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Abstract

We consider a class of continuous-time stochastic growth models on d-dimensional lattice with
non-negative real numbers as possible values per site. The class contains examples such as binary
contact path process and potlatch process. We show the equivalence between the slow popula-
tion growth and localization property that the time integral of the replica overlap diverges. We
also prove, under reasonable assumptions, a localization property in a stronger form that the
spatial distribution of the population does not decay uniformly in space.
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1 Introduction

We write N = {0,1, 2, ...}, N∗ = {1,2, ...} and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd , |x | stands
for the `1-norm: |x | =

∑d
i=1 |x i|. For η = (ηx)x∈Zd ∈ RZd

, |η| =
∑

x∈Zd |ηx |. Let (Ω,F , P) be a
probability space. For events A, B ⊂ Ω, A⊂ B a.s. means that P(A\B) = 0. Similarly, A= B a.s. mean
that P(A\B) = P(B\A) = 0. By a constant, we always means a non-random constant.

We consider a class of continuous-time stochastic growth models on d-dimensional lattice Zd with
non-negative real numbers as possible values per site, so that the configuration at time t can be writ-
ten as ηt = (ηt,x)x∈Zd , ηt,x ≥ 0. We interpret the coordinate ηt,x as the “population" at time-space
(t, x), though it need not be an integer. The class of growth models considered here is a reasonably
ample subclass of the one considered in [Lig85, Chapter IX] as “linear systems”. For example, it
contains examples such as binary contact path process and potlatch process. The basic feature of
the class is that the configurations are updated by applying the random linear transformation of the
following form, when the Poisson clock rings at time-space (t, z):

ηt,x =

¨

K0ηt−,z if x = z,
ηt−,x + Kx−zηt−,z if x 6= z,

(1.1)

where K = (Kx)x∈Zd is a random vector with non-negative entries, and independent copies of K are
used for each update (See section 1.1 for more detail). These models are known to exhibit, roughly
speaking, the following phase transition [Lig85, Chapter IX, sections 3–5]:

i) If the dimension is high d ≥ 3, and if the vector K is not too random, then, with positive probabil-
ity, the growth of the population is as fast as its expected value as time the t tends to infinity,
as such the regular growth phase.

ii) If the dimension is low d = 1,2, or if the vector K is random enough, then, almost surely, the
growth of the population strictly slower than its expected value as the time t tends to infinity,
as such the slow growth phase.

We denote the spatial distribution of the population by:

ρt,x =
ηt,x

|ηt |
1{|ηt |>0}, t > 0, x ∈ Zd . (1.2)

In [NY09a; NY09b], we investigated the case (i) above and showed that the spatial distribution
(1.2) obeys the central limit theorem. We also proved the delocalization property which says that
the spatial distribution (1.2) decays uniformly in space like t−d/2 as time t tends to infinity.

In the present paper, we turn to the case (ii) above. We first prove the equivalence between the
slow growth and a certain localization property in terms of the divergence of integrated replica
overlap (Theorem 1.3.1 below). We also show that, under reasonable assumptions, the localization
occurs in stronger form that the spatial distribution (1.2) does not decay uniformly in space as
time t tends to infinity (Theorem 1.3.2 below). These, together with [NY09a; NY09b], verifies the
delocalization/localization transition in correspondence with regular/slow growth transition for the
class of model considered here.

It should be mentioned that the delocalization/localization transition in the same spirit has been dis-
cussed recently in various context, e.g., [CH02; CH06; CSY03; CY05; HY09; Sh09; Yo08a; Yo08b].
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In particular, the last paper [Yo08b] by the second author of the present article can be considered
as the discrete-time counterpart of the present paper. Still, we believe it worth while verifying the
delocalization/localization transition for the continuous-time growth models discussed here, in view
of its classical importance of the model.

1.1 The model

We introduce a random vector K = (Kx)x∈Zd which is bounded and of finite range in the sense that

0≤ Kx ≤ bK1{|x |≤rK} a.s. for some constants bK , rK ∈ [0,∞). (1.3)

Let τz,i , (z ∈ Zd , i ∈ N∗) be i.i.d. mean-one exponential random variables and T z,i = τz,1+ ...+τz,i .
Let also Kz,i = (Kz,i

x )x∈Zd (z ∈ Zd , i ∈ N∗) be i.i.d. random vectors with the same distributions as K ,
independent of {τz,i}z∈Zd ,i∈N∗ . Unless otherwise stated, we suppose for simplicity that the process
(ηt)t≥0 starts from a single particle at the origin:

η0 = (η0,x)x∈Zd , η0,x =

¨

1 if x = 0,
0 if x 6= 0.

