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Abstract

We introduce a simple tree growth process that gives rise to a new two-parameter family of

discrete fragmentation trees that extends Ford’s alpha model to multifurcating trees and includes

the trees obtained by uniform sampling from Duquesne and Le Gall’s stable continuum random

tree. We call these new trees the alpha-gamma trees. In this paper, we obtain their splitting

rules, dislocation measures both in ranked order and in sized-biased order, and we study their

limiting behaviour.
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1 Introduction

Markov branching trees were introduced by Aldous [3] as a class of random binary phylogenetic

models and extended to the multifurcating case in [16]. Consider the space Tn of combinatorial

trees without degree-2 vertices, one degree-1 vertex called the ROOT and exactly n further degree-1

vertices labelled by [n] = {1, . . . , n} and called the leaves; we call the other vertices branch points.

Distributions on Tn of random trees T ∗n are determined by distributions of the delabelled tree T ◦n
on the space T◦n of unlabelled trees and conditional label distributions, e.g. exchangeable labels.

A sequence (T ◦n , n ≥ 1) of unlabelled trees has the Markov branching property if for all n ≥ 2

conditionally given that the branching adjacent to the ROOT is into tree components whose numbers

of leaves are n1, . . . , nk, these tree components are independent copies of T ◦ni
, 1 ≤ i ≤ k. The

distributions of the sizes in the first branching of T ◦n , n≥ 2, are denoted by

q(n1, . . . , nk), n1 ≥ . . .≥ nk ≥ 1, k ≥ 2 : n1+ . . .+ nk = n,

and referred to as the splitting rule of (T ◦n , n≥ 1).

Aldous [3] studied in particular a one-parameter family (β ≥−2) that interpolates between several

models known in various biology and computer science contexts (e.g. β = −2 comb, β = −3/2

uniform, β = 0 Yule) and that he called the beta-splitting model, he sets for β >−2:

qAldous
β (n−m, m) =

1

Zn

�
n

m

�
B(m+ 1+ β , n−m+ 1+ β), for 1≤ m< n/2,

qAldous
β (n/2, n/2) =

1

2Zn

�
n

n/2

�
B(n/2+ 1+ β , n/2+ 1+ β), if n even,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function and Zn, n≥ 2, are normalisation constants;

this extends to β =−2 by continuity, i.e. qAldous
−2 (n− 1,1) = 1, n≥ 2.

For exchangeably labelled Markov branching models (Tn, n≥ 1) it is convenient to set

p(n1, . . . , nk) :=
m1! . . . mn!
� n

n1,...,nk

� q((n1, . . . , nk)
↓), n j ≥ 1, j ∈ [k]; k ≥ 2 : n= n1+ . . .+ nk, (1)

where (n1, . . . , nk)
↓ is the decreasing rearrangement and mr the number of rs of the sequence

(n1, . . . , nk). The function p is called exchangeable partition probability function (EPPF) and gives

the probability that the branching adjacent to the ROOT splits into tree components with label sets

{A1, . . . ,Ak} partitioning [n], with block sizes n j = #A j . Note that p is invariant under permutations

of its arguments. It was shown in [20] that Aldous’s beta-splitting models for β > −2 are the only

binary Markov branching models for which the EPPF is of Gibbs type

pAldous
−1−α (n1, n2) =

wn1
wn2

Zn1+n2

, n1 ≥ 1, n2 ≥ 1, in particular wn =
Γ(n−α)

Γ(1−α)
,

and that the multifurcating Gibbs models are an extended Ewens-Pitman two-parameter family of

random partitions, 0≤ α≤ 1, θ ≥−2α, or −∞≤ α < 0, θ =−mα for some integer m≥ 2,

pPD∗

α,θ (n1, . . . , nk) =
ak

Zn

k∏

j=1

wn j
, where wn =

Γ(n−α)

Γ(1−α)
and ak = α

k−2
Γ(k+ θ/α)

Γ(2+ θ/α)
, (2)
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boundary cases by continuity (cf. p. 404), including Aldous’s binary models for θ =−2α. Ford [12]

introduced a different one-parameter binary model, the alpha model for 0 ≤ α ≤ 1, using simple

sequential growth rules starting from the unique elements T1 ∈ T1 and T2 ∈ T2:

(i)F given Tn for n≥ 2, assign a weight 1−α to each of the n edges adjacent to a leaf, and a weight

α to each of the n− 1 other edges;

(ii)F select at random with probabilities proportional to the weights assigned by step (i)F, an edge

of Tn, say an→ cn directed away from the ROOT;

(iii)F to create Tn+1 from Tn, replace an → cn by three edges an → bn, bn → cn and bn → n+ 1 so

that two new edges connect the two vertices an and cn to a new branch point bn and a further

edge connects bn to a new leaf labelled n+ 1.

