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The time constant vanishes only on the percolation cone in

directed first passage percolation

Yu Zhang∗

University of Colorado

Abstract

We consider the directed first passage percolation model on Z2. In this model, we assign

independently to each edge e a passage time t(e) with a common distribution F . We de-

note by ~T (0, (r,θ )) the passage time from the origin to (r,θ ) by a northeast path for (r,θ ) ∈
R+× [0,π/2]. It is known that ~T (0, (r,θ ))/r converges to a time constant ~µF (θ ). Let ~pc denote

the critical probability for oriented percolation. In this paper, we show that the time constant

has a phase transition at ~pc , as follows:

(1) If F(0)< ~pc , then ~µF (θ )> 0 for all 0≤ θ ≤ π/2.

(2) If F(0) = ~pc , then ~µF (θ )> 0 if and only if θ 6= π/4.

(3) If F(0) = p > ~pc , then there exists a percolation cone between θ−
p

and θ+
p

for 0≤ θ−
p
< θ+

p
≤

π/2 such that ~µ(θ )> 0 if and only if θ 6∈ [θ−
p

,θ+
p
]. Furthermore, all the moments of ~T (0, (r,θ ))

converge whenever θ ∈ [θ−
p

,θ+
p
].

As applications, we describe the shape of the directed growth model on the distribution of F . We

give a phase transition for the shape at ~pc .
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1 Introduction of the model and results.

In this directed first passage percolation model, we consider the vertices of the Z2 lattice and the

edges of the vertices with the Euclidean distance 1. We denote by L2 these edges. We assign indepen-

dently to each edge a non-negative passage time t(e) with a common distribution F . More formally,

we consider the following probability space. As the sample space, we take Ω =
∏

e∈L2[0,∞), whose

points are called configurations. Let P =
∏

e∈L2 µe be the corresponding product measure on Ω,

where µe is the measure on [0,∞) such that

µe(t(e)≤ x) = F(x).

The expectation with respect to P is denoted by E(·). For any two vertices u and v in Z2, a

path γ from u to v is an alternating sequence (v0, e1, v1, ..., vi , ei+1, vi+1, ..., vn−1, en, vn) of vertices

vi and edges ei between vi and vi+1 in L2, with v0 = u and vn = v. For a vertex u, its north-

east edges from u are denoted by u = (u1,u2) to (u1 + 1,u2) or to (u1,u2 + 1). Given a path

(v0, e1, v1, ..., vi , ei+1, vi+1, ..., vn−1, en, vn), if each edge ei is a northeast edge from vi , the path is

called northeast, or directed. For short, we denote northeast edges or northeast paths by NE edges

or NE paths.

Given a path γ, we define its passage time as

T (γ) =
∑

e∈γ
t(e).

For any two vertices u and v, we define the passage time from u to v by

T (u, v) = inf{T (γ)},

where the infimum is over all possible paths {γ} from u to v. We also define

~T (u, v) = inf{T (γ)},

where the infimum is over all possible NE paths {γ} from u to v. If there does not exist a NE path

from u and v, we simply define
~T (u, v) =∞.

A NE path γ from u to v with T (γ) = ~T (u, v) is called an optimal path of ~T (u, v). We need to point

out that the optimal path may not be unique. If we focus on a special configurationω, we may write
~T (u, v)(ω), instead of ~T (u, v).

In addition to vertices on Z2, we may also consider points on R2. In particular, we often use the polar

coordinates {(r,θ )} = R+×[0,π/2], where r and θ represent the radius and the angle between the

radius and the X -axis, respectively. We may extend the definition of passage time over R+×[0,π/2].

For (r,θ ) in R+× [0,π/2], we define ~T (0, (r,θ )) = ~T (0, (⌊r sinθ⌋, ⌊r cosθ⌋)). Similarly, ~T (u, v) can

be defined for any u, v ∈ R2. Moreover, with this extension, for any points u and v in R2, we may

consider a path of Z2 from u to v.

Given an angle θ ∈ [0,2π], by a subadditive argument, if Et(e)<∞, then

lim
r→∞

1

r
T (0, (r,θ )) = lim

r→∞

1

r
ET (0, (r,θ )) = inf

r

1

r
ET (0, (r,θ )) = µF (θ ) a.s. and in L1.
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We call µF (θ ) a time constant. Furthermore, by the same subadditive argument, for an angle θ ∈
[0,π/2],

lim
r→∞

1

r
~T (0, (r,θ )) = lim

r→∞

1

r
E~T (0, (r,θ )) = inf

r

1

r
E~T (0, (r,θ )) = ~µF (θ ) a.s. and in L1. (1.1)

We also call ~µF (θ ) a time constant. By the subadditive argument again, we know (see Proposition

2.1 (iv) in Martin (2004)) that

~µF (θ ) is finite and convex in θ . (1.2)

In general, we require that t(e) has a finite first moment or m-th moment. However, we sometimes

require the following stronger tail assumption:

Eexp(ητ(e))<∞ for η > 0. (1.3)

Recall the undirected first passage percolation model for {T (u, v)}. Kesten (1986) showed that

there is a phase transition at critical probability, pc , of bond percolation for a time constant.

More precisely, he showed that time constant µF (θ ) vanishes if and only if F(0) ≥ pc . Therefore,

F(0) > pc , F(0) = pc , and F(0) < pc are called the supercritical, the critical, and the subcritical

phases, respectively. It is natural to examine a similar situation for the directed first passage

percolation model. In this paper, our focus is that there is also a phase transition for ~µF (θ ) at

critical probability, ~pc , of directed bond percolation. We will demonstrate for the supercritical and

critical phases, which are quite different from the undirected first passage percolation model (see

Kesten and Zhang (1997), and Zhang (1995)). We will also examine the subcritical phase, which is

similar to the undirected model (see Kesten (1986)).

1.1. Supercritical phase. We now focus on the supercritical phase: F(0) > ~pc . Before introducing

our results, we would like to introduce a few basic oriented percolation results. If we rotate our

lattice counterclockwise by 45◦ and extend each edge by a factor of
p

2, the new graph is denoted by

L with oriented edges from (m, n) to (m+1, n+1) and to (m−1, n+1). Each edge is independently

open or closed with probability p or 1− p. An oriented path from u to v is defined as a sequence

v0 = u, v1, · · · , vm = v of points of L . The path has the vertices vi = (x i , yi) and vi+1 = (x i+1, yi+1)

for 0 ≤ i ≤ m− 1 such that yi+1 = yi + 1 and vi and vi+1 are connected by an oriented edge. An

oriented path is open if each of its edges is open. For two vertices u and v in L , we say u → v

if there is an oriented open path from u to v. For A ⊂ (−∞,∞), we denote the following random

subset by

ξA
n = {x : ∃ x ′ ∈ A such that (x ′, 0)→ (x , n)} for n> 0.