(1.4)

At time t = T z,i , ηt− is replaced by ηt , where

ηt,x =

¨

Kz,i
0 ηt−,z if x = z,
ηt−,x + Kz,i

x−zηt−,z if x 6= z.
(1.5)

A formal construction of the process (ηt)t≥0 can be given as a special case of [Lig85, p.427, Theorem
1.14] via Hille-Yosida theory. In section 1.4, we will also give an alternative construction of the
process in terms of a stochastic differential equation.

To exclude uninteresting cases from the viewpoint of this article, we also assume that

the set {x ∈ Zd ; E[Kx] 6= 0} contains a linear basis of Rd , (1.6)

P(|K |= 1)< 1. (1.7)

The first assumption (1.6) makes the model “truly d-dimensional". The reason for the second as-
sumption (1.7) is to exclude the case |ηt | ≡ 1 a.s.

Here are some typical examples which fall into the above set-up:

• The binary contact path process (BCPP): The binary contact path process (BCPP), originally
introduced by D. Griffeath [Gri83] is a special case the model, where

K =

¨ �

δx ,0+δx ,e

�

x∈Zd with probability λ
2dλ+1

, for each 2d neighbor e of 0
0 with probability 1

2dλ+1
.

(1.8)

The process is interpreted as the spread of an infection, with ηt,x infected individuals at time t at
the site x . The first line of (1.8) says that, with probability λ

2dλ+1
for each |e| = 1, all the infected

individuals at site x − e are duplicated and added to those on the site x . On the other hand, the
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second line of (1.8) says that, all the infected individuals at a site become healthy with probability
1

2dλ+1
. A motivation to study the BCPP comes from the fact that the projected process

�

ηt,x ∧ 1
�

x∈Zd , t ≥ 0

is the basic contact process [Gri83].

• The potlatch process: The potlatch process discussed in e.g. [HL81] and [Lig85, Chapter IX] is
also a special case of the above set-up, in which

Kx =W kx , x ∈ Zd . (1.9)

Here, k = (kx)x∈Zd ∈ [0,∞)Z
d

is a non-random vector and W is a non-negative, bounded, mean-
one random variable such that P(W = 1) < 1 (so that the notation k here is consistent with the
definition (1.10) below). The potlatch process was first introduced in [Spi81] for the case W ≡ 1
and discussed further in [LS81]. It was in [HL81] where case with W 6≡ 1 was introduced and
discussed. Note that we do not restrict ourselves to the case |k| = 1 unlike in [HL81] and [Lig85,
Chapter IX].

1.2 The regular and slow growth phases

We now recall the following facts and notion from [Lig85, p. 433, Theorems 2.2 and 2.3], although
our terminologies are somewhat different from the ones in [Lig85]. Let Ft be the σ-field generated
by ηs, s ≤ t.

Lemma 1.2.1. We set:

k = (kx)x∈Zd = (E[Kx])x∈Zd (1.10)

ηt = (e−(|k|−1)tηt,x)x∈Zd . (1.11)

Then,

a) (|ηt |,Ft)t≥0 is a martingale, and therefore, the following limit exists a.s.

|η∞|= lim
t→∞
|ηt |. (1.12)

b) Either
E[|η∞|] = 1 or 0. (1.13)

Moreover, E[|η∞|] = 1 if and only if the limit (1.12) is convergent in L1(P).

We will refer to the former case of (1.13) as regular growth phase and the latter as slow growth phase.

The regular growth means that, at least with positive probability, the growth of the “total number"
|ηt | of the particles is of the same order as its expectation e(|k|−1)t |η0|. On the other hand, the slow
growth means that, almost surely, the growth of |ηt | is slower than its expectation.

Since we are mainly interested in the slow growth phase in this paper, we now present sufficient
conditions for the slow growth.
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Proposition 1.2.2. a) For d = 1,2, |η∞|= 0 a.s. In particular for d = 1, there exists a constant c > 0
such that:

|ηt |= O(e−c t), as t →∞, a.s. (1.14)

b) For any d ≥ 1, suppose that:
∑

x∈Zd

E
�

Kx ln Kx
�

> |k| − 1 (1.15)

Then, again, there exists a constant c > 0 such that (1.14) holds.

Proof: Except for (1.14), these sufficient conditions are presented in [Lig85, Chapter IX, sections
4–5]. The exponential decay (1.14) follows from similar arguments as in discrete-time models
discussed in [Yo08a, Theorems 3.1.1 and 3.2.1]. �

Remarks: 1) For BCPP, (1.15) is equivalent to λ < (2d)−1, in which case it is known that |ηt | ≡ 0
for large enough t ’s a.s. [Lig85, Example 4.3.(c) on p. 33, together with Theorem 1.10 (a) on p.
267]. Thus, Proposition 1.2.2(b) applies only in a trivial manner for BCPP. In fact, we do not know
if there is a value λ for which BCPP with d ≥ 3 is in slow growth phase, without getting extinct a.s.
For potlatch process,

(1.15) ⇐⇒ E[W ln W]>
|k| − 1−

∑

x kx ln kx

|k|
.

