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Abstract

Consider throwing n balls at random into m urns, each ball landing in urn i with probability pi .

Let S be the resulting number of singletons, i.e., urns containing just one ball. We give an error

bound for the Kolmogorov distance from the distribution of S to the normal, and estimates on its

variance. These show that if n, m and (pi , 1 ≤ i ≤ m) vary in such a way that supi pi = O(n−1),

then S satisfies a CLT if and only if n2
∑

i p2
i

tends to infinity, and demonstrate an optimal rate

of convergence in the CLT in this case. In the uniform case (pi ≡ m−1) with m and n growing

proportionately, we provide bounds with better asymptotic constants. The proof of the error

bounds is based on Stein’s method via size-biased coupling.
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1 Introduction

Consider the classical occupancy scheme, in which each of n balls is placed independently at random

in one of m urns, with probability pi of going into the ith urn (p1 + p2 + · · · + pm = 1). If Ni

denotes the number of balls placed in the ith urn, then (N1, . . . , Nm) has the multinomial distribution

Mult(n; p1, p2, . . . , pm). A special case of interest is the so-called uniform case where all the pi are

equal to 1/m.

A much-studied quantity is the number of occupied urns, i.e. the sum
∑

i 1{Ni > 0}. This quantity,

scaled and centred, is known to be asymptotically normal as n→∞ in the uniform case with m∝ n,

and a Berry-Esseen bound for the discrepancy from the normal, tending to zero at the optimum rate,

was obtained for the uniform case by Englund [4] (see also [15]), and for the general (nonuniform)

case, with a less explicit error bound, by Quine and Robinson [12]. More recently, Hwang and Jan-

son [8] have obtained a local limit theorem. A variety of applications are mentioned in [8] (‘coupon

collector’s problem, species trapping, birthday paradox, polynomial factorization, statistical linguis-

tics, memory allocation, statistical physics, hashing schemes and so on’), and further applications

of the occupancy scheme are listed in Feller (Section 1.2 of [5]) and in Gnedin et al. [6]. Also

noteworthy are the monographs by Johnson and Kotz [9] and by Kolchin et al. [10]; the latter is

mainly concerned with models of this type, giving results for a variety of limiting regimes for the

growth of m with n (in the uniform case) and also in some of the non-uniform cases. There has also

been recent interest in the case of infinitely many urns with the probabilities pi independent of n

[1; 6].

In this paper we consider the number of isolated balls, that is, the sum
∑

i 1{Ni = 1}. This quantity

seems just as natural an object of study as the number of occupied urns, if one thinks of the model in

terms of the balls rather than in terms of the urns. For example, in the well-known birthday paradox,

this quantity represents the number of individuals in the group who have a unique birthday.

We mention some other applications where the number of isolated balls could be of particular in-

terest. If the balls represent individuals and the urns represent their classification in a database

according to certain characteristics (see [6]), then the number of isolated balls represents the num-

ber of individuals which can be identified uniquely from their classification. If the balls represent

particles or biological individuals, and the urns represent their spatial locations, each particle occu-

pying one of m locations chosen at random, and if two or more particles sharing the same location

annihilate one another, then the number of isolated balls is the number of surviving particles. If the

balls represents the users of a set of communications channels at a given instant (these could be

physical channels or wavebands for wireless communications), and each user randomly selects one

of m available channels, and two or more attempted uses of the same channel interfere with each

other and are unsuccessful, then the number of isolated balls is the number of successful users.

In the uniform case, we obtain an explicit Berry-Esseen bound for the discrepancy of the number of

isolated balls from the normal, tending to zero at the optimum rate when m∝ n. In the non-uniform

case we obtain a similar result with a larger constant, also giving upper and lower bounds which

show that the variance of the number of isolated balls is Θ(n2
∑

i p2
i ). Together, these results for the

non-uniform case show that provided n maxi{pi} is bounded, a central limit theorem for the number

of isolated balls holds if and only if n2
∑

i p2
i tends to infinity, and give the rate of convergence to

the normal for this case. The proof of the variance bounds, in Section 5, is based on martingale

difference techniques and somewhat separate from the other arguments in the paper.

Our Berry-Esseen results for the number of isolated balls are analogous to the main results of [4] (in
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the uniform case) and [12] (in the non-uniform case) for the number of occupied urns. Our proofs,

however, are entirely different. We adapt a method used recently by Goldstein and Penrose [7] for

a problem in stochastic geometry (Theorem 2.1 of [7]). A more distantly related method has been

used previously for Poisson approximation in the occupancy scheme; see Barbour et al. [2], pages

11 and 115.

Our method does not involve either characteristic functions, or first Poissonizing the total number

of balls; in this, it differs from most of the approaches adopted in the past for normal approximation

in occupancy-type schemes. As remarked in [8] ‘almost all previous approaches rely, explicitly or

implicitly, on the widely used Poissonization technique’, and this remark also applies to [8] itself.

One exception is Chatterjee [3], who uses a method not involving Poissonization to give an error

bound with the optimal rate of decay (with unspecified constant) for the Kantorovich-Wasserstein

distance (rather than the Kolmogorov distance, as here) between the distribution of the number of

occupied urns and the normal, in the uniform case.

We believe that our approach can be adapted to the number of urns containing k balls, for arbitrary

fixed k, but these might require significant amounts of extra work, so we restrict ourselves here to

the case with k = 1.

Our approach is based on size-biased couplings. Given a nonnegative random variable W with finite

mean µ = EW , we say W ′ has the W size biased distribution if P[W ′ ∈ dw] = (w/µ)P[W ∈ dw],

or more formally, if

E [W f (W )] = µE f (W ′) for bounded continuous functions f . (1.1)

Lemma 3.1 below tells us that if one can find coupled realizations of W and W ′ which are in some

sense close, then one may be able to find a good Berry-Esseen bound for W . It turns out that this

can be done for the number of non-isolated balls.

2 Results

Let n ∈ N and m= m(n) ∈ N with m≥ 4. Let p(n) = (p(n)x , 1≤ x ≤ m) be a probability mass function

on [m] := {1,2, . . . , m}, with p(n)x > 0 for all x ∈ [m]. Let X and X i , 1 ≤ i ≤ n be independent

and identically distributed random variables with probability mass function p= p(n) (we shall often

suppress the superscript (n)). Define Y = Y (n) by

Mi :=−1+

n
∑

j=1

1{X j = X i}; Y :=

n
∑

i=1

1{Mi > 0}. (2.1)

In terms of the urn scheme described in Section 1, the probability of landing in Urn x is px for each

ball, X i represents the location of the ith ball, Mi represents the number of other balls located in the

same urn as the ith ball, and Y represents the number of non-isolated balls, where a ball is said to

be isolated if no other ball is placed in the same urn as it is. Thus n− Y is the number of isolated

balls, or in other words, the number of urns which contain a single ball.

Let Z denote a standard normal random variable, and let Φ(t) := P[Z ≤ t] =

(2π)−1/2
∫ t

−∞ exp(−x2/2)d x . Given any random variable W with finite mean µW and standard
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deviation σW satisfying 0< σW <∞, define

DW := sup
t∈R

�

�

�

�

P

�

W −µW

σW

≤ t

�

−Φ(t)
�

�

�

�

,

the so-called Kolmogorov distance between the distribution of W and the normal. We are concerned

with estimating DY (which is equal to Dn−Y ).

We refer to the case where px = m−1 for each x ∈ [m] as the uniform case. Our main result for

the uniform case provides a normal approximation error bound for Y , which is explicit modulo

computation of µY and σY , and goes as follows.

Theorem 2.1. In the uniform case, if σ3
Y ≥ 24µY , then

DY ≤
�

µY

5σ2
Y

�
 
r

44

σY

+ 5
p

η(n, m) +
4
p
σY

!2

(2.2)

≤
�

µY

σ2
Y

�
�

24

σY

+ 2
p

η(n, m)

�

(2.3)

with

η(n, m) :=
16

n
+

4

n(n− 1)
+

24

m

�

2+
n

m− 3
+

n

m

�

(2.4)

For asymptotics in the uniform case, we allow m= m(n) to vary with n. We concentrate on the case

where m = Θ(n). (recall that an = Θ(bn) means an/bn is bounded away from zero and infinity).

In this case both µY and σ2
Y turn out to be Θ(n) as n → ∞, and thus Theorem 2.1 implies DY is

O(n−1/2) in this regime. More formally, we have the following.

