (C.2) (C.6) and that γ is small. Similarly

r−1
∑

u=r0+1

N (Iu)≥ (1− Cn−γ/6)N

∫ wr

0

%sc(E)dE − Cnγ. (C.9)
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Thus, combining these estimates with (C.7), we have

�

�

�aN−1−
∫ wr

−∞
%sc(E)dE

�

�

�≤ Cn−γ/6

i.e.
|N−1

sc (aN−1)−wr | ≤ Cκ−1/2n−γ/6

using (11.10) and κ3/2 ≤ aN−1 ≤ 1−κ3/2. Since λa ∈ Ir , i.e. |λa−wr | ≤ nγN−1, we obtain (4.21).
Finally, we consider the case when λa > 2− κ. The lower bound in (C.7) and the estimate (C.9)
hold with r = r1 so we get

a ≥ (1− Cn−γ/6)N

∫ wr1

−∞
%sc(E)dE − Cnγ

≥ N

∫ 2−κ

−∞
%sc(E)dE − Cn−γ/6N ≥ (1−π−1κ3/2)N − Cn−γ/6N ,

(C.10)

which contradicts the assumption a ≤ N(1−κ3/2) for large N .

For the proof of (4.22), suppose that λa ∈ Ir , λb ∈ Is. Using (4.21) and Nκ3/2 ≤ a < b ≤ N(1−κ3/2),
we know that −2+κ/2≤ wr ≤ ws ≤ 2−κ/2. By (4.21), we have the apriori bound

|λa −λb| ≤ |N−1
sc (aN−1)−N−1

sc (bN−1)|+ Cκn−γ/6 ≤ CκN−1|b− a|+ Cκn−γ/6 ≤ Cκn−γ/6

by the assumption |b− a| ≤ CNnγ/6. In particular

|wr −ws| ≤ |λa −λb|+ Cκn−γ/6 ≤ Cκn−γ/6. (C.11)

The constants Cκ depend on κ as Cκ ≤ Cκ1/2.

From λa ∈ Ir , λb ∈ Is it also follows that

(s− r − 1)nγN−1 ≤ λb −λa ≤ (s− r + 1)nγN−1 (C.12)

and
s−1
∑

u=r+1

N (Iu)≤ b− a ≤
s
∑

u=r
N (Iu). (C.13)

Let s − r + 1 =
∑ j0

j=0 2m j , m0 < m1 < . . . be the binary representation of s − r + 1 with j0 =
[log2(s− r + 1)] ≤ log N . Using this representation, we can concatanate the intervals Iu, r ≤ u ≤ s,
into longer intervals J0, J1, . . . of length |J j|= 2 jnγN−1 such that

I :=
s
⋃

u=r

Ir =
j0
⋃

j=0

J j .

Since %′sc is bounded on I , we have

%sc(w)≤ (1+ Cκ|I |)%sc(λa), for any w ∈ I .

588



On the set Ω we thus have (see (4.16))

s
∑

u=r
N (Iu) =

j0
∑

j=0

N (J j)≤ (1+ Cκ|I |)%sc(λa)
j0
∑

j=0

N |J j|
h

1+ (N |J j|)−1/4nγ/12
i

≤ (1+ Cκ|I |)%sc(λa)
h

N |I |+ (N |I |)3/4nγ/12 log N
i

.

(C.14)

Similary, one can get a lower bound on
∑s−1

u=r+1N (Iu). Recalling |I | = (s− r + 1)nγN−1, and that
|I | ≤ Cn−γ/6 from (C.11), we conclude from (C.13) that

�

�

�(b− a)−%sc(λa)n
γ(s− r)

�

�

�≤ Cκnγ|b− a|3/4+ CκN−1|b− a|2+ Cκnγ.

But from (C.12)
�

�N%sc(λa)(λb −λa)−%sc(λa)n
γ(s− r)

�

�≤ Cκnγ

thus
�

�N%sc(λa)(λb −λa)− (b− a)
�

�≤ Cκnγ|b− a|3/4+ CκN−1|b− a|2

with Cκ ≤ Cκ1/2, and we have proved (4.22). �

D Proof of Lemma 5.3

We start with the outline of the proof and indicate the origin of the restriction α > 1/4. We will first
regularize the logarithmic interaction on a scale η at the expense of an error of O(η) for each pair
of eigenvalues, modulo logarithmic corrections (Lemma D.1). By a Schwarz inequality (D.18), the
fluctuation of the regularized two body interaction is split into the product of the fluctuation of the
regularized potential Ax (D.14) and the fluctuation of the local semicircle law regularized on scale
η. The latter is of order O(N−1/2η−1/2) by the improved fluctuation bound on the local semicircle
law (4.7). The former is of order O(N−1η−1/2) using that the logarithmic Sobolev inequality (2.4)
on the single site distribution can be turned into a spectral gap estimate for Ax . Finally, we optimize
the regularization error O(η) and the fluctuation error O(N−3/2η−1) per particle pairs, which gives
a total error of order N2 · N−3/4 = N1+1/4.