Thus, (1.15) and hence (1.14) is true if W is “random enough".
2) A sufficient condition for the regular growth phase will be given by (1.26) below.

1.3 Results

Recall that we have defined the spatial distribution of the population by (1.2). Interesting objects
related to the density would be

ρ∗t =max
x∈Zd

ρt,x , and Rt =
∑

x∈Zd

ρ2
t,x . (1.16)

ρ∗t is the density at the most populated site, while Rt is the probability that a given pair of particles
at time t are at the same site. We call Rt the replica overlap, in analogy with the spin glass theory.
Clearly, (ρ∗t )

2 ≤ Rt ≤ ρ∗t . These quantities convey information on localization/delocalization of
the particles. Roughly speaking, large values of ρ∗t or Rt indicate that the most of the particles are
concentrated on small number of “favorite sites" (localization), whereas small values of them imply
that the particles are spread out over a large number of sites (delocalization).

We first show that the regular and slow growth are characterized, respectively by convergence (de-
localization) and divergence (localization) of the integrated replica overlap:

∫∞
0
Rsds.

Theorem 1.3.1. a) Suppose that P(|η∞|> 0)> 0. Then,
∫ ∞

0

Rsds <∞ a.s.
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b) Suppose on the contrary that P(|η∞|= 0) = 1. Then,

{ survival }=
¨
∫ ∞

0

Rsds =∞
«

, a.s. (1.17)

where {survival}= {|ηt | 6= 0 for all t ≥ 0}. Moreover, there exists a constant c > 0 such that:

|ηt | ≤ exp

�

−c

∫ t

0

Rsds

�

for all large enough t’s, a.s. (1.18)

Results of this type are fundamental in analyzing a certain class of spatial random growth models,
such as directed polymers in random environment [CH02; CH06; CSY03; CY05], linear stochas-
tic evolutions [Yo08b], branching random walks and Brownian motions in random environment
[HY09; Sh09]. Until quite recently, however, this type of results were available only when no ex-
tinction at finite time is allowed, i.e., |ηt |> 0 for all t ≥ 0, e.g., [CH02; CH06; CSY03; CY05; HY09;
Sh09]. In fact, the proof there relies on the analysis of the supermartingale ln |η̄t |, which is not
even defined if extinction at finite time is possible. To overcome this problem, we will adapt a more
general approach introduced in [Yo08b].

Next, we present a result (Theorem 1.3.2 below) which says that, under reasonable assumptions,
we can strengthen the localization property

∫ ∞

0

Rsds =∞

in (1.17) to:
∫ ∞

0

1{Rs ≥ c}ds =∞,

where c > 0 is a constant. To state the theorem, we define

βx ,y = E[(K −δ0)x(K −δ0)y], x , y ∈ Zd . (1.19)

We also introduce:

G(x) =

∫ ∞

0

P0
S (St = x)d t, (1.20)

where ((St)t≥0, P x
S ) is the continuous-time random walk on Zd starting from x ∈ Zd , with the

generator
LS f (x) = 1

2

∑

y∈Zd

�

kx−y + ky−x

�

�

f (y)− f (x)
�

, cf. (1.10). (1.21)

Theorem 1.3.2. Referring to (1.19)–(1.20), suppose either of

a) d = 1, 2.

b) d ≥ 3, P(|η∞|= 0) = 1 and
∑

x ,y∈Zd

G(x − y)βx ,y > 2. (1.22)

641



Then there exists a constant c ∈ (0, 1] such that:

{ survival }=
¨
∫ ∞

0

1{Rs ≥ c}ds =∞
«

a.s. (1.23)

Our proof of Theorem 1.3.2 is based on the idea of P. Carmona and Y. Hu in [CH02; CH06], where
they prove similar results for directed polymers in random environment. Although the arguments
in [CH02; CH06] are rather complicated and uses special structure of the model, it was possible
to extract the main idea from [CH02; CH06] in a way applicable to our setting. Also, we could
considerably reduce the technical complexity in the argument as compared with [CH02; CH06].