The right edge for this set is defined by

rn = supξ(−∞,0]
n (sup;=−∞).

By a subadditive argument (see Section 3 (7) in Durrett (1984)), there exists a non-random constant

αp such that

lim
n→∞

rn

n
= lim

n

Ern

n
= αp a.s. and in L1, (1.4)
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where αp > 0 if p > ~pc , and αp = 0 if p = ~pc , and αp = −∞ if p < ~pc . Now we rotate the lattice

back to Z2. If p ≥ ~pc , the percolation cone is the cone between two polar equations θ = θ∓p in the

first quadrant, where (see Marchand (2002))

θ∓p = arctan

 

1/2∓αp/
p

2

1/2±αp/
p

2

!

.

Note that if p = ~pc , then the percolation cone shrinks to the positive diagonal line. In fact, for any

point (r,θ ) with θ ∈ [θ−p ,θ+p ], it can be shown (see Lemma 3.3 in Yukich and Zhang (2006)) that

P[∃ a NE zero-path from the origin to (r,θ )]> C . (1.5)

In this paper, C and Ci are always positive constants that may depend on F , but not on t, r, k, or

n. Their values are not significant and may change from appearance to appearance. With these

definitions, we have the following theorem regarding the passage time on the percolation cone:

Theorem 1. If F(0) = p > ~pc and E(t(e))m <∞ for m ≥ 1, then there exists C = C(F, m) such that

for every r ≥ 0 and θ ∈ [θ−p ,θ+p ],

E~T (0, (r,θ ))m ≤ C .

In contrast to the passage time on the percolation cone, we have another theorem:

Theorem 2. If F(0) = p > ~pc and θ 6∈ [θ−p ,θ+p ], then there exist positive constants δ = δ(F,θ ) and

Ci = Ci(F,θ ,δ) for i = 1,2 such that for every r ≥ 0,

P[~T (0, (r,θ ))≤ δr] ≤ C1 exp(−C2r).

Together with Theorems 1 and 2, we have the following corollary:

Corollary 3. If F(0) = p > ~pc and E(t(e))<∞, then for 0≤ θ ≤ π/2,

~µF (θ ) = 0 iff θ ∈ [θ−p ,θ+p ].

Remark 1. We would like to discuss ~µF (θ ) as a function of F . Recall that in the general first

passage percolation model, Yukich and Zhang (2006) showed that the time constant is not third

differentiable in the direction of θ±p . We find out that the same proof together with

T (u, v)≤ ~T (u, v)

can be carried out to show the same result for directed first passage percolation. Here we state the

following result but omit the proof. We denote by ~µF (θ , p) the time constant for F(0) = p. If t(e)

only takes two values 0 or 1 and F(0)> ~pc , then

~µF (θ
±
p , p) is not third differentiable in p. (1.6)

Except in these two directions, we believe that there is no other singularity.
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Remark 2. Note that ~µF (θ ) can also be considered as a function of θ . By the convexity in (1.2), we

can show that ~µF (θ ) is continuous in θ . We believe that θ∓p are also the singularities for ~µF (θ ) in

θ .

Conjecture 1. If F(0)> ~pc , show that ~µF (θ ) has singularities at θ±p .

1.2. Critical phase. We focus on the critical phase: F(0) = ~pc . Now, as we mentioned, the

percolation cone shrinks to the positive diagonal line. Similar to the supercritical phase, we can

show the following theorem:

Theorem 4. If F(0) = ~pc and θ 6= π/4, then there exist positive constants δ = δ(F,θ ) and Ci =

Ci(F,θ ,δ) for i = 1,2 such that for every r ≥ 0,

P[~T (0, (r,θ ))≤ δr] ≤ C1 exp(−C2r).

The time constant at θ = π/4 has double behaviors: supercritical and subcritical behaviors. First,

we show that it has a supercritical behavior:

Theorem 5. If Et(e)<∞ and F(0) = ~pc , then

~µF (π/4) = 0. (1.7)

Remark 3. Cox and Kesten used a circuit method (1981) to show the following result, which is a

stronger result than (1.7). If Fn⇒ F , then

lim
n→∞

µFn
(θ ) = µF (θ ). (1.8)

However, their method cannot be applied for the directed model, since a path may not be directed

after using a piece of circuit. By the uniform convergence estimate in (1.9), it is possible to show

Cox and Kesten’s argument for the directed model.

Together with Theorems 4 and 5, we have the following corollary:

Corollary 6. If F(0) = ~pc and E(t(e))<∞, then for 0≤ θ ≤ π/2,

~µF (θ ) = 0 iff θ = π/4.

To pursue the convergence rate, we need to use the isoperimetric inequality by Talagrand (1995).

Denote by M a median of ~T (0, (r,θ )). By Theorem 8.3.1 (see Talagrand (1995)), if (1.3) holds,

then for all r > 0 and 1≤ x ≤pr, there exist positive constants Ci = Ci(F,θ ) for i = 1,2 such that

P
�

|~T (0, (r,θ ))− E~T (0, (r,θ ))| ≥ x
p

r
�

≤ C1 exp(−C2 x2).

With this concentration inequality, we can use Alexander’s result (1996) to show the following. For

all r, if (1.3) holds, there exists C = C(F,θ ) such that for all 0< r

r~µ(θ )≤ E~T (0, (r,θ ))≤ r~µF (θ ) + C
p

r log r. (1.9)
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With (1.9) and Theorem 5, if (1.3) holds and F(0) = ~pc , then there exists C = C(F) such that

E~T (0, (r,π/4))≤ C
p

r log r. (1.10)

Remark 4. The upper bound might not be tight at the right side of (1.10). In fact, we believe the

following conjecture in a much tight upper bound:

Conjecture 2. If (1.3) holds and F(0) = ~pc , show that

E~T (0, (r,π/4))≤ C log r. (1.11)

Note that (1.11) holds for the undirected first passage time (see Chayes, Chayes, and Dur-

rett (1986)). In contrast, the lower bound is more complicated. It might depend on how

F(x) ↓ F(0) = ~pc as x ↓ 0 as the same way as the undirected model (see Zhang (1999)). We believe

the following conjecture.

