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1 Introduction

Hydrodynamic limit ([14; 40; 25; 42]) is a law of large numbers for the time evolution (usually
described by a limiting PDE, called the hydrodynamic equation) of empirical density fields in
interacting particle systems (IPS). In most known results, only a weak law of large numbers is
established. In this description one need not have an explicit construction of the dynamics: the
limit is shown in probability with respect to the law of the process, which is characterized in
an abstract way by its Markov generator and Hille-Yosida’s theorem ([30]). Nevertheless, when
simulating particle systems, one naturally uses a pathwise construction of the process on a Poisson
space-time random graph (the so-called “graphical construction”). In this description the dynamics
is deterministically driven by a random space-time measure which tells when and where the
configuration has a chance of being modified. It is of special interest to show that the hydrodynamic
limit holds for almost every realization of the space-time measure, as this means a single simulation
is enough to approximate solutions of the limiting PDE. In a sense this is comparable to the interest
of proving strong (rather than weak) consistency for statistical estimators, by which one knows that
a single path observation is enough to estimate parameters.

Most usual IPS can be divided into two groups, diffusive and hyperbolic. In the first group,
which contains for instance the symmetric or mean-zero asymmetric exclusion process, the
macroscopic→microscopic space-time scaling is (x , t) 7→ (N x , N2 t) with N →∞, and the limiting
PDE is a diffusive equation. In the second group, which contains for instance the nonzero mean
asymmetric exclusion process, the scaling is (x , t) 7→ (N x , N t), and the limiting PDE is of Euler
type. In both groups this PDE often exhibits nonlinearity, either via the diffusion coefficient in
the first group, or via the flux function in the second one. This raises special difficulties in the
hyperbolic case, due to shocks and non-uniqueness for the solution of the PDE, in which case
the natural problem is to establish convergence to the so-called “entropy solution" ([39]). In the
diffusive class it is not so necessary to specifically establish strong laws of large numbers, because
one has a fairly robust method ([26]) to establish large deviations from the hydrodynamic limit.
Large deviation upper bound and Borel Cantelli’s lemma imply a strong law of large numbers as
long as the large deviation functional is lower-semicontinuous and has a single zero. The situation
is quite different in the hyperbolic class, where large deviation principles are much more difficult
to obtain. So far only the remarkable result of Jensen and Varadhan ([22] and [43]) is available,
and it applies only to the one-dimensional totally asymmetric simple exclusion process. Besides,
the fact that the resulting large deviation functional has a single zero is not at all obvious: it
follows only from recent and refined work on conservation laws ([13]). An even more difficult
situation occurs for particle systems with nonconvex and nonconcave flux function, for which the
Jensen-Varadhan large deviation functional does not have a unique zero, due to the existence of
non-entropic solutions satisfying a single entropy inequality ([21]). In this case a more complicated
rate functional can actually be conjectured from [5; 32].

The derivation of hyperbolic equations as hydrodynamic limits began with the seminal paper
[36], which established a strong law of large numbers for the totally asymmetric simple exclusion
process on Z, starting with 1’s to the left of the origin and 0’s to the right. This result was extended
by [6] and [1] to nonzero mean exclusion process starting from product Bernoulli distributions
with arbitrary densities λ to the left and ρ to the right (the so-called “Riemann” initial condition).
The Bernoulli distribution at time 0 is related to the fact that uniform Bernoulli measures are
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invariant for the process. For the one-dimensional totally asymmetric K-exclusion process, which
does not have explicit invariant measures, a strong hydrodynamic limit was established in [37],
starting from arbitrary initial profiles, by means of the so-called “variational coupling”. These
are the only strong laws available so far. A common feature of these works is the use of sub-
additive ergodic theorem to exhibit some a.s. limit, which is then identified by additional arguments.

On the other hand, many weak laws of large numbers were established for attractive particle
systems. A first series of results treated systems with product invariant measures and product
initial distributions. In [2], for a particular zero-range model, a weak law was deduced from
conservation of local equilibrium under Riemann initial condition. It was then extended in
[3] to the misanthrope’s process of [12] under an additional convexity assumption on the flux
function. These were substantially generalized (using Kružkov’s entropy inequalities, see [28])
in [34] to multidimensional attractive systems with arbitrary Cauchy data, without any convexity
requirement on the flux. For systems with unknown invariant measures, the result of [37] was later
extended to other models, though only through weak laws. In [35], using semigroup point of view,
hydrodynamic limit was established for the one-dimensional nearest-neighbor K-exclusion process.
In [8] we studied fairly general attractive systems, employing a constructive approach we had
initiated in [7]. This method is based on an approximation scheme (to go from Riemann to Cauchy
initial data) and control of some distance between the particle system and the entropy solution to
the hydrodynamic equation.

In this paper we prove a strong law of large numbers, starting from arbitrary initial profiles,
for finite-range attractive particle systems on Z with bounded occupation number. We need no
assumption on the flux, invariant measures or microscopic structure of initial distributions. This
includes finite-range exclusion and K-exclusion processes, more general misanthrope-type models
and k-step exclusion processes. We proceed in the constructive spirit of [7; 8], which is adapted
to a.s. convergence, though this requires a novel approach for the Riemann part, and new error
analysis for the Cauchy part. The implementation of an approximation scheme involves Riemann
hydrodynamics from any space-time shifted initial position, which cannot be obtained through
subadditive ergodic theorem, and thus prevents us from using the a.s. result of [1]. This can be
explained as follows (see Appendix B for more details). Assume that on a probability space we have
a shift operator θ that preserves the probability measure, and a sequence (Xn)n∈N of real-valued
random variables converging a.s. to a constant x . Then we can conclude that the sequence
(Yn := Xn ◦ θ n)n converges in probability to x , but not necessarily almost surely. Indeed, for fixed
n, Yn has the same distribution as Xn, but the sequence (Yn)n need not have the same distribution
as (Xn)n. So the derivation of a.s. convergence for Yn is a case by case problem depending on how
it was obtained for Xn. In particular, if convergence of Xn was established from the subadditivity
property

Xn+m ≤ Xn+ Xm ◦ θ n

this property is no longer satisfied by Yn. In contrast, if convergence of Xn was established by large
deviation estimates for Xn, these estimates carry over to Yn, thus also implying a.s. convergence of
(Yn)n. In our context the random variable Xn is a current in the Riemann setting. In order to handle
the Cauchy problem we have to establish a.s. convergence for a shifted version Yn of this current.
We derive asymptotics for Yn by means of large deviation arguments.
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The paper is organized as follows. In Section 2, we define the model, give its graphical rep-
resentation, its monotonicity properties, and state strong hydrodynamics. In Section 3, we derive
almost sure Riemann hydrodynamics. In Section 4 we prove the result starting from any initial
profile.

2 Notation and results

Throughout this paper N= {1,2, ...} will denote the set of natural numbers, Z+ = {0,1, 2, ...} the set
of non-negative integers, and R+∗ = R+ − {0} the set of positive real numbers. The integer part of
x ∈ R, denoted by [x] ∈ Z, is uniquely defined by [x]≤ x < [x]+1. We consider particle systems on
Z with at most K particles per site, K ∈ N. Thus the state space of the process is X = {0, 1, · · · , K}Z,
which we endow with the product topology, that makes X a compact metrisable space. A function
defined on X is called local if it depends on the variable η ∈ X only through (η(x), x ∈ Λ) for some
finite subset Λ of Z. We denote by τx , either the spatial translation operator on the real line for
x ∈ R, defined by τx y = x + y , or its restriction to Z for x ∈ Z. By extension, we set τx f = f ◦ τx
if f is a function defined on R; τxη= η ◦τx , for x ∈ Z, if η ∈ X is a particle configuration (that is a
particular function on Z); τxµ= µ◦τ−1

x if µ is a measure on R or on X. We letM+(R) denote the set
of positive measures on R equipped with the metrizable topology of vague convergence, defined by
convergence on continuous test functions with compact support. The set of probability measures on
X is denoted by P (X). If η is an X-valued random variable and ν ∈ P (X), we write η∼ ν to specify
that η has distribution ν . The notation ν( f ), where f is a real-valued function and ν ∈ P (X), will
be an alternative for

∫

X
f dν . We say a sequence (νn, n ∈ N) of probability measures on X converges

weakly to some ν ∈ P (X), if and only if νn( f )→ ν( f ) as n→∞ for every continuous function f
on X. The topology of weak convergence is metrizable and makes P (X) compact.

2.1 The system and its graphical construction

We consider Feller processes on X whose transitions consist of particle jumps encoded by the Markov
generator

L f (η) =
∑

x ,y∈Z
p(y − x)b(η(x),η(y))

�

f
�

ηx ,y�− f (η)
�

(1)

for any local function f , where ηx ,y denotes the new state after a particle has jumped from x to y
(that is ηx ,y(x) = η(x)− 1, ηx ,y(y) = η(y) + 1, ηx ,y(z) = η(z) otherwise), p is the particles’ jump
kernel, that is a probability distribution on Z, and b : Z+ ×Z+→ R+ is the jump rate. We assume
that p and b satisfy :

(A1) The semigroup of Z generated by the support of p is Z itself (irreducibility);
(A2) p has a finite first moment, that is

∑

z∈Z |z| p(z)<+∞;
(A3) b(0, .) = 0, b(., K) = 0 (no more than K particles per site), and b(1, K − 1)> 0;
(A4) b is nondecreasing (nonincreasing) in its first (second) argument.

We denote by (S(t), t ∈ R+) the semigroup generated by L. Without additional algebraic relations
satisfied by b (see [12]), the system in general has no explicit invariant measures. This is the case
even for K-exclusion process with K ≥ 2 (see [37]), where b(n, m) = 1{n>0,m<K}.
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Remark 2.1. For the sake of simplicity, we restrict our attention to processes of “misanthrope type”,
for which particles leave more likely crowded sites for less occupied ones (cf. [12]). But our method
can be applied to a much larger class of attractive models that can be constructed through a graphical
representation, such as k-step exclusion (see [18] and [7]).

We now describe the graphical construction of the system given by (1), which uses the Harris rep-
resentation ([19; 20], [30, p. 172], [9, p. 119], [31, p. 215]); see for instance [1] for details and
justifications. This enables us to define the evolution from different initial configurations simultane-
ously on the same probability space. We consider the probability space (Ω,F , IP) of measures ω on
R+×Z2× [0,1] of the form

ω(d t, d x , dz, du) =
∑

m∈N
δ(tm,xm,zm,um)

where δ(·) denotes Dirac measure, and (tm, xm, zm, um)m≥0 are pairwise distinct and form a locally
finite set. The σ-field F is generated by the mappings ω 7→ ω(S) for Borel sets S. The probability
measure IP on Ω is the one that makes ω a Poisson process with intensity

m(d t, d x , dz, du) = ||b||∞λR+(d t)×λZ(d x)× p(dz)×λ[0,1](du)

where λ denotes either the Lebesgue or the counting measure. We denote by IE the corresponding
expectation. Thanks to assumption (A2), for IP-a.e. ω, there exists a unique mapping

(η0, t) ∈ X×R+ 7→ ηt = ηt(η0,ω) ∈ X (2)

satisfying: (a) t 7→ ηt(η0,ω) is right-continuous; (b) η0(η0,ω) = η0; (c) for t ∈ R+, (x , z) ∈ Z2,
ηt = η

x ,x+z
t− if

∃u ∈ [0,1] : ω{(t, x , z, u)}= 1 and u≤
b(ηt−(x),ηt−(x + z))

||b||∞
(3)

and (d) for all s, t ∈ R+∗ and x ∈ Z,

ω{[s, t]× Zx × (0,1)}= 0⇒∀v ∈ [s, t],ηv(x) = ηs(x) (4)

where
Zx :=

¦

(y, z) ∈ Z2 : y = x or y + z = x
©

In short, (3) tells how the state of the system can be modified by an “ω-event”, and (4) says that
the system cannot be modified outside ω-events. This defines a Feller process with generator (1):
that is for any t ∈ R+ and f ∈ C(X) (the set of continuous functions on X), S(t) f ∈ C(X) where
S(t) f (η0) = IE[ f (ηt(η0,ω))].

An equivalent formulation is the following. For each (x , z) ∈ Z2, let {T x ,z
n , n ≥ 1} be the ar-

rival times of mutually independent rate ||b||∞p(z) Poisson processes, let {U x ,z
n , n ≥ 1} be mutually

independent (and independent of the Poisson processes) random variables, uniform on [0,1]. At

time t = T x ,z
n , the configuration ηt− becomes ηx ,x+z

t− if U x ,z
n ≤

b(ηt−(x),ηt−(x + z))
||b||∞

, and stays

unchanged otherwise.
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Remark 2.2. For the K-exclusion process, b takes its values in {0, 1}, the probability space can be
reduced to measuresω(d t, d x , dz) on R+×Z2, and (3) to ηt = η

x ,x+z
t− if ηt−(x)> 0 and ηt−(x+z)<

K. One recovers exactly the graphical construction presented in e.g. [38] or [1].

One may further introduce an “initial” probability space (Ω0,F0, IP0), large enough to construct
random initial configurations η0 = η0(ω0) for ω0 ∈ Ω0. The general process with random initial
configurations is constructed on the enlarged space (eΩ = Ω0 ×Ω, eF = σ(F0 ×F ), eIP = IP0 ⊗ IP) by
setting

ηt( eω) = ηt(η0(ω0),ω)

for eω = (ω0,ω) ∈ eΩ. If η0 has distribution µ0, then the process thus constructed is Feller
with generator (1) and initial distribution µ0. By a coupling of two systems, we mean a process
(ηt ,ζt)t≥0 defined on eΩ, where each component evolves according to (2)–(4), and the random
variables η0 and ζ0 are defined simultaneously on Ω0.