It was shown in [12] that these trees are Markov branching trees but that the labelling is not

exchangeable. The splitting rule was calculated and shown to coincide with Aldous’s beta-splitting

rules if and only if α= 0, α= 1/2 or α= 1, interpolating differently between Aldous’s corresponding

models for β = 0, β = −3/2 and β = −2. This study was taken further in [16; 24].

In this paper, we introduce a new model by extending the simple sequential growth rules to allow

multifurcation. Specifically, we also assign weights to vertices depending on two parameters 0≤ α≤

1 and 0≤ γ≤ α as follows, cf. Figure 1:

(i) given Tn for n ≥ 2, assign a weight 1−α to each of the n edges adjacent to a leaf, a weight γ

to each of the other edges, and a weight (k− 1)α− γ to each vertex of degree k+ 1 ≥ 3; this

distributes a total weight of n−α;

(ii) select at random with probabilities proportional to the weights assigned by step (i),

• an edge of Tn, say an→ cn directed away from the ROOT,

• or, as the case may be, a vertex of Tn, say vn;

(iii) to create Tn+1 from Tn, do the following:

• if an edge an → cn was selected, replace it by three edges an → bn, bn → cn and bn →

n+1 so that two new edges connect the two vertices an and cn to a new branch point bn

and a further edge connects bn to a new leaf labelled n+ 1;

• if a vertex vn was selected, add an edge vn→ n+ 1 to a new leaf labelled n+ 1.

We call this model the alpha-gamma model. It contains the binary alpha model for γ = α. We show

here that the cases γ = 1−α, 1/2 ≤ α ≤ 1, and α = γ = 0 form the intersection with the extended

Ewens-Pitman-type two-parameter family of models (2). The growth rules for γ = 1− α, when all

edges have the same weight, was studied recently by Marchal [19]. It is related to the stable tree of

Duquesne and Le Gall [7], see also [21] and Section 3.4 here.
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Figure 1: Sequential growth rule: displayed is one branch point of Tn with degree k + 1, hence

vertex weight (k − 1)α − γ, with k − r leaves Lr+1, . . . , Lk ∈ [n] and r bigger subtrees S1, . . . ,Sr

attached to it; all edges also carry weights, weight 1−α and γ are displayed here for one leaf edge

and one inner edge only; the three associated possibilities for Tn+1 are displayed.

Proposition 1. Let (Tn, n ≥ 1) be alpha-gamma trees with distributions as implied by the sequential

growth rules (i)-(iii) for some 0≤ α≤ 1 and 0≤ γ≤ α. Then

(a) the delabelled trees T ◦n , n≥ 1, have the Markov branching property. The splitting rules are

qseq
α,γ(n1, . . . , nk) ∝

�
γ+ (1−α− γ)

1

n(n− 1)

∑

i 6= j

nin j

�
qPD∗

α,−α−γ(n1, . . . , nk), (3)

in the case 0 ≤ α < 1, where qPD∗

α,−α−γ is the splitting rule associated via (1) with pPD∗

α,−α−γ, the

Ewens-Pitman-type EPPF given in (2), and LHS ∝ RHS means equality up to a multiplicative

constant depending on n and (α,γ) that makes the LHS a probability function;

(b) the labelling of Tn is exchangeable for all n≥ 1 if and only if γ= 1−α, 1/2≤ α≤ 1.

The normalisation constants in (2) and (3) can be expressed in terms of Gamma functions, see

Section 2.4. The case α= 1 is discussed in Section 3.2.