Conjecture 3. There exists F with F(0) = ~pc such that for every r > 0,

E~T (0, (r,π/4))≤ C . (1.12)

However, we believe that ~T (0, (r,π/4)) has a subcritical behavior for other distributions similar to

the behavior of undirected passage time. More precisely, we expect

lim
r→∞

E~T (0, (r,π/4)) =∞ (1.13)

for some F with F(0) = ~pc . In fact, we may simply ask the same questions when t(e) only takes 0

and 1 with F(0) = ~pc .

Conjecture 4. If t(e) only takes 0 and 1 with F(0) = ~pc , show that

C1 log r ≤ E~T (0, (r,π/4))≤ C2 log r. (1.14)

Note that (1.14) is indeed true (see Chayes, Chayes, and Durrett (1986)) for the undirected critical

model. Furthermore, Kesten and Zhang (1997) showed a central limit theorem for the passage time

in the undirected critical model. Here, we partially verify (1.14) for the directed critical model:

Theorem 7. If t(e) only takes two values 0 and 1 with F(0) = ~pc , then

lim
r→∞

E~T (0, (r,π/4)) =∞.

Remark 5. As we mentioned above, we know the continuity of ~µF (θ ) in θ . We believe that there is

a power law when θ → π/4. More precisely, we assume that F(0) = ~pc and t(e) only takes values 0

and 1.

Conjecture 5. ~µF (θ )≈ |θ −π/4|α for some 0< α < 1.
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1.3. Subcritical phase. Finally, we focus on the subcritical phase: F(0) = p < ~pc . On this phase, we

show the following theorem:

Theorem 8. If F(0) < ~pc , then there exist positive constants δ = δ(F) and Ci = Ci(F,δ) for i = 1,2

such that for every r > 0 and every θ ∈ [0,π/2],

P[~T (0, (r,θ ))≤ δr] ≤ C1 exp(−C2r).

By Theorem 8, there exists C = C(F) such that for all r and θ

E[~T (0, (r,θ ))]≥ C r. (1.15)

With (1.15) and (1.1), we have the following corollary:

Corollary 9. If Et(e)<∞ and F(0)< ~pc , then for every θ ∈ [0,π/2],

~µF (θ )> 0.

Remark 6. We would like to focus on a special case in the subcritical phase. In fact, Hammersley

and Welsh (1965) considered t(e) + a for some real number a. They used F ⊕ a(x) = F(x − a)

to denote the distribution. Clearly, if a > 0, each edge takes at least a time a, so F ⊕ a(0) = 0.

Therefore, it is in the subcritical phase. Durrett and Liggett (1981) consider the case where

F ⊕ a(a)> ~pc (1.16)

for undirected passage time T (u, v). When (r,θ ) is in the percolation cone, by (1.5) it can be shown

that an optimal path for T (0, (r,θ )) is directed with a positive probability. Thus, by Corollary 3

lim
r→∞

T (0, (r,θ ))

r
= µF⊕a(θ ) = a.

This well known result (see Durrett and Liggett (1981)) is called the flat edge of the shape.

1.4. Shape of the growth model. We may discuss the shape theorem for this directed first passage

percolation. Define the shape as

Ct = {(r,θ ) ∈ R+ × [0,π/2] : ~T (0, (r,θ ))≤ t}.

For each (r,θ ) ∈ R+ × [0,π/2], by the subadditive argument,

lim
s→∞

1

s
~T (0, (sr,θ )) = lim

s→∞

1

s
E~T (0, (sr,θ )) = ~µF (r,θ ) a.s. and in L1. (1.17)

By (1.1) and (1.17), we know that

rµF (θ ) = µF (r,θ ).

With (1.17), we define the directed growth shape as

C= {(r,θ ) ∈ R+ × [0,π/2] : ~µF (r,θ )≤ 1}. (1.18)
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With these definitions, Martin (2004) proved that if Et2(e)<∞ and

inf
r 6=0

~µF (r,θ )

r
> 0,

then C is a convex compact set, and for any ε > 0,

(1− ε)C⊂
Ct

t
⊂ (1+ ε)C, eventually with probability 1. (1.19)

The result in (1.19) is called shape theorem. In the subcritical case, for all 0≤ θ ≤ π/2, by Corollary

8, C is a convex compact set such that the shape theorem holds. We denote the shape between two

angles by

C(θ1,θ2) = {(r,θ ) ∈ R+×[θ1,θ2] : ~µF (r,θ )≤ 1},Ct(θ1,θ2) = {(r,θ ) ∈ R+×[θ1,θ2] : ~T (0, (r,θ ))≤ t}

for 0≤ θ1 ≤ θ2 ≤ π/2. Furthermore, we denote by ρ(θ ) the boundary point (ρ(θ ),θ ) of C.

In the supercritical case, by Corollary 3 and (1.19), for any small δ > 0,

C(0,θ−p − δ) and C(θ+p +δ,π/2) are convex compact sets (1.20)

such that the shape theorem holds:

(1− ε)C(0,θ−p − ε)⊂
Ct(0,θ−p − δ)

t
⊂ (1+ ε)C(0,θ−p −δ)

and

(1− ε)C(θ+p + δ,π/2)⊂
Ct(θ

+
p + δ,π/2)

t
⊂ (1+ ε)C(θ+p +δ,π/2) (1.21)

eventually with probability 1. On the other hand, by Corollary 3 again,

C(θ−p ,θ+p ) and lim
t

Ct(θ
−
p ,θ+p )

t
equal the percolation cone. (1.22)

In the critical case, for any small 0< δ, by Corollary 6 and (1.19),

C(0,π/4− δ) and C(π/4+δ,π/2) are convex compact sets (1.23)

such that the shape theorem holds:

(1− ε)C(0,π/4− ε)⊂
Ct(0,π/4−δ)

t
⊂ (1+ ε)C(0,π/4−δ)

and

(1− ε)C(π/4+ δ,π/2)⊂
Ct(π/4+ δ,π/2)

t
⊂ (1+ ε)C(π/4+δ,π/2) (1.24)

eventually with probability 1. On the other hand, by Corollary 6 again,

C(π/4,π/4) and lim
t

Ct(π/4,π/4)

t
equal the positive diagonal line. (1.25)
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Supercritical phase:F(0)> ~pc
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Critical phase:F(0) = ~pc
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Subcritical phase:F(0)< ~pc
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Figure 1: The graph shows shape C in subcritical, critical, and supercritical phases. In the supercritical

phase, the right figure, the shape is the percolation cone between two angles θ±p , and the other two

parts of the shape are finite. In the critical phase, the middle figure, the percolation cone shrinks to

the positive diagonal line. The other two parts of the shape are finite. In the subcritical phase, the left

figure, the shape is finite.