The proof of the following regularization lemma is postponed until the end of the section:

Lemma D.1. Let (log N)4/N ≤ η≤ 1, then
�

�

�

�

�

1

N2E
h
∑

j<k

log |λ j −λk| −
1

N2

∑

j<k

log |λ j −λk + iη|
i

�

�

�

�

�

≤ Cη log N (D.1)

with respect to any Wigner ensemble whose single-site distribution satisfies (2.6) and (2.5).

Then Lemma 5.3 directly follows from the following statement:

Lemma D.2. Suppose η= N−3/4, then
�

�

�

1

N2 E
∑

i< j

log |λi −λ j + iη| −
1

2

∫ ∫

log |x − y|%sc(x)%sc(y)dx dy
�

�

�≤ C
log N

N3/4 (D.2)

for a universal constant C > 0 and all N large enough.
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Proof of Lemma D.2. Recall that ω(dx) denotes the empirical measure of the eigenvalues (4.1). We
have

�

�

�

∑

i< j

log |λi −λ j + iη| −
N2

2

∫

log |x − y + iη|ω(dx)ω(dy)
�

�

�≤ N | logη|

because of the contribution of the diagonal terms.

Step 1. Recall the definition of ωη(x) from (4.2), then

�

�

�E
∫

log |x − y + iη|ω(dx)ω(dy)−E
∫

dxdy log |x − y + iη|ωη(x)ωη(y)
�

�

�≤ Cη(log N)2 . (D.3)

To prove (D.3), we observe that
∫

ω(dx)ω(dy) log |x − y + iη| −
∫

dxdy log |x − y + iη|ωη(x)ωη(y)

=

∫

ω(dx)ω(dy)

∫

dtdr
η

(t − x)2+η2

η

(r − y)2+η2

�

log |x − y + iη| − log |t − r + iη|
�

.

Clearly
�

�

�E
∫

ω(dx)ω(dy) log |x − y + iη| −E
∫

dxdy log |x − y + iη|ωη(x)ωη(y)
�

�

�

≤ E
∫

ω(dx)ω(dy)

∫

dtdr
η1(|t − x | ≤ 1)
(t − x)2+η2

η1(|r − y| ≤ 1)
(r − y)2+η2

�

� log |x − y + iη| − log |t − r + iη|
�

�

+ Cη| logη| .
(D.4)

Here we also used that P{suppω ∈ [−K , K]} ≥ 1−e−CN for some large constant K . Next we observe
that
∫

dtdr
η1(|t − x | ≤ 1)
(t − x)2+η2

η1(|r − y| ≤ 1)
(r − y)2+η2

�

�log |x − y + iη| − log |t − r + iη|
�

�

≤
∫ 1

0

ds

∫

dtdr
η1(|t − x | ≤ 1)
(t − x)2+η2

η1(|r − y| ≤ 1)
(r − y)2+η2

|(x − y)− (t − r)|
|s(t − r) + (1− s)(x − y) + iη|

≤ η
∫ 1

0

ds

∫

dtdr (|t|+ |r|)
1(|t| ≤ η−1)

t2+ 1

1(|r| ≤ η−1)
r2+ 1

1

|sη(t − r) + (x − y) + iη|
.

(D.5)

Inserting this bound back into (D.4), we find
�

�

�E
∫

ω(dx)ω(dy) log |x − y + iη| −E
∫

dxdy log |x − y + iη|ωη(x)ωη(y)
�

�

�

≤ Cη| logη|+ Cη

∫ 1

0

ds

∫

dtdr (|t|+ |r|)
1(|t|, |r| ≤ η−1)
(t2+ 1)(r2+ 1)

E
1

N2

∑

i, j

1

|λi −λ j + sη(t − r) + iη|

≤ Cη(log N)2.
(D.6)
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Here we used the bound
1

N2E
∑

i, j

1

|λi −λ j + xη+ iη|
≤ C log N , (D.7)

which holds uniformly in x ∈ R, if η≥ (log N)4/N . To prove (D.7), consider the event

Θ0 = {max
j
|λ j| ≤ K0} (D.8)

for some K0 > 0. Moreover, define the intervals Ik = [−(k + 1)η,−kη] ∪ [kη, (k + 1)η], for all
nonnegative integer k ≤ K0/η, and consider the event