For any function (n1, . . . , nk) 7→ q(n1, . . . , nk) that is a probability function for all fixed n= n1+ . . .+

nk, n ≥ 2, we can construct a Markov branching model (T ◦n , n ≥ 1). A condition called sampling

consistency [3] is to require that the tree T ◦n,−1 constructed from T ◦n by removal of a uniformly

chosen leaf (and the adjacent branch point if its degree is reduced to 2) has the same distribution as

T ◦n−1, for all n≥ 2. This is appealing for applications with incomplete observations. It was shown in

[16] that all sampling consistent splitting rules admit an integral representation (c,ν) for an erosion

coefficient c ≥ 0 and a dislocation measure ν onS ↓ = {s = (si)i≥1 : s1 ≥ s2 ≥ . . .≥ 0, s1+s2+. . .≤ 1}

with ν({(1,0,0, . . .)}) = 0 and
∫
S ↓
(1− s1)ν(ds)<∞ as in Bertoin’s continuous-time fragmentation

theory [4; 5; 6]. In the most relevant case for us when c = 0 and ν({s ∈ S ↓ : s1+ s2+ . . .< 1}) = 0,

this representation is

p(n1, . . . , nk) =
1

eZn

∫

S ↓

∑

i1,...,ik≥1

distinct

k∏

j=1

s
n j

i j
ν(ds), n j ≥ 1, j ∈ [k]; k ≥ 2 : n= n1+ . . .+ nk, (4)
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where eZn =
∫
S ↓
(1−

∑
i≥1 sn

i
)ν(ds), n≥ 2, are the normalisation constants. The measure ν is unique

up to a multiplicative constant. In particular, it can be shown [21; 17] that for the Ewens-Pitman

EPPFs pPD∗

α,θ
we obtain ν = PD∗

α,θ
(ds) of Poisson-Dirichlet type (hence our superscript PD∗ for the

Ewens-Pitman type EPPF), where for 0< α < 1 and θ >−2α we can express

∫

S ↓
f (s)PD∗α,θ (ds) = E

�
σ−θ1 f

�
∆σ[0,1]/σ1

��
,

for an α-stable subordinator σ with Laplace exponent − log(E(e−λσ1)) = λα and with ranked se-

quence of jumps ∆σ[0,1] = (∆σt , t ∈ [0,1])↓. For α < 1 and θ =−2α, we have

∫

S ↓
f (s)PD∗α,−2α(ds) =

∫ 1

1/2

f (x , 1− x , 0, 0, . . .)x−α−1(1− x)−α−1d x .

Note that ν = PD∗
α,θ

is infinite but σ-finite with
∫
S ↓
(1− s1)ν(ds) <∞ for −2α ≤ θ ≤ −α. This is

the relevant range for this paper. For θ > −α, the measure PD∗
α,θ

just defined is a multiple of the

usual Poisson-Dirichlet probability measure PDα,θ on S ↓, so for the integral representation of pPD∗

α,θ

we could also take ν = PDα,θ in this case, and this is also an appropriate choice for the two cases

α= 0 and m≥ 3; the case α= 1 is degenerate qPD∗

α,θ
(1,1, . . . , 1) = 1 (for all θ) and can be associated

with ν = PD∗
1,θ
= δ(0,0,...), see [20].

Theorem 2. The alpha-gamma-splitting rules q
seq
α,γ are sampling consistent. For 0 ≤ α < 1 and 0 ≤

γ≤ α we have no erosion (c = 0) and the measure in the integral representation (4) can be chosen as

να,γ(ds) =


γ+ (1−α− γ)

∑

i 6= j

sis j


PD∗α,−α−γ(ds). (5)

The case α = 1 is discussed in Section 3.2. We refer to Griffiths [14] who used discounting of

Poisson-Dirichlet measures by quantities involving
∑

i 6= j sis j to model genic selection.

In [16], Haas and Miermont’s self-similar continuum random trees (CRTs) [15] are shown to be

scaling limits for a wide class of Markov branching models. See Sections 3.3 and 3.6 for details.

This theory applies here to yield:

Corollary 3. Let (T ◦n , n≥ 1) be delabelled alpha-gamma trees, represented as discrete R-trees with unit

edge lengths, for some 0< α < 1 and 0< γ≤ α. Then

T ◦n

nγ
→T α,γ in distribution for the Gromov-Hausdorff topology,

where the scaling nγ is applied to all edge lengths, and T α,γ is a γ-self-similar CRT whose dislocation

measure is a multiple of να,γ.