Theorem 2.2. Suppose n, m both go to infinity in a linked manner, in such a way that n/m → α ∈
(0,∞). Then with g(α) := (e−α − e−2α(α2 − α+ 1))1/2, we have in the uniform case that g(α) > 0

and

lim sup
n→∞

n1/2DY ≤
�

1− e−α

5g(α)2

�




r

44

g(α)
+ 20

p

1+ 3α(1+α) +
4

p

g(α)





2

(2.5)

≤
�

1− e−α

g(α)2

�
�

24

g(α)
+ 8
p

1+ 3α(1+α)

�

. (2.6)

In the case α = 1, the right hand side of (2.5), rounded up to the nearest integer, comes to 172.

Theorems 2.1 and 2.2 are proved in Section 4.

We now state our results for the general (non-uniform) case. Given n we define the parameters

‖p‖ := sup
x∈[m]

(px); γ= γ(n) :=max(n‖p‖, 1). (2.7)

For the large-n asymptotics we essentially assume that γ(n) remains bounded, or at least grows only

slowly with n; see Corollary 2.1 below. First we give a non-asymptotic result.
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Theorem 2.3. It is the case that

DY ≥min
�

1/6, (8πe)−1/2σ−1
�

, (2.8)

and if

‖p‖ ≤ 1/11 (2.9)

and also

n≥ 83γ2(1+ 3γ+ 3γ2)e1.05γ, (2.10)

then

DY ≤ 1633γ2e2.1γ
�
p

99+ 5C(γ) + 6
�2

σ−1
Y , (2.11)

with

C(γ) := 10(82γ7+ 82γ6+ 80γ5+ 47γ4+ 12γ3+ 12γ2)1/2. (2.12)

It is of use in proving Theorem 2.3, and also of independent interest, to estimate the variance σ2
Y in

terms of the original parameters (px , x ∈ [m]), and our next result does this. Throughout, we write
∑

x for
∑m

x=1.

Theorem 2.4. It is the case that

VarY ≤ 8n2
∑

x

p2
x , (2.13)

and if (2.9) and (2.10) hold, then

VarY ≥ (7776)−1γ−2e−2.1γn2
∑

x

p2
x . (2.14)

If γ(n) remains bounded, i.e. supn γ(n) <∞. then both (2.9) and (2.10) hold for large enough n.

Hence, the following asymptotic result is immediate from Theorems 2.3 and 2.4. This result gives

us, for cases with γ(n) bounded, necessary and sufficient conditions in terms of the parameters px

for a central limit theorem to hold, and gives the rate of convergence of DY to zero when it does

hold.

Corollary 2.1. Suppose supn γ(n)<∞. Then the following three conditions are equivalent:

• n2
∑

x p2
x →∞ as n→∞ ;

• σY →∞ as n→∞ ;

• (Y −EY )/σY converges in distribution to Z as n→∞.

If these conditions hold, then

DY = Θ(σ
−1
Y ) = Θ







 

n2
∑

x

p2
x

!−1/2




 .
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Remarks. In the uniform case, Theorem 2.2 provides an alternative proof of the central limit theorem

for Y when m= Θ(n) (see Theorem II.2.4 on page 59 of [10]), with error bounds converging to zero

at the optimum rate. Corollary 2.1 shows that in the uniform case, if n2/m→∞ and n/m remains

bounded, then DY = Θ((n
2/m)−1/2). Corollary 2.1 overlaps Theorem III.5.2 on page 147 of [10]

but is under weaker conditions than those in [10], and provides error bounds not given in [10].

Mikhailov [11] previously provided error bounds for the non-uniform case which were non-optimal

(for example, O(n−1/12) when
∑

x p2
x =Θ(n

−1)).

The condition that γ(n) remain bounded, in Corollary 2.1, is also required by [12] for the analogous

Berry-Esseen type result for the number of occupied boxes, though not by [8] for the local limit

theorem for that quantity. In (2.9), which is used for the non-asymptotic bounds, the bound of 1

11

could be replaced by any constant less than 1

3
without changing anything except the constants in

(2.11) and (2.14).

As always (see remarks in [8], [13], [1], and for the uniform case [15]), it might be possible to

obtain similar results to those presented here by other methods. However, to do so appears to be a

non-trivial task, particularly in the non-uniform case. In [10] the count of the number of isolated

balls is treated separately, and differently, from the count of occupied urns or the count of urns with

k balls, k = 0 or k ≥ 2. Poisson approximation methods might be of use in some limiting regimes

(see [2], Chapter 6), but not when the ratio between E [Y ] and Var[Y ] remains bounded but is not

asymptotically 1, which is typically the case here.

Exact formulae can be written down for the probability mass function and cumulative distribution

function of Y . For example, using (5.2) on page 109 of [5], the cumulative distribution of Y may

be written as

P[Y ≤ n− k] = P[n− Y ≥ k] =

m
∑

j=k

(−1) j−k

�

j − 1

k− 1

�

S j

with S j a sum of probabilities that j of the urns contain one ball each, i.e.

S j =
∑

x1<x2<···<x j≤m

n!

(n− j)!
px1
· · · px j

 

1−
j
∑

i=1

px i

!n− j

.

We shall not use this formula in obtaining our normal approximation results.

3 Lemmas

A key tool in our proofs is the following result.

Lemma 3.1. Let W ≥ 0 be a random variable with mean µ and variance σ2 ∈ (0,∞), and let W s

be defined on the same sample space, with the W-size biased distribution. If |W s −W | ≤ B for some

B ≤ σ3/2/
p

6µ, then

DW ≤
µ

5σ2





r

11B2

σ
+ 5∆+

2B
p
σ





2

(3.1)

≤
2µ

σ2

�

3B2

σ
+∆

�

(3.2)
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where

∆ :=
p

Var(E (W s −W |W )). (3.3)

Proof. The bound (3.1) is given as Lemma 3.1 of [7], where it is proved via Stein’s method. The

simpler bound (3.2) follows by applying the inequality x2+ y2 ≤ 2(x2+ y2), valid for all real x , y .

Our next lemma is concerned with the construction of variables with size-biased distributions.

Lemma 3.2. Suppose Y is a random variable given by Y = aP[A|F ], where F is some σ-algebra,

a > 0 is a constant, and A is an event with 0< P[A]< 1. Then Y ′ has the Y size biased distribution if

L (Y ′) =L (Y |A).

Proof. See Lemma 4.1 of [7].

Let Bin(n, p) denote the binomial distribution with parameters n ∈ N and p ∈ (0,1). The following

lemma will be used for constructing the desired close coupling of our variable of interest Y , and its

size biased version Y ′, so as to be able to use Lemma 3.1.

Lemma 3.3. Let ν ∈ N and p ∈ (0,1). Suppose N ∼ Bin(ν , p). Define πk for k = 0,1,2, . . . ,ν , by

πk :=

¨

P[N>k|N>0]−P[N>k]

P[N=k](1−(k/ν)) if 0≤ k ≤ ν − 1

0 if k = ν .
(3.4)

Then 0≤ πk ≤ 1 for each k ∈ {0,1, . . . ,ν}.

Proof. See Lemma 3.3 of [7].

Our next lemma is a bound on correlations between variables associated with different balls in the

urn model. Recall the definition of Mi at (2.1)

Lemma 3.4. Let k ∈ N with 2 ≤ k ≤ n, and suppose that for i = 1, . . . , k, ψi is a real-valued

function defined on {0} ∪ [n− 1], with E [ψ1(M1)] = 0, and set ‖ψi‖ := supℓ∈[n]{|ψi(ℓ− 1)|} and

rng(ψi) := supℓ∈[n]{ψi(ℓ− 1)} − infk∈[n]{ψi(ℓ− 1)}. Then in the uniform case,

�

�

�

�

�

E





k
∏

i=1

ψi(Mi)





�

�

�

�

�

≤
k− 1

m

 

k
∏

i=2

‖ψi‖
!

rng(ψ1)

�

2+

�

n

m− k+ 1

�

+
n

m

�

.

Proof. Set W :=
∏k

i=1ψi(Mi). Write X(k) for (X1, . . . , Xk) and x for k-vectors x = (x1, . . . , xk) of

possible values of X(k). Let F be the set of vectors x= (x1, . . . , xk) such that x1 6= x j for j = 2, . . . , k,

so that {X(k) ∈ F} is the event that each of Balls 2, . . . , k lands in a different urn from Ball 1. Then

P[X(k) ∈ F c]≤ (k− 1)/m, and |W | ≤
∏k

i=1 ‖ψi‖, so that

|EW |=

�

�

�

�

�

E[W |X(k) ∈ F c]P[X(k) ∈ F c] +
∑

x∈F

P[X(k) = x]E [W |X(k) = x]

�

�

�

�

�

≤ ((k− 1)/m)

k
∏

i=1

‖ψi‖+ sup
x∈F

|E [W |X(k) = x]|. (3.5)
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Fix x ∈ F . We group the urns into three ‘boxes’. Let Box 1 consist of the urn containing Ball 1, and

let Box 2 be the union of the urns containing Balls 2,3, . . . , k; this could be the union of any number

up to k−1 of urns depending on how many of x2, x3, . . . , xk are distinct, but since we assume x ∈ F ,

Box 2 does not overlap Box 1. Let Box 3 consist of all other urns except those in Box 1 or Box 2. For

i = 1,2,3, let Ni be the number of balls in Box i, other than Balls 1, . . . , k. Let h(ℓ) be the expected

value of
∏k

i=2ψi(Mi), given X(k) = x and given that N2 = ℓ. Let Px and E x denote conditional

probability and conditional expectation, given that X(k) = x. Then

E x [W] = E x[E x[W |N1, N2]]

= E x



ψ1(N1)E x





k
∏

i=2

ψi(Mi)|N1, N2









= E x[ψ1(N1)h(N2)] (3.6)

where the last line follows because E x

h

∏k

i=2ψi(Mi)|N1, N2

i

depends on (N1, N2) only through N2.