Θ1 = {NIk
≤ KNη , k = 0, 1,2, . . . , K0η

−1}. (D.9)

For sufficiently large K0 and K we have

P (Θc
0)≤ e−cNK2

0 , P(Θc
1)≤ e−c

p
KNη (D.10)

by Lemma 7.4 [13] and by (4.20), after adjusting c. Then

1

N2E
∑

j<`

1

|λ`−λ j + xη+ iη|
≤ η−1�P(Θc

0) + P(Θ
c
1)
�

+E
�

C

N2

K0η
−1

∑

k,m

NIk
NIm

1Θ0∩Θ1

(|k−m+ x |+ 1)η

�

≤ η−1(e−cK2
0 N + e−c

p
KNη) + CK2η

K0η
−1

∑

k,m

1

(|k−m+ x |+ 1)

≤ C | logη|

(D.11)

because Nη≥ (log N)4 by assumption. This completes the proof of Step 1.

Step 2. Let %η(x) = Eωη(x), and assume (Nη)≥ (log N)8, then

�

�

�E
∫

log |x− y+ iη|ωη(x)ωη(y)dxdy−
∫

log |x− y+ iη|%η(x)%η(y)dxdy
�

�

�≤ C

�

1

N3/2η
+
η1/2

N

�

(D.12)

We note that

E
∫

log |x − y + iη|ωη(x)ωη(y)dxdy −
∫

log |x − y + iη|%η(x)%η(y)dxdy

= E
∫

log |x − y + iη|(ωη(x)−%η(x))(ωη(y)−%η(y))dxdy

= E
∫

dx
�

Ax −EAx
�

(ωη(x)−%η(x)),

(D.13)

where we defined the random variable

Ax :=

∫

dy log |x − y + iη|ωη(y) =
1

N

∑

j

fη(λ j − x) (D.14)
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with fη(λ) = (log | · | ∗ θη)(λ).
To estimate the fluctuations of Ax we use that the logarithmic Sobolev inequality (2.4) implies the
spectral gap, i.e., we have

E |Ax −EAx |2 ≤ SE |∇Ax |2. (D.15)

Let uα denote the orthonormal set of eigenvectors belonging to the eigenvalues λα of H. Taking into
account the scaling (2.1), we have

|∇Ax |2 =
1

N

∑

1≤i≤ j≤N

�

�

�

�

∂ Ax

∂ Rehi j

�

�

�

2
+
�

�

�

∂ Ax

∂ Imhi j

�

�

�

2
�

=
1

N

∑

i j

�

�

�

�

�

�

1

N

∑

α

f ′η(λα− x)Reuα(i)uα( j)

�

�

�

�

�

2

+

�

�

�

�

�

1

N

∑

α

f ′η(λα− x)Imuα(i)uα( j)

�

�

�

�

�

2�

=
1

N3

∑

α,β

f ′η(λα− x) f ′η(λβ − x)|uα · uβ |2

=
1

N3

∑

α

| f ′η(λα− x)|2

≤
C

N2η
ωη(x),

(D.16)

using that | f ′η(λ)|
2 ≤ C(λ2+η2)−1. We have from (D.15), (D.16) and (4.5) that

E |Ax −EAx |2 ≤
C

N2η
. (D.17)

On the other hand, from (4.7) and ωη(x) = π−1Im m(x + iη) we have

E
�

�ωη(x)−%η(x)
�

�

q ≤
Cq

(Nη|2− |x ||)q/2
+ Cq 1

�

Nη|2− |x || ≤ (log N)4
�

for all q ≥ 1 and for |x | ≤ K with some large constant K .

In order to insert this estimate into (D.13), we need to extract the necessary decay for large x from
ωη(x)−%η(x). For |x | ≥ 2K0 sufficiently large and for any q ≥ 1 we can estimate

Eωq
η(x)≤ η

−q E1(|λmax| ≥ |x |/2) +E1(|λmax| ≤ |x |/2)
�

1

N

∑

α

η

(λα− x)2+η2

�q

≤ η−qe−c|x |2N +
ηq

|x |2q ≤
Cqη

q

|x |2q .
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Inserting the last three equations into (D.13) with q = 2, we find
�

�

�E
∫

log |x − y + iη|ωη(x)ωη(y)dxdy −
∫

log |x − y + iη|%η(x)%η(y)dxdy
�

�

�

≤
∫

dx
�

E
�

�Ax −EAx

�

�

2
�1/2�

E
�

�ωη(x)−%η(x)
�

�

2
�1/2

≤
CK0

N3/2η
+

C(log N)4

N2η3/2
+

C

Nη1/2

∫

|x |≥2K0

dx
Æ

Eω2
η(x)

≤
C

N3/2η
+

Cη

Nη1/2

∫

|x |≥2K0

dx

|x |2
.