We define on Ω the space-time shift θx0,t0
: for any ω ∈ Ω, for any (t, x , z, u)

(t, x , z, u) ∈ θx0,t0
ω if and only if (t0+ t, x0+ x , z, u) ∈ω

where (t, x , z, u) ∈ ω means ω{(t, x , z, u)} = 1. By its very definition, the mapping introduced in
(2) enjoys the following properties, for all s, t ≥ 0, x ∈ Z and (η,ω) ∈ X×Ω:

ηs(ηt(η,ω),θ0,tω) = ηt+s(η,ω) (5)

which implies Markov property, and

τxηt(η,ω) = ηt(τxη,θx ,0ω) (6)

which implies that S(t) and τx commute.

2.2 Main result

We give here a precise statement of strong hydrodynamics. Let N ∈ N be the scaling parameter for
the hydrodynamic limit, that is the inverse of the macroscopic distance between two consecutive
sites. The empirical measure of a configuration η viewed on scale N is given by

αN (η)(d x) = N−1
∑

y∈Z
η(y)δy/N (d x) ∈M+(R) (7)

We now state our main result.

Theorem 2.1. Assume p(.) is finite range, that is there exists M > 0 such that p(x) = 0 for all |x |> M.
Let (ηN

0 , N ∈ N) be a sequence of X-valued random variables on Ω0. Assume there exists a measurable
[0, K]-valued profile u0(.) on R such that

lim
N→∞

αN (ηN
0 )(d x) = u0(.)d x , IP0-a.s. (8)

that is,

lim
N→∞

∫

R
ψ(x)αN (ηN

0 )(d x) =

∫

ψ(x)u0(x)d x , IP0-a.s. (9)
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for every continuous function ψ on R with compact support. Let (x , t) 7→ u(x , t) denote the unique
entropy solution to the scalar conservation law

∂tu+ ∂x[G(u)] = 0 (10)

with initial condition u0, where G is a Lipschitz-continuous flux function (defined in (13) below) deter-
mined by p(.) and b(., .). Then, with eIP-probability one, the convergence

lim
N→∞

αN (ηN t(η
N
0 (ω0),ω))(d x) = u(., t)d x (11)

holds uniformly on all bounded time intervals. That is, for every continuous function ψ on R with
compact support, the convergence

lim
N→∞

∫

R
ψ(x)αN (ηN

N t)(d x) =

∫

ψ(x)u(x , t)d x (12)

holds uniformly on all bounded time intervals.

Remark 2.3. This result has been recently extended to kernels with infinite range and finite third
moment (see [33]).

As a byproduct we derive in Appendix A the main result of [8]:

Corollary 2.1. The strong law of large numbers (11) implies the weak law of large numbers established
in [8].

We recall from [8, pp.1346–1347 and Lemma 4.1] the definition of the Lipschitz-continuous macro-
scopic flux function G. In Proposition 2.1 below, we define a closed subset R of [0, K] depending
on p(.) and b(., .) (the set of possible equilibrium densities for the system). We let

G(ρ) = νρ




∑

z∈Z
zp(z)b(η(0),η(z))



 (13)

This represents the expectation, under the shift invariant equilibrium measure with density ρ (see
Proposition 2.1), of the microscopic current through site 0. On the complement of R , which is a
finite or countably infinite union of disjoint open intervals, G is interpolated linearly.

Remark 2.4. Very little is known about the setR . That {0, K} ⊂ R is a trivial consequence of Assump-
tion (A3). When p(.) and b(., .) satisfy the algebraic relations of [12], the system has a whole contin-
uum of product equilibrium measures, and R = [0, K]. Whether R = [0, K] outside this case is a diffi-
cult open problem. We do not know of any definite conjecture regarding this question. The only known
result is for the totally asymmetric K-exclusion process, that is p(1) = 1 and b(n, m) = 1n>0,m<K . It
is established in [8, Corollary 2.1] that R contains at least one point in [1/3, K − 1/3], and 0 and K
are limit points of R . In particular, R is infinite. This result is derived from the (weak) hydrodynamic
limit.

A Lipschitz constant V of G is determined by the rates b, p in (1):

V = 2B
∑

z∈Z
|z|p(z), with

B = sup
0≤a≤K ,0≤k<K

{b(a, k)− b(a, k+ 1), b(k+ 1, a)− b(k, a)}

7



This constant will be a key tool for the finite propagation property of the particle system (see Propo-
sition 4.1 below).

Remark 2.5. When the system has product invariant measures (see [12]), (13) can be decomposed
into a mean drift and a scalar flux:

G(ρ) =





∑

z∈Z
zp(z)



νρ[b(η(0),η(1))] (14)

In Assumption (A2) we only assumed integrability of the jump kernel p(.), but no non-zero mean or even
asymmetry condition. Thus our result applies also when

∑

z zp(z) = 0, but then the flux is identically
zero and the hydrodynamic limit is trivial, u(x , t) = u0(x) for all t > 0 and x ∈ R. In this case the
relevant time scale to observe nontrivial behavior is the diffusive scale. When the system has no explicit
invariant measures, there is a priori no reason for (14) to hold, so the drift

∑

z zp(z) does not play a
special role. In particular, a mean-zero or even symmetry property for p(.) need not imply a trivial flux.

In [8, Section 2.2] we discussed the different definitions of entropy solutions (loosely speaking : the
physically relevant solutions) to an equation such as (10), and the ways to prove their existence
and uniqueness. Therefore we just briefly recall the definition of entropy solutions based on
shock admissibility conditions (Olĕınik’s entropy condition), valid only for solutions with locally
bounded space-time variation ([44]). A weak solution to (10) is an entropy solution if and only
if, for a.e. t > 0, all discontinuities of u(., t) are entropy shocks. A discontinuity (u−, u+), with
u± := u(x ± 0, t), is called an entropy shock, if and only if:

The chord of the graph of G between u− and u+ lies
below the graph if u− < u+, above the graph if u+ < u−.

In the above condition, “below" or “above" is meant in wide sense, that is the graph and chord may
coincide at some points between u− and u+.
If the initial datum u0(.) has locally bounded space-variation, there exists a unique entropy solution
to (10), within the class of functions of locally bounded space-time variation ([44]).

2.3 Monotonicity and invariant measures

Assumption (A4) implies the following monotonicity property, crucial in our approach. For the
coordinatewise partial order on X, defined by η ≤ ζ if and only if η(x) ≤ ζ(x) for every x ∈ Z, we
have

(η0, t) 7→ ηt(η0,ω) is nondecreasing w.r.t. η0 (15)

for every ω such that this mapping is well defined. The partial order on X induces a partial
stochastic order on P (X); namely, for µ1,µ2 ∈ P (X), we write µ1 ≤ µ2 if the following equivalent
conditions hold (see e.g. [30], [41]):

i) For every non-decreasing nonnegative function f on X, µ1( f )≤ µ2( f ).
ii) There exists a coupling measure eµ on eX = X × X with marginals µ1 and µ2, such that
eµ{(η,ξ) : η≤ ξ}= 1.

8



It follows from this and (15) that

µ1 ≤ µ2⇒∀t ∈ R+, µ1S(t)≤ µ2S(t) (16)

Either property (15) or (16) is usually called attractiveness.

Let I and S denote respectively the set of invariant probability measures for L, and the set
of shift-invariant probability measures on X. We derived in [8, Proposition 3.1], that

Proposition 2.1.
(I ∩S )e =

�

νρ, ρ ∈ R
	

(17)

with R a closed subset of [0, K] containing 0 and K, and νρ a shift-invariant measure such that
νρ[η(0)] = ρ. (The index e denotes extremal elements.)
The measures νρ are stochastically ordered:

ρ ≤ ρ′⇒ νρ ≤ νρ
′

(18)

Moreover we have, quoting [35, Lemma 4.5]:

Proposition 2.2. The measure νρ has a.s. density ρ, that is

lim
l→∞

1

2l + 1

l
∑

x=−l

η(x) = ρ, νρ − a.s.

By [23, Theorem 6], (18) implies existence of a probability space on which one can define random
variables satisfying

ηρ ∼ νρ (19)

and, with probability one,

ηρ ≤ ηρ
′
, ∀ρ,ρ′ ∈ R such that ρ ≤ ρ′ (20)

Proceeding as in the proof of [24, Theorem 7], one can also require (but we shall not use this
property) the joint distribution of (ηρ : ρ ∈ R) to be invariant by the spatial shift τx . In the special
case where νρ are product measures, that is when the function b(., .) satisfies assumptions of [12],
such a family of random variables can be constructed explicitely: if

�

Ux
�

x∈Z is a family of i.i.d.
random variables uniformly distributed on (0, 1), one defines

ηρ(x) = F−1
ρ (Ux) (21)

where Fρ is the cumulative distribution function of the single site marginal distribution of νρ. We
will assume without loss of generality (by proper enlargement) that the “initial” probability space
Ω0 is large enough to define a family of random variables satisfying (19)–(20).

An important result for our approach is a space-time ergodic theorem for particle systems
mentioned in [35], which we state here in a general form, and prove in Appendix C.
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Proposition 2.3. Let (ηt)t≥0 be a Feller process on X with a translation invariant generator L, that is

τ1 Lτ−1 = L (22)

Assume further that
µ ∈ (IL ∩S )e

where IL denotes the set of invariant measures for L. Then, for any local function f on X, and any
a > 0

lim
`→∞

1

a`2

∫ a`

0

∑̀

i=0

τi f (ηt)d t =

∫

f dµ= lim
`→∞

1

a`2

∫ a`

0

−1
∑

i=−`
τi f (ηt)d t (23)

a.s. with respect to the law of the process with initial distribution µ.

Remark 2.6. It follows from (23) that, more generally,

lim
`→∞

1

(b− a)(d − c)`2

∫ b`

a`

∑

i∈Z∩[cl,dl]

τi f (ηt)d t =

∫

f dµ (24)

for every 0 ≤ a < b and c < d in R, as can be seen by decomposing the space-time rectangle [al, bl]×
[cl, dl] into rectangles containing the origin.

3 Almost sure Riemann hydrodynamics

By definition, the Riemann problem with values λ,ρ ∈ [0, K] for (10) is the Cauchy problem for the
particular initial condition

R0
λ,ρ(x) = λ1{x<0}+ρ1{x≥0} (25)

The entropy solution for this Cauchy datum will be denoted in the sequel by Rλ,ρ(x , t). In this
section, we derive the corresponding almost sure hydrodynamic limit when λ,ρ ∈ R . We will use
the following variational representation of the Riemann problem. We henceforth assume λ < ρ (for
the case λ > ρ, replace minimum with maximum below and make subsequent changes everywhere
in the section).

Proposition 3.1. ([8, Proposition 4.1]). Let λ,ρ ∈ [0, K], λ < ρ.
i) There is a countable set Σlow ⊂ [λ,ρ] (depending only on the differentiability properties of the convex
envelope of G on [λ,ρ]) such that, for every v ∈ R \Σlow , G(·)− v· achieves its minimum over [λ,ρ]
at a unique point hc(v). Then Rλ,ρ(x , t) = hc(x/t) whenever x/t 6∈ Σlow .
ii) Suppose λ,ρ ∈ R . Then the previous minimum is unchanged if restricted to [λ,ρ]∩R . As a result,
the Riemann entropy solution is a.e. R-valued.

Remark 3.1. Property ii) holds if we replace R by any closed subset of [0, K] on the complement of
which G is affine. We stated it for R because it is the set of densities relevant to the particle system.

To state Riemann hydrodynamics, we define a particular initial distribution for the particle system.
We introduce a transformation T : X2→ X by

T (η,ξ)(x) = η(x)1{x<0}+ ξ(x)1{x≥0}

10



We define νλ,ρ as the distribution of T (ηλ,ηρ) =: ηλ,ρ, and ν̄λ,ρ as the coupling distribution of
(ηλ,ηρ). Note that, by (20),

ν̄λ,ρ
¦

(η,ξ) ∈ X2 : η≤ ξ
©

= 1 (26)

The measure νλ,ρ is non-explicit unless we are in the special case of [12] where the νρ are product,
one can use (21), and νλ,ρ is itself a product measure. In all cases, νλ,ρ enjoys the properties:

P1) Negative (nonnegative) sites are distributed as under νλ (νρ);

P2) τ1ν
λ,ρ ≥ νλ,ρ (τ1ν

λ,ρ ≤ νλ,ρ) if λ≤ ρ (λ≥ ρ);

P3) νλ,ρ is stochastically increasing with respect to λ and ρ.

Let us also define an extended shift θ ′ on the compound probability space Ω′ = X2 × Ω.
This is a particular case of eΩ when the “initial” probability space Ω0 is the set X2 of coupled particle
configurations (η,ξ). Let

ω′ = (η,ξ,ω) (27)

denote a generic element of this space. We set

θ ′x ,tω
′ = (τxηt(η,ω),τxηt(ξ,ω),θx ,tω) (28)

We can now state and prove the main results of this section.