In particular, in both the supercritical and critical phases, by Theorems 1 and 2, and Theorem 5, the

continuity of µF (θ ) in θ ,

ρ(θ )→∞ as θ → θ±p .

In the subcritical case, by Corollary 9, the shape theorem in (1.19) holds. We can describe the

phases of the shapes as Fig. 1.

Remark 7. Since the shape is convex, by (1.25), on the critical and super critical phases, the

slope of the line passing through (ρ(θ1),θ1) and (ρ(θ2),θ2) cannot be more than tan(θ−p ) when

θ1 < θ2 < θ
−
p . By symmetry, we have the same property when π/2≥ θ1 > θ2 > θ

+
p .

We may relate the directed first passage percolation to the following directed growth model. At time

1, a cell A1 consists of the unit square with the center at the origin. Each square has four edges: the

north, the east, the south, and the west edges. Two squares are connected if they have a common

edge. Suppose that at time n we have connected n unit squares, denoted by An. Let ∂ An be the

boundary of An. A square is a boundary square of An if one of its edges belongs to ∂ An. We collect

all the north and the east edges in ∂ An from the boundary squares. We denote these edges by the

northeast edges of An. At time n + 1, a new square is added to An such that it connected to the

northeast edges of An. The location of the new square is chosen with a probability proportional to

the northeast edges of An.

Now we consider F has an exponential distribution with rate 1. By the same discussion, we can

define the directed growth shape Ct and show the shape theorem of (1.19). By a similar computation

(see page 131 in Kesten (1986)), we can show that shapes An and Ctn
have the same distribution
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with

tn = inf{t : Ct contains n vertices}.
Thus, the shape theorem for Ct implies that n−1/2An has also an asymptotic shape.

Unlike the undirected model, the oriented percolation model in higher dimensions has been more

limited. For example, we cannot define the right edge rn for the oriented percolation model when

d > 2. However, if one could develop a similar argument of the percolation cone as we defined in

Section 1.1, our techniques for first passage percolation would apply for higher dimensions.

2 Preliminaries.

2.1. Renormalization method. We introduce the method of renormalization in Kesten and Zhang

(1990). We define, for a large integer M and w = (w1, w2) ∈ Z2, the squares by

BM (w) = [Mw1, Mw1+M)× [Mw2, Mw2+M).

We denote these M-squares by {BM (w) : w ∈ Z2}. For a path γ (not necessary a directed path)

starting from the origin, we denote a fattened γM by

γM = {BM (w) : BM (w)∩ γ 6= ;}.

We denote by |A| the number of vertices inside A. Since γM consists of M -squares, let |γM | be the

number of M -squares in γM . By our definition,

|γ| ≥ |γM | and |γM | ≥
|γ|
M2

. (2.1)

For each M -square BM (w), there are eight M -square neighbors. We say they are adjacent to BM (w).

We denote BM (w) and its eight M -square neighbors by B̄M (w). B̄M (w) is called a 3M-square.

If BM (w) ∩ γ 6= ; and B̄M (w) does not contain the origin of the path γ, note that γ has to cross

B̄M (w) \ BM (w) to reach BM (w), so B̄M (w) contains at least M vertices of γ. We collect all

3M -squares {B̄M (w)} such that their center M -squares contain at least a vertex of γ. We call these

3M -squares center 3M-squares of γ. With these definitions, the following lemma (see Zhang, page

22 (2008)) can be calculated directly.

Lemma 1. For a connected path γ, if |γM | = k ≥ 2, then there are at least k/15 disjoint center

3M-squares of γ.

2.2. Results for oriented percolation. We assign either open or closed to each edge with probability

p or 1− p independently from the other edges. For two sets A and B, if there exists a NE open path

from u ∈ A to v ∈ B, we write A→ B.

First, we focus on the subcritical phase: p < ~pc . Let

C0 = {u : 0→ u}.

Durrett (Section 7, (6) (1984)) showed the following lemma:
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Lemma 2. If p < ~pc , then there exist positive constants Ci for i = 1,2 such that

P[|C0| ≥ n]≤ C1 exp(−C2n).

Now we focus on the critical and supercritical phases: p ≥ ~pc . Given two points u = (u1,u2) and

v = (v1, v2), we define the slope between them by

sl(u, v) =
v2− u2

v1− u1

.

With these definitions, Zhang (Lemma 3 (2008)) showed the following lemma:

Lemma 3. Let p ≥ ~pc and a ∈ (0, tan(θ−p )). There exist positive constants Ci = Ci(p, a) for i = 1,2

such that for every u ∈ R× [0,π/2]∩ Z2 with sl(0,u)≤ a,

P[0→ u]≤ C1 exp(−C2u1).

2.3. Analysis for the shape Ct . Now we would like to introduce a few geometric properties for Ct .

In the remainder of Section 2.3, we only consider t(e) when it takes value 0 or 1 with F(0) = p. If

t(e) = 0, e is said to be open or closed otherwise.

Given a set Γ ⊂ R2 that contains at least a vertex of Z2, we let Γ′ be all vertices on Z2 contained in

Γ. It is easy to see that

Γ′ ⊂ Γ⊂ {v + (−1,1)2 : v ∈ Γ′}.
A set A in Z2 is said to be directly connected if there exists a vertex (root) v ∈ A such that any vertex

of u of A is connected from v by a NE path in A.

Given a finite directly connected set Γ of Z2, we define its vertex boundary as follows. A site v ∈ Γ,

is said to be a boundary vertex of Γ if there exists u 6∈ Γ such that u is adjacent to v by either a north

or an east edge. We denote by ∂ Γ the set of all boundary vertices of Γ. We also let ∂oΓ be all vertices

not in Γ, but adjacent to ∂ Γ by north or east edges. ∂eΓ denotes the set of all NE edges between ∂ Γ

and ∂oΓ.

We need to work on the following event

{C′t = Γ}= {ω : C′t(ω) = Γ}.

With these definitions, Zhang (see propositions 1–3 in Zhang (2006)) proved the following lemmas

for undirected first passage percolation. The proofs can be carried out by changing paths to directed

paths, so we omit the proofs. In fact, these lemmas are easily understood by drawing a few figures.

Lemma 4. C′t is directly connected.