(D.18)

This completes the proof of Step 2.

Step 3. We have
�

�

�

�

∫

dxdy log |x − y + iη|%η(x)%η(y)−
∫

dxdy log |x − y + iη|%sc(x)%sc(y)

�

�

�

�

≤ CN−6/7+ Cη.

(D.19)

To prove (D.19), we write
∫

dxdy log |x − y + iη|%η(x)%η(y)−
∫

dxdy log |x − y + iη|%sc(x)%sc(y)

=

∫

dxdy log |x − y + iη|(%η(x)−%sc(x))%η(y)

+

∫

dxdy log |x − y + iη|%sc(x)(%η(y)−%sc(y)) .

(D.20)

To control the first term on the r.h.s. of the last equation, we recall that

N(x) =
1

N
EN (−∞; x), Nsc(x) =

∫ x

−∞
%sc(t)dt

denote the expected number of eigenvalues up to x normalized by N (integrated density of states)
and the distribution function of the semicircle law. Note that N(x)−Nsc(x) vanishes at x = ±∞.
Introducing Nη(x) :=

∫ x

−∞%η and integrating by parts we find

�

�

�

∫

dxdy log |x − y + iη|(%η(x)−%sc(x))%(y)
�

�

�

=
�

�

�

∫

dxdy log |x − y + iη|
d

dx

�

Nη(x)−Nsc(x)
�

%(y)
�

�

�

=
�

�

�

∫

dxdy
(x − y)

(x − y)2+η2

�

Nη(x)−Nsc(x)
�

%(y)
�

�

�

=
�

�

�

∫

dx Re Em(x + iη)
�

Nη(x)−Nsc(x)
�

�

�

�

≤ sup
x
E |m(x + iη)|

∫

dx
�

�

�Nη(x)−Nsc(x)
�

�

� .

(D.21)
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From the upper bound (4.4) on |Em(x + iη)| and from
∫

dx
�

�

�Nsc(x)− (Nsc ∗ θη)(x)
�

�

�≤ Cη

we find, by (4.14),

�

�

�

∫

dxdy log |x − y + iη|(%η(x)−%sc(x))%(y)
�

�

�≤ Cη+ C

∫

dx
�

�

�Nη(x)− (Nsc ∗ θη)(x)|

≤ Cη+ C

∫

dx |N(x)−Nsc(x)|

≤ Cη+ CN−6/7 .

The second term on the r.h.s. of (D.20) can be bounded similarly. This completes the proof of Step
3. Combining the estimates in Step 1–3 and choosing η = N−3/4, we finish the proof of the Lemma
D.2.

Proof of Lemma D.1. We split the summation into three parts:
∑

j<k

log |λ j −λk + iδ|= Y1(δ) + Y2(δ) + Y3(δ)

for any 0≤ δ ≤ η with

Y1(δ) =
∑

j<k

1(|λ j −λk| ≥ η) log |λ j −λk + iδ|

Y2(δ) =
∑

j<k

1(N−10 ≤ |λ j −λk| ≤ η) log |λ j −λk + iδ|

Y3(δ) =
∑

j<k

1(|λ j −λk| ≤ N−10) log |λ j −λk + iδ|.

(D.22)

We have

E |Y1(η)− Y1(0)| ≤ E
∑

j<k

1(|λ j −λk| ≥ η)
∫ 1

0

ds

�

�

�

�

d

ds
log |λ j −λk + isη|

�

�

�

�

≤ E
∑

j<k

1(|λ j −λk| ≥ η)
∫ 1

0

ds
η

|λ j −λk + isη|

≤ ECη
∑

j<k

1

|λ j −λk + iη|

≤ CN2η| log N |

(D.23)

by (D.7). For the Y2 term, we remark that, for arbitrary 0≤ δ ≤ η,

|Y2(δ)| ≤ C log N
∑

j<k

1(|λ j −λk| ≤ η) . (D.24)
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To bound the r.h.s. we consider the events Θ0,Θ1 from (D.8), (D.9) with sufficiently large K and K0
so that (D.10) holds. Then

E |Y2(δ)| ≤ CN2(log N)
�

P(Θc
0) + P(Θ

c
1)
�

+ C(log N)E
�

1(Θ0 ∩Θ1)
K0η

−1
∑

k=0

NIk
(NIk−1

+Nk +NIk+1
)

�

≤ CN2(log N) e−c(log N)2 + C(log N)η−1(Nη)2

≤ CN2(log N)η

(D.25)

for every 0≤ δ ≤ η. Finally, for the Y3 term we use the level repulsion estimate (E.5) from Theorem
E.3, which implies that for any interval I = [E − ε/N , E + ε/N] with E ∈ R and 0< ε ≤ 1

P(NI ≥ 2)≤ Cε4N18.