Proposition 3.2. Set
N v,w

t (ω′) :=
∑

[vt]<x≤[wt]

ηt(T (η,ξ),ω)(x) (29)

Then, for every t > 0, α ∈ R+,β ∈ R and v, w ∈ R \Σlow ,

lim
t→∞

1

t
N v,w

t ◦ θ ′[β t],αt(ω
′)

= [G(Rλ,ρ(v, 1))− v Rλ,ρ(v, 1)]− [G(Rλ,ρ(w, 1))−w Rλ,ρ(w, 1)] (30)

ν̄λ,ρ ⊗ IP-a.s.

Remark 3.2. This result is an almost sure version of [3, Lemma 3.2], where the limit of the corre-
sponding expectation was derived.

Corollary 3.1. Set
βN

t (ω
′)(d x) := αN (ηt(T (η,ξ),ω))(d x) (31)

(i) For every t > 0, s0 ≥ 0 and x0 ∈ R, we have the ν̄λ,ρ ⊗ IP-a.s. convergence

lim
N→∞

βN
N t(θ

′
[N x0],Ns0

ω′)(d x) = Rλ,ρ(., t)d x

(ii) In particular, for an initial sequence (ηN
0 )N such that ηN

0 = η
λ,ρ for every N ∈ N, the conclusion of

Theorem 2.1 holds without the finite-range assumption on p(.).

11



For the asymmetric exclusion process, [1] proved a statement equivalent to the particular case
α= β = 0 of Proposition 3.2. Their argument, which is a correction of [6], is based on subadditivity.
As will appear in Section 4 (in the proof of Lemma 4.4 for example, that is the main step of that
section), we do need to consider nonzero α and β in order to prove a.s. hydrodynamics for general
(non-Riemann) Cauchy datum. Using arguments similar to those in [1], it would be possible
to prove Proposition 3.2 with α = β = 0 for our model (1). However this no longer works for
nonzero α and β (see Appendix B). Therefore we construct a new approach for a.s. Riemann
hydrodynamics, that does not use subadditivity.

To prove Proposition 3.2, we first rewrite (in Subsection 3.1) the quantity N v,w
t in terms of

particle currents for which we then state (in Subsection 3.2) a series of lemmas (proven in
Subsection 3.4), and finally obtain the desired limits for the currents, by deriving upper and lower
bounds. For one bound (the upper bound if λ < ρ or lower bound if λ > ρ), we derive an
“almost-sure proof” inspired by the ideas of [3] and their extension in [8]. For the other bound we
use new ideas based on large deviations of the empirical measure.

3.1 Currents

Let us define particle currents in a system (ηt)t≥0 governed by (3)–(4). Let x. = (x t , t ≥ 0) be
a Z-valued cadlag path with

�

�x t − x t−
�

� ≤ 1. In the sequel this path will be either deterministic,
or a random path independent of the Poisson measure ω. We define the particle current as seen
by an observer travelling along this path. We first consider a semi-infinite system, that is with
∑

x>0η0(x)<+∞: in this case, we set

ϕ
x.
t (η0,ω) :=

∑

y>x t

ηt(η0,ω)(y)−
∑

y>x0

η0(y) (32)

where ηt(η0,ω) is the mapping introduced in (2). In the sequel we shall most often omit ω and
write ηt for ηt(η0,ω) when this creates no ambiguity. We have

ϕ
x.
t (η0,ω) = ϕx.,+

t (η0,ω)−ϕx.,−
t (η0,ω) + ϕ̃x.

t (η0,ω) (33)

where

ϕ
x.,+
t (η0,ω) = ω

�

(s, y, z, u) : 0≤ s ≤ t, y ≤ xs < y + z,

u≤
b(ηs−(y),ηs−(y + z))

||b||∞

�

ϕ
x.,−
t (η0,ω) = ω

�

(s, y, z, u) : 0≤ s ≤ t, y + z ≤ xs < y,

u≤
b(ηs−(y),ηs−(y + z))

||b||∞

�

(34)

count the number of rightward/leftward crossings due to particle jumps, and

ϕ̃
x.
t (η0,ω) =−

∫

[0,t]
ηs−(xs ∨ xs−)d xs (35)

is the current due to the self-motion of the observer. For an infinite system, we may still define
ϕ

x.
t (η0,ω) by equations (33) to (35). We shall use the notation ϕv

t in the particular case x t = [vt].

12



The following identities are immediate from (32) in the semi-infinite case, and extend to the infinite
case:

�

�ϕ
x.
t (η0,ω)−ϕ y.

t (η0,ω)
�

� ≤ K
��

�x t − yt

�

�+
�

�x0− y0

�

�

�

(36)
[wt]
∑

x=1+[vt]

ηt(η0,ω)(x) = ϕv
t (η0,ω)−ϕw

t (η0,ω) (37)

Following (37), the quantity N v,w
t (ω′) defined in (29) can be written as

N v,w
t (ω′) = φv

t (ω
′)−φw

t (ω
′) (38)

where we define the current
φv

t (ω
′) := ϕv

t (T (η,ξ),ω)

Notice that
φv

t (η,η,ω) = ϕv
t (η,ω)

The proof of the existence of the limit in Proposition 3.2 is thus reduced to

lim
t→∞

t−1φv
t

�

θ ′[β t],αtω
′
�

exists ν̄λ,ρ ⊗ IP-a.s. (39)

3.2 Lemmas

We fix α ∈ R+ and β ∈ R. The first lemma deals with equilibrium processes.

Lemma 3.1. For all r ∈ [λ,ρ]∩R , ς ∈ X, v ∈ R \Σlow ,

lim
t→∞

t−1φv
t ◦ θ

′
[β t],αt(ς,ς,ω) = G(r)− vr, ν̄ r,r ⊗ IP-a.s.

The second lemma relates the current of the process under study with equilibrium currents; here
it plays the role of Lemma 3.3 in [3]. It is connected to the “finite propagation property” of the
particle model (see Lemma 4.3):

Lemma 3.2. There exist v̄ and v (depending on b and p) such that we have, ν̄λ,ρ ⊗ IP-a.s.,

lim
t→∞

h

t−1φv
t ◦ θ

′
[β t],αt(η,ξ,ω)− t−1φv

t ◦ θ
′
[β t],αt(ξ,ξ,ω)

i

= 0, (40)

for all v > v̄, and

lim
t→∞

h

t−1φv
t ◦ θ

′
[β t],αt(η,ξ,ω)− t−1φv

t ◦ θ
′
[β t],αt(η,η,ω)

i

= 0, (41)

for all v < v.

For the next lemmas we need some more notation and definitions. Let v ∈ R. We consider a
probability space Ω+, whose generic element is denoted by ω+, on which is defined a Poisson
process Nt = Nt(ω+) with intensity |v|. We denote by IP+ the associated probability. We set

x t
s (ω

+) := (sgn(v))
�

Nαt+s(ω
+)− Nαt(ω

+)
�

(42)

eηt
s (η0,ω,ω+) := τx t

s (ω
+)ηs(η0,ω) (43)
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Thus (eηt
s )s≥0 is a Feller process with generator

Lv = L+ Sv , Sv f (ζ) = |v| [ f (τsgn(v)ζ)− f (ζ)] (44)

(for f local and ζ ∈ X) for which the set of local functions is a core, as it is known to be ([30]) for
L. We denote by Iv the set of invariant measures for Lv . Since any translation invariant measure
on X is stationary for the pure shift generator Sv , we have

I ∩S = Iv ∩S (45)

It can be shown (see [16, Theorem 3.1] and [17, Corollary 9.6]) that Iv ⊂ S for v 6= 0, which
implies

I ∩S = Iv ∩S = Iv

but we shall not use this fact here. Define the time empirical measure

mt(ω
′,ω+) := t−1

∫ t

0

δ
eηt

s (T (η,ξ),ω,ω+)ds (46)

and space-time empirical measure (where ε > 0) by

mt,ε(ω
′,ω+) := |Z∩ [−εt,εt]|−1

∑

x∈Z: |x |≤εt

τx mt(ω
′,ω+) (47)

We introduce the set
Mλ,ρ :=

¦

µ ∈ P (X) : νλ ≤ µ≤ νρ
©

Notice that this is a closed (thus compact) subset of the compact space P (X).

Lemma 3.3. (i) With ν̄λ,ρ⊗ IP⊗ IP+-probability one, every subsequential limit of mt,ε(θ ′[β t],αtω
′,ω+)

as t →∞ lies in Iv ∩S ∩Mλ,ρ = I ∩S ∩Mλ,ρ.
(ii) I ∩ S ∩Mλ,ρ is the set of probability measures ν of the form ν =

∫

ν rγ(dr), where γ is a
probability measure supported on R ∩ [λ,ρ].

The proof of Lemma 3.3 will be based on the following large deviation result in the spirit of [15].

Lemma 3.4. (i) The functional Dv defined on P (X) by

Dv(µ) := sup
f local

−
∫

Lve f

e f
(eη)dµ(eη) (48)

is nonnegative, lower-semicontinuous, and D−1
v (0) = Iv .

(ii) Let eξ. be a Markov process with generator Lv and distribution denoted by P. Define the
empirical measures

πt(eξ.) := t−1

∫ t

0

δ
eξs

ds, πt,ε := |Z∩ [−εt,εt]|−1
∑

x∈Z∩[−εt,εt]

τxπt (49)

where ε > 0. Then, for every closed subset F of P (X) and every t ≥ 0,

lim sup
t→∞

t−1 logP
�

πt,ε(eξ.) ∈ F
�

≤− inf
µ∈F
Dv(µ) (50)
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3.3 Proofs of Lemma 3.1, Proposition 3.2 and Corollary 3.1

Proof of Lemma 3.1. The result is a particular case, for λ= ρ, of (51) proven below. �

Proof of Proposition 3.2. We denote by ω′ = (η,ξ,ω) a generic element of Ω′. We will establish the
following limits. First,

inf
r∈[λ,ρ]∩R

[G(r)− vr] ≤ lim inf
t→∞

t−1φv
t ◦ θ

′
[β t],αt(ω

′)

≤ lim sup
t→∞

t−1φv
t ◦ θ

′
[β t],αt(ω

′)

≤ sup
r∈[λ,ρ]∩R

[G(r)− vr], ν̄λ,ρ ⊗ IP-a.s. (51)

and then
limsup

t→∞
t−1φv

t ◦ θ
′
[β t],αt(ω

′)≤ inf
r∈[λ,ρ]∩R

[G(r)− vr], ν̄λ,ρ ⊗ IP-a.s. (52)

which will imply the result, when combined with Proposition 3.1 and the expression (38) of
N v,w

t (ω′). Though only the first inequality in (51) (together with (52)) seems relevant to Proposi-
tion 3.2, we will need the whole set of inequalities: Indeed, writing (51) for λ = ρ = r ∈ R proves
the equilibrium result of Lemma 3.1.

To obtain the bounds in (51) we proceed as follows. First we replace the deterministic path

vt in the current φv
t by x t

t (ω
+). Then we consider a spatial average of ϕ

x t
. (ω

+)+x
t for x ∈ [−εt,εt],

and we introduce, for ζ ∈ X, the martingale M x ,v
t (ζ,ω,ω+) associated to ϕ

x t
. (ω

+)+x
t (ζ,ω) (see

below (57)). An exponential bound on the martingale reduces the derivation of (51) to bounds
(deduced thanks to Lemma 3.3) on

∫

[ f (η)− vη(1)]mt,ε(θ
′
[β t],αtω

′,ω+)(dη)

(see below (62)), where [ f (η) − vη(1)] corresponds to the compensator of ϕ
x t

. (ω
+)+x

t (ζ,ω) in
M x ,v

t (ζ,ω,ω+). The bound (52) relies on Lemmas 3.1 and 3.2 combined with the monotonicity of
the process.