Lemma 5. For all v ∈ ∂ C′t , ~T (0, v) = t, and for all u ∈ ∂oC′t , ~T (0,u) = t + 1.

Lemma 6. The event of {C′t = Γ} only depends on the zeros and ones of the edges in Γ∪ ∂oΓ.
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2.4. Monotone property for the time constant. Finally, we would like to introduce a monotone

lemma for the time constant. Comparing two distributions F1 and F2, we have the following lemma:

Lemma 7. If Et(e)<∞ and F1(x)≤ F2(x) for all x, then for θ ∈ [0,π/2],

~µF2
(θ )≤ ~µF1

(θ ).

Proof. Smythe and Wierman (1978) proved the same result in their Theorem 7.12 for undirected

first passage percolation. The same coupling argument can be carried out to show Lemma 7. �

3 Subcritical phase.

In Section 3, we assume that F(0)< ~pc . Since F is right-continuous, we take a small ε > 0 such that

F(ε)< ~pc . (3.1)

We say that an edge is open if t(e)≤ ε, otherwise e is said to be closed. With (3.1), we know that

P[e is open]< ~pc . (3.2)

Now we work on an optimal path γ for ~T (0, (r,θ )). As before, we use γM to denote the squares of

γ. If a square in γM contains a closed edge of γ, we call the square a bad square. Otherwise, it is a

good square. Now we want to count the possible choices of these squares. Note that γ is connected,

and so is γM . We assume that

|γM |= k ≥ 2.

Since γ is connected, γM is a directed square path such that each square in γM is either directly to

the right of or directly above the square. Thus, there are at most 2k choices for all possible choices

of γM and

k = ⌊
r sinθ

M
⌋+ ⌊

r cosθ

M
⌋+ 1. (3.3)

By Lemma 1 in Section 2, we know there are at least |γM |/15 disjoint center 3M -squares of γ. Thus,

if there are less than |γM |/30 bad squares, there are at least

|γM |/15− |γM |/30≥ |γM |/30 (3.4)

disjoint 3M -squares such that their center squares contain an edge of γ and all the M -squares in

these disjoint 3M -squares are good. We also call these 3M -squares good. When γM is fixed, we

select these good 3M -squares. There are at most 2k choices for these good 3M -squares.

For each good 3M -square B̄M (w), there exists a NE open path crossing the 3M -square from a vertex

at the boundary of BM (w) to another vertex at the boundary of B̄M (w). There are at most 4M choices

for the starting vertex, and the path contains at least M edges. For a fixed B̄M (w), we denote by Ew

the event that there exists a NE open path from BM (w) to the boundary of B̄M (w). By Lemma 2,

there are positive constants Ci = Ci(F) for i = 1,2 such that

P[Ew]≤ C1M exp(−C2M). (3.5)
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Note that Ew and Eu are independent with the same distribution for fixed w and u if Bw(M) and

Bu(M) are two center squares of two disjoint 3M -squares. With these observations and (3.3), if we

take M large, there exist positive constants Ci = Ci(F) for i = 1,2 in (3.5) and C j = C j(F, M) for

j = 3,4 such that

P[∃ an optimal path γ for ~T (0, (r,θ )) with less than |γM |/30 bad squares]

≤ 2k2kP[E0]
k/30

≤ 4k
�

C1M exp(−C2M)
�k/30

≤ C3 exp(−C4r). (3.6)

Proof of Theorem 8. For the M in (3.5), we select δ > 0 such that

δ < ε(60M2)−1.

Thus, by (3.6)

P[~T (0, (r,θ ))≤ δr]

≤ P[~T (0, (r,θ ))≤ δr,∃ an optimal path γ for ~T (0, (r,θ ))

with more than |γM |/30 bad squares] + C3 exp(−C4r).

Note that if there are more than |γM |/30 bad squares, then γ contains at least |γM |/30 edges with

passage time larger than ε. Note also that γ is a path from the origin to (r,θ ), so γ contains at least

r − 1 edges. Thus, by (2.1) γ contains at least (r − 1)/(30M2) edges with passage time larger than

ε. Since γ is an optimal path, ~T (0, (r,θ )) cannot be less than or equal δr. Therefore, there exist

positive constants Ci(F,δ) for i = 5,6 such that

P[~T (0, (r,θ ))≤ δr] ≤ C5 exp(−C6r). (3.7)

Thus, Theorem 8 follows from (3.7). �

4 Outside the percolation cone.

The proofs for theorems outside the percolation cone also need the method of renormalization. We

assume in Theorems 2 and 4 that

F(0)≥ ~pc . (4.1)

Thus, we say an edge is open if t(e) = 0 and closed otherwise. With (4.1), we have

P[e is open]≥ ~pc . (4.2)

In this Section, we also denote an optimal path from the origin to (r,θ ) by γ and denote the M -

squares of γ by γM for a large M . If a square in γM contains an edge e of γ with t(e) > 0, we say

the square is a bad square. Otherwise, it is a good square.

Now we count the number of the choices for these squares. Note that γ is connected, and so is γM .

We assume that

|γM |= ⌊
r sinθ

M
⌋+ ⌊

r cosθ

M
⌋+ 1= k ≥ 2 and ∃ l bad squares among these k squares. (4.3)
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As noticed in Section 3, there are at most 2k choices for all possible γM . When γM is fixed, we select

these bad squares. There are at most
∑

l=1

�

k

l

�

≤ 2k (4.4)

choices for these bad squares. We list all the bad squares as

S1,S2, · · · ,Sl

for l ≤ k. For each Si , the path γ will meet the boundary of Si at v′i and then use less than 2M

edges to meet v′′i , another boundary point of Si . We denote the path along γ from the origin to v′1
by γ0, from v′′1 to v′2 by γ1, · · · , from v′′

l−1
to v′

l
by γl−1. Note that bad edges are only contained in

bad squares, so γi does not contain any bad edge. For a fixed γM , and fixed Si and Si+1 of γM , and

fixed v′′i ∈ ∂ Si and fixed v′i+1 ∈ ∂ Si+1, let γi(v
′′
i , v′i+1) be a NE open path from v′′i to v′i+1 without

using edges in Si and Si+1 for i = 0,1, · · · , l, where v′′0 = (0,0) and v′
l+1
= (r,θ ). We simply denote

by {∃ γi(v
′′
i , v′i+1)} the event such that γi(v

′′
i , v′i+1) exists. Now we reconstruct a NE fixed open path

from v′i to v′′i . Let Ei(v
′
i , v′′i ) be the event that there is a NE open path from v′i to v′′i . For v′i , v′′i and

v′i+1 in ∂ Si ∪ ∂ Si+1, there might not be NE paths from v′i to v′′i or from v′′i to v′i+1. However, in this

paper, we only focus on v′i , v′′i and v′i+1 in ∂ Si ∪ ∂ Si+1 for i = 0, · · · , l such that the NE paths exist.