Also, given X(k) = x, (Ni)
3
i=1 have the multinomial distribution

�

N1, N2, N3

�

∼Mult

�

n− k;
1

m
,

a

m
, 1−

1+ a

m

�

, (3.7)

and a denotes the number of distinct values taken by x2, . . . , xk.

We give a coupling of N1 to another random variable N ′1 with the same distribution as M1 that is

independent of N2, for which we can give a useful bound on P[N1 6= N ′1]. The idea here is that the

distribution of N1, given N2 = j, is obtained from throwing n−k− j balls conditioned to avoid Box 2;

this conditioning can be effected by re-throwing those balls which land in Box 2. Hence N1 with this

conditioned distribution, coupled to N ′1 with the unconditioned distribution of M1 can be obtained

by first throwing n− k− j balls, then throwing j + k− 1 extra balls to get N ′1, and re-throwing the

balls which landed in Box 2 (and ignoring the extra balls) to get N1.

To give this coupling in more detail, we imagine a colouring scheme. Consider throwing a series of

coloured balls so each ball can land in one of the three boxes, where the probabilities of landing

in Boxes 1,2,3 are 1/m, a/m, (m− a − 1)/m respectively. First, throw n− k white balls and let

N ∗1 , N2, N ∗3 be the number of white balls in Boxes 1,2,3 respectively. Then pick out the balls in

Boxes 1 and 3, paint them red, and throw them again. Then throw enough green balls so the

total number of green and red balls is n − 1. Finally take the red balls in Box 2 (of which there

are N0, say), paint them blue, and throw them again but condition them to land in Boxes 1 and 3

(or equivalently, throw each blue ball again and again until it avoids Box 2). Then (with obvious

notation, superscripts denoting colours) set

N1 = N r
1 + N b

1 , N3 = N r
3 + N b

3 , N ′1 = N r
1 + N

g

1 .

Then (N1, N2, N3) have the multinomial distribution given by (3.7). Also, N ′1 has the same Bin(n−
1, 1

m
) as M1 in the statement of the lemma, and N ′1 is independent of N2. Since N ′1 = N1− N b

1 + N
g

1 ,

we have that

Px[N1 6= N ′1]≤ E x[N
g

1 ] +E x[N
b
1 ]

≤
1

m

�

k− 1+E xN2

�

+

�

1/m

1− (k− 1)/m

�

E x[N0]

≤
1

m

�

k− 1+ (k− 1)n/m+

�

1

1− (k− 1)/m

�

(k− 1)n/m

�
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so that

�

�E x[(ψ1(N1)−ψ1(N
′
1))h(N2)]

�

�≤ Px[N1 6= N ′1]rng(ψ1)

k
∏

i=2

‖ψi‖

≤
k− 1

m

��

m+ n

m

�

+

�

n

m− k+ 1

�
�

rng(ψ1)

4
∏

i=2

‖ψi‖

and since N ′1 is independent of N2 with the same distribution as M1 (for any x), so that E xψ1(N
′
1) =

Eψ1(M1) = 0 by assumption,

E x[ψ1(N
′
1)h(N2)] = 0,

so by (3.6),

�

�

�E

�

W |X(k) = x
�

�

�

�≤
k− 1

m

��

m+ n

m

�

+

�

n

m− k+ 1

�
�

rng(ψ1)

4
∏

i=2

‖ψi‖.

Combined with (3.5), and the fact that ‖ψ1‖ ≤ rng(ψ1) since E [ψ1(M1)] = 0, this demonstrates

the result.

Next, we adapt Lemma 3.4 to the non-uniform setting. In this case, we need to allow ψi to depend

on the location as well as the occupation number associated with the ith ball. Consequently, some

modification of the proof is required, and the constants in Lemma 3.4 are better than those which

would be obtained by simply applying the next lemma to the uniform case.

Lemma 3.5. Suppose that for i = 1,2,3,4, ψi is a real-valued function defined on [m]×{0,1, . . . , n−
1}, with E [ψ1(X1, M1)] = 0, set ‖ψi‖ := sup(x ,k)∈[m]×[n]{|ψi(x , k − 1)|} and set rng(ψi) :=

sup(x ,k)∈[m]×[n]{|ψi(x , k− 1)|} − inf(x ,k)∈[m]×[n]{|ψi(x , k− 1)|}. Assume (2.9) holds. Then

�

�E
�

ψ1(X1, M1)ψ2(X2, M2)
�
�

�≤ (3+ 3γ)rng(ψ1)‖ψ2‖
∑

x

p2
x (3.8)

and
�

�

�

�

�

E





4
∏

i=1

ψi(X i , Mi)





�

�

�

�

�

≤
�

9+ 9γ
�

rng(ψ1)

 

4
∏

i=2

‖ψi‖
!

∑

x

p2
x . (3.9)

Proof. We first prove (3.9). Throw n balls according to the distribution p, with four of them distin-

guished as Ball 1, Ball 2, Ball 3 and Ball 4. For i = 2,3,4, let Zi be the location of Ball i and let Ni

be the number of other balls in the same urn as Ball i. Set A= ∪4
i=2
{Zi}, the union of the locations

of Balls 2,3, and 4.

We shall give a construction of coupled random variables (Z1, N1, Z ′1, N ′1) such that ((Zi, Ni)
4
i=1
) have

the same joint distribution as ((X i, Mi)
4
i=1
) and (Z ′1, N ′1) has the same distribution as (X1, M1) and

is independent of ((Zi, Ni)
4
i=2
), and such that (Z1, N1) is close to (Z ′1, N ′1) in probability. To do this,

given the values of (Zi , Ni)
4
i=2

we shall arrange for (Z1, N1) to have the conditional distribution of

(X1, M1) given (X i , Mi)
4
i=2
= (Zi, Ni)

4
i=2

, while (Z ′1, N ′1) will have the unconditioned distribution of

(X1, M1). Similarly to before, this is done, if initially there are 3 + j balls in A, by first throwing

2164



n−3− j balls, then re-throwing those balls which land in A (to get the conditional distribution) and

throwing 3+ j extra balls (to get the unconditional distribution). Again we explain in more detail

via a colouring scheme.

Suppose the balls in A are painted white. Let the balls not in A (including Ball 1 if it is not in A)

be re-thrown (again, according to the distribution p). Those which land in A when re-thrown are

painted yellow, and the others are painted red.

Now introduce one green ball for each white ball, and if Ball 1 is white, let one of the green balls be

labelled Ball G1. Throw the green balls using the same distribution p. Also, introduce a number of

blue balls equal to the number of yellow balls, and if Ball 1 is yellow then label one of the blue balls

as Ball B1. Throw the blue balls, but condition them to avoid A; that is, use the probability mass

function (px/(1−
∑

y∈A py), x ∈ [m] \ A) for the blue balls.

Set Z1 to be the location of Ball 1 (if it is white or red) or Ball B1 (if Ball 1 is yellow). Set Z ′1 to be

the location of Ball 1, if it is red or yellow, or the location of Ball G1 (if Ball 1 is white). Let N w
1 , N r

1 ,

and N b
1 respectively denote the number of white, red, and blue balls at location Z1, not counting

Ball 1 or Ball B1 itself. Let N
y

1 , N r
1 , and N

g

1 respectively denote the number of yellow, red, and green

balls at location Z ′1, not counting Ball 1 or Ball G1 itself. Set

N1 = N w
1 + N r

1 + N b
1 , N ′1 = N

y

1 + N r
1 + N

g

1 .