Remarks: 1) We see from (1.23) that:

{ survival }=
§

lim
t→∞
Rt ≥ c

ª

a.s. (1.24)

in consistent with the corresponding result [Yo08b, (1.32)] in the discrete-time case. Note that, in
continuous-time case, the right-hand-side of (1.23) is a stronger statement than that of (1.24).
2) We prove (1.23) by way of the following stronger estimate:

{ survival } ⊂







lim
t↗∞

∫ t

0
R3/2

s ds
∫ t

0
Rsds

≥ c1







a.s. (1.25)

for some constant c1 > 0. The inequality r3/2 ≤ 1{r ≥ c} +
p

cr for r, c ∈ [0,1] can be used to
conclude (1.23) from (1.25).
3) We note that P(|η∞|> 0)> 0 if

d ≥ 3 and
∑

x ,y∈Zd

G(x − y)βx ,y < 2. (1.26)

This, together with Theorem 1.3.1(a), shows that the condition (1.22) is necessary, up to the equal-
ity, for (1.23) to be true whenever survival occurs with positive probability. We see that (1.26) im-
plies P(|η∞|> 0)> 0 via the same line of argument as in [Lig85, p. 464, Theorem 6.16], where the
special case of the potlatch process is discussed. We consider the dual process ζt ∈ [0,∞)Z

d
, t ≥ 0

which evolves in the same way as (ηt)t≥0 except that (1.1) is replaced by its transpose:

ζt,x =

¨
∑

y∈Zd Ky−xζt−,y if x = z,
ζt−,x if x 6= z.

(1.27)

By [Lig85, p. 445, Theorem 3.12], a sufficient condition for P(|η∞| > 0) > 0 is that there exists a
function h : Zd → (0,∞) such that lim|x |→∞ h(x) = 1 and that:

∑

y
q(x , y)h(y) = 0, x ∈ Zd . (1.28)

Here, q(x , y) is the matrix given by [Lig85, p. 445, (3.8)–(3.9)] for the dual process. In our setting,
it is computed as:

q(x , y) = kx−y + ky−x − 2|k|δx ,y +δ0,x

∑

z
βz,z+y ,
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so that (1.28) becomes:

(LSh)(x) + 1
2
δ0,x

∑

y,z
h(y − z)βy,z = 0, x ∈ Zd , cf. (1.21).

Under the assumption (1.26), a choice of such function h is given by h= 1+ cG, where

c =
E[(|K | − 1)2]

1− 1
2

∑

x ,y∈Zd G(x − y)βx ,y
.

3) Let πd be the return probability for the simple random walk on Zd . Also, let 〈 ·, · 〉 and ∗ be the
inner product of `2(Zd) and the discrete convolution respectively. We then have that

(1.22) ⇐⇒

(

λ < 1
2d(1−2πd )

for BCPP,

E[W 2]> (2|k|−1)G(0)
〈 G∗k,k 〉 for the potlatch process.

(1.29)

For BCPP, (1.29) can be seen from that (cf. [NY09a, p. 965])

βx ,y =
1{x = 0}+λ1{|x |= 1}

2dλ+ 1
δx ,y , and G(0) =

2dλ+ 1

2dλ

1

1−πd
.

To see (1.29) for the potlatch process, we note that 1
2
(k+ ǩ)∗G = |k|G−δ0, with ǩx = k−x and that

βx ,y = E[W 2]kx ky − kxδy,0− kyδx ,0+δx ,0δy,0.

Thus,
∑

x ,y∈Zd

G(x − y)βx ,y = E[W 2]〈 G ∗ k, k 〉 − 〈 G, k+ ǩ 〉+ G(0)

= E[W 2]〈 G ∗ k, k 〉+ 2− (2|k| − 1)G(0),

from which (1.29) for the potlatch process follows.

1.4 SDE description of the process

We now give an alternative description of the process in terms of a stochastic differential equation
(SDE). We introduce random measures on [0,∞)× [0,∞)Z

d
by

N z(dsdξ) =
∑

i≥1

1{(T z,i , Kz,i) ∈ dsdξ}, N z
t (dsdξ) = 1{s≤t}N

z(dsdξ). (1.30)

Then, N z , z ∈ Zd are independent Poisson random measures on [0,∞)×[0,∞)Z
d

with the intensity

ds× P(K ∈ ·).

The precise definition of the process (ηt)t≥0 is then given by the following stochastic differential
equation:

ηt,x = η0,x +
∑

z∈Zd

∫

N z
t (dsdξ)

�

ξx−z −δx ,z

�

ηs−,z . (1.31)

By (1.3), it is standard to see that (1.31) defines a unique process ηt = (ηt,x), (t ≥ 0) and that (ηt)
is Markovian.
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2 Proofs

It is convenient to introduce the following notation:

ν = P(K ∈ ·) ∈ P ([0,∞)Z
d
), the law of K . (2.1)

eN z(dsdξ) = N z(dsdξ)− dsν(dξ), eN z
t (dsdξ) = 1s≤t eN

z(dsdξ). (2.2)

2.1 Proof of Theorem 1.3.1

The proof of Theorem 1.3.1 is based on the following

Lemma 2.1.1.