Let

Jr =
h r − 1

N10 ,
r + 1

N10

i

, r ∈ Z

be overlapping intervals covering R. We can then write

|Y3(δ)| ≤
∑

j<k

∑

r∈Z

∞
∑

m=0

1
n

λ j ∈ Jr ,
2−m−1

N10 ≤ |λ j −λk| ≤
2−m

N10

o

| log(2mN10)|. (D.26)

We split the interval Jr into overlapping subintervals of length 2−m+1N−10 by defining

Jr,s :=
h r − 1

N10 +
s

2mN10 ,
r − 1

N10 +
s+ 2

2mN10

i

, 0≤ s ≤ 2m+1− 2.

Then

P
n

λ j ∈ Ir ,
2−m−1

N10 ≤ |λ j −λk| ≤
2−m

N10

o

≤
2m
∑

s=0

P
n

λ j ∈ Ir ,NJr,s
≥ 2
o

≤
2mCN18

(2m−1N9)4
≤ C 2−3m N−18.

(D.27)

For large |r| ≥ KN10, we can also use the bound

P{λ j ∈ Ir} ≤ C exp
�

− cN(N−10r)2
�

,

that follows from the trivial large deviation estimate for the largest eigenvalue (Lemma 7.4 [13]).
Inserting these last two estimates into (D.26), we have for every 0≤ δ ≤ η

E |Y3(δ)| ≤ CN2
∞
∑

m=0

(m+ log N)
h
∑

|r|≤r∗
2−3mN−18+

∑

|r|>r∗
exp
�

− cN(N−10r)2
�

i

≤ CN−2(log N),

(D.28)

where r∗ = KN10 log(m+2) for brevity. Combining (D.23), (D.25), and (D.28), we obtain (D.1). �
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E Level repulsion near the spectral edge

We need to establish a Wegner-type inequality, and bounds on the level repulsion in the same spirit
as in Theorem 3.4 and Theorem 3.5 of [15], for energy intervals close to the spectral edges. Since
we only need these bounds for very small values of ε ' N−α, we are not aiming at the most general
result here. The statements we present can be proven by simply replacing, in the proof of Theorems
3.4 and Theorem 3.5 of [15], the convergence to the semicircle law stated in Theorem 3.1 of [15]
with Theorem 4.1. Recall that Theorem 3.1 of [15] is valid up to the smallest possible scale η > K/N
but only away from the spectral edges, while Theorem 4.1 holds all the way to the spectral edges,
but only up to the logarithmic scale η > (log N)4/N . A better N -dependence of the bounds in the
following theorem (but a worse κ-dependence) can be achieved by following the dependence on κ
of the constants in Theorem 3.1 of [15].

All statements assume the conditions (2.4)–(2.6). We introduce the notation that [x]+ denotes the
positive part of a real number x .

Theorem E.1 (Gap distribution). Let H be an N×N hermitian Wigner matrix and let |E|< 2. Denote
by λα the largest eigenvalue below E and assume that α ≤ N − 1. Then there are positive constants
C , D, c, d such that

P
�

λα+1− E ≥
K

N
, α≤ N − 1

�

≤ C e−c[2−|E|]3/2
p

K (E.1)

for any N ≥ 1 and any D(log N)4/(2− |E|)≤ K ≤ κNd.

Proof. The proof of this theorem can be obtained following the proof of Theorem 3.3 in [15], making
use of Theorem 4.1 instead of Theorem 3.1 of [15] (in order to follow the |2− |E|| dependence of
the probability). More precisely, we observe that the event λα+1 − E ≥ K/N implies that there is a
gap of size K/N about the energy E′ = E+K/(2N). Choosing M = D1/2κ−1/2 for a sufficiently large
constant D > 0, and η = K/(N M2) ≥ (log N)4, we find, similarly to (7.3)-(7.4) in [15], that, apart
from a set Ωc of measure P(Ωc)≤ Ce−c

p
K ,

Im m(E′+ iη)≤
16

M
≤

16
p
κ

D
,

which implies, for sufficiently large D, that

|m(E′+ iη)−msc(E
′+ iη)| ≥

c0

5
(E.2)

where c0 = π%(E′)≥ c
p
κ. The theorem then follows because, by Theorem 4.1, the event (E.2) has

probability

P
�

|m(E′+ iη)−msc(E
′+ iη)| ≥ cκ1/2

�

≤ Ce−cκ1/2
p

Nηκ ≤ Ce−cκ3/2pK .