Then ((Zi, Ni)
4
i=1
) have the same joint distribution as ((X i, Mi)

4
i=1
). Also, (Z ′1, N ′1) has the same

distribution as (X1, M1) and (Z ′1, N ′1) is independent of ((Zi, Ni)
4
i=2
). Finally, if Ball 1 is red then

Z1 = Z ′1 and N ′1 = N1− N b
1 + N

g

1 , so that

P[(Z1, N1) 6= (Z ′1, N ′1)]≤ E [N
g

1 ] +E [N
b
1 ] + 2P[Z ′1 ∈ A]. (3.10)

Now,

P[Z ′1 ∈ A]≤
4
∑

i=2

P[X1 = X i] = 3
∑

x

p2
x . (3.11)

Also, if Ng denotes the number of green balls, not including Ball G1 if Ball 1 is green, then by (2.7),

E [Ng]≤ 3+ 3n‖p‖ ≤ 3(1+ γ)

and also E [N
g

1 |Ng]≤ Ng

∑

x p2
x , so that

E [N
g

1 ] = E [E [N
g

1 |Ng]]≤ 3(1+ γ)
∑

x

p2
x . (3.12)

If Ny denotes the number of yellow balls, other than Ball 1, then by (2.7),

E [Ny]≤ 3n‖p‖ ≤ 3γ (3.13)

and by (2.9),

E [N b
1 |Ny]≤ Ny

∑

x

�

px

1− 3‖p‖

�2

≤ 2Ny

∑

x

p2
x ,

2165



so that

E [N b
1 ] = E [E [N

b
1 |Ny]]≤ 6γ

∑

x

p2
x . (3.14)

Set U :=
∏4

i=2ψi(Zi, Ni). By (3.10), (3.11), (3.12) and (3.14),

�

�E [U(ψ1(Z1, N1)−ψ1(Z
′
1, N ′1))]

�

�≤ P[(Z1, N1) 6= (Z ′1, N ′1)]rng(ψ1)

4
∏

i=2

‖ψi‖

≤ (9+ 9γ)rng(ψ1)

 

4
∏

i=2

‖ψi‖
!

∑

x

p2
x . (3.15)

Since (Z ′1, N ′1) is independent of ((Zi, Ni)
4
i=2
) with the same distribution as (X1, M1), and

Eψ1(X1, M1) = 0 by assumption, E [Uψ1(Z
′
1, N ′1)] = 0. Hence,

E





4
∏

i=1

ψi(X i, Mi)



= E
�

Uψ1(Z1, N1)
�

= E [U(ψ1(Z1, N1)−ψ1(Z
′
1, N ′1))],

and then (3.9) follows by (3.15). The proof of (3.8) is similar, with the factors of 3 replaced by 1 in

(3.11), (3.12) and (3.13).

4 Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Recall the definition (2.1) of Mi and Y . Assume the uniform case, i.e. assume

p = (m−1, m−1, . . . , m−1). Let ξi := 1{Mi > 0} be the indicator of the event that ball i is not iso-

lated. Then Y =
∑n

i=1 ξi , and we claim that a random variable Y ′ with the size-biased distribution

of Y can be obtained as follows. Let I be a discrete uniform random variable over [n], indepen-

dent of X1, . . . , Xn. Given the value of I , let X′ = (X ′1, . . . , X ′n) ∈ [m]n be a random n-vector with

L (X ′1, . . . , X ′n) =L (X1, . . . , Xn|ξI = 1). Set

Y ′ :=
n
∑

i=1

1{∪ j∈[n]\{i}{X ′j = X ′i}}.

Then L (Y ′) = L (Y |ξI = 1) and since Y = nP[ξI = 1|X1, . . . , Xn], the claim follows from Lemma

3.2.

To apply Lemma 3.1 we need to find a random variable Y ′′, coupled to Y , such thatL (Y ′′) =L (Y ′)
and for some constant B we have |Y ′′ − Y | ≤ B (almost surely). To check that L (Y ′′) =L (Y ′), we

shall use the fact that if M ′I denotes the number of entries X ′j of X′ that are equal to X ′I , other than

X ′I itself, then (i) given I and X ′I , M ′I has the distribution of a Bin(n− 1,1/m) variable conditioned

to take a non-zero value, and (ii) given I , X ′I and M ′I , the distribution of X′ is uniform over all

possibilities consistent with the given values of I , X ′I and M ′I .

Define the random n-vector X := (X1 . . . , Xn). We can manufacture a random vector X′′ =
(X ′′1 , . . . , X ′′n ), coupled to X and (we assert) with the same distribution as X′, as follows.

• Sample the random variables (X1, . . . , Xn). Define Mi by (2.1).
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• Sample a value of I from the discrete uniform distribution on [n], independent of X.

• Sample a Bernoulli random variable B with P[B = 1] = πMI
, where (πk, k ≥ 0) is given by

(3.4) with ν = n− 1 and p = m−1. (By Lemma 3.3, 0≤ πk ≤ 1.)

• Sample a value of J from the discrete uniform distribution on [n] \ {I}.

• Define (X ′′1 , . . . , X ′′n ) by

X ′′i =

¨

X I if i = J andB = 1

X i otherwise.

Thus X′′ is obtained from X by changing a randomly selected entry of X to the value of X I , ifB = 1,

and leaving X unchanged ifB = 0.

We claim that L (X′′) = L (X′). To see this define N := MI , and set N ′′ := −1+
∑n

i=1 1{X ′′i = X ′′I }.
Then N has the Bin(n− 1, m−1) distribution, while N ′′ always takes the value either N or N + 1,

taking the latter value in the case whereB = 1 and also XJ 6= X I . Thus for any k ∈ {0,1, . . . , n−1},

P[N ′′ > k] = P[N > k] + P[N = k]πk(1− (k/(n− 1))), (4.1)

so by the definition (3.4) of πk, L (N ′′) = L (N |N > 0). This also applies to the conditional distri-

bution of N ′′ given the values of I and X I .

Given the values of N ′′, I and X ′′I , the conditional distribution of X′′ is uniform over all possibilities

consistent with these given values. Hence, L (X′′) =L (X′). Therefore setting

Y ′′ :=
n
∑

i=1

1{∪ j∈[n]\{i}{X ′′j = X ′′i }},

we have that L (Y ′′) =L (Y ′), i.e. Y ′′ has the size-biased distribution of Y .

The definition of X′′ in terms of X ensures that we always have |Y − Y ′′| ≤ 2 (with equality if

MI = MJ = 0) ; this is explained further in the course of the proof of Proposition 4.1 below. Thus we

may apply Lemma 3.1 with B = 2. Theorem 2.1 follows from that result, along with the following:

Proposition 4.1. It is the case that Var(E [Y ′′− Y |Y ])≤ η(n, m), where η(n, m) is given by (2.4).

Proof. Let G be the σ-algebra generated by X. Then Y is G -measurable. By the conditional variance

formula, as in e.g. the proof of Theorem 2.1 of [7],

Var(E [Y ′′− Y |Y ])≤ Var(E [Y ′′− Y |G ]), (4.2)

so it suffices to prove that

Var(E [Y ′′− Y |G ])≤ η(n, m). (4.3)

For 1≤ i ≤ n, let Vi denote the conditional probability thatB = 1, given X and given that I = i, i.e.

Vi = πMi
.
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Let Ri j denote the increment in the number of non-isolated balls when the value of X j is changed to

X i . Then

E [Y ′′− Y |G ] =
1

n(n− 1)

∑

(i, j):i 6= j

ViRi j

where
∑

(i, j):i 6= j denotes summation over pairs of distinct integers i, j in [n].

For 1≤ i ≤ n and j 6= i, let

Si := 1{Mi = 0}; Ti := 1{Mi = 0} − 1{Mi = 1};
Q i j := 1{Mi = 1}1{X i = X j}.

Then we assert that Ri j , the increment in the number of non-isolated balls when ball j is moved to

the location of ball i, is given by Ri j := Si + T j +Q i j . Indeed, if X i 6= X j then Si is the increment

(if any) due to ball i becoming non-isolated, while T j is the increment (if any) due either to ball

j becoming non-isolated, or to another ball at the original location of ball j becoming isolated

when ball j is moved to the location of ball i. The definition of Q i j ensures that if X i = X j then

Si + T j +Q i j = 0. Thus,

E [Y ′′− Y |G ] =
1

n(n− 1)

∑

(i, j):i 6= j

Vi(Si + T j +Q i j)

=
1

n

n
∑

i=1

Viτi +
1

n(n− 1)

∑

(i, j):i 6= j

Vi T j , (4.4)

where we set

τi := Si +

�

1

n− 1

�

∑

j: j 6=i

Q i j = 1{Mi = 0}+
�

1

n− 1

�

1{Mi = 1}. (4.5)

Put a := E [Vi] (this expectation does not depend on i). Then by (4.4),

E [Y ′′− Y |G ] =
1

n

n
∑

i=1

�

Viτi + aTi

�

+
∑

(i, j):i 6= j

(Vi − a)T j

n(n− 1)
.