{ |η∞|= 0, survival }=
¨
∫ ∞

0

Rsds =∞
«

, a.s. (2.3)

Moreover, there exists a constant c > 0 such that: (1.18) holds a.s. on the event
n

∫∞
0
Rsds =∞

o

.

Proof: We see from (1.31) that

|ηt | = |η0|+
∑

z

∫

eN z
t (dsdξ)|ηs−|(|ξ| − 1)ρs−,z (cf. (2.2))

= |η0|+
∫ t

0

|ηs−|dMs

where

Mt =
∑

z

∫

eN z
t (dsdξ)(|ξ| − 1)ρs−,z .

Then, by the Doléans-Dale exponential formula (e.g., [HWY92, p. 248, 9.39]),

|ηt |= exp
�

Mt
�

Dt ,

where
Dt =

∏

s≤t

�

1+∆Ms
�

exp
�

−∆Ms
�

, with ∆Mt = Mt −Mt−.

Note also the predictable quadratic variation of M· is given by

1) 〈M 〉t = E[(|K | − 1)2]

∫ t

0

Rsds.

Since −1≤∆Mt ≤ bK − 1<∞, we have that (See e.g.[HWY92, p. 222, 8.32])

2) { 〈M 〉∞ <∞ } ⊂ {[M]∞ <∞, Mt converges as t ↗∞} a.s.

3) { 〈M 〉∞ =∞ } ⊂
�

lim
t→∞

〈M 〉t
[M]t

= 1, lim
t→∞

Mt

〈M 〉t
= 0

�

a.s.
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where
[M]t =

∑

s≤t

(∆Ms)
2

We start with the “⊃” part of (2.3): Note that (1+u)e−u ≤ e−c1u2
for −1≤ u≤ bK −1, where c1 > 0

is a constant. We suppose that
∫∞

0
Rsds =∞, or equivalently that, 〈M 〉∞ =∞. Then, for large t,

exp
�

Mt
�

Dt ≤ exp
�

Mt − c1[M]t
�

3)
≤ exp

�

−
c1

2
〈M 〉t

� 1)
≤ exp

�

−c2

∫ t

0

Rsds

�

This shows that
∫∞

0
Rsds =∞ implies |η∞|= 0, together with the bound (1.18).

We now turn to the “⊂” part of (2.3): We need to prove that

4) {
∫∞

0
Rsds <∞ survival}

a.s.
⊂ { |η∞|> 0}.

We have

5) {
∫∞

0
Rsds <∞}

1)–2)
⊂ {Mt converges as t ↗∞} a.s.

On the other hand,
∑

s≤t

�

�

�

1+∆Ms
�

exp
�

−∆Ms
�

− 1
�

�≤
e

2
[M]t ,

since |(1+ u)e−u− 1| ≤ eu2/2 for u≥−1. Thus,

6) {
∫∞

0
Rsds <∞, survival} ⊂

�

Dt converges to a positive limit as t ↗∞
	

a.s.

We now obtain 4) by 5)–6). �

We state one more technical lemma:

Lemma 2.1.2. Suppose that:

P
�

lim
t→∞

r−t |ηt |> 0
�

> 0, (2.4)

for some r > 0. Then,
{survival}= { lim

t→∞
r−t |ηt |> 0}, P-a.s. (2.5)

Proof: We follow the argument in [CY10, Lemma 4.3.1], which goes back to [Gri83, p. 701]. For
(s, y) ∈ [0,∞)×Zd , let ηs,y

t = (η
s,y
t,x)x∈Zd , t ∈ [0,∞) be the process starting from time s, with one

particle at y:

η
s,y
t,x = δx ,y +

∑

z∈Zd

∫

N z
(s,s+t](dudξ)(ξx−z −δx ,z)η

s,y
u−,z ,

where N z
(s,s+t] = N z

s+t − N z
s . Then, for all t ≥ s,

ηt,x =
∑

y
ηs,yη

s,y
t−s,x and hence |ηt |=

∑

y
ηs,y |η

s,y
t−s|.
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The assumption (2.4) implies that:

P
�

inf
t≥0

r−t |ηt |> 0
�

> 0,

and hence that:

1) δ
def
= P

�

inf
t≥0

r−t |ηt |> ε
�

> 0 for some ε ∈ (0, 1/2).

We now define a sequence of stopping times σ1 < σ2 < . . . as follows.

σ1 = inf{t > 0 ; 0< |ηt | ≤ εr t}.

Note at this point that:

2) P(σ1 =∞)≥ δ,

thanks to 1). Suppose that σ1, . . . ,σ` (`≥ 1) have already been defined. If σ` =∞, we set σn =∞
for all n≥ `+1. Suppose that σ` <∞. Then ησ` 6≡ 0. Let Y` be the minimum, in the lexicographical
order, of y ∈ Zd such that ησ`,y 6= 0. We now define σ`+1 by:

σ`+1 = σ`+ inf{t > 0 ; 0< |ησ`,Y`t | ≤ εr t}.