Step one: proof of (51). We have

t−1φv
t ◦ θ

′
[β t],αt(ω

′) = t−1ϕv
t ($αt ,θ[β t],αtω) (53)

where the configuration

$αt =$αt(η,ξ,ω) := T
�

τ[β t]ηαt(η,ω),τ[β t]ηαt(ξ,ω)
�

(54)

depends only on the restriction of ω to [0,αt]× Z. Thus, since ω is a Poisson measure under IP,
θ[β t],αtω is independent of $αt(η,ξ,ω) under ν̄λ,ρ ⊗ IP, and

under ν̄λ,ρ ⊗ IP⊗ IP+, $αt is independent of (θ[β t],αtω,ω+) (55)
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Define
ψv,ε

t (ζ,ω,ω+) := |Z∩ [−εt,εt]|−1
∑

y∈Z: |y|≤εt

ϕ
x t

. (ω
+)+y

t (ζ,ω)

for every (ζ,ω,ω+) ∈ X×Ω×Ω+, with x t
. (ω

+) given by (42). By (36),
�

�ϕv
t (ζ,ω)−ψv,ε

t (ζ,ω,ω+)
�

�≤ K
�

2εt +
�

�x t
t (ω

+)− vt
�

�

�

Since t−1 x t
t (ω

+)→ v with IP+-probability one, the proof of (51) can be reduced to that of the same
inequalities with the l.h.s. of (53) replaced by

t−1ψv,ε
t ($αt ,θ[β t],αtω,ω+) (56)

and ν̄λ,ρ ⊗ IP replaced by ν̄λ,ρ ⊗ IP⊗ IP+. Let f (η) := f +(η)− f −(η), with

f +(η) =
∑

y,z∈Z: y≤0<y+z

p(z)b(η(y),η(y + z))

f −(η) =
∑

y,z∈Z: y+z≤0<y

p(z)b(η(y),η(y + z))

and n(η) := η(δ), where δ is defined to be 1 if v > 0, 0 if v < 0, and any integer if v = 0. By the
definition of particle current (33)–(35), we have that, for any ζ ∈ X,

M x ,v
t (ζ,ω,ω+) := ϕ

x t
. (ω

+)+x
t (ζ,ω)

−
∫ t

0

τx[ f − vn](eηt
s−(ζ,ω,ω+)) (57)

E x ,v,θ
t (ζ,ω,ω+) := exp

§

θϕ
x t

. (ω
+)+x

t (ζ,ω)

−
�

eθ − 1
�

∫ t

0

τx f +(eηt
s−(ζ,ω,ω+))ds

−
�

e−θ − 1
�

∫ t

0

τx f −(eηt
s−(ζ,ω,ω+))ds

−
∫ t

0

|v|
�

e−sgn(v)θτx n
�

eηt
s−
(ζ,ω,ω+)

�

− 1
�

ds

«

(58)

= exp
¦

θM x ,v
t (ζ,ω,ω+)

−
�

eθ − 1− θ
�

∫ t

0

τx f +(eηt
s−(ζ,ω,ω+))ds

−
�

e−θ − 1+ θ
�

∫ t

0

τx f −(eηt
s−(ζ,ω,ω+))ds

−
∫ t

0

|v|
�

e−sgn(v)θτx n
�

eηt
s−
(ζ,ω,ω+)

�

− 1

+sgn(v)θτx n(eηt
s−(ζ,ω,ω+))

�

ds
©

are martingales under IP ⊗ IP+, with respective means 0 and 1. Notice that ηs− and ηs can be
replaced with each other in the above martingales, because, by the graphical construction of Section
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2.1, s 7→ ηs(x) is IP⊗ IP+-a.s. locally piecewise constant for every ζ ∈ X and x ∈ Z. It follows from
(58) that

IE
�

eθM x ,v
t

�

≤ eC t(eK |θ |−1−K |θ |) (59)

for any ζ ∈ X, where expectation is w.r.t. IP⊗ IP+, and the constant C depends only on p(.), b(.) and
v but not on ζ. Cramer’s inequality and (59) imply the large deviation bound

IP⊗ IP+({
�

�M x ,v
t

�

�≥ y})≤ 2e−tIC (y) (60)

for any ζ ∈ X and y ≥ 0, with the rate function

IC(y) =
y

K
log
�

1+
y

CK

�

− C
� y

CK
− log

�

1+
y

CK

��

Since(60) holds for every ζ ∈ X, the independence property (55) also implies

ν̄λ,ρ ⊗ IP⊗ IP+
�

{
�

�M x ,v
t ($αt ,θ[β t],αtω,ω+))

�

�≥ y}
�

≤ 2e−tIC (y)

This and Borel Cantelli’s lemma imply that

lim
t→∞

t−1 |Z∩ [−εt,εt]|−1
∑

x∈Z: |x |≤εt

M x ,v
t ($αt ,θ[β t],αtω,ω+) = 0, (61)

ν̄λ,ρ⊗ IP⊗ IP+-a.s. In view of (57) and (61), the proof of (51) is now reduced to that of the same set
of inequalities with (56) replaced by

t−1 |Z∩ [−εt,εt]|−1

∫ t

0

∑

x∈Z: |x |≤εt

τx[ f − vn](eηt
s ($αt ,θ[β t],αtω,ω+))ds

with δ as in (57), which is exactly, because of (54),
∫

[ f (η)− vη(δ)]mt,ε(θ
′
[β t],αtω

′,ω+)(dη) (62)

with the empirical measure mt,ε defined in (47). By Lemma 3.3, every subsequential limit ν as
t →∞ of mt,ε(θ ′[β t],αtω

′,ω+) is of the form

ν =

∫

ν rγ(dr)

for some measure γ supported on R∩ [λ,ρ]. Then the corresponding subsequential limit as t →∞
of (62) is of the form

∫

[G(r)− vr]γ(dr)

as one verifies, using shift invariance of ν r , that
∫

[ f (η)− vη(δ)]ν r(dη) = G(r)− vr
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This concludes the proof.

Step two: proof of (52). Let u1 ≤ v ≤ v ≤ v̄ ≤ v1, λ < ρ ∈ R , and r ∈ [λ,ρ] ∩ R . We set
ς= ηr , and we define ν̄λ,r,ρ as the coupling distribution of (ηλ,ηr ,ηρ). Note that, by the stochastic
ordering property (20),

ν̄λ,r,ρ
¦

(η,ς,ξ) ∈ X3 : η≤ ς≤ ξ
©

= 1 (63)

The following limits are true for ν̄λ,r,ρ-a.e. (η,ς,ξ). By the expression (38) of N .,.
t and the equilib-

rium limit Lemma 3.1,

lim
t→∞

1

t
N u1,v

t ◦ θ ′[β t],αt(ς,ς,ω) = r(v − u1) (64)

By attractiveness,

lim inf
t→∞

1

t
N u1,v

t ◦ θ ′[β t],αt(ς,ξ,ω)≥ lim
t→∞

1

t
N u1,v

t ◦ θ ′[β t],αt(ς,ς,ω) (65)

Putting together (64) and (65),

lim inf
t→∞

1

t
N u1,v

t ◦ θ ′[β t],αt(ς,ξ,ω)≥ r(v− u1) (66)

Now, by (38), Lemma 3.2 and Lemma 3.1 respectively for r and ρ,

lim
t→∞

1

t
N u1,v1

t ◦ θ ′[β t],αt(ς,ξ,ω) = (G(r)− u1r)− (G(ρ)− v1ρ) (67)

Subtracting (66) from (67), we get

limsup
t→∞

1

t
N v,v1

t ◦ θ ′[β t],αt(ς,ξ,ω)≤ (G(r)− vr)− (G(ρ)− v1ρ) (68)

By attractiveness, (63) and (68), we have

limsup
t→∞

1

t
N v,v1

t ◦ θ ′[β t],αt(η,ξ,ω) ≤ lim sup
t→∞

1

t
N v,v1

t ◦ θ ′[β t],αt(ς,ξ,ω)

≤ (G(r)− vr)− (G(ρ)− v1ρ) (69)

Using (38), (69), Lemma 3.2, and Lemma 3.1 for ρ, we obtain

lim sup
t→∞

1

t
φv

t ◦ θ
′
[β t],αt(ω

′)

= lim sup
t→∞

�

1

t
φv

t ◦ θ
′
[β t],αt(ω

′)−
1

t
φ

v1
t ◦ θ

′
[β t],αt(ω

′) +
1

t
φ

v1
t ◦ θ

′
[β t],αt(ω

′)
�

≤ lim sup
t→∞

1

t
N v,v1

t ◦ θ ′[β t],αt(ω
′) + lim sup

t→∞

1

t
φ

v1
t ◦ θ

′
[β t],αt(ω

′)

≤ ((G(r)− vr)− (G(ρ)− v1ρ)) + (G(ρ)− v1ρ)

= G(r)− vr

for every r ∈ [λ,ρ] ∩ R . Since ς is no longer involved in the above inequalities, we obtain a
ν̄λ,ρ-a.s. limit with respect to (η,ξ) for every r ∈ [λ,ρ]∩R . By continuity of G this holds outside
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a common exceptional set of ν̄λ,ρ-probability 0 for all r ∈ [λ,ρ]∩R . This proves (52). �

Proof of Corollary 3.1.

(i). By Proposition 3.1 (cf. [8, (28)]),

d

dv
[G(hc(v))− vhc(v)] =−hc(v)

weakly with respect to v. Thus, setting u= Rλ,ρ, we have

[G(u(v, 1))− vu(v, 1)]− [G(u(w, 1))−wu(w, 1)] =

∫ w

v

u(x , 1)d x (70)

for all v, w ∈ R. Let a < b in R. Setting

$= T
�

τ[N x0]ηNs0
(η,ω),τ[N x0]ηNs0

(ξ,ω)
�

we have

βN
N t(θ

′
[N x0],Ns0

(η,ξ,ω))((a, b]) = N−1
∑

[Na]<x≤[N b]

ηN t($,θ[N x0],Ns0
ω)(x)

= t(N t)−1N a/t,b/t
N t (θ ′[N x0],Ns0

ω′)

Thus, by Proposition 3.2 and (70),

lim
N→∞

βN
N t(θ

′
[N x0],Ns0

ω′)((a, b]) = t

∫ b/t

a/t

u(x , 1)d x =

∫ b

a

u(x , t)d x (71)

ν̄λ,ρ ⊗ IP-a.s., where the last equality follows from Proposition 3.1. Now (70) implies that the r.h.s.
of (30) is a continuous function of (v, w), while the l.h.s. is a uniformly Lipschitz function of (v, w),
since the number of particles per site is bounded. It follows that one can find a single exceptional set
of ν̄λ,ρ⊗IP-probability 0 outside which (71) holds simultaneously for all a, b, which proves the claim.

(ii). Since ηλ,ρ has distribution ν̄λ,ρ under IP0, the statement follows from (i) with x0 = s0 = 0. �

3.4 Proofs of remaining lemmas

Proof of Lemma 3.2. Let ε > 0. We consider the probability space Ω′ × (Z+)Z equipped with the
product measure

IP′ε := ν̄λ,ρ ⊗ IP⊗ Pε

where Pε is the product measure on Z whose marginal at each site is Poisson with mean K(1+ ε).
A generic element of this space is denoted by (ω′,χ), with ω′ = (η,ξ,ω) and χ ∈ (Z+)Z. We
first prove (40). Because of (26) (that is, coupled configurations are ordered under ν̄λ,ρ), by the
attractiveness property (15), we may define

γs(ω
′) := ηs(ξ,ω)−ηs(T (η,ξ),ω) (72)
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for s ≥ 0. Therefore γ-particles represent the discrepancies between the system starting from ξ and
the system starting from T (η,ξ). We set

p(z) = (p(z) + p(−z))||b||∞ (73)

and fix v̄ such that
v̄ >

∑

z∈Z
zp(z) (74)

Let v > v̄. Because γ0(x) = 0 for all x > 0, by the definition of current (32),

φv
t (ξ,ξ,ω) = φv

t (ω
′) +

∑

y>[vt]

γt(y)

Therefore, to prove (40), we want to obtain

lim
t→∞

t−1
∑

y>v̄ t

γt ◦ θ ′[β t],αt(ω
′)(y) = 0, ν̄λ,ρ ⊗ IP-a.s. (75)

To this end, we follow the proof of [1, Proposition 5], with minor modifications. We emphasize
that even if the latter proof corresponds to α = β = 0, we will see that the arguments extend to
(α,β) 6= (0, 0). Each γ0-particle and χ-particle is given an integer label j ≤ 0, and we denote by
R j

0 (resp. Z j
0) the position of the γ0-particle (resp. χ-particle) with label j. That is, R.

0 and Z .
0 must

satisfy
∑

j≤0

δR j
0
=
∑

x∈Z
γ0(x)δx ,

∑

j≤0

δZ j
0
=
∑

x∈Z
χ(x)δx (76)

There is a unique way to choose such R.
0 (resp. Z .

0) if we impose moreover that R j
0 ≤ R j+1

0 (resp.Z j
0 ≤

Z j+1
0 ) for all j < 0, which we will assume. By the definition of χ, the number of χ-particles between
−n and 0 will be eventually larger than nK . Let

W (χ) := inf
n

n ∈ Z+ : Z j
0 ≥−[

�

� j
�

�/K] for every j ≤−n
o

By Poisson large deviation bounds, the random variable W is IP′ε-a.s. finite with exponentially de-
caying distribution. Since γ0(x) ≤ K for every x ∈ Z, we have R j

0 ≤ −[
�

� j
�

�/K] for all j ≤ 0, hence

Z j
0 ≥ R j

0 for every j ≤−W (χ). The dynamics of (R.
t)t≥0 is defined as follows. By (72) and the graph-

ical construction, at most one discrepancy can jump at each event time of ω. If a γ-particle jumps
at time t from x to y , we set R j

t = y and Rk
t = Rk

t− for all k 6= j, where j is the largest label l such
that Rl

t− = x . The choice of the largest label is arbitrary and could be replaced by any deterministic
or random choice procedure, provided the corresponding source of randomness is independent of
(ω′,χ). Note that we do not in general have R j

t ≤ R j+1
t for t > 0, but this does not matter for our

purpose. The dynamics of Z j
. is defined as follows: if R j

t− = x and, for some z > 0 and u ∈ [0, 1],

{(t, x , z, u), (t, x + z,−z, u)} ∩ ω 6= ; (77)

then Z j
t = Z j

t− + z. In other words, χ-particles evolve as mutually independent (given their initial
positions) random walks, that jump from y to y + z at rate p(z) given by (73) for all y ∈ Z, z ≥ 0.
Since a jump for R j

. from R j
t− = x to R j

t = x + z is possible only under (77),

R j
0 ≤ Z j

0⇒∀t > 0, R j
t ≤ Z j

t (78)
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In view of (75), (78), we estimate
∑

x>v̄ t

γt(x) =
∑

j≤0

1{R j
t (ω′)>v̄ t} =

∑

j≤−W (χ)

1{R j
t (ω′)>v̄ t}+

∑

−W (χ)< j≤0

1{R j
t (ω′)>v̄ t}

≤
∑

j≤−W (χ)

1{Z j
t (ω′)>v̄ t}+W (χ)

≤ Z̄t(ω,χ) +W (χ) (79)

where Z̄t :=
∑

i≤0 1{Z i
t>v̄ t} is a Poisson random variable with mean

IE′ε Z̄t = K(1+ ε)
∑

j≥v̄ t

IP′ε(Yt > j) (80)

for Yt a random walk starting at 0 that jumps from y to y + z with rate p(z). Since v̄ satisfies (74),
repeating [1, (43)–(45)] gives that

lim
t→∞

IE′ε Z̄t/t = 0 (81)

Let δ > 0. Since Z̄t is a Poisson variable,

IP′ε(|Z̄t − IE′ε Z̄t |> δt) ≤
IE′ε(Z̄t − IE′ε Z̄t)4

(δt)4

≤
[IE′ε(Z̄t − IE′ε Z̄t)2]2

(δt)4

≤
(IE′ε Z̄t/t)2 t2

(δt)4
(82)

Therefore, by Borel Cantelli lemma

lim
t→∞
(Z̄t − IE′ε Z̄t)/t = 0, IP′ε-a.s. (83)

Since IP is invariant by θ[β t],αt , Z̄t(θ[β t],αtω,χ) has the same distribution as Z̄t(ω,χ) under IP′ε.
Thus (80)–(83) still hold with Z̄t(θ[β t],αtω,χ) instead of Z̄t(ω,χ), and

lim
t→∞

t−1 Z̄t(θ[β t],αtω,χ) = 0, IP′ε-a.s. (84)

Because the random variable W in (79) does not depend on ω′, (84) and (79) imply (75). This
concludes the proof of (40).