Since (x + y)2 ≤ 2(x2+ y2) for any real x , y , it follows that

Var
�

E [Y ′′− Y |G ]
�

≤ 2Var

 

1

n

n
∑

i=1

�

Viτi + aTi

�

!

+2Var
∑

(i, j):i 6= j

(Vi − a)T j

n(n− 1)
. (4.6)

From the definitions, the following inequalities hold almost surely:

− 1≤ Ti ≤ 1; 0≤ Vi ≤ 1; 0≤ τi ≤ 1; (4.7)

and hence

− 1≤ Vi − a ≤ 1; − 1≤ (Vi − a)T j ≤ 1; − 1≤ Viτi + aTi ≤ 2. (4.8)
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Set Zi := Viτi+aTi , and Z̄i := Zi−E Zi . By (4.8), VarZ1 ≤ E Z2
1 ≤ 4. Also by (4.8), we have |Z̄i | ≤ 3,

and −1−E Zi ≤ Z̄i ≤ 2−E Zi . Hence by the case k = 2 of Lemma 3.4,

Cov(Z1, Z2) = E [Z̄1 Z̄2]≤
9

m

�

2+

�

n

m− 1

�

+
n

m

�

.

Thus for the first term in the right hand side of (4.6), we have

Var

 

1

n

n
∑

i=1

Zi

!

= n−1Var(Z1) +

�

n− 1

n

�

Cov(Z1, Z2)

≤
4

n
+

9

m

�

2+

�

n

m− 1

�

+
n

m

�

. (4.9)

For the second term in the right hand side of (4.6), set V̄i := Vi − a. By (4.7), −a ≤ V̄i ≤ 1− a, and

|Ti | ≤ 1. Hence by the case k = 4 of Lemma 3.4,

Cov(V̄1T2, V̄3T4)≤ E [V̄1T2V̄3T4]≤
3

m

�

2+

�

n

m− 3

�

+
n

m

�

.

By (4.8), we can always bound Cov(V̄i T j , V̄i′T j′) by 1. Hence, expanding Var
∑

(i, j):i 6= j V̄i T j in the

same manner as with (6.25) below, yields

Var
∑

(i, j):i 6= j

V̄i T j

n(n− 1)
≤

3

m

�

2+

�

n

m− 3

�

+
n

m

�

+
4

n
+

2

n(n− 1)
.

Using this with (4.6) and (4.9) yields

Var
�

E [Y ′′− Y |G ]
�

≤
16

n
+

4

n(n− 1)
+

24

m

�

2+
n

m− 3
+

n

m

�

.

This completes the proof of Proposition 4.1, and hence of Theorem 2.1.

Proof of Theorem 2.2. Suppose n, m both go to infinity in a linked manner, in such a way that

n/m → α ∈ (0,∞). Then it can be shown (see e.g. Theorem II.1.1 on pages 37-38 of [10]) that

EY ∼ n(1− e−α), and

Var(Y )∼ n
�

e−α(1− e−α) + e−2α(α(1−α))
�

= ng(α)2.

Substituting these asymptotic expressions into (2.2) and (2.3) and using the fact that in this asymp-

totic regime,
�

nη(n, m)
�

→ 16+ 24α(2+ 2α), yields (2.5) and (2.6).

5 The non-uniform case: proof of Theorem 2.4

For this proof, we use the following notation. Given n, m, and the probability distribution p on [m],

let X1, X2, . . . , Xn+1 be independent [m]-valued random variables with common probability mass

function p. Given i ≤ j ≤ n+ 1, set X j := (X1, . . . , X j) and

X j\i :=







(X1, X2, . . . , X i−1, X i+1, . . . , X j) if 1< i < j

(X2, . . . , X j) if i = 1

(X1, . . . , X j−1) if i = j.
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Given any sequence x= (x1, . . . , xk), set

H(x) =

k
∑

i=1





1−
∏

j∈[k]\{i}
(1− 1{x j = x i})





 , (5.1)

which is the number of non-isolated entries in the sequence x, so that in particular, Y = H(Xn). We

shall use the following consequence of Jensen’s inequality: for all k ∈ N,

(t1+ t2+ · · ·+ tk)
2 ≤ k(t2

1 + · · ·+ t2
k), ∀ (t1, . . . , tk) ∈ Rk. (5.2)

We shall also use several times the fact that −t−1 ln(1− t) is increasing on t ∈ (0,1) so that if (2.9)

holds, then for all x ∈ [m] we have

ln(1− px)≥ 11px ln(10/11)≥ −1.05px (5.3)

whereas (1− e−t)/t is decreasing on t ∈ (0,∞) so that by (2.7), for any α > 0 and x ∈ [m] we have

1− e−αnpx ≥ (1− e−αγ)(npx/γ). (5.4)

Proof of (2.13). We use Steele’s variant of the Efron-Stein inequality [14]. This says, among other

things, that when (as here) X1, . . . , Xn+1 are independent and identically distributed random vari-

ables and H is a symmetric function on Rn,

VarH(X1, . . . , Xn)≤
1

2

n
∑

i=1

E [(H(Xn)− H(X(n+1)\i))
2]

= (n/2)E [(H(Xn)− H(X(n+1)\n))
2].

Hence, by the case k = 2 of (5.2),

VarY ≤ n(E [(H(Xn)− H(Xn−1))
2] +E [(H(X(n+1)\n)− H(Xn−1))

2])

= 2nE [(H(Xn)− H(Xn−1))
2].

With M j defined by (2.1), H(Xn)− H(Xn−1) is equal to 1{Mn ≥ 1}+ 1{Mn = 1}, so is nonnegative

and bounded by 21{Mn ≥ 1}. Therefore,

Var[Y ]≤ 8nP[Mn ≥ 1]≤ 8nEMn ≤ 8n2
∑

x

p2
x .

Proof of (2.14). Construct a martingale as follows. LetF0 be the trivial σ-algebra, and for i ∈ [n] let

Fi := σ(X1, . . . , X i) and write E i for conditional expectation givenFi . Define martingale differences

∆i = E i+1Y −E iY. Then Y −EY =
∑n−1

i=0 ∆i , and by orthogonality of martingale differences,

Var[Y ] =

n−1
∑

i=0

E[∆2
i ] =

n−1
∑

i=0

Var[∆i]. (5.5)

We look for lower bounds for E[∆2
i ]. Note that

∆i = E i+1[Wi], where Wi := H(Xn)− H(X(n+1)\(i+1)). (5.6)
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Recall from (2.1) that for i < n, Mi+1 denotes the number of balls in the sequence of n balls, other

than ball i+1, in the same position as ball i+1. Similarly, define Mn+1 and M i
k

(for k ∈ [n+1]) by

Mn+1 :=
∑

j∈[n]
1{X j = Xn+1}; M i

k
:=

∑

j∈[i]\{k}
1{X j = Xk}, (5.7)

so that Mn+1 is the number of balls, in the sequence of n balls, in the same location as ball n+ 1,

while M i
k

is similar to Mk, but defined in terms of the first i balls, not the first n balls.

Set h0(k) := 1{k ≥ 1}+ 1{k = 1}. Then H(Xn)− H(Xn\(i+1)) = h0(Mi+1), and if Xn+1 6= X i+1 then

H(X(n+1)\(i+1))−H(Xn\(i+1)) = h0(Mn+1), so that Wi = h0(Mi+1)−h0(Mn+1) in this case. For taking

E i+1-conditional expectations, it is convenient to approximate h0(Mi+1) and h0(Mn+1) by h0(M
i
i+1
)

and h0(M
i
n+1) respectively. To this end, define

Zi :=Wi − (h0(M
i
i+1)− h0(M

i
n+1)). (5.8)

Since h0(M
i
i+1
) is Fi+1-measurable, taking conditional expectations in (5.8) yields

h0(M
i
i+1) = E i+1[Wi] +E i+1[h0(M

i
n+1)]−E i+1[Zi]. (5.9)

Set δ := (288γe1.05γ)−1. We shall show that for i close to n, in the sense that n− δn ≤ i ≤ n, the

variances of the terms on the right of (5.9), other than E i+1[Wi], are small compared to the variance

of the left hand side, essentially because E i+1[h0(M
i
n+1)] is more smoothed out than h0(M

i
i+1
), while

P[Zi 6= 0] is small when i is close to n. These estimates then yield a lower bound on the variance of

E i+1[Wi].