Theorem E.2 (Wegner Estimate). Let E ∈ R and set κ := [2− |E|]+. There exists a constant C > 0
such that for the number of eigenvalues NI in the interval I = [E − ε/(2N); E + ε/(2N)], we have

ENI ≤
Cε(log N)4
�

κ+ N−1�9 (E.3)
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for every E ∈ R and ε ≤ 1. Moreover

y E|m(x + i y)|2 ≤
C(log N)4
�

κ+ N−1�9 (E.4)

for all x ∈ R, y > 0.

Theorem E.3 (Level Repulsion). Let E ∈ R and set κ := [2− |E|]+. There exists a universal constant
C such that for the number of eigenvalues NI in the interval I = [E − ε/(2N); E + ε/(2N)] we have

P
�

NI ≥ 2
�

≤
Cε4(log N)4
�

κ+ N−1�18 (E.5)

for all E ∈ R, all 0< ε < 1, and all N large enough.

Proof. The proof of Theorem E.2 and Theorem E.3 follows exactly the proof of Theorem 3.4 and,
respectively, Theorem 3.5 in [15], after replacing Theorem 3.3 of [15] by Theorem E.1 above (in
order to follow the dependence on the distance from the edges).

Note that the results of the last three theorems are only useful in the regime of very small ε = N |I | �
(log N)−4.

F Properties of the equilibrium measure

Here we check the conditions (a) and (b) in Theorem 11.1. The main ingredient is the following:

Lemma F.1. Let L ∈ G and y ∈ YL . After rescaling, then for any fixed σ > 0 with J ′ = [−1+σ/2, 1−
σ/2], the first and second derivatives of the potential are uniformly bounded on J ′, i.e.

sup
x∈J ′
|U (`)
ey (x)| ≤ C`, `= 1,2, (F.1)

where the constant is independent of y. Furthermore, the endpoints a, b of the support of the equilibrium
measure ν = νy satisfy

|a+ 1|, |b− 1| ≤ Cn−γ/3 log n. (F.2)

Condition (b) of Theorem 11.1 is given now by (F.1). To see condition (a) of Theorem 11.1, let
[an, bn] denote the support of the equilibrium measure νn, then an → −1 and bn → 1 as n → ∞,
thus gn is positive on J = [−1+σ, 1−σ] for any fixed σ > 0 and any sufficiently large n.

For the uniform boundedness of gn(x) on J , we use the explicit formula (see, e.g. Theorem 2.5. of
[24]):

gn(x) =
1

2π2

p

(x − an)(bn− x) P.V.

∫ bn

an

V ′n(s)
s− x

1
p

(s− an)(bn− s)
ds, (F.3)

where P.V. denoted principal value. For sufficiently large n and for any x ∈ J the singularity of
(s− x)−1 is uniformly separated away from an and bn, i.e. from the singularity of the square roots.
Moreover, V ′n(x) is a smooth function inside (−1, 1) with

sup
n

sup
x∈J ′
|V ′n(x)|+ |V

′′
n (x)| ≤ C .
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according to (F.1). Thus the uniform boundedness of gn on J follows immediately from (F.3) with
standard estimates on the principal value.

Proof of Lemma F.1. Recall the definition EL = N−1
sc (LN−1) from (6.11). For y ∈ YL we know from

the first bound in (6.13) that dist(Iy, EL)≤ Cn−γ/6, and from (4.22) that

yk = y−1+
k+O(k4/5)

N%0
,

with %0 := %sc(EL), assuming γ≤ 1/20 and Cn≤ |k| ≤ nB ≤ N1/2. After rescaling, this corresponds
to

eyk =
k+O(k4/5)

n%0
, %0 := %sc(EL), (F.4)

and we will drop the tilde for the rest of this proof. This bound on the location of yk ’s will be used
to estimate the derivatives of Uy. For `= 1,2 and x ∈ J ′ we have

|U (`)y (x)| ≤
2

n

∑

|k|<Cn

1

|x − yk|`
+

2

n

�

�

�

�

�

∑

Cn≤|k|<nB

1

(x − yk)`

�

�

�

�

�

≤ Cσ−`+
C

n

∑

Cn≤k<nB

�

�

�

�

�

1

(x − yk)`
+

1

(x − y−k)`

�

�

�

�

�

.