If we now define γs as
γs(ω

′) := ηs(T (η,ξ),ω)−ηs(η,ω)

and replace φv
t (ω

′) by −φv
t (ω

′) (so that the current, which was rightwards, becomes leftwards),
then the proof of (41) can be obtained by repeating the same steps as in the previous argument. �

Proof of Lemma 3.3.
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(i). Since

mt(ω
′,ω+)−m[t](ω

′,ω+) =
[t]− t

t
m[t](ω

′,ω+) + t−1

∫ t

[t]
δ
eηt

s (T (η,ξ),ω,ω+)ds

has total variation bounded by 2/t, it is enough to prove the result for every subsequential limit of
the sequence mn,ε(θ ′[βn],αnω

′,ω+) as n→∞, n ∈ N.

Step one. We prove that every subsequential limit lies in Iv . It is enough to show that, for
every open neighborhood O of Iv , with ν̄λ,ρ ⊗ IP⊗ IP+-probability one, mn,ε lies in O for sufficiently
large n. One can see from (47) and (49) that

mt,ε(θ
′
[β t],αtω

′,ω+) = πt,ε(eξ
t

. )

where, for fixed t, eξt
. is the process defined by

eξt
s := eηt

s ($αt ,θ[β t],αtω,ω+)

with the configuration $αt defined in (54) and satisfying (55). Hence under ν̄λ,ρ ⊗ IP⊗ IP+, eξt
. is a

Markov process with generator Lv and initial distribution νλ,ρ independent of t. By Lemma 3.4,

limsup
n→∞

n−1 log ν̄λ,ρ ⊗ IP⊗ IP+
�

mn,ε(θ
′
[βn],αnω

′,ω+) 6∈ O
�

< 0

Now Borel-Cantelli’s lemma implies that, a.s. with respect to ν̄λ,ρ⊗IP⊗IP+, mn,ε(θ ′[βn],αnω
′,ω+) ∈ O

for large n.

Step two. We prove that every subsequential limit lies inMλ,ρ. Since

η≤ T (η,ξ)≤ ξ

for ν̄λ,ρ- a.e. (η,ξ), (54) and the monotonicity property (15) imply

τ[β t]ηαt(η,ω)≤$αt(η,ξ,ω)≤ τ[β t]ηαt(ξ,ω)

for all t ≥ 0. By (46) and (54),

mt(θ
′
[β t],αtω

′,ω+) = t−1

∫ t

0

δ
eηt

s ($αt ,θ[β t],αtω,ω+)ds

By (5)–(6) and (42)–(43),

eηt
s (τ[β t]ηαt(η,ω),θ[β t],αtω,ω+) = τ−sgn (v)Nαt (ω+)+[β t] eη

0
αt+s(η,ω,ω+)

Thus

lt(η,ω,ω+) := t−1

∫ αt+t

αt

|Z∩ [−εt,εt]|−1
∑

x∈Xt (ω+)

τxδeη0
s (η,ω,ω+)ds

≤ mt,ε(θ
′
[β t],αtω

′,ω+)

≤ t−1

∫ αt+t

αt

|Z∩ [−εt,εt]|−1
∑

x∈Xt (ω+)

τxδeη0
s (ξ,ω,ω+)ds =: rt(ξ,ω,ω+) (85)
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ν̄λ,ρ ⊗ IP⊗ IP+- a.s. for all t ≥ 0, where

Xt(ω
+) := Z∩

�

[β t]− sgn (v)Nαt(ω
+)− εt, [β t]− sgn (v)Nαt(ω

+) + εt
�

We now argue that lt and rt respectively converge a.s. to νλ and νρ with respect to ν̄λ,ρ ⊗ IP⊗ IP+.
Let us consider for instance lt . Let Lt denote the measure defined as lt but with Xt(ω+) replaced
by

Yt := Z∩ [(β −αv − ε)t, (β −αv + ε)t]

By the strong law of large numbers for Poisson processes, there exists a subset C ⊂ Ω+, with
IP+-probability one, on which sgn (v)Nt(ω+)/t → v as t → ∞. The total variation of lt − Lt is
bounded by (2εt+1)−1

�

�Xt∆Yt

�

�, where∆ denotes the symmetric difference of two sets. Hence, for
ω+ ∈ C , lt − Lt converges to 0 in total variation. We are thus reduced to proving a.s. convergence
of Lt to νλ. Under νλ,ρ ⊗ IP ⊗ IP+, eη0

. (η,ω,ω+) is a Feller process with generator Lv and initial
distribution νλ. Thanks to (17) and (45), we can apply Proposition 2.3, or more precisely, its
extended form (24). This implies convergence of Lt .

Step three. We prove that every subsequential limit lies in S . To this end we simply note
that the measure

τ1mn,ε −mn,ε = |[−εn,εn]∩Z|−1







∑

x∈Z∩(−εn+1,εn+1]

τx mn

−
∑

x∈Z∩[−εn,εn)

τx mn






(86)

has total variation bounded by 2 |[−εn,εn]∩Z|−1 = O(1/n). Letting n → ∞ in (86) shows that
τ1m= m for any subsequential limit m of mn,ε.

(ii). Proposition 2.1 implies ν =
∫

ν rγ(dr) with γ supported on R . Let λ′ ∈ R and ρ′ ∈ R
respectively denote the infimum and supremum of the support of γ. Assume for instance that
λ′ < λ. Choose some λ′′ ∈ (λ′,λ). By Proposition 2.2, the random variable

M(η) := lim
l→∞
(2l + 1)−1

l
∑

x=−l

η(x)

is defined ν r -a.s. for every r ∈ R , and thus also ν-a.s. It is a nondecreasing function of η. Thus,
νλ ≤ ν implies

ν(M < λ′′)≤ νλ(M < λ′′) = 0

where the last equality follows from Proposition 2.2, hence a contradiction. Similarly ρ′ > ρ

implies a contradiction. Thus γ is supported on R ∩ [λ,ρ]. �

Proof of Lemma 3.4.

(i). Nonnegativity follows from taking f = 0 in (48). As a supremum of continuous func-
tions, Dv is lower semicontinuous : indeed, because the number of particles per site is bounded,
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each local function e f is continuous and bounded and so is Lv(e f )/e f , hence the functional defined
on P (X) by

φ f (µ) =−
∫

Lv(e f )

e f
dµ (87)

is continuous. The inclusion Iv ⊂ D−1
v (0) holds because of

Lv(log g)≤ Lv g/g

which follows from the elementary inequality log b − log a ≤ (b − a)/a, and the fact that
∫

Lv(log g)dµ = 0 if µ ∈ Iv . We eventually prove the reverse inclusion D−1
v (0) ⊂ Iv . Fix a lo-

cal test function f . If µ ∈ D−1
v (0), we must have

I(t) :=

∫

Lv(et f )

et f
dµ≥ 0, ∀t ∈ R (88)

As f is local and the space {0, . . . , K} is finite, integrability conditions are satisfied to differentiate
I(t) in (88) under the integral. Since I(0) = 0, equation (88) implies that I(t) has a minimum at
t = 0, hence

0=
dI(t)

d t |t=0
=

∫

d

d t

Lv(et f )

et f |t=0
dµ=

∫

Lv f dµ

and thus µ ∈ Iv , since this is true for any local function.

(ii). Since φ f is continuous, by [25, Appendix 2, Lemma 3.3], it is enough to prove that

limsup
t→∞

t−1 logP
�

πt,ε(eξ.) ∈ O
�

≤ inf
f local

sup
µ∈O
−φ f (µ) (89)

for every open subset O ⊂P (X). Let f be a local test function on X, and set

f̄ (t,η) := |Z∩ [−εt,εt]|−1
∑

x∈Z∩[−εt,εt]

τx f (η) =
∞
∑

n=0

1[nε−1,(n+1)ε−1)(t) f̄n(η)

where

f̄n(η) := (2n+ 1)−1
n
∑

x=−n

τx f (η)

For each n ∈ Z+,

M f ,n
t := exp

¨

f̄n(eξt)− f̄n(eξnε−1)−
∫ t

nε−1

e− f̄n Lv[e
f̄n](eξs−)ds

«

, t ≥ nε−1

is a mean 1 martingale under P with respect to the σ-field Gt generated by (eξs, s ≤ t) (cf. [25,
Section 7 of Appendix 1]). It follows that M f

t defined for t ≥ 0 by

M f
t :=

n
∏

k=1

M f ,k−1
(kε−1)−

M f ,n
t , t ∈ [nε−1, (n+ 1)ε−1)
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(where the product is 1 for n = 0) is a mean 1 Gt -martingale under P. Thus we can define a
probability measure P f on Gt by dP f /dP= M f

t . A simple computation shows that

M f
t = exp

¨

f̄ (t, eξt)− f̄ (0, eξ0)−
∫ t

0

e− f̄ Lv[e
f̄ ](s, eξs−)ds+ R f

t

«

(90)

where

R f
t =

[εt]
∑

n=1

�

f̄n−1(eξ(nε−1)−)− f̄n(eξnε−1)
�

(91)

Notice that, by the graphical construction of Section 2.1, s 7→ ηs(x) is for each x ∈ Z a piecewise
constant function whose jumps occur at (random) times which are a subset of some Poisson process.
Thus s− in (90) can be replaced by s, and (nε−1)− in (91) by nε−1. The latter implies that the
summand in (91) is bounded in modulus by 4(2n+ 1)−1 sup

�

� f
�

�. Hence

�

�

�R f
t

�

�

�≤ 2[1+ log(εt)] sup
�

� f
�

� (92)

We claim (this will be established below) that, for every probability measure µ on X, the mapping
f 7→

∫

e− f Lv[e f ]dµ (defined on the set of local functions f : X→ R) is convex. Since Lv commutes
with the space shift, this implies

dP

dP f
≤ exp

¨

−R f
t + f̄ (0, eξ0)− f̄ (t, eξt) + t

∫

Lv[e f ]

e f
(η)πt,ε(eξ.)(dη)

«

Thus, for any open subset O of P (X), we have (cf. (87))

P(πt,ε(eξ.) ∈ O) ≤ e−R f
t+2sup| f |

∫

e−tφ f [πt,ε(eξ.)]1O[πt,ε(eξ.)]dP f (eξ.)

≤ exp
�

−R f
t + 2sup

�

� f
�

�− t inf
µ∈O
φ f (µ)

�

(93)

Using (92) and minimizing the r.h.s. of (93) over local functions f , we obtain (89).

Proof of claim. We prove that f 7→
∫

e− f Lv[e f ]dµ = −φ f (µ) is convex for any µ ∈ P (X).
Equivalently we show that, for any local functions f , g on X, t 7→ −φt f+g(µ) is convex on R. We
have

d2

d t2

∫

Lvet f+g

et f+g
dµ=

∫

Lv( f 2et f+g)− 2(t f + g)Lv( f et f+g) + f 2 Lv(et f+g)

et f+g
dµ

The above integrand is nonnegative. Indeed, for local functions ϕ and ψ,

Lv(ϕ
2ψ)− 2ϕLv(ϕψ) +ϕ

2 Lvψ= Lψv (ϕ
2)− 2ϕLψv ϕ (94)

where Lψv ϕ := Lv(ϕψ)−ϕLvψ. For ψ ≥ 0, Lψv is a Markov generator, and thus the r.h.s. of (94) is
nonnegative. �
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4 The Cauchy problem

In Corollary 3.1, we established an almost sure hydrodynamic limit for initial measures correspond-
ing to the Riemann problem withR-valued initial densities. In this section we prove that this implies
Theorem 2.1, that is the almost sure hydrodynamic limit for any initial sequence associated with any
measurable initial density profile (thus we add in this Section the hypothesis p(.) finite range, which
was not necessary for Riemann a.s. hydrodynamics). This passage is inspired by Glimm’s scheme, a
well-known procedure in the theory of hyperbolic conservation laws, by which one constructs gen-
eral entropy solutions using only Riemann solutions (see e.g. [39, Chapter 5]). In [8, Section 5],
we undertook such a derivation for convergence in probability. In the present context of almost sure
convergence, new error analysis is necessary. In particular, we have to do an explicit time discretiza-
tion (vs. the “instantaneous limit” of [7, Section 3, Theorem 3.2] or [8, Section 5] for the analogue
of (105) below), we need estimates uniform in time (Lemma 4.2), and each approximation step
requires a control with exponential bounds (Proposition 4.2 and Lemma 4.3).