First consider the left hand side h0(M
i
i+1
). This variable takes the value 0 when M i

i+1
= 0, and takes

a value at least 1 when M i
i+1
≥ 1. Hence,

Var[h0(M
i
i+1)]≥ (1/2)min(P[M i

i+1 = 0], P[M i
i+1 ≥ 1]). (5.10)

For i ≤ n, by (5.3) and (2.7),

P[M i
i+1 = 0] =

∑

x

px(1− px)
i ≥
∑

x

px(1− px)
n

≥
∑

x

px e−1.05npx ≥ γ−1e−1.05γ
∑

x

np2
x . (5.11)

For i ≥ (1−δ)n we have i ≥ n/2, so by (5.4) and the fact that γ≥ 1 by (2.7),

P[M i
i+1 ≥ 1] =

∑

x

px(1− (1− px)
i)≥

∑

x

px(1− e−npx/2)

≥
∑

x

px(1− e−γ/2)npx/γ≥ (1− e−1/2)γ−1
∑

x

np2
x . (5.12)

Since γ ≥ 1, and e−1.05 < 1− e−0.5, the lower bound in (5.11) is always less than that in (5.12), so

combining these two estimates and using (5.10) yields

Var[h0(M
i
i+1)]≥ (1/2)γ

−1e−1.05γ
∑

x

np2
x , i ∈ [n−δn, n]. (5.13)
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Now consider the second term E i+1[h0(M
i
n+1)] in the right hand side of (5.9). Set N i

x :=
∑i

j=1 1{X j = x}, and for 1 ≤ ℓ ≤ i set M i
ℓ

to be N i
Xℓ
− 1. Also set h̃0(k) = (k + 1)−1h0(k + 1).

Then, since h0(0) = 0, we have that

Var E i+1[h0(M
i
n+1)] = Var

∑

x

pxh0(N
i
x) = Var

i
∑

j=1

pX j
h̃0(M

i
j )

=
i

n2
Var[npX1

h̃0(M
i
1)] +

i(i − 1)

n2
Cov

�

npX1
h̃0(M

i
1), npX2

h̃0(M
i
2)
�

. (5.14)

Suppose i ≤ n. Since 0≤ npX1
h̃0(M

i
1)≤ 2npX1

, (2.7) yields

i

n2
Var[npX1

h̃0(M
i
1)]≤ n−1

E [4n2p2
X1
] = 4n

∑

x

p3
x ≤ 4γ

∑

x

p2
x ,

while by Lemma 3.5 and (2.7),

Cov
�

npX1
h̃0(M

i
1), npX2

h̃0(M
i
2)
�

≤ (3+ 3γ)4γ2
∑

x

p2
x .

Combining the last two estimates on (5.14) and using assumption (2.10) yields

Var(E i+1[h0(M
i
n+1)])≤ (1+ 3γ+ 3γ2)4γ

∑

x

p2
x

≤ (18γe1.05γ)−1n
∑

x

p2
x . (5.15)

We turn to the third term in the right hand side of (5.9). As discussed just before (5.8), when

Xn+1 6= X i+1 we have Wi = h0(Mi+1)− h0(Mn+1), and it is clear from the definitions (5.6) and (5.7)

that if Xn+1 = X i+1 then both Wi and h0(M
i
i+1
)− h0(M

i
n+1) are zero, and therefore by (5.8),

Zi = (h0(Mi+1)− h0(M
i
i+1)− h0(Mn+1) + h0(M

i
n+1))1{Xn+1 6= X i+1}.

By the conditional Jensen inequality,

Var(E i+1[Zi])≤ E [(E i+1[Zi])
2]≤ E [Z2

i ].

The random variable h0(Mn+1)−h0(M
i
n+1) lies in the range [−2,2] and is zero unless X j = Xn+1 for

some j ∈ (i, n]. Similarly, h0(Mi+1)− h0(M
i
i+1
) lies in [−2,2] and is zero unless X j = X i+1 for some

j ∈ (i + 1, n]. Hence, using (5.2) and the definition of δ yields for i ∈ [n− δn, n] that

Var(E i+1[Zi])≤ 2(4P[Mn+1 6= M i
n+1] + 4P[Mi+1 6= M i

i+1])

≤ 16δn
∑

x

p2
x ≤ (18γe1.05γ)−1

∑

x

np2
x . (5.16)

By (5.9) and the case k = 3 of (5.2),

Var[h0(M
i
i+1)]≤ 3(Var(E i+1[Wi]) + Var(E i+1[h0(M

i
n+1)]) + Var(E i+1[Zi])).

2172



Rearranging this and using (5.13), (5.15), and (5.16) yields the lower bound

Var(E i+1[Wi])≥
�

1

6
−

2

18

�

e−1.05γ

γ

∑

x

np2
x =

e−1.05γ

18γ

∑

x

np2
x ,

for i ∈ [n− δn, n]. Since the definition of δ, the condition (2.10) on n and the assumption γ ≥ 1

guarantee that nδ ≥ 2, and since ⌊t⌋ ≥ 2t/3 for t ≥ 2, by (5.5) and (5.6) we have

Var[Y ]≥ ⌊δn⌋(18γe1.05γ)−1n
∑

x

p2
x ≥ (δn)(27γe1.05γ)−1n

∑

x

p2
x

which is (2.14).

6 Proof of Theorem 2.3

Proof of (2.8). Write σ for σY , and for t ∈ R set F(t) := P[(Y −EY )/σ ≤ t]. Set z0 := σ−1(⌊EY ⌋−
EY ), and set z1 := z0+(1−ǫ)/σ, for some ǫ ∈ (0,1). Then since Y is integer-valued, F(z1) = F(z0).

On the other hand, by the unimodality of the normal density,

Φ(z1)−Φ(z0)≥ (1− ǫ)σ−1(2π)−1/2 exp(−1/(2σ2))

so that DY is at least half the expression above. Making ǫ ↓ 0 and using the fact that e−1/(2σ2) ≥ e−1/2

for σ ≥ 1, gives us (2.8) in the case where σ ≥ 1.

When σ < 1, we can take z2 ≤ 0 ≤ z3, with z3 = z2 + 1 and F(z3) = F(z2). By the 68− 95− 99.7

rule for the normal distribution, Φ(z3) − Φ(z2) ≥ 1/3, so DY ≥ 1/6, giving us (2.8) in the case

where σ < 1.

So in Theorem 2.3, the difficulty lies entirely in proving the upper bound in (2.11), under assump-

tions (2.9) and (2.10) which we assume to be in force throughout the sequel. By (2.10) we always

have n≥ 1661.

As before, set h0(k) := 1{k ≥ 1}+ 1{k = 1}. Define for nonnegative integer k the functions

h1(k) := 1− h0(k) = 1{k = 0} − 1{k = 1};
h2(k) := 21{k = 1} − 1{k = 2}; h3(k) := 1{k = 1}.

The function h1(k)may be interpreted as the increment in the number of non-isolated balls should a

ball in an urn containing k other balls be removed from that urn with the removed ball then deemed

to be non-isolated itself. If q = 0 then the ball removed becomes non-isolated so the increment is 1,

while if q = 1 then the other ball in the urn becomes isolated so the increment is −1.

The function h2(k) is chosen so that h2(k) + 2h1(k) (for k ≥ 1) is the increment in the number of

non-isolated balls if two balls should be removed from an urn containing k−1 other balls, with both

removed balls deemed to be non-isolated. The interpretation of h3 is given later.

We shall need some further functions hi which we define here to avoid disrupting the argument later

on. For x ∈ [m] and k ∈ {0} ∪ [n− 1], let πk(x) be given by the πk of (3.4) when ν = n− 1 and
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p = px . With the convention 0 ·π−1(x) := 0 · hi(−1) := 0, define

h4(k, x) :=
kπk−1(x)

n− 1
+
(n− k− 1)πk(x)

n− 1
− 1;

h5(k, x) := πk(x)/(n− 1), h6(k) := kh2(k);

h7(k, x) := h3(k) + h4(k, x)−
k(2+ h4(k, x))h1(k− 1)

n

−
kh5(k, x)(k− 1)h2(k− 1)

n
.

For i = 0,1,2,3,6 define hi(k, x) := hi(k). For each i define

h̃i(k, x) := hi(k+ 1, x)/(k+ 1). (6.1)

Sometimes we shall write h̃i(k) for h̃i(k, x) when i ∈ {0,1,2,3,6}. Define ‖hi‖ := supk,x |hi(k, x)|
and ‖h̃i‖ := supk,x |h̃i(k, x)|.
Now we estimate some of the hi functions. Since π0(x) = 1 we have h4(0, x) = h7(0, x) = 0 for all

x , which we use later. Also, by Lemma 3.3,

− 1≤ h4(k, x)≤ 0 (6.2)

and h7(1, x) = 1+ h4(1, x)(1− n−1)− 2/n so that −1/n ≤ h7(1, x) ≤ 1. Also, since (2.10) implies

n≥ 1661,

h7(2, x) = h4(2, x)(1+ 2n−1)−
4π2(x)

n(n− 1)
+

4

n
∈ [−1,4/n].