(F.5)

For ` = 2 we can use in the second sum that |x − y±k| ≥ Ck[n%0]−1 for k ≥ Cn by (F.4), thus
|U ′′y (x)| ≤ C(σ). For `= 1 we estimate

�

�

�

�

�

1

x − yk
+

1

x − y−k

�

�

�

�

�

=

�

�

�

�

�

2x − yk − y−k

(x − yk)(x − y−k)

�

�

�

�

�

≤
2|x |n%0+ Ck4/5

k2 n%0

where we used (F.4) and k ≥ Cn. After summation we conclude that |U ′y(x)| ≤ C(σ) and thus (F.1)
is proven.

To estimate the location of the endpoints, we substitute V (x) = Uy(x) into the equations (11.2). We
have

2

n

∑

|k|<nB

∫ b

a

1
p

(s− a)(b− s)

ds

s− yk
= 0 (F.6)

1

nπ

∑

|k|<nB

∫ b

a

s
p

(s− a)(b− s)

ds

s− yk
=−1. (F.7)

We will need the following explicit integration formulae for a < b (see, e.g. Formula 2.266 in [17])

∫ b

a

1
p

(s− a)(b− s)

ds

s− y
=

π
p

(a− y)(b− y)
if y < a < b,

∫ b

a

1
p

(s− a)(b− s)

ds

s− y
=−

π
p

(a− y)(b− y)
if a < b < y.

(F.8)
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∫ b

a

ds
p

(s− a)(b− s)
= π. (F.9)

With these formulae, (F.6) and (F.7) can be written as

1

n

∑

−nB<k≤−1

1
p

(a− yk)(b− yk)
−

1

n

∑

1≤k<nB

1
p

(a− yk)(b− yk)
= 0, (F.10)

1

n

∑

−nB<k≤−1

h yk
p

(a− yk)(b− yk)
+ 1
i

−
1

n

∑

1≤k<nB

h yk
p

(a− yk)(b− yk)
− 1
i

=−1. (F.11)

Using the bound (F.4) on the location of yk ’s, we replace the limit −nB < k with −Y ≤ yk and the
limit k < nB with yk ≤ Y in the summations in (F.10) and (F.11), where Y := nB−1%−1

0 . We have,
for example, for the first sum (F.10),

1

n

∑

−nB<k≤−1

1
p

(a− yk)(b− yk)
=

1

n

∑

−Y<yk≤−1

1
p

(a− yk)(b− yk)
+O(n−1/5Y−1), (F.12)

and the estimate for the other three sums in (F.10), (F.11) is identical.

With similar argument, we can remove the yk ’s that are too close to [−1, 1]. Let X = nγ−1, then

C

n
p

a+ 1
≤

1

n

∑

−1−X<yk≤−1

1
p

(a− yk)(b− yk)
≤

Cnγ−1

p

(a+ 1)(b+ 1)
,

where, for the lower bound, we used that y−1 = −1, while for the upper bound we used that the
number of yk ’s in [−1−X ,−1] is at most Cnγ (see the third set in the definition of (4.18)) . Similarly
we have

C

n
p

1− b
≤

1

n

∑

1≤yk<1+X

1
p

(a− yk)(b− yk)
≤

Cnγ−1

p

(1− b)(1− a)

and for the sums in (F.11)

−
Cnγ−1

p

(a+ 1)(b+ 1)
≤

1

n

∑

−1−X<yk≤−1

h yk
p

(a− yk)(b− yk)
+ 1
i

≤ Cnγ−1−
C

n
p

a+ 1

−Cnγ−1+
C

n
p

1− b
≤

1

n

∑

1≤yk<1+X

h yk
p

(a− yk)(b− yk)
− 1
i

≤
Cnγ−1

p

(1− b)(1− a)
.

Define

W1 :=
1

n

∑

−Y<yk<−1−X

1
p

(a− yk)(b− yk)
−

1

n

∑

1+X<yk<Y

1
p

(a− yk)(b− yk)
(F.13)

W2 :=
1

n

∑

−Y<yk<−1−X

h yk
p

(a− yk)(b− yk)
+ 1
i

−
1

n

∑

1+X<yk<Y

h yk
p

(a− yk)(b− yk)
− 1
i

+ 1 (F.14)

to be the truncated summations. Combining the above estimates with estimates of type (F.12) and
using B ≥ 2 so that nγY−1 ≤ nγ−1, we get from (F.10), (F.11) that

C

n
p

1− b
−

Cnγ−1

p

(a+ 1)(b+ 1)
≤W1 ≤

Cnγ−1

p

(1− b)(1− a)
−

C

n
p

a+ 1
(F.15)
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and
C

n
p

a+ 1
+

C

n
p

1− b
− Cnγ−1 ≤W2 ≤

Cnγ−1

p

(a+ 1)(b+ 1)
+

Cnγ−1

p

(1− b)(1− a)
. (F.16)

Using that for y ∈ YL the number of eigenvalues in any interval of size at least nγN−1 (before
rescaling) is approximated by the semicircle law with a precision n−γ/3 (see (4.16)), we get

W1 = %0

∫ −1−X

−Y

dy
p

(a− y)(b− y)
−%0

∫ Y

1+X

dy
p

(a− y)(b− y)
+O(n−γ/3 log n) (F.17)

and

W2 = %0

∫ −1−X

−Y

h y
p

(a− y)(b− y)
+1
i

dy−%0

∫ Y

1+X

h y
p

(a− y)(b− y)
−1
i

dy+1+O(n−γ/3 log n).