4.1 Preliminary results

For two measures α,β ∈M+(R) with compact support, we define

∆(α,β) := sup
x∈R

�

�α((−∞, x])− β((−∞, x])
�

� (95)

When α or β is of the form u(.)d x for u(.) ∈ L∞(R) with compact support, we simply write u in
(95) instead of u(.)d x . A connection between ∆ and vague convergence is given by the following
technical lemma, whose proof is left to the reader.

Lemma 4.1. (i) Let (αN )N be a M+(R)-valued sequence supported on a common compact subset of
R, and u(.) ∈ L∞(R). The following statements are equivalent: (a) αN → u(.)d x as N → ∞; (b)
∆(αN , u(.))→ 0 as N →∞.

(ii) Let (αN (.))N be a sequence of M+(R)-valued functions αN : T → M+(R), where T is an
arbitrary set, such that the measures αN (t) are supported on a common compact subset of R. Assume
that, for some α : [0,+∞) → M+(R), ∆(αN (t),α(t)) converges to 0 uniformly on T . Then αN (.)
converges to α(.) uniformly on T .

The following proposition is a collection of results on entropy solutions. We first recall two defini-
tions. A sequence (un, n ∈ N) of Borel measurable functions on R is said to converge to u in L1

loc(R)
if and only if

lim
n→∞

∫

I

�

�un(x)− u(x)
�

� d x = 0

for every bounded interval I ⊂ R. The variation of a function u(.) on an interval I ⊂ R is defined by

TVI[u(.)] = sup

(

n−1
∑

i=0

�

�u(x i+1)− u(x i)
�

� : n ∈ N, x0, . . . , xn ∈ I , x0 < · · ·< xn

)

We shall simply write TV for TVR. We say that u = u(., .) defined on R×R+∗ has locally bounded
space variation if for every bounded space interval I ⊂ R and bounded time interval J ⊂ R+∗

sup
t∈J

TVI[u(., t)]<+∞
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Proposition 4.1.

o) Let u(., .) be the entropy solution to (10) with Cauchy datum u0 ∈ L∞(R). Then the map-
ping t 7→ u(., t) lies in C0([0,+∞), L1

loc(R)).

i) If u0(.) is a.e. R-valued, then so is the corresponding entropy solution u(., t) to (10) at later
times.

ii) If ui
0(.) has finite variation, that is TVui

0(.) < +∞, then so does ui(., t) for every t > 0, and
TVui(., t)≤ TVui

0(.).

iii) Finite propagation property: Assume ui(., .) (i ∈ {1, 2}) is the entropy solution to (10) with Cauchy
data ui

0(.). Let V = ||G′||∞ := supρ
�

�G′(ρ)
�

�. Then: (a) for every x < y and 0≤ t < (y − x)/2V ,

∫ y−V t

x+V t

�

�u1(z, t)− u2(z, t)
�

� dz ≤
∫ y

x

�

�u1
0(z)− u2

0(z)
�

� dz (96)

In particular, if u1
0 is supported (resp. coincides with u2

0) in [−R, R] for some R> 0, u1(., t) is supported
(resp. coincides with u2(., t)) in [−R− V t, R+ V t]. (b) If

∫

R ui
0(z)dz <+∞,

∆(u1(., t), u2(., t))≤∆(u1
0(.), u2

0(.)) (97)

iv) Let x0 = −∞ < x1 < · · · < xn < xn+1 = +∞ and ε := min0≤k≤n(xk+1 − xk). Denote by u0(.) the
piecewise constant profile with value rk on Ik := (xk, xk+1). Then, for t < ε/(2V ), the entropy solution
u(., t) to (10) with Cauchy datum u0(.) is given by

u(x , t) = Rrk−1,rk
(x − xk, t), ∀x ∈

�

xk−1+ V t, xk+1− V t
�

Properties o), ii) and iii) are standard, see [28; 39; 29]. Properties i) and iv) are respectively
[8, Lemma 5.3] and [7, Lemma 3.4]. The latter states that the entropy solution starting from
a piecewise constant profile can be constructed at small times as a superposition of successive
non-interacting Riemann waves. This is a consequence of iii). Note that the whole space is indeed
covered by the definition of u(x , t) in iv), since we have xk+1− V t ≥ xk + V t for t ≤ ε/(2V ).

The next lemma improves [8, Lemma 5.5] by deriving an approximation uniform in time.

Lemma 4.2. Assume u0(.) is a.e. R-valued, has bounded support and finite variation, and let (x , t) 7→
u(x , t) be the entropy solution to (10) with Cauchy datum u0(.). For every ε > 0, let Pε be the set of
piecewise constant R-valued functions on R with compact support and step lengths at least ε, and set

δε(t) := ε−1 inf{∆(u(.), u(., t)) : u(.) ∈ Pε}

Then there is a sequence εn ↓ 0 as n→∞ such that δεn
converges to 0 uniformly on any bounded subset

of R+.

Proof of Lemma 4.2. We first argue that, for every ε > 0, δε is a continuous function. Indeed, by
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Proposition 4.1, iii),a) for every T > 0, there exists a bounded set KT ⊂ R such that the support of
u(., t) is contained in KT for every t ∈ [0, T]. Since

∆(v, w)≤
∫

R
|v(x)−w(x)| d x (98)

for v, w ∈ L∞(R) with compact support, it follows by Proposition 4.1, o) and Lemma 4.1, (i) that

lim
s→t
∆(u(., s), u(., t)) = 0 (99)

for every t ≥ 0. This and the inequality
�

�δε(t)−δε(s)
�

�≤ ε−1∆(u(., s), u(., t))

imply continuity of δε. By Proposition 4.1, i) and ii), u(., t) has bounded, finite space variation, and
is R-valued. Hence, by [8, Lemma 5.5], for any given δ > 0, for ε > 0 small enough, there exists
an approximation uε,δ(., t) ∈ Pε of u(., t) with ∆

�

uε,δ(., t), u(., t)
�

≤ εδ. This implies δε(t)→ 0 as
ε→ 0 for every t > 0. Let T be some countable dense subset of [0,+∞). By the diagonal extraction
procedure, we can find a sequence εn ↓ 0 such that δεn

(t) ↓ 0 for each t ∈ T . By continuity of δε we
also have that δεn

(t) ↓ 0 for every t ∈ [0,+∞). Dini’s theorem implies that δεn
converges uniformly

to 0 on every bounded subset of [0,+∞). �

We now quote [10, Proposition 3.1], which yields that ∆ is an “almost” nonincreasing func-
tional for two coupled particle systems:

Proposition 4.2. Assume p(.) is finite range. Then there exist constants C > 0 and c > 0, depending
only on b(., .) and p(.), such that the following holds. For every N ∈ N, (η0,ξ0) ∈ X2 with

�

�η0

�

�+
�

�ξ0

�

� :=
∑

x∈Z[η0(x) + ξ0(x)]<+∞, and every γ > 0, the event

∀t > 0 : ∆(αN (ηt(η0,ω)),αN (ηt(ξ0,ω)))≤∆(αN (η0),α
N (ξ0)) + γ (100)

has IP-probability at least 1− C(
�

�η0

�

�+
�

�ξ0

�

�)e−cNγ.

We finally recall the finite propagation property at particle level (see [8, Lemma 5.2]), which is a
microscopic analogue of Proposition 4.1, iii).

Lemma 4.3. There exist constants v and C, depending only on b(., .) and p(.), such that the following
holds. For any x , y ∈ Z, any (η0,ξ0) ∈ X2, and any 0 < t < (y − x)/(2v): if η0 and ξ0 coincide on
the site interval [x , y], then with IP-probability at least 1− e−C t , ηs(η0,ω) and ηs(ξ0,ω) coincide on
the site interval [x + vt, y − vt]∩Z for every s ∈ [0, t].

Remark 4.1. The time uniformity in Proposition 4.2 and Lemma 4.3 does not appear in the original
statements (repectively, [10, Proposition 3.1] and [8, Lemma 5.2]), but follows in each case from the
proof.

4.2 Proof of Theorem 2.1

4.2.1 Simplified initial conditions

We will first prove Theorem 2.1 under the simplifying assumptions:

u0 is a.e. R-valued (101)
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TVu0 <+∞ (102)

and there exists R> 0 (independent of N) such that

supp u0 ⊂ [−R, R] (103)

∀N ∈ N, IP0

�

ηN
0 (x) = 0 whenever x ∈ Z, |x | ≥ RN

�

= 1 (104)

The essential part of the work (that is, the approximation scheme) is contained here, and the proof
under general assumptions will follow in Subsection 4.2.2 by approximation arguments.

Assumption (101) implies by Proposition 4.1, i), that u(., t) is R-valued, (102) by Proposi-
tion 4.1, ii), that u(., t) has finite variation for t > 0, and (103) by Proposition 4.1, iii), that u(., t)
is supported on [−(R+ V t), R+ V t]. In the sequel we abbreviate, for (ω0,ω) ∈ eΩ

ηN
t = ηt(η

N
0 (ω0),ω)

We consider the random process on eΩ

∆N (t) :=∆(αN (ηN
N t), u(., t))

By initial assumption (8) and (i) of Lemma 4.1, ∆N (0) converges to 0, IP0-a.s. Fix an arbitrary time
T > 0. We are going to prove that

lim
N→∞

sup
t∈[0,T]

∆N (t) = 0, eIP-a.s. (105)

Then one can find a set of probability one on which this holds simultaneously for all T > 0.
Theorem 2.1 follows from (ii) of Lemma 4.1.

Let ε = εn be given by Lemma 4.2, and δ = δn = 2supt∈[0,T]δεn
(t), so that δn → 0 as

n→∞. In the sequel, for notational simplicity, we omit mention of n. We fix a time discretization
step

ε′ = εmin((2v)−1, (2V )−1) (106)

where V and v are the constants defined in Proposition 4.1 and Lemma 4.3. Let tk = kε′, for
k ≤ K := [T/ε′], tK+1 = T . The main step to derive (105) is to obtain a time discretized version
of it, namely

Lemma 4.4.
limsup

N→∞
sup

k=0,...,K−1

�

∆N (tk+1)−∆N (tk)
�

≤ 3δε, eIP-a.s.

The second, more technical step, will be to fill in the gaps between discretized times by a uniform
estimate for the time modulus of continuity, that is

Lemma 4.5.

lim
ε=εn→0

limsup
N→∞

sup
k=0,...,K

sup
t∈[tk ,tk+1]

∆
h

αN (ηN
N t),α

N (ηN
N tk
)
i

= 0, eIP-a.s.
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By o) of Proposition 4.1, t 7→ u(t, .) is uniformly continuous from [0, T] to L1
loc(R). This and (98)

imply an analogue of Lemma 4.5 at the level of entropy solutions, namely

lim
ε=εn→0

sup
k=0,...,K

sup
t∈[tk ,tk+1]

∆(u(., t), u(., tk)) = 0 (107)

Then (105) follows from Lemma 4.4, Lemma 4.5 and (107).

Proof of Lemma 4.4. The method is to approximate u(., tk) by an R-valued step function vk(.), to
associate to the profile vk(.) a sequence of configurations (ξN ,k)N (in the sense (118) below), to use
Riemann hydrodynamics for these approximations from time tk up to time tk+1, and to show that
approximated systems at time tk+1 are close enough to the original ones, both at microscopic and
macroscopic levels.