We observe that every dislocation measure ν on S ↓ gives rise to a measure ν sb on the space of

summable sequences under which fragment sizes are in a size-biased random order, just as the

GEMα,θ distribution can be defined as the distribution of a PDα,θ sequence re-arranged in size-biased

random order [23]. We similarly define GEM∗
α,θ

from PD∗
α,θ

. One of the advantages of size-biased

versions is that, as for GEMα,θ , we can calculate marginal distributions explicitly.
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Proposition 4. For 0 < α < 1 and 0 ≤ γ < α, distributions ν sb
k

of the first k ≥ 1 marginals of the

size-biased form ν sb
α,γ of να,γ are given, for x = (x1, . . . , xk), by

ν sb
k
(d x) =


γ+ (1−α− γ)


1−

k∑

i=1

x2
i −

1−α

1+(k−1)α−γ

 
1−

k∑

i=1

x i

!2




GEM∗α,−α−γ(d x).

The other boundary values of parameters are trivial here – there are at most two non-zero parts.

We can investigate the convergence of Corollary 3 when labels are retained. Since labels are non-

exchangeable, in general, it is not clear how to nicely represent a continuum tree with infinitely

many labels other than by a consistent sequence Rk of trees with k leaves labelled [k], k ≥ 1. See

however [24] for developments in the binary case γ = α on how to embed Rk, k ≥ 1, in a CRT

T α,α. The following theorem extends Proposition 18 of [16] to the multifurcating case.

Theorem 5. Let (Tn, n ≥ 1) be a sequence of trees resulting from the alpha-gamma-tree growth rules

for some 0 < α < 1 and 0 < γ ≤ α. Denote by R(Tn, [k]) the subtree of Tn spanned by the ROOT and

leaves [k], reduced by removing degree-2 vertices, represented as discrete R-tree with graph distances in

Tn as edge lengths. Then

R(Tn, [k])

nγ
→Rk a.s. in the sense that all edge lengths converge,

for some discrete tree Rk with shape Tk and edge lengths specified in terms of three random variables,

conditionally independent given that Tk has k+ ℓ edges, as LkW
γ

k
Dk with

• Wk ∼ beta(k(1− α) + ℓγ, (k− 1)α− ℓγ), where beta(a, b) is the beta distribution with density

B(a, b)−1 xa−1(1− x)b−11(0,1)(x);

• Lk with density
Γ(1+ k(1−α) + ℓγ)

Γ(1+ ℓ+ k(1−α)/γ)
sℓ+k(1−α)/γgγ(s), where gγ is the Mittag-Leffler density,

the density of σ
−γ
1 for a subordinator σ with Laplace exponent λγ;

• Dk ∼ Dirichlet((1 − α)/γ, . . . , (1 − α)/γ, 1, . . . , 1), where Dirichlet(a1, . . . , am) is the Dirichlet

distribution on ∆m = {(x1, . . . , xm) ∈ [0,1]m : x1 + . . . + xm = 1} with density of the first

m− 1 marginals proportional to x
a1−1

1 . . . x
am−1−1

m−1 (1− x1 − . . .− xm−1)
am−1; here Dk contains

edge length proportions, first with parameter (1−α)/γ for edges adjacent to leaves and then with

parameter 1 for the other edges, each enumerated e.g. by depth first search [18] (see Section

4.2).

In fact, 1−Wk captures the total limiting leaf proportions of subtrees that are attached on the vertices

of Tk, and we can study further how this is distributed between the branch points, see Section 4.2.

We conclude this introduction by giving an alternative description of the alpha-gamma model ob-

tained by adding colouring rules to the alpha model growth rules (i)F-(iii)F, so that in T col
n each edge

except those adjacent to leaves has either a blue or a red colour mark.

(iv)col To turn Tn+1 into a colour-marked tree T col
n+1, keep the colours of T col

n and do the following:

• if an edge an→ cn adjacent to a leaf was selected, mark an→ bn blue;

406



• if a red edge an→ cn was selected, mark both an→ bn and bn→ cn red;

• if a blue edge an → cn was selected, mark an → bn blue; mark bn → cn red with proba-

bility c and blue with probability 1− c;

When (T col
n , n≥ 1) has been grown according to (i)F-(iii)F and (iv)col, crush all red edges, i.e.

(cr) identify all vertices connected via red edges, remove all red edges and remove the remaining

colour marks; denote the resulting sequence of trees by (eTn, n≥ 1);

Proposition 6. Let (eTn, n ≥ 1) be a sequence of trees according to growth rules (i)F-(iii)F,(iv)col and

crushing rule (cr). Then (eTn, n≥ 1) is a sequence of alpha-gamma trees with γ= α(1− c).