Also, h3(3) = h1(2) = 0 so that by (6.2),

h7(3, x) =
6π3(x)

n(n− 1)
+ h4(3, x) ∈ [−1,1],

again since n≥ 1661. For k ≥ 4, h7(k, x) = h4(k, x) ∈ [−1,0]. Thus,

‖h7‖ ≤ 1; ‖h̃7‖ ≤ 1; (6.3)

‖h̃0‖= 2; ‖h5‖ ≤ (n− 1)−1; ‖h6‖= 2. (6.4)

The strategy to prove Theorem 2.3 is similar to the one already used in the uniform case, but the

construction of a random variable with the distribution of Y ′, where Y ′ is defined to have the Y size

biased distribution, is more complicated. As in the earlier case, by Lemma 3.2, if I is uniform over

[n] then the distribution of the sum Y conditional on MI > 0 is the distribution of Y ′. However, in

the non-uniform case the conditional information that MI > 0 affects the distribution of X I . Indeed,

for each i, by Bayes’ theorem

P[X i = x |Mi > 0] =
px(1− (1− px)

n−1)
∑

y py(1− (1− py)
n−1)

=: p̂x . (6.5)

Therefore the conditional distribution of (X1, . . . , Xn), given that Mi > 0, is obtained by sampling X i

with probability mass function p̂ and then sampling {X j , j ∈ [n]\{i}} independently with probability

mass function p, conditional on at least one of them taking the same value as X i . Equivalently,
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sample the value of X i , then Mi according to the binomial Bin(n−1, pX i
) distribution conditioned to

be at least one, then select a subset J of [n] \ {i} uniformly at random from sets of size Mi , let the

values of X j , j ∈ J be equal to X i , and let the values of X j , j /∈ J be independently sampled from

the distribution with the probability mass function of X given that X 6= X i .

Thus a random variable Y ′′, coupled to Y and with the same distribution as Y ′, can be obtained

as follows. First sample X1, . . . , Xn independently from the original distribution p, and set X =

(X1, . . . , Xn); then select I uniformly at random from [n]. Then sample a further random variable

X0 with the probability mass function p̂. Next, change the value of X I to that of X0; next let N

denote the number of other values X j , j ∈ [n] \ {I} which are equal to X0, and let πk = πk(X0) be

defined by (3.4) with ν = n− 1 and p = pX0
. Next, sample a Bernoulli random variable B with

parameter πN , and if B = 1 change the value of one of the X j , j ∈ [n] \ {I} ( j = J , with J sampled

uniformly at random from all possibilities) to X0. Finally, having made these changes, define Y ′′ in

the same manner as Y in the original sum (2.1) but in terms of the changed variables. Then Y ′′ has

the same distribution as Y ′ by a similar argument to that given around (4.1) in the uniform case.

Having defined coupled variables Y, Y ′′ such that Y ′′ has the Y size biased distribution, we wish to

use Lemma 3.1. To this end, we need to estimate the quantities denoted B and ∆ in that lemma.

The following lemma makes a start. Let G be the σ-algebra generated by the value of X, and for

x ∈ [m] let Nx :=
∑n

i=1 1{X i = x} be the number of balls in urn x .

Lemma 6.1. It is the case that

|Y ′′− Y | ≤ 3, a.s. (6.6)

and

E [Y ′′− Y |G ] = 2+

 

∑

x

p̂xh5(Nx , x)n−1
n
∑

i=1

h6(Mi)

!

+

 

∑

x

p̂xh7(Nx , x)

!

−
 

∑

x

p̂xh4(Nx , x)

! 

n−1
n
∑

i=1

h0(Mi)

!

−
2

n

n
∑

i=1

h0(Mi). (6.7)

Proof. We have

E [Y ′′− Y |G ] = E [Y ′′− Y |X] =
∑

x

p̂xE x[Y
′′− Y |X], (6.8)

where E x[·|X] is conditional expectation given the value of X and given also that X0 = x . The

formula for E x[Y
′′− Y |X] will depend on x through the value of Nx and through the value of px .

We distinguish between the cases where I is selected with X I = x (Case I) and where I is selected

with X I 6= x (Case II). If Nx = k, then in Case I the value of N on which is based the probability

πN (x) of importing a further ball to x is k−1 whereas in Case II this value of N is k. The probability

of Case I occurring is k/n.

The increment Y ′′ − Y gets a contribution of h1(Mi) from the moving of Ball i to x in Case II, and

gets a further contribution of h1(M j) + h2(Mi)1{X i = X j} if X j is also imported to x from a location

distinct from x . Finally, if Nx = k the increment gets a further contribution of h3(k) from the fact

that if there is originally a single ball at x , then this ball will no longer be isolated after importing
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at least one of balls I and J to x (note that π0(x) = 1 so we never end up with an isolated ball at

x). Combining these contributions, we have (6.6), and also that for values of X, x with Nx = k,

E x[Y
′′− Y |X] = h3(k) +

kπk−1(x)

n(n− 1)

∑

{ j:X j 6=x}
h1(M j) + n−1

∑

{i:X i 6=x}
h1(Mi)

+
πk(x)

n(n− 1)

∑

(i, j):i 6= j,X i 6=x ,X j 6=x

(h1(M j) + h2(Mi)1{X i = X j})

where in the right hand side, the first sum comes from Case I and the other two sums come from

Case II. Hence, if Nx = k then

E x[Y
′′− Y |X] = h3(k) +







πk(x)

n(n− 1)

∑

{i:X i 6=x}
Mih2(Mi)







+

�

kπk−1(x)

n(n− 1)
+

1

n
+
(n− k− 1)πk(x)

n(n− 1)

�

∑

{ j:X j 6=x}
h1(M j)

= h3(k) +
2+ h4(k, x)

n

  

n
∑

i=1

h1(Mi)

!

− kh1(k− 1)

!

+
h5(k, x)

n

  

n
∑

i=1

h6(Mi)

!

− kh6(k− 1)

!

= 2+ h7(k, x)−
 

h4(k, x)

n

n
∑

i=1

h0(Mi)

!

−
 

2

n

n
∑

i=1

h0(Mi)

!

+
h5(k, x)

n

n
∑

i=1

h6(Mi).

Then by (6.8) we have (6.7).

The next lemma is based on the observation that since h4(0, x) = h7(0, x) = 0, two of the sums of

the form
∑

x in (6.7) are over non-empty urns so can be expressed as sums over the balls, i.e. of the

form
∑n

i=1. We need further notation. Set ξi := p̂X i
h̃4(Mi, X i), and T j := h0(M j). Set b := E [T j]

(this does not depend on j), and T̄ j := T j − b. Again write
∑

(i, j):i 6= j for
∑n

i=1

∑

j∈[n]\{i}.

Lemma 6.2. It is the case that

Var(E [Y ′′− Y |Y ])≤ 12(n− 1)−2+ 3n−2Var







∑

(i, j):i 6= j

ξi T̄ j







+3Var

n
∑

i=1

([h̃7(Mi, X i)− (1− n−1)bh̃4(Mi , X i)]p̂X i

−[n−1h0(Mi)(2+ p̂X i
h̃4(Mi , X i))]). (6.9)
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Proof. As in Section 4, (4.2) holds here too. So it suffices to prove (6.9) with the left hand side

replaced by Var(E [Y ′′− Y |G ]). Set

ρ(X) := 2+
∑

x

p̂xh5(Nx , x)n−1
n
∑

i=1

h6(Mi). (6.10)

Using (6.1), we reformulate the sums in (6.7) as follows. Since h7(0, x) = 0,

∑

x

p̂xh7(Nx , x) =

n
∑

i=1

p̂X i

�

h7(Mi + 1, X i)

(Mi + 1)

�

=

n
∑

i=1

p̂X i
h̃7(Mi , X i). (6.11)

Similarly,
∑

x p̂xh4(Nx , x) =
∑n

i=1 p̂X i
h̃4(Mi, X i) so that

 

∑

x

p̂xh4(Nx , x)

!

n−1
n
∑

i=1

h0(Mi) =

 

n−1
n
∑

i=1

p̂X i
h̃4(Mi , X i)h0(Mi)

!

+n−1
∑

(i, j):i 6= j

p̂X i
h̃4(Mi , X i)h0(M j). (6.12)

Substituting (6.10), (6.11) and (6.12) into (6.7) gives

E [Y ′′− Y |G ] =
 

n
∑

i=1

p̂X i
h̃7(Mi , X i)

!

−
 

n
∑

i=1

h0(Mi)

n
(2+ p̂X i

h̃4(Mi , X i))

!