Let vk(.) be an approximation of u(., tk) given by Lemma 4.2, so that

∆(u(., tk), vk(.))≤ δε, k = 0, . . . ,K − 1 (108)

We write vk(.) as

vk =
lk
∑

l=0

rk,l1[xk,l ,xk,l+1) (109)

where −∞= xk,0 < xk,1 < . . .< xk,lk < xk,lk+1 =+∞, rk,l ∈ R , rk,0 = rk,lk = 0, and, for 1< l ≤ lk,

xk,l − xk,l−1 ≥ ε (110)

For tk ≤ t < tk+1, we denote by vk(., t) the entropy solution to (10) at time t with Cauchy datum
vk(.). For l = 1, . . . , lk, define on eΩ the configurations ξN ,k,l(ω0,ω) and ξN ,k(ω0,ω) by

ξN ,k,l(ω0,ω)(x) :=

¨

ηN tk
(ηrk,l−1(ω0),ω)(x) if x < [N xk,l]

ηN tk
(ηrk,l (ω0),ω)(x) if x ≥ [N xk,l]

(111)

ξN ,k(ω0,ω)(x) := ηN tk
(ηrk,l (ω0),ω)(x), if [N xk,l]≤ x < [N xk,l+1] (112)

so that ξN ,k(ω0,ω) has finitely many particles, and

ξN ,k(x) = ξN ,k,l(x), if [N xk,l−1]≤ x < [N xk,l+1] (113)

Moreover by the commutation property (6),

τ[N xk,l]ξ
N ,k,l(ω0,ω) (114)

= T (ηN tk
(τ[N xk,l]η

rk,l−1(ω0),θ[N xk,l],0ω),ηN tk
(τ[N xk,l]η

rk,l (ω0),θ[N xk,l],0ω))

Evolutions from (111)–(112) are denoted by

ξN ,k
t (ω0,ω) = ηt(ξ

N ,k(ω0,ω),θ0,N tk
ω)

ξN ,k,l
t (ω0,ω) = ηt(ξ

N ,k,l(ω0,ω),θ0,N tk
ω) (115)
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so that by the Markov property (5) and (114), we have

τ[N xk,l]ξ
N ,k,l
t (ω0,ω) (116)

= T (ηt(τ[N xk,l]η
rk,l−1(ω0),θ[N xk,l],N tk

ω),ηt(τ[N xk,l]η
rk,l (ω0),θ[N xk,l],N tk

ω))

We claim that
lim

N→∞
αN (ηN tk

(ηrk,l (ω0),ω))(d x) = rk,l d x , eIP-a.s. (117)

For k = 0, this follows from Proposition 2.2, since ηrk,l (ω0) ∼ ν rk,l . For k = 1, . . . ,K − 1, this
follows from Corollary 3.1 with λ = ρ = rk,l and s0 = x0 = 0. Indeed, on the one hand we have
Rrk,l ,rk,l

(., .) ≡ rk,l ; on the other hand, if ω′ = (η,ξ,ω) ∼ ν̄ rk,l ,rk,l ⊗ IP, we have η = ξ a.s., so that
βN

N tk
(ω′) = αN (ηN tk

(η,ω)) a.s., with (η,ω)∼ ν rk,l ⊗ IP.

By (112), for every continuous function ψ on R with compact support,
∫

R
ψ(x)αN (ξN ,k(ω0,ω))(d x)

=
lk
∑

l=1

∫

R
ψ(x)1[xk,l ,xk,l+1)(x)α

N (ηN tk
(ηrk,l (ω0),ω))(d x) +O(1/N)

N→∞−→
∫

R
ψ(x)vk(x)d x , eIP-a.s.

where the convergence follows from (117) and (109). Hence,

lim
N→∞

αN (ξN ,k(ω0,ω))(d x) = vk(.)d x , eIP-a.s. (118)

that is, ξN ,k is a microscopic version of vk(.). For k = 0, . . . ,K − 1, we write (remember that
ε′ = tk+1− tk)

∆N (tk+1)−∆N (tk) ≤ ∆
h

αN (ηN
N tk+1

),αN (ξN ,k
Nε′)
i

−∆N (tk)

+ ∆
h

αN (ξN ,k
Nε′), vk(.,ε

′)
i

+ ∆(vk(.,ε
′), u(., tk+1)) (119)

By (108) and iii), b) of Proposition 4.1,

∆(vk(., tk+1− tk), u(., tk+1))≤∆(vk(.), u(., tk))≤ δε (120)

is a bound for the third term on the r.h.s. of (119). For the first term, we define the event

EN ,k :=
n

∆
h

αN (ηN
N tk+1

),αN (ξN ,k
Nε′)
i

≤∆
h

αN (ηN
N tk
),αN (ξN ,k)

i

+δε
o

By assumption (104) and Proposition 4.2,

eIP(eΩ− EN ,k)≤ C ′Ne−cNδε
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for some constant C ′ independent of k. Thus, by Borel-Cantelli’s lemma, there exists a random
N1(ω0,ω) such that eIP-a.s., EN ,k holds for all N ≥ N1 and k = 0, . . . ,K − 1. On the other hand,

∆
h

αN (ηN
N tk
),αN (ξN ,k)

i

≤∆N (tk) +∆(u(., tk), vk(.)) +∆
�

vk(.),α
N (ξN ,k)

�

Thus, by (108), (118) and (i) of Lemma 4.1,

lim sup
N→∞

n

∆
h

αN (ηN
N tk
),αN (ξN ,k)

i

−∆N (tk)
o

≤ δε

with eIP-probability 1. Therefore, eIP-a.s., for k = 0, . . . ,K − 1,

limsup
N→∞

n

∆
h

αN (ηN
N tk+1

),αN (ξN ,k
Nε′)
i

−∆N (tk)
o

≤ 2δε (121)

is a bound for the first term on the r.h.s. of (119). We finally bound the second term on the r.h.s. of
(119). For k = 0, . . . ,K − 1 and l = 1, . . . , lk, by the respective definitions (28), (31) of θ ′. , βN

. , and
(111), (115), (116) we have

(τ−[N xk,l]/N )α
N
�

ξN ,k,l
N t (ω0,ω)

�

= αN
�

(τ[N xk,l])ξ
N ,k,l
N t (ω0,ω)

�

= βN
N t ◦ θ

′
[N xk,l],N tk

(ηrk,l−1(ω0),η
rk,l (ω0),ω) (122)

for any t ≥ 0, where the first line follows from definition of the shift operator τ on measures
and particle configurations (see notation at the beginning of Section 2), and definition (46) of the
empirical measure αN . This and Corollary 3.1 imply

lim
N→∞

αN
�

ξN ,k,l
N t

�

= Rrk,l−1,rk,l
(.− xk,l , t)d x , eIP-a.s. (123)

Let us consider the events

F N ,k,l :=
n

ξN ,k
Nε′(x) = ξ

N ,k,l
Nε′ (x), ∀x ∈ Z∩

�

N(xk,l−1+ vε′), N(xk,l+1− vε′)
�

o

By (113), the definition (106) of ε′, (110) and Lemma 4.3, we have

eIP
�

eΩ− F N ,k,l
�

≤ e−CNε′

Thus there exists a random N2(ω0,ω) such that eIP-a.s., F N ,l,k holds for every N ≥ N2, k = 0, . . . ,K −
1 and l = 1, . . . , lk. This combined with (123) implies that eIP-a.s., the restriction of αN (ξN ,k

Nε′) to
(xk,l−1+ vε′, xk,l+1− vε′) converges as N →∞ to the restriction of Rrk,l−1,rk,l

(.− xk,l ,ε
′)d x . By (106)

and iv) of Proposition 4.1, this induces

lim
N→∞

αN (ξN ,k
Nε′) = vk(.,ε

′)d x , eIP-a.s.

which, by Lemma 4.1, implies that the second term on the r.h.s. of (119) converges eIP-a.s. to 0 as
N →∞. Together with (120) and (121), this yields Lemma 4.4. �

Proof of Lemma 4.5. We label η-particles increasingly from left to right at each time N tk, denoting
their positions by (Rk,i)i∈I , where I is a finite set whose cardinal |I |, of order O(N) by assumption
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(104), is the number of particles in the system. For simplicity we omit the dependence of the
labelling on N in the notation. The position of particle i at time θ ∈ [N tk, N tk+1] is denoted by Rk,i

θ
.

Let for any s, t ∈ [tk, tk+1],

∆s,t :=∆(αN (ηN
Ns),α

N (ηN
N t)) = N−1

�

�

�

�

�

sup
x∈Z

∑

y≤x

�

ηN
N t(y)−η

N
Ns(y)

�

�

�

�

�

�

Let z ∈ Z be a point at which the supremum above is attained. We can suppose without loss of
generality that

N∆s,t =
∑

y≤z

ηN
Ns(y)−

∑

y≤z

ηN
N t(y).

Therefore to the left of z at time Ns there are at least N∆s,t more particles than at time N t. Let
Is and It be the subsets of I which label the particles to the left of or at z at times Ns and N t
respectively. Then we have |Is| − |It | ≥ N∆s,t which implies |Is\It | ≥ N∆s,t . Now if i ∈ Is\It ,

Rk,i
N t > z since i /∈ It (124)

Rk,i
s ≤ z since i ∈ Is (125)

By (124), since we have at most K particles per site, maxi∈Is\It
Rk,i

N t ≥ z + K−1N∆s,t . This implies

maxi∈Is\It
(Rk,i

N t − Rk,i
Ns)≥ K−1N∆s,t by (125), thus

K sup
i∈I
(Rk,i

Ns − Rk,i
N t)≥ N∆s,t

and we conclude that
∆(αN (ηN

Ns),α
N (ηN

N t))≤ KN−1 sup
i∈I

�

�

�Rk,i
Ns − Rk,i

N t

�

�

�

Proceeding as in the proof of Lemma 3.2 it is possible to construct processes Qk,i and Sk,i on the
time interval [N tk, N tk+1] such that

Qk,i
N t ≤ Rk,i

N t − Rk,i
N tk
≤ Sk,i

N t

for t ∈ [tk, tk+1], and Sk,i (resp. Qk,i) is a Markov process on Z starting from 0 at time N tk, that
jumps from x to x + z at rate p(z) ||b||∞ only for z > 0 (resp. only for z < 0). Therefore,

IP

 

sup
k

sup
t∈[tk ,tk+1]

∆
�

αN (ηN
N t),α

N (ηN
N tk
)
�

≥ Cε

!

≤
∑

k

∑

i∈I

IP

 

sup
t∈[tk ,tk+1]

�

�

�Rk,i
N t − Rk,i

N tk

�

�

�≥ CNε

!

≤
∑

k

∑

i∈I

IP
�

−Qk,i
N tk+1

≥ CNε
�

(126)

+
∑

k

∑

i∈I

IP
�

Sk,i
N tk+1

≥ CNε
�

(127)

Since p(.) has finite first moment, by large deviation bounds for random walks, the constant C can
be chosen large enough such that the probabilities in (126)–(127) are smaller than e−C ′εN for some
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constant C ′ (recall that tk+1 − tk = ε′ is a multiple of ε). By Borel Cantelli’s lemma we conclude
that

lim sup
N→∞

sup
k=0,...,K

sup
t∈[tk ,tk+1]

∆
�

αN (ηN
N t),α

N (ηN
N tk
)
�

≤ Cε

for ε = εn on a set of probability one, which can be chosen common to all (the countably many)
values of n ∈ N. On this set we thus have Lemma 4.5. �

4.2.2 General case

We will relax assumptions (101)–(104) in two steps.

Step one: compact support only. We prove Theorem 2.1 when the additional assumptions
(103)–(104) are maintained, but (101)–(102) are relaxed. Let T > 0. By approximating the
initial profile by R-valued ones, we define a sequence (un

0)n∈N of [0, K]-valued functions satisfying
(103)–(104) and (101)–(102) for fixed n, such that

lim
n→∞

∆(un
0, u0) = 0 (128)

and a family of (deterministic) particle configurations (ηn,N
0 )n∈N,N∈N satisfying (104) for fixed n,

such that
lim

N→∞
∆
�

αN (ηn,N
0 ), un

0

�

= 0 (129)

for each n ∈ N. Indeed, let us partition [−R, R] into finitely many intervals In,k of length at most
δn→ 0, and set

un
0 =
∑

k

K1(xn,k ,xn,k+ρn,k ln,k/K)

where ln,k denotes the length of In,k, xn,k its left extremity, and ρn,k the mean value of u0 on In,k.
Then un

0 has the same mean value as u0 on In,k, hence ∆(un
0, u0)≤ Kδn. Then we define a sequence

of particle configurations associated to un
0 by

ηn,N
0 (x) = un

0

� x

N

�

, ∀x ∈ Z

We denote by un(x , t) the entropy solution to (10) at time t starting from Cauchy datum un
0, and by

ηn,N
t := ηt(η

n,N
0 ,ω) the evolved particle configuration starting from ηn,N

0 . By triangle inequality for
∆,

∆
�

αN (ηN
N t), u(., t)

�

≤ ∆
�

αN (ηN
N t),α

N (ηn,N
N t )
�

+ ∆
�

αN (ηn,N
N t ), un(., t)

�

+ ∆(un(., t), u(., t)) (130)

We have by iii), b) of Proposition 4.1,

∆(un(., t), u(., t))≤∆(un
0, u0) (131)

Further, by Subsection 4.2.1, (129) implies the analogue of (105) for ηn,N
. , that is

lim
N→∞

sup
t∈[0,T]

∆
�

αN (ηn,N
N t ), un(., t)

�

= 0 eIP-a.s. (132)
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On the other hand,

∆
�

αN (ηN
N t),α

N (ηn,N
N t )
�

=∆
�

αN (ηN
0 ),α

N (ηn,N
0 )
�

+ΓN ,n
N t (133)

where, by Proposition 4.2, ΓN ,n
N t is a random variable which satisfies

eIP

�

sup
t≥0
Γn,N

N t ≥ γ
�

≤ C ′Ne−cNγ, ∀γ > 0

for some constant C ′ > 0 independent of n. Applying Borel-Cantelli’s lemma to a vanishing sequence
of values of γ,

lim
N→∞

sup
t≥0
Γn,N

N t = 0 (134)

eIP-a.s.. Furthermore,

∆
�

αN (ηN
0 ),α

N (ηn,N
0 )
�

≤ ∆
�

αN (ηN
0 ), u0

�

+∆
�

u0, un
0

�

+∆
�

un
0,αN (ηn,N

0 )
�

(135)

By (8), (i) of Lemma 4.1 and (129)–(135),

lim sup
N→∞

sup
t∈[0,T]

∆
�

αN (ηN
N t), u(., t)

�

≤ 2∆(un
0, u0)

on a subset of eΩ with eIP-probability one, which can be chosen to be the same for all (countably
many) values of n ∈ N and T > 0. The conclusion of Theorem 2.1 then follows from (128) and (ii)
of Lemma 4.1.