Since there exists a NE path with less than 2M edges from v′i to v′′i ,

P[Ei(v
′
i , v′′i )]≥ (~pc)

2M . (4.5)

Also, there are at most (4M)2 choices for v′i and v′′i when Si is fixed. After fixing l, and Si , and v′i
and v′′i in ∂ Si for i = 1,2, · · · , l,

{
l
⋂

i=0

{∃ γi(v
′′
i , v′i+1)}} and {

l
⋂

i=1

Ei(v
′
i , v′′i )} are independent, (4.6)

since two events use the edges in different paths, respectively. Moreover, if

l
⋂

i=0

{∃ γi(v
′′
i , v′i+1)}

l
⋂

i=1

Ei(v
′
i , v′′i )

occurs, then there exists a NE open path from the origin to (r,θ ). By (4.3), note that γ is directed,

so

2r ≥ |γ| ≥ (k− 1)M . (4.7)

With these observations, for a small constant C ∈ (0,1) and each k defined in (4.3), we try to

estimate the following probability by fixing γM , and then l, and then Si , and finally v′i and v′′i for
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i = 1,2, · · · , l.

P[∃ an optimal γ for ~T (0, (r,θ )) with |γM |= k and less than Ck bad squares]

≤ 2k2k
Ck
∑

l=0

∑

v′1,v′′1 ,··· ,v′
l
,v′′

l

P





l
⋂

i=0

{∃ γi(v
′′
i , v′i+1)}





≤ 4k
Ck
∑

l=1

∑

v′1,v′′1 ,··· ,v′
l
,v′′

l

P





l
⋂

i=0

{∃ γi(v
′′
i , v′i+1)}



 (~pc)
−2CkM

l
∏

i=1

P
�

Ei(v
′
i , v′′i )

�

≤ 4k(~pc)
−2CkM

Ck
∑

i=1

∑

v′
1
,v′′

1
,··· ,v′

l
,v′′

l

P





l
⋂

i=0

{∃ γi(v
′′
i , v′i+1)}

l
⋂

i=1

Ei(v
′
i , v′′i )





≤ Ck(4M)2Ck4k(~pc)
−2CkMP[∃ an open path from the origin to (r,θ )], (4.8)

where the sum
∑

v′
1
,v′′

1
,··· ,v′

l
,v′′

l
is over all possible vertices of v′i , v′′i on the boundary of fixed Si for

i = 1, · · · , l. Let u= (u1,u2) be the ending vertex of γ. If θ < θ−p , then

sl(0,u) = tan(θ )< tan(θ−p ). (4.9)

In addition,

u1 = O(r). (4.10)

Thus by Lemma 3, (4.9), (4.10), and (4.7), there exist positive constants Ci = Ci(F,θ ) for i = 1,2,3

such that

P[∃ an open NE path from the origin to (r,θ )]≤ C1 exp(−C2r)≤ C1 exp(−C3Mk). (4.11)

If we substitute (4.11) into (4.8), then

P[∃ an optimal γ for ~T (0, (r,θ )) with |γM |= k and less than Ck bad squares]

≤ Ck(4M)2Ck4k(~pc)
−2CkM C1 exp(−C3Mk).

Therefore, if we take C = C(~pc , F,θ ) small and M large, there exist positive constants Ci =

Ci(F,θ , C , M) for i = 4,5 such that for every large r and k defined in (4.3)

P[∃ an optimal γ for ~T (0, (r,θ )) with |γM |= k and less than Ck bad squares]≤ C4 exp(−C5r).

If there exist less than C |γ| closed edges for an optimal path γ, then by (2.1) there are less than

C |γM | bad squares. Therefore, there exist positive constants C = C(F,θ ) and Ci = Ci(F,θ , C) for

i = 6,7 such that for all r ≥ 0,

P[∃ an optimal γ for ~T (0, (r,θ )) with less than C |γ| closed edges]

≤ P[∃ an optimal γ for ~T (0, (r,θ )) with |γM |= k and less than Ck bad squares]

≤ C6 exp(−C7r) (4.12).

With (4.12), we show Theorems 2 and 4:
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Proofs of Theorems 2 and 4. Suppose that there exists a NE path γ from the origin to (r,θ ) with

~T (γ)≤ C8r

for some constant C8. Note that if there are more than C |γ| closed edges, then there are more than

C r closed edges. By (4.12), we may use the C such that

P[~T (γ)≤ C8r]

= P[~T (γ)≤ C8r,γ with more than C |γ| closed edges]

+P[~T (γ)≤ C8r,γ with less than C |γ| closed edges]

≤ P[~T (γ)≤ C8r,γ with more than C r closed edges] + C6 exp(−C7r). (4.13)

For each closed edge e, we know that t(e)> 0. For ε > 0, we take δ > 0 small such that

P[0< t(e)≤ δ] = F(δ)− F(0)≤ ε.

For each closed edge, if it satisfies t(e)≤ δ, we say it is a bad edge. Thus,

P[e is closed and bad] = P[0< t(e)≤ δ]≤ ε.

Now, on {∃ an optimal γ from 0 to (r,θ ) with more than C |γ| closed edges}, we estimate the event

that there are at least C r/2 bad edges in γ. By (4.7),

|γ| ≤ 2r.