It is easy to see from the construction that:

3) P(σ` <∞ i.o.) = 0.

Indeed, we have

P(σ`+1 <∞|Fσ`) = P(σ1 <∞)
2)
≤ 1−δ,

and hence

P(σ`+1 <∞) = P(σ` <∞, σ`+1 <∞)
= P(σ` <∞, P(σ`+1 <∞|Fσ`))

≤ (1−δ)P(σ` <∞)≤ (1−δ)`+1

by induction. Then, 3) follows from the Borel-Cantelli lemma.

By 3), we can pick a random ` ∈ N such that P(σ` <∞, σ`+1 =∞) = 1. Let us focus on the event
{σ` <∞, σ`+1 =∞}. Then, ησ`,Y`t is defined and |ηt | ≥ ησ`,Y` |η

σ`,Y`
t−σ` | for all t ≥ σ`. Note also that,

on the event of survival, σ`+1 =∞ implies that:

|ησ`,Y`t−σ` | ≥ εr t−σ` for t ≥ σ`.

Thus, a.s. on the event of survival,

|ηt | ≥ ησ`,Y` |η
σ`,Y`
t−σ` | ≥ ησ`,Y`εr t−σ` for t ≥ σ`
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hence
{survival}

a.s.
⊂ { lim

t→∞
r−t |ηt |> 0}.

This proves (2.5). �

Proof of Theorem 1.3.1: a): If P(|η∞|> 0)> 0, then, by Lemma 2.1.2,

{survival}= {|η∞|> 0} a.s.

We see from this and (2.3) that
∫∞

0
Rsds <∞ a.s. on the event of survival, while

∫∞
0
Rsds <∞ is

obvious outside the event of survival.
b): This follows from Lemma 2.1.1 �

2.2 Proof of Theorem 1.3.2

Let p be a transition function of a symmetric discrete-time random walk defined by

p(x) =







kx + k−x
2(|k| − k0)

if x 6= 0,

0 if x = 0.

and pn be the n-step transition function. We set

gn(x) = δx ,0+
n
∑

k=1

pk(x).

Lemma 2.2.1. Under the assumptions of Theorem 1.3.2, there exists n such that:
∑

x ,y
gn(x − y)βx ,y > 2(|k| − k0). (2.6)

Proof: Since the discrete-time random walk with the transition probability p is the jump chain of
the continuous-time random walk ((St)t≥0, P x

S ) with the generator (1.21), we have that

1) lim
n→∞

gn(x) = (|k| − k0)G(x) for all x ∈ Zd .

For d ≥ 3, G(x)<∞ for any x ∈ Zd and βx ,y 6= 0 only when |x |, |y| ≤ rK , we see from 1) that

lim
n→∞

∑

x ,y
gn(x − y)βx ,y = (|k| − k0)

∑

x ,y
G(x − y)βx ,y .

Thus, (2.6) holds for all large enough n’s.
To show (2.6) for d = 1,2, we will prove that

lim
n→∞

∑

x ,y
g2n−1(x − y)βx ,y =∞.
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For f ∈ `1(Zd), we denote its Fourier transform by

bf (θ) =
∑

x∈Zd

f (x)exp(ix · θ), θ ∈ I
def
= [−π,π]d .

We then have that

g2n−1(x) =
1

(2π)d

∫

I

1− bp(θ)2n

1− bp(θ)
exp(ix · θ)dθ

and hence that

∑

x ,y
g2n−1(x − y)βx ,y =

1

(2π)d

∫

I

1− bp(θ)2n

1− bp(θ)

∑

x ,y
exp(i(x − y) · θ)E[(K −δ0)x(K −δ0)y]dθ

=
1

(2π)d

∫

I

1− bp(θ)2n

1− bp(θ)
E[|bK(θ)− 1|2]dθ .

Since p(·) is even, we see that bp(θ) ∈ [−1, 1] for all θ ∈ I . Also, by (1.6), there exist constants
ci > 0 (i = 1, 2,3) such that:

0≤ 1− c1|θ |2 ≤ bp(θ)≤ 1− c2|θ |2 for |θ | ≤ c3.

These imply that

lim
n→∞

∑

x ,y
g2n−1(x − y)βx ,y ≥

1

(2π)d c1

∫

|θ |≤c2

E[|bK(θ)− 1|2]
|θ |2

dθ .

The integral on the right-hand-side diverges if d ≤ 2, since

E[|bK(0)− 1|2] = E[(|K | − 1)2] 6= 0.