Step two: general case. We now finally relax assumptions (103)–(104), thanks to the finite
propagation property (both at microscopic and macroscopic levels). Consider u0 and ηN

0 as in the
statement of Theorem 2.1, without any restriction. Let w = max(V, v), where V and v are the
constants given respectively in Proposition 4.1 and Lemma 4.3. For n ∈ N, we set

un
0 := u01[−n,n], ηn,N

0 (x) = η
N
0 (x)1Z∩[−Nn,Nn](x)

By Lemma 4.3 and Borel-Cantelli’s lemma, eIP-a.s. for large enough N ,

ηN
N t(x) = η

n,N
N t (x), ∀t ≤ n/(2w), ∀x ∈ [−Nn/2, Nn/2]∩Z

By the previous step, for each n ∈ N, eIP-a.s., αN (ηn,N
N t ) converges to un(., t)d x as N →∞, uniformly

on bounded times intervals. By iii), (a) of Proposition 4.1, for every t ≤ n/(2w), un(., t) = u(., t)
on [−Nn/2, Nn/2]. Thus, for every continuous functions ψ : R→ R supported on [−Nn/2, Nn/2],
there is an event of eIP-probability one on which

∫

R
ψ(x)αN (ηN

N t)(d x)→
∫

R
ψ(x)u(x , t)d x

uniformly on the time interval [0, n/(2w)]. This event can be chosen to be the same for all values
of n and for a countable set of continuous functions with compact support that is convergence
determining for the vague topology. This establishes the result.
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A Proof of Corollary 2.1

Let µN
t denote the distribution at time t of a Markov process with generator (1). Assume αN (η)(d x)

converges in µN
0 -probability to u0(.)d x , that is, for all ε > 0 and every continuous function ψ on R

with compact support,

lim
N→∞

µN
0

 (

η :

�

�

�

�

�

∫

R
ψ(x)αN (η)(d x)−

∫

ψ(x)u0(x)d x

�

�

�

�

�

> ε

)!

= 0

Then for every t > 0, αN (η)(d x) converges in µN
N t -probability to u(., t)d x . This weak law follows

from the strong law in Theorem 2.1. Indeed, by Skorokhod’s representation theorem, we can find a
probability space (Ω0,F0, IP0) and a sequence (ηN

0 )N of X-valued random variables on Ω0 such that
ηN

0 has distribution µN
0 , and αN (ηN

0 )(d x) converges IP0-a.s. to u0(.)d x .

B Remarks on subadditivity

As outlined below, it would be possible to establish (39) in the particular case β = α = 0 by using
the subadditive ergodic theorem as in [1, Proposition 3]. However we cannot use this approach
when (β ,α) 6= (0, 0).

Let us introduce

X0,n(ω
′) := φv

n/v(ω
′)−ϕv

n/v(η,ω) (136)

Xm,n(ω
′) := X0,n−m(θ

′
m,m/vω

′)

then Xm,n is the same as defined in equation [1, (27)] and, by [1, p. 226], it satisfies the superaddi-
tivity property

X0,n ≥ X0,m+ Xm,n (137)

(superadditivity is obtained here rather than subadditivity in [1], because we have λ < ρ instead
of λ > ρ). We point out that the proof of (137) in [1] uses only attractiveness and the fact that we
start with η≤ ξ, but not the choice of the distribution of (η,ξ). It can thus be generalized from the
asymmetric exclusion process to our setting. Let us now assume that the probability measure on Ω′

is ν̄λ,ρ ⊗ IP. We can proceed as in [1]. Indeed, because ν̄λ,ρ is invariant for the coupled process,
(28) implies that ν̄λ,ρ ⊗ IP is invariant by the shift θ ′x ,t . By (26), (137) is true ν̄λ,ρ ⊗ IP-a.s. This and
Poisson bounds on the expectation of X0,n imply, by Kingman’s subadditive ergodic theorem, that
n−1X0,n(ω′) converges ν̄λ,ρ ⊗ IP-a.s. On the other hand, n−1ϕv

n/v(η,ω) converges ν̄λ,ρ ⊗ IP-a.s. by
(3.1) below. Hence,

ν̄λ,ρ ⊗ IP a.s., ∃ lim
n→∞

n−1φv
n/v(ω

′) (138)

The limit in (138) can then be identified using the hydrodynamic limit of [8], in the same way as
[3] is used in [1]. We thus obtain a particular case of (39) for β = α = 0. However, the case
(β ,α) 6= (0,0) would require

ν̄λ,ρ ⊗ IP a.s., ∃ lim
n→∞

n−1φv
n/v(θ

′
[βn],αnω

′) (139)
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for every β ∈ R and α 6= 0. The a.s. limit (138) only implies a limit in probability for the shifted
current in (139), as the distribution of a single current is unchanged by the shift. In contrast the
joint distribution of the sequence of currents may change from (138) to (139): Thus we cannot
simply derive (139) from (138). On the other hand, the shifted currents Y0,n := X0,n ◦ θ ′[βn],αn
no longer enjoy a super-additivity property like (137), so we cannot use the subadditive ergodic
theorem to obtain (139). Our approach to obtain (139) overcomes this difficulty by avoiding the
use of subadditivity.

C Proof of Proposition 2.3

The main ingredient is a two-dimensional extension of Birkhoff’s ergodic theorem:

Proposition C.1. Let (X ,F , P) be a probability space and T, S : X → X two measurable mappings
such that P ◦ T−1 = P ◦ S−1 = P. Then, for every bounded F -measurable f :X →X , the limit

f∗∗(x) := lim
n→∞

1

n

n
∑

j=1

1

n

n
∑

i=1

f (S i T j x) (140)

exists for almost every x ∈ X with respect to P.

This follows from more general results established for instance in [45] or [27, Chapter 6]. However
we include a simpler proof adapted to our case.

Proof of proposition C.1. By ergodic theorem there exists bounded functions f∗ and f∗∗ such that

1

n

n
∑

i=1

f (S i x) := f n
∗ (x)→ f∗(x), P − a.s. (141)

1

n

n
∑

j=1

f∗(T
j x) := f n

∗∗(x)→ f∗∗(x), P − a.s. (142)

By (141) and Egorov’s theorem, there is a sequence of subsets Ak ∈ F , k ∈ N, such that ν(Ak)→ 0
as k→∞, and f n

∗ → f∗ uniformly on X\Ak. Let

F n
∗∗(x) :=

1

n

n
∑

j=1

1

n

n
∑

i=1

f (S i T j x) =
1

n

n
∑

j=1

f n
∗ (T

j x)
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Then,

�

�F n
∗∗(x)− f∗∗(x)

�

� ≤
1

n

�

�

�

�

�

�

n
∑

j=1

�

f n
∗ (T

j x)− f∗(T
j x)
�

1X\Ak
(T j x)

�

�

�

�

�

�

+

�

�

�

�

�

�

1

n

n
∑

j=1

�

f n
∗ (T

j x)− f∗(T
j x)
�

1Ak
(T j x)

�

�

�

�

�

�

+

�

�

�

�

�

�

1

n

n
∑

j=1

f∗(T
j x)− f∗∗(x)

�

�

�

�

�

�

≤ sup
X\Ak

�

� f n
∗ − f∗

�

�+ 2M gn
Ak
(x) +

�

� f n
∗∗(x)− f∗∗(x)

�

�=: Bn,k(x)

where M := supX
�

� f
�

� and, by ergodic theorem,

gn
Ak
(x) :=

1

n

n
∑

j=1

1Ak
(T j x)

n→∞→ gAk
(x), P-a.s. (143)

for some bounded, nonnegative, F -measurable gAk
such that

∫

gAk
dν = ν(Ak)

k→∞→ 0 (144)

By uniform convergence of f n
∗ on X\Ak, a.s. convergence (142), and (143), limsupn→∞ Bn,k(x) ≤

2M gAk
(x) holds P-a.s. By (144), gAk

goes to 0 in L1(P) as k → ∞. Thus it has a subsequence
converging to 0 P-a.s. Letting k→∞ along this subsequence concludes the proof. �

Proof of proposition 2.3.

Existence of the limit. Define the random variables X i, j :=
∫ ja

( j−1)a
f (τi−1ηs)ds, where i, j ∈ N

and (ηs)s≥0 is the stationary Markov process with generator L and initial distribution µ. Take
X = RN×N, F the product Borel σ-field, P the distribution of the X -valued random variable
(X i, j)i, j∈N, T

�

(x i, j)i, j∈N
�

= (x i, j+1)i, j∈N, S
�

(x i, j)i, j∈N
�

= (x i+1, j)i, j∈N. We have P ◦ T−1 = P
because (ηs)s≥0 is stationary, and P ◦ S−1 = S because µ and L are invariant by τ. Then the
existence of the limit follows from Proposition C.1.

Identification of the limit. Let now X be the Skorokhod space of X-valued paths, and P = Pµ
the law of the Markov process with generator L and initial distribution µ. We consider on X
the space shifts (τx)x∈Z and time shifts (Tt)t≥0 defined as follows: if η. = (ηs)s≥0 ∈ X , then
τxη. := (τxηs)s≥0, where τx on the r.h.s. is the spatial shift on particle configurations defined
in Section 2, and Ttη. := (ηt+s)s≥0. What follows is a generalization of a standard result for
one-parameter Markov processes (see e.g. [11, Chapter 7]). By the above existence step, we can
define

f∗∗(η.) := lim
n→∞

F n
∗∗(η.) (145)
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Pµ-a.s., where

F n
∗∗(η.) =

1

an

∫ an

0

1

n

n
∑

i=1

τi f (ηt)d t

As a limit of measurable functions, f∗∗ is measurable. For every t > 0, Tt F
n
∗∗ − F n

∗∗ and τF n
∗∗ − F n

∗∗
consist of space-time sums over boundary domains of order O(n) = o(n2), hence in the limit
n → ∞, f∗∗ is invariant by (Tt)t≥0 and τ := τ1. To show that this implies f∗∗ is a P-a.s. constant
function, we will prove that any measurable subset F of X which is invariant by (Tt)t≥0 and τ has
Pµ-probability 0 or 1. Taking expectations in (145), the constant value of f∗∗ must be

∫

f dµ, and
Proposition 2.3 is thus established.

Let F ⊂X be measurable, and invariant by (Tt)t≥0 and τ. Set

g(η) = Pµ(F |η0 = η) =: Pη(F) (146)

which is defined for µ-a.e. η. Here, Pη denotes the law of the Markov process starting from deter-
ministic state η ∈ X. We are going to prove that

g ≡ 0 or g ≡ 1 (147)

µ-a.s., which will imply P(F) =
∫

X
g(η)µ(dη) ∈ {0,1}.

We have
g(τη) = Pτη(F) = Pη(τ

−1F) = Pη(F) = g(η)

where the second equality follows from translation invariance (22) of L (which implies Pτη = τPη),
and the third from τ-invariance of F . Therefore g is µ-a.s. invariant by the spatial shift τ. We
claim that g = 1G µ-a.s. for some G ⊂ X. Indeed, let Ft denote the σ-field of X generated by the
mappings η. 7→ ηs for s ≤ t. With Pµ-probability one,

g(ηt) = Pηt
(F) = Pµ(T

−1
t F |Ft) = Pµ(F |Ft)

where the second equality follows from Markov property, and the third from the Tt invariance of F .
By the martingale convergence theorem, we have the Pµ-a.s. limit

lim
t→∞

g(ηt) = 1F (η.) (148)

Since ηt ∼ µ for all t ≥ 0, for every ε > 0,

Pµ(η. : ε ≤ g(ηt)≤ 1− ε) = µ(η : ε ≤ g(η)≤ 1− ε) (149)

we conclude from (148)–(149) that the law of g(ηt) is Bernoulli, hence g = 1G µ-a.s. for some
G ⊂ X. The desired conclusion (147) is thus equivalent to µ(G) ∈ {0, 1}, which we now establish.

First we claim that, with Pµ-probability one, we have g(ηt) = g(η0) for all t > 0. Indeed,
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by Tt invariance of F , Markov property and definition of G,

Pµ
�

{ηt 6∈ G} ∩ F
�

= P
�

{ηt 6∈ G} ∩ T−1
t F

�

=

∫

{ηt 6∈G}⊂X
Pηt
(F)Pµ(dη.)

=

∫

{ηt 6∈G}⊂X
g(ηt)Pµ(dη.)

= 0 (150)

Similarly we have
Pµ
�

{ηt ∈ G} ∩ (X\F)
�

= 0 (151)

It follows from (150)–(151) that {ηt ∈ G} = F up to a set of Pµ-probability 0. In other words, for
every t > 0, we have g(ηt) = g(η0) = 1F (η.) with Pµ-probability one.

Now, assume µ(G) 6∈ {0, 1}, and define the conditioned measures µG(dη) := µ(dη|η ∈ G)
and µX\G(dη) := µ(dη|η ∈ X\G), so that µ= µ(G)µG +µ(X\G)µX\G . The invariance of L and µ
with respect to space shift imply the same for µG and µX\G . A simple computation, using invariance
of µ for L, and the fact that g(ηt) is Pµ a.s. constant, shows that µG and µX\G are also invariant for
L. This contradicts the fact that µ ∈ (I ∩S )e. �
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