Now we fix the path γ. Since each vertex in γ can be adjacent only from a north or an east edge,

there are at most 22r choices for γ. If γ is fixed, there are at most

2r
∑

l=1

�

2r

l

�

≤ 22r

choices for these closed edges. If these closed edges are fixed, as we mentioned above, each edge

has a probability less than ε to be also bad. In addition, we also have another 22r choices to select

these bad edges from these closed edges. Therefore, if we take ε= ε(F,δ, C) small, then there exist

positive constants Ci = Ci(F,δ,θ , C) for i = 9,10 such that

P[∃ a NE γ from 0 to (r,θ ) with more than C r closed edges,

these closed edges contain more than C r/2 bad edges]

≤
∞
∑

l=C r/2

22r22r22r(ε)l

≤ C9 exp(−C10r). (4.14)

If
~T (0, (r,θ ))≤ C8r
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for θ < θ−p , then there is a NE path γ from 0 to (r,θ ) with a passage time less than C8r. Therefore,

by (4.13) and (4.14)

P[~T (0, (r,θ ))≤ C8r]

≤ P[∃ a NE γ from 0 to (r,θ ) with more than C r closed edges,

these closed edges contain less than C r/2 bad edges, ~T (γ)≤ C8r] + C9 exp(−C10r)

≤ P[∃ a NE γ from 0 to (r,θ ), γ contains less than C r/2 bad edges, ~T (γ)≤ C8r]

+C9 exp(−C10r). (4.15)

If there is a NE path from 0 to (r,θ ) with less than C r/2 bad edges among these C r closed edges,

note that each good edge costs at least passage time δ, so the passage time of the path is more than

δC r/2. Thus, if we select C8 such that

C8 < Cδ/2,

P[∃ a NE γ from 0 to (r,θ ), γ contains less than C r/2 bad edges, ~T (γ)≤ C8r] = 0. (4.16)

By (4.15) and (4.16), for F(0)≥ ~pc , θ < θ
−
p ,

P[~T (0, (r,θ ))≤ C8r] ≤ C9 exp(−C10r). (4.17)

When θ > θ+p , by symmetry, we still have (4.17). Therefore, Theorems 2 and 4 follow. �

5 Inside the percolation cone.

In Section 5, we assume that F(0) = p > ~pc and θ ∈ [θ−p ,θ+p ]. Edge e is called an open or a closed

edge if t(e) = 0 or t(e) > 0, respectively. We define τ(e) = 0 if t(e) = 0, or τ(e) = 1 if t(e) > 0. We

also denote by ~Tτ(u, v) the passage time corresponding to τ(e). Let

Bτ(t) = {v ∈ Z2 : ~Tτ(0, v)≤ t}. (5.1)

We also assume that (r cosθ , r sinθ ) ∈ Z2 for r > 0 and θ ∈ [θ−p ,θ+p ] without loss of generality. If

(r,θ ) ∈ Bτ(t), then
~Tτ(0, (r,θ ))≤ t. (5.2)

Note that Bτ(t) will eventually cover all the vertices in R+ × [θ−p ,θ+p ] as t →∞, so for any (r,θ ) ∈
R+ × [θ−p ,θ+p ], there exists a t such that (r,θ ) ∈ Bτ(t). Let σ be the smallest t such that (r,θ ) ∈
Bτ(t). We will estimate σ to show that there exist positive constants Ci = Ci(F) for i = 1,2 such

that for all large k,

P[σ ≥ k]≤ C1 exp(−C2k) uniformly in r > 0 and θ ∈ [θ−p ,θ+p ]. (5.3)

Note that

P[σ ≥ k] =
∑

Γ

P[σ ≥ k, Bτ(k− 2) = Γ],

where Γ, containing the origin, takes all possible vertex sets in the first quadrant. We also remark

that for distinct Γ1 and Γ2,

{σ ≥ k, Bτ(k− 2) = Γ1} and {σ ≥ k, Bτ(k− 2) = Γ2} are disjoint.
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If σ ≥ k and Bτ(k− 2) = Γ, then Γ does not contain (r,θ ):

Γ∩ (r,θ ) = ;. (5.4)

In other words, the above sum is over all Γ that do not contain (r,θ ). Thus, by Lemma 5, there

is no NE open path from ∂o(Γ) to (r,θ ). Otherwise, σ < k, which is contrary to the assumption

that σ ≥ k. For a fixed Γ, we denote by Ek(Γ) the above event that there is no NE open path from

∂o(Γ) to (r,θ ). Thus, there exists a NE open path outside Γ ∪ ∂eΓ from ∂oΓ to (r,θ ). Note that

Ek(Γ) only depends on configurations of edges outside Γ∪ ∂eΓ, so by Lemma 6, for any fixed Γ with

Γ∩ (r,θ ) = ;,
Ek(Γ) and {Bτ(k− 2) = Γ} are independent. (5.5)

By (1.5), there exists 0 < δ < 1, uniformly in r > 0 and θ ∈ [θ−p ,θ+p ] such that for any fixed Γ that

does not contain (r,θ ),

P[Ek(Γ)]≤ 1− P[0→ (r,θ )]≤ 1− δ. (5.6)

With these observations,

P[σ ≥ k] =
∑

Γ

P[σ ≥ k, Bτ(k− 2) = Γ]

≤
∑

Γ

P[Bτ(k− 2) = Γ,Ek(Γ)]

≤
∑

Γ

P[Bτ(k− 2) = Γ](1−δ),

where the sum is over all Γ containing the origin but not (r,θ ). Note that for a fixed Γ containing

the origin but not (r,θ ), by Lemma 5 again,

{Bτ(k− 2) = Γ} ⊂ {σ ≥ (k− 2)}.
Therefore,

P[σ ≥ k]≤ (1− δ)P[σ ≥ (k− 2)]. (5.7)

Thus, (5.3) follows if we iterate (5.7). We show Theorem 1 by (5.3). In fact, if t(e) is bounded from

above by a constant, then Theorem 1 is implied by (5.3) directly. However, if we restrict ourselves

only on a moment condition, the proof is more intricate:

Proof of Theorem 1. Given σ, the passage time T (0, (r,θ )) is dominated by the sum of σ copies

of the weight distribution, conditioned to be non-zero. This is because, conditioned on the set of

closed edges, the weights of the closed edges are i.i.d. and each has the original weight distribu-

tion conditioned on being non-zero. We simply choose an arbitrary path from the origin to (r,θ )

containing σ closed edges (for example, choose the first one in the lexicographic order), and sum

the weights of the closed edges along that path to get an upper bound on the passage time. Let

Y1, Y2, · · · represent i.i.d. copies of the edge-weight distribution conditioned to be non-zero. If the

original weight-distribution has a finite mth moment, then so does this distribution. Since σ is only

affected by zero-edges, {Yi} and σ are also independent. Thus, by (5.3), we get

E~T (0, (r,θ ))m = E
�

E~T (0, (r,θ ))m | σ
�

≤ E
�

E(Y1+ Y2+ · · ·+ Yσ)
m
�

≤ E
�

σmEY m
1

�

= EσmEY m
1 <∞.
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So Theorem 1 follows. �

6 Critical phase.

Proof of Theorem 5. In Section 6, we assume that F(0) = ~p. There are two possible behaviors for

F at 0:

(a) either there exists a small h such that F(x) = F(0) = ~pc for x ∈ [0,h],

(b) or there exists a sequence {xn} with xn ↓ 0 such that F(xn) ↓ F(0) and F(xn)> F(0).