(F.18)
Here we also used that

sup
a,b∈[−1,1]

∫ Y

1+X

dy
p

(a− y)(b− y)
≤ C log n

and

sup
a,b∈[−1,1]

∫ Y

1+X

h y
p

(a− y)(b− y)
− 1
i

≤ C log n.

Let u = 1
2
(a + b) and v = 1

2
(b − a) and we can assume, by symmetry, that u ≥ 0. Then we can

change variables in the integrals in (F.17)

W1 = %0

∫ −1−X−u

−Y−u

dy
p

y2− v2
−%0

∫ Y−u

1+X−u

dy
p

y2− v2
+O(n−γ/3 log n)

= %0

∫ Y+u

Y−u

dy
p

y2− v2
−%0

∫ 1+X+u

1+X−u

dy
p

y2− v2
+O(n−γ/3 log n).

The first term is of order Y−1 and thus negligible. Thus, from the lower bound in (F.15), we have

%0

∫ 1+X+u

1+X−u

dy
p

y2− v2
≤

Cnγ−1

p

(a+ 1)(b+ 1)
−

C

n
p

1− b
+ Cn−γ/3 log n.

Estimating y2− v2 ≤ (1+ X + a)(1+ X + b) on the integration domain, we get

Cu%0
p

(1+ X + a)(1+ X + b)
≤

Cnγ−1

p

(a+ 1)(b+ 1)
+ Cn−γ/3 log n,

Cu%0 ≤ Cnγ−1
�

1+
X

a+ 1

�

+ Cn−γ/3 log n.

Clearly a+ 1≥ 2u, thus

Cu%0 ≤ Cnγ−1
�

1+
X

u

�

+ Cn−γ/3 log n,
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from which it follows that
u≤ Cn−γ/3 log n

if γ≤ 1/2. The case u≤ 0 is treated similarly, thus we have shown that

|a+ b| ≤ Cn−γ/3 log n. (F.19)

Now we consider the W2 and assume again that u≥ 0. With the same change of variables as above,
we have

W2 =%0

∫ −1−X−u

−Y−u

h y + u
p

y2− v2
+ 1
i

dy −%0

∫ Y−u

1+X−u

h y + u
p

y2− v2
− 1
i

dy + 1+O(n−γ/3 log n)

=%0

∫ −1−X−u

−Y−u

h y
p

y2− v2
+ 1
i

dy −%0

∫ Y−u

1+X−u

h y
p

y2− v2
− 1
i

dy + 1+O(n−γ/3(log n)2),

(F.20)

where we used (F.19) and

∫ −1−X−u

−Y−u

1
p

y2− v2
dy ≤ C log n and

∫ Y−u

1+X−u

1
p

y2− v2
dy ≤ C log n.

The integrals on the r.h.s of (F.20) can be explicitly computed:

∫ Y−u

1+X−u

h y
p

y2− v2
− 1
i

dy =
−v2

p

y2− v2+ y

�

�

�

�

�

Y−u

1+X−u

=
v2

p

(1+ X − u)2− v2+ 1+ X − u
+O(Y−1),

∫ −1−X−u

−Y−u

h y
p

y2− v2
+ 1
i

dy =
−v2

p

(1+ X + u)2− v2+ 1+ X + u
+O(Y−1),

thus we have

W2 ≥ 1− 2%0v2− Cn−γ/3(log n)2− CY−1 ≥ 1−
2

π
− Cn−γ/3(log n)2

by using that v2 ≤ 1 and %0 ≤ π−1 (see (2.7)). Combining this estimate with the upper bound in
(F.16), we have

1−
2

π
− Cn−γ/3(log n)2 ≤

Cnγ−1

p

(a+ 1)(b+ 1)
+

Cnγ−1

p

(1− b)(1− a)
≤

Cnγ−1

a+ 1
+

Cnγ−1

1− b

by using a < b. Therefore either a+ 1 or 1− b is smaller than Cnγ−1, but then by using (F.19) we
obtain that both of them are smaller then Cn−γ/3 log n. This completes the proof of Lemma F.1. �
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