+ρ(X)− n−1
∑

(i, j):i 6= j

p̂X i
h̃4(Mi, X i)h0(M j). (6.13)

The last sum in (6.13) can be rewritten as follows:

∑

(i, j):i 6= j

ξi T j =
∑

(i, j):i 6= j

�

bξi + ξi(T j − b)
�

= (n− 1)

 

n
∑

i=1

bξi

!

+
∑

(i, j):i 6= j

ξi T̄ j .

Substituting into (6.13) yields

E [Y ′′− Y |G ] = ρ(X)−





n−1
∑

(i, j):i 6= j

ξi T̄ j





+

n
∑

i=1

(p̂X i
h̃7(Mi, X i)

−(1− n−1)bp̂X i
h̃4(Mi , X i)− [n−1h0(Mi)(2+ p̂X i

h̃4(Mi, X i))]).

By (6.10) and (6.4), |ρ(X)− 2| ≤ 2(n− 1)−1, so that Var(ρ(X)) ≤ 4(n− 1)−2. By (5.2), we then

have (6.9) as asserted.

Now we estimate p̂x . By (5.3), (1− py)
n−1 ≥ e−1.05npy for y ∈ [m], so

1− (1− py)
n−1 ≤ 1− e−1.05npy ≤ 1.05npy , (6.14)

and by (5.4), (2.7) and the assumption that n≥ 1661 by (2.10),

1− (1− py)
n−1 ≥ 1− e−0.9npy ≥ (1− e−0.9γ)npy/γ≥ (1− e−0.9)npy/γ

≥ (0.55)npy/γ. (6.15)
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By (6.5), (6.14) and (6.15), for all x ∈ [m] we have that

p̂x ≤
2γp2

x
∑

y p2
y

. (6.16)

By (2.7) and (2.13), we have further that

‖p̂‖ := sup
x
(p̂x)≤ (2γ) sup

x

n2p2
x

∑

y n2p2
y

≤
2γ3

n2
∑

y p2
y

(6.17)

≤
16γ3

VarY
. (6.18)

Also, by (6.16), (2.7) and (2.13),

E p̂X1
≤

2γ
∑

x p3
x

∑

y p2
y

≤
2γ2

n
; (6.19)

E p̂2
X1
≤

4γ2
∑

x p5
x

(
∑

y p2
y)

2
≤

32n2γ2
∑

x p5
x

(VarY )
∑

y p2
y

≤
32γ5

nVarY
. (6.20)

Lemma 6.3. With C(γ) given by (2.12), it is the case that

Var(E [Y ′′− Y |Y ])≤
(C(γ))2

VarY
. (6.21)

Proof. We shall use the fact that by (2.13) VarY ≤ 8nγ so

n−1 ≤ 8γ(VarY )−1. (6.22)

We estimate in turn the two variances in the right hand side of (6.9). First consider the single sum.

Let Si denote the ith term in that sum, i.e. set

Si := [h̃7(Mi , X i)− (1− n−1)bh̃4(Mi , X i)]p̂X i

−h0(Mi)[2+ p̂X i
h̃4(Mi, X i)]n

−1,

and set S̄i := Si −ESi . By (6.2) and (6.3), along with the fact that h0(k) ∈ [0,2] so 0 ≤ b ≤ 2, the

coefficient of p̂X i
, in the definition of Si, lies in the range [−1,3], while the coefficient of n−1 lies in

the range [−4,0]. Hence, |Si +
2

n
| ≤ 3p̂X i

+ 2

n
. By (5.2), (6.20) and (6.22),

3nVar
�

S1

�

≤ 3nE
�
�

S1+ (2/n)
�2
�

≤ 6n
�

9E [p̂2
X1
] + 4n−2

�

≤
1728γ5+ 192γ

VarY
. (6.23)

Also, in the notation of Lemma 3.5, if we write S̄i =ψ(X i , Mi) we have rng(ψ) ≤ 4‖p̂‖+ 4n−1, and

also ‖ψ‖ ≤ 4‖p̂‖+ 4n−1. Hence, by (6.17) and (6.18), followed by (2.13) and then (2.7),

max(rng(ψ),‖ψ‖)≤





4+

È

VarY
∑

x p2
x

2γ6







s

32γ6

n2VarY
∑

y p2
y

≤
�

4+
2n
∑

x p2
x

γ3

�

s

32γ6

n2VarY
∑

y p2
y

≤
�

4+
2

γ2

�

s

32γ6

n2VarY
∑

y p2
y

.
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By Lemma 3.5,

3n2Cov
�

S1,S2

�

= 3n2
E [S̄1S̄2]≤ 9(1+ γ)

�

32γ6/VarY
��

16+ 16γ−2+ 4γ−4
�

≤
4608(γ7+ γ6+ γ5+ γ4) + 1152(γ3+ γ2)

VarY
.

Combining this with (6.23) yields

3Var

n
∑

i=1

Si = 3nVar[S1] + 3n(n− 1)Cov[S1,S2]

≤
�

100

VarY

�

�

47γ7+ 47γ6+ 64γ5+ 47γ4+ 12γ3+ 12γ2
�

. (6.24)

Consider now the double sum in (6.9). Writing (n)k for n!/(n− k)!, we have that

Var
∑

(i, j):i 6= j

ξi T̄ j = (n)4Cov(ξ1 T̄2,ξ3 T̄4) + (n)2
�

Var(ξ1 T̄2) +Cov(ξ1 T̄2,ξ2 T̄1)
�

+(n)3
�

Cov(ξ1 T̄2,ξ1 T̄3) +Cov(ξ2 T̄1,ξ3 T̄1) + 2Cov(ξ1 T̄2,ξ3 T̄1)
�

. (6.25)

For the first term of the right hand side of (6.25), observe that

Cov(ξ1 T̄2,ξ3 T̄4) = E [ξ1 T̄2ξ3 T̄4]−E [ξ1 T̄2]E [ξ3 T̄4]≤ E [ξ1 T̄2ξ3 T̄4],

and that 0≥ ξi ≥−p̂X i
by (6.2), while 0≤ T j ≤ 2. So by Lemma 3.5, (6.17) and (6.18),

3n2Cov(ξ1 T̄2,ξ3 T̄4)≤ 12n2‖p̂‖2(9+ 9γ)
∑

x

p2
x ≤ 108(1+ γ)

�

32γ6

VarY

�

= (3456γ6+ 3456γ7)/VarY. (6.26)

Now consider the last term in (6.25). By (6.20),

3nCov(ξ1 T̄2,ξ1 T̄3)≤ 3nE [ξ2
1 T̄2 T̄3]≤ 12nE p̂2

X1
≤

384γ5

VarY
, (6.27)

while by (6.19) and (6.22),

3n(Cov(ξ2 T̄1,ξ3 T̄1) + 2Cov(ξ1 T̄2,ξ3 T̄1))≤ 3nE T̄2
1 ξ2ξ3+ 6nEξ1 T̄2ξ3 T̄1

≤ 36nE [p̂X1
p̂X2
]≤ 144γ4n−1 ≤

1152γ5

VarY
. (6.28)

The middle term in the right side of (6.25) is smaller; since E [p̂X1
p̂X2
] ≤ E [p̂2

X1
] by the Cauchy-

Schwarz inequality, (6.20) gives

3(Var(ξ1 T̄2) +Cov(ξ1 T̄2, T̄1ξ2))≤ 24E [p̂2
X1
]≤

768γ5

nVarY
,

and since n≥ 1661 by (2.10), combined with (6.25), (6.26), (6.27), and (6.28), this shows that

3n−2Var
∑

(i, j):i 6= j

ξi T̄ j ≤
�

100

VarY

�

(35γ7+ 35γ6+ (15.9)γ5). (6.29)
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Also, by (6.22) we obtain

12(n− 1)2 ≤
�

12

1660

�
�

n

n− 1

�

n−1 ≤
�

96× 1661

16602

�

γ

VarY
≤

γ

10VarY
.

Combining this with (6.9), (6.24) and (6.29) yields

Var(E [Y ′′− Y |Y ])≤
�

100

VarY

�

(82(γ7+ γ6) + 80γ5+ 47γ4+ 12(γ3+ γ2)).

Proof of Theorem 2.3. It remains to prove (2.11). By (6.14),

EY = n
∑

x

px(1− (1− px)
n−1)≤ 1.05n2

∑

x

p2
x ,

so that by (2.14),

µY /σ
2
Y ≤ 8165γ2e2.1γ. (6.30)

We can apply (3.1) from Lemma 3.1 with B = 3 by (6.6). By (6.30) and Lemma 6.3, this gives

DY ≤
�

8165γ2e2.1γ

5

�




È

99

σY

+
5C(γ)

σY

+
6
p
σY





2

,

which yields (2.11).
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