�

We take an n in Lemma 2.2.1 and fix it. We then set:

g = gn and St = 〈 g ∗ρt ,ρt 〉, (2.7)

where the bracket 〈 ·, · 〉 and ∗ stand for the inner product of `2(Zd) and the discrete convolution
respectively. In what follows, we will often use the Hausdorff-Young inequality:

|( f ∗ h)2|1/2 ≤ | f ||h2|1/2 f ∈ `1(Zd), h ∈ `2(Zd). (2.8)

For example, we have that

0≤ St
Schwarz
≤ |(g ∗ρt)

2|1/2|(ρt)
2|1/2

(2.8)
≤ |g||(ρt)

2|= |g|Rt <∞. (2.9)

The proof of Theorem 1.3.2 is based on the following

Lemma 2.2.2. Let
St = S0+Mt +At

be the Doob decomposition, whereM· and A· are a martingale and a predictable process, respectively.
Then,
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a) There is constants c1, c2 ∈ (0,∞) such that:

At ≥
∫ t

0

�

c1Rs − c2R3/2
s

�

ds (2.10)

b)
¨
∫ ∞

0

Rsds =∞
«

⊂







lim
t→∞

Mt
∫ t

0
Rsds

= 0







a.s. (2.11)

Proof of Theorem 1.3.2: By Theorem 1.3.1 and the remark after Theorem 1.3.2, it is enough to prove
that

1) lim
t↗∞

∫ t

0
R3/2

s ds
∫ t

0
Rsds

≥ c a.s. on D
def
=

¨
∫ ∞

0

Rt d t =∞
«

for a positive constant c. It follows from (2.9) and (2.11) that

lim
t→∞

At
∫ t

0
Rsds

= 0 a.s. on D

and hence from (2.10) that

lim
t→∞

∫ t

0
R3/2

s ds
∫ t

0
Rsds

≥
c1

c2
a.s. on D.

This proves 1) and hence Theorem 1.3.2. �

2.3 Proof of Lemma 2.2.2

Proof of part (a): To make the expressions below easier to read, we introduce the following short-
hand notation:

Jt,x ,z(ξ) = ρt,x + (ξ−δ0)x−zρt,z ,

J t,x ,z(ξ) =
ηt,x + (ξ−δ0)x−zηt,z

|ηt |+ (|ξ| − 1)ηt,z
=

Jt,x ,z(ξ)

1+ (|ξ| − 1)ρt,z
.

We then rewrite St as:

St = S0+
∑

z

∫

N z
t (dudξ)

∑

x ,y
g(x − y)

�

Ju−,x ,z(ξ)Ju−,y,z(ξ)−ρu−,xρu−,y

�

= S0+Mt +At

whereAt =
∫ t

0
Asds has been defined by

As =
∑

x ,y,z
g(x − y)

∫

ν(dξ)
�

J s,x ,z(ξ)J s,y,z(ξ)−ρs,xρs,y

�
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To bound As from below, we note that (1+ x)−2 ≥ 1− 2x for x ≥−1. Then,

J s,x ,z(ξ)J s,y,z(ξ)−ρs,xρs,y

≥ Jt,x ,z(ξ)Jt,y,z(ξ)− 2(|ξ| − 1)ρs,zJt,x ,z(ξ)Jt,y,z(ξ)−ρs,xρs,y

= Us,x ,y,z(ξ)− 2Vs,x ,y,z(ξ)− 2Ws,x ,y,z(ξ), (2.12)

where

Us,x ,y,z(ξ) = Js,x ,z(ξ)Js,y,z(ξ)−ρs,xρs,y (2.13)

Vs,x ,y,z(ξ) = (|ξ| − 1)Us,x ,y,z(ξ)ρs,z (2.14)

Ws,x ,y,z(ξ) = (|ξ| − 1)ρs,xρs,yρs,z . (2.15)

We will see that
∑

x ,y,z
g(x − y)

∫

Vs,x ,y,z(ξ)ν(dξ)≤ cR3/2
s . (2.16)

Here and in what follows, c denotes a multiplicative constant, which does not depends on time
variable s and space variables x , y, .... To prove (2.16), we can bound the factor |ξ|−1 by a constant.
We write

Us,x ,y,z(ξ) = (ξ−δ0)y−zρs,xρs,z + (ξ−δ0)x−zρs,yρs,z + (ξ−δ0)x−z(ξ−δ0)y−zρ
2
s,z (2.17)

We look at the contribution from the second term on the right-hand-side of (2.17) to the left-hand-
side of (2.16).

∑

x ,y,z
g(x − y)(ξ−δ0)x−zρ

2
s,zρs,y = 〈 g ∗ρs, (ξ−δ0) ∗ρ2

s 〉

≤ |(g ∗ρs)
2|1/2|((ξ−δ0) ∗ρ2

s )
2|1/2

≤ |g|R1/2
s |(ξ−δ0)

2|1/2|ρ2
s | ≤ cR3/2

s

Contributions from the other two terms on the right-hand-side of (2.17) can be bounded similarly.
Hence we get (2.16).