The structure of this paper is as follows. In Section 2 we study the discrete trees grown according to

the growth rules (i)-(iii) and establish Proposition 6 and Proposition 1 as well as the sampling con-

sistency claimed in Theorem 2. Section 3 is devoted to the limiting CRTs, we obtain the dislocation

measure stated in Theorem 2 and deduce Corollary 3 and Proposition 4. In Section 4 we study the

convergence of labelled trees and prove Theorem 5.

2 Sampling consistent splitting rules for the alpha-gamma trees

2.1 Notation and terminology of partitions and discrete fragmentation trees

For B ⊆ N, letPB be the set of partitions of B into disjoint non-empty subsets called blocks. Consider a

probability space (Ω,F ,P), which supports a PB-valued random partition ΠB for some finite B ⊂ N.

If the probability function of ΠB only depends on its block sizes, we call it exchangeable. Then

P(ΠB = {A1, . . . ,Ak}) = p(#A1, . . . ,#Ak) for each partition π= {A1, . . . ,Ak} ∈ PB,

where #A j denotes the block size, i.e. the number of elements of A j . This function p is called

the exchangeable partition probability function (EPPF) of ΠB. Alternatively, a random partition ΠB

is exchangeable if its distribution is invariant under the natural action on partitions of B by the

symmetric group of permutations of B.

Let B ⊆ N, we say that a partition π ∈ PB is finer than π′ ∈ PB, and write π ¹ π′, if any block of

π is included in some block of π′. This defines a partial order ¹ on PB. A process or a sequence

with values in PB is called refining if it is decreasing for this partial order. Refining partition-valued

processes are naturally related to trees. Suppose that B is a finite subset of N and t is a collection of

subsets of B with an additional member called the ROOT such that

• we have B ∈ t; we call B the common ancestor of t;

• we have {i} ∈ t for all i ∈ B; we call {i} a leaf of t;

• for all A∈ t and C ∈ t, we have either A∩ C =∅, or A⊆ C or C ⊆ A.

If A ⊂ C , then A is called a descendant of C , or C an ancestor of A. If for all D ∈ t with A ⊆ D ⊆ C

either A= D or D = C , we call A a child of C , or C the parent of A and denote C → A. If we equip

t with the parent-child relation and also ROOT → B, then t is a rooted connected acyclic graph, i.e.
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a combinatorial tree. We denote the space of such trees t by TB and also Tn = T[n]. For t ∈ TB and

A∈ t, the rooted subtree sA of t with common ancestor A is given by sA = {ROOT}∪ {C ∈ t : C ⊆ A} ∈

TA. In particular, we consider the subtrees s j = sA j
of the common ancestor B of t, i.e. the subtrees

whose common ancestors A j , j ∈ [k], are the children of B. In other words, s1, . . . , sk are the rooted

connected components of t \ {B}.

Let (π(t), t ≥ 0) be aPB-valued refining process for some finite B ⊂ Nwith π(0) = 1B and π(t) = 0B

for some t > 0, where 1B is the trivial partition into a single block B and 0B is the partition of B

into singletons. We define tπ = {ROOT}∪ {A⊂ B : A∈ π(t) for some t ≥ 0} as the associated labelled

fragmentation tree.

Definition 1. Let B ⊂ N with #B = n and t ∈ TB. We associate the relabelled tree

tσ = {ROOT} ∪ {σ(A) : A∈ t} ∈ Tn,

for any bijection σ : B→ [n], and the combinatorial tree shape of t as the equivalence class

t◦ = {tσ|σ : B→ [n] bijection} ⊂ Tn.

We denote by T◦n = {t
◦ : t ∈ Tn} = {t

◦ : t ∈ TB} the collection of all tree shapes with n leaves, which

we will also refer to in their own right as unlabelled fragmentation trees.

Note that the number of subtrees of the common ancestor of t ∈ Tn and the numbers of leaves in

these subtrees are invariants of the equivalence class t◦ ⊂ Tn. If t◦ ∈ T◦n has subtrees s◦1, . . . , s◦
k

with n1 ≥ . . . ≥ nk ≥ 1 leaves, we say that t◦ is formed by joining together s◦1, . . . , s◦
k
, denoted by

t◦ = s◦1 ∗ . . . ∗ s◦
k
. We call the composition (n1, . . . , nk) of n the first split of t◦n.

With this notation and terminology, a sequence of random trees T ◦n ∈ T
◦
n, n