Let us assume that case (b) holds. For each n, we construct another distribution:

Gn(x) =

¨

F(0) if 0≤ x < xn,

F(x) if xn ≤ x .

By this definition, for each n,

Gn(xn)> ~pc .

By (1.5), for all r, there exists a directed path from the origin to (r,π/4) such that its passage time

in each edge is at most xn with a positive probability. By (1.1), for each n,

~µGn
(π/4)≤ 2xn. (6.1)

By Lemma 7,

~µF (π/4)≤ ~µGn
(π/4)≤ 2xn. (6.2)

By (6.2), we can show that

~µF (π/4) = 0. (6.3)

Therefore, Theorem 5 follows if case (b) holds.

Now we focus on case (a). Note that F cannot be flat forever, so there are points h1 > h > 0 such

that F(h1) > F(0) and F(x) = F(0) for 0 ≤ x ≤ h. Now we assume that F satisfies the following

extra condition:

(i). There exists h> 0 such that

F(x) = F(0) = ~pc , when 0≤ x < h, and F(x)> ~pc , when x ≥ h.

In other words, there is a jump point at h.

We focus on case (a) (i). We take ε > 0 small such that

F(0) + ε < F(h).

Then we construct another distribution:

Gε(x) =

¨

F(0) + ε if 0≤ x < h,

F(x) if h≥ x .

As we defined, t(e) is the random variable with distribution F . Let gε(e) be the random variable

with distribution Gε. We couple t(e) and gε(e) and then assume that all the couples (t(e), gε(e))e∈L2

are independent and identically distributed. Define gε(e) as follows:
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If t(e) = 0, then gε(e) = 0.

If t(e) = x > h, then gε(e) = x .

If t(e) = h, then

gε(e)

¨

= 0 with probability ε
�

F(h)− ~pc

�−1
,

= h with probability 1− ε
�

F(h)− ~pc

�−1
.

We need to verify that gε has distribution Gε. Since the verification is simple, we leave to the

readers.

Now we show Theorem 5 under case (a) (i). Let γt be an optimal path for ~Tt(0, (r,π/4)) with time

state t(e), and let γgε
be an optimal path for Tgε

(0, (r,π/4)) with time state gε(e). Here, for each

configuration, we select γgε
in a unique method. For each edge e ∈ γgε

, we consider passage time

t(e). If t(e)> h, then gε(e) = t(e) by our definition. In addition, if t(e) = h, it also follows from the

definition that gε(e) = h or gε(e) = 0. Therefore,

~Tt(0, (r,π/4))≤ ~T (γgε
) + h

∑

e∈γgε

I(t(e)=h,gε(e)=0). (6.4)

By (6.4),

E~Tt(0, (r,π/4))≤ E~T (γgε
) + h

∑

β

∑

e∈β
P[t(e) = h, gε(e) = 0,γgε

= β], (6.5)

where the first sum in (6.5) is over all possible NE paths β from 0 to (r,π/4). Let us estimate

∑

β

∑

e∈β
P[t(e) = h, gε(e) = 0,γgε

= β].

Note that the value of t(e) may depend on the value of gε(e), but not on the other values of gε(b)

for b 6= e, so by our definition,

P[t(e) = h, gε(e) = 0,γgε
= β] = P[t(e) = h | gε(e) = 0,γgε

= β]P[gε(e) = 0,γgε
= β]

≤ P[t(e) = h | gε(e) = 0]P[γgε
= β] = ε[~pc(F(h)− ~pc)]

−1P[γgε
= β]. (6.6)

Note that β has at most 2r edges, so by using (6.6) there exists C such that

∑

β

∑

e∈β
P[t(e) = h, gε(e) = 0,γgε

= β]≤
∑

β

∑

e∈β
CεP[γgε

= β]≤ 2Cεr. (6.7)

By (6.5) and (6.7), there exists C = C(F) such that

E
Tt(0, (r,π/4))

r
≤ E
~Tgε
(0, (r,π/4))

r
+ Cε. (6.8)

We take r →∞ in (6.8) to have

~µF (π/4)≤ ~µGε
(π/4) + Cε. (6.9)

Note that Gε(0)> ~pc , so by Corollary 3 and (6.9),

~µF (π/4) = 0.
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Therefore, Theorem 5 follows under case (a) (i).

Finally, we focus on case (a) without other assumptions. As we mentioned, t(e) is not a constant.

Thus, there exists h1 > h such that F(h1)> F(0). We construct

H(x) =

¨

F(0) if 0≤ x < h1,

F(x) if h1 ≤ x .

With this definition,

H ≤ F, and H(0) = ~pc ,

and H(x) has a jump point at h1. By the analysis of case (a) (i), we have

~µH(π/4) = 0. (6.10)

By Lemma 7,

~µF (π/4)≤ ~µH(π/4) = 0. (6.11)

Thus, Theorem 5 under case (a) follows from (6.11). If we put cases (a) and (b) together, Theorem

5 follows.

Proof of Theorem 7. In this proof, we assume that t(e) only takes 0 (open) and 1 (closed) with

probability ~pc and 1− ~pc , respectively. Let Lr be the line y =−x + r inside the first quadrant. Note

that L0 is just the origin. Bezuidenhout and Grimmett (1990) showed that there is no infinite NE

zero-path on Z2. Thus, for fixed Lr1

P[Lr1
→∞] = 0. (6.18)

By (6.18), there exists 0< δ < 1 and r2 = r2(r1) such that

P[Lr1
6→ Lr2

]≥ δ. (6.19)

If Lr1
6→ Lr2

, then NE path from Lr1
to Lr2

has to use at least one edge with passage time 1. Let

I(Lr1
, Lr2
) be the indicator of the event that there is no NE open path from Lr1

to Lr2
. For large r,

let r1 ≤ r2 ≤ · · · ≤ rm ≤ r be a sequence such that for i < m− 1,

P[Lri
6→ Lri+1

]≥ δ. (6.20)

Note that any NE path from the origin to (r,π/4) has to cross the strip between Li and Li+1 for

i = 1, · · · , m− 1, so

E~T(0, (r,π/4))≥ E

m
∑

i=1

I(Lr1
, Lr2
) = δm. (6.21)

By (6.19), we have m→∞ as r →∞. Therefore, by (6.21),

lim
r→∞

E~T (0, (r,π/4)) =∞. (6.22)

Theorem 7 follows from (6.22). �
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