On the other hand,

∑

x ,y,z
g(x − y)

∫

Us,x ,y,zdν

=
∑

x ,y,z
g(x − y)

�

(k−δ0)y−zρs,xρs,z + (k−δ0)x−zρs,yρs,z + βx−z,y−zρ
2
s,z

�

= 〈 g ∗ (k−δ0) ∗ρs,ρs 〉+ 〈 g ∗ (ǩ−δ0) ∗ρs,ρs 〉+
∑

x ,y
g(x − y)βx ,yRs, (2.18)

where ǩx = k−x . Also,

∑

x ,y,z
g(x − y)

∫

Ws,x ,y,zdν = (|k| − 1)〈 g ∗ρs,ρs 〉. (2.19)

Note that
(k−δ0) + (ǩ−δ0)− 2(|k| − 1)δ0 = 2(|k| − k0)(p−δ0),
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and that
g ∗ (p−δ0) = pn+1−δ0 ≥−δ0.

Thus,

〈 g ∗ (k−δ0) ∗ρs,ρs 〉+ 〈 g ∗ (ǩ−δ0) ∗ρs,ρs 〉 − 2(|k| − 1)〈 g ∗ρs,ρs 〉
= 2(|k| − k0)〈 g ∗ (p−δ0) ∗ρs,ρs 〉 ≥ 2(|k| − k0)Rs.

By this, (2.18) and (2.19), we get

∑

x ,y,z
g(x − y)

∫

�

Us,x ,y,z − 2Ws,x ,y,z

�

dν ≥

 

∑

x ,y
g(x − y)βx ,y − 2(|k| − k0)

!

Rs. (2.20)

By (2.12), (2.16), (2.20) and Lemma 2.2.1, we obtain (2.10) . �

Proof of part (b): The predictable quadratic variation of the martingaleM· can be given by:

1) 〈M 〉t =
∑

z

∫ t

0

ds

∫

Fs,z(ξ)
2ν(dξ)

where
Fs,z(ξ) =

∑

x ,y
g(x − y)(J̄s,x ,z(ξ)J̄s,y,z(ξ)−ρs,xρs,y)

Recall that

{〈M 〉∞ <∞} ⊂ {Mt converges as t →∞} a.s.

{〈M 〉∞ =∞} ⊂
�

lim
t→∞

Mt

〈M 〉t
= 0
�

a.s.

Thus, to prove (2.11), it is enough to show that there is a constant c ∈ (0,∞) such that:

2) 〈M 〉t ≤ c

∫ t

0

Rsds.

We will do so via two different bounds for |Fs,z(ξ)|:

3) |Fs,z(ξ)| ≤ 2|g| for all s, z,ξ,

4) |Fs,z(ξ)| ≤ cρs,z if ρs,z ≤ 1/2.

To get 3), we note that 0≤ J̄s,x ,z(ξ)≤ 1 and
∑

x J̄s,x ,z = 1 for each z. Thus,

|Fs,z(ξ)| ≤ 〈 g ∗ J̄s,·,z , J̄s,·,z 〉+ 〈 g ∗ρs,ρs 〉

≤ |(g ∗ J̄s,·,z)
2|1/2|J̄2

s,·,z|
1/2+ |(g ∗ρs)

2|1/2|ρ2
s |

1/2

≤ |g||J̄2
s,·,z|+ |g|Rs ≤ 2|g|.
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To get 4), we assume ρs,z ≤ 1/2. Then, 1+(|ξ|−1)ρs,z ≥ 1/2 and thus, recalling (2.13) and (2.15),

|Fs,z(ξ)| ≤
∑

x ,y
g(x − y)

|Us,x ,y,z(ξ)−Ws,x ,y,z(ξ)|
1+ (|ξ| − 1)ρs,z

≤ 2
∑

x ,y
g(x − y)(|Us,x ,y,z(ξ)|+ |Ws,x ,y,z(ξ)|),

By (2.15) and (2.17), it is clear that the last summation is bounded by cρs,z for some c.
3)–4) can be used to obtain 2) as follows. For each s, there is at most one z such that ρs,z > 1/2,
and Rs > 1/4 if there is such z. Thus,

∑

z
1{ρs,z > 1/2}< 4Rs.

By this and 3)–4), we have
∑

z
Fs,z(ξ)

2 ≤ 4|g|2
∑

z
1{ρs,z > 1/2}+ c2

∑

z
1{ρs,z ≤ 1/2}ρ2

s,z ≤ (16|g|2+ c2)Rs.

Plugging this into 1), we are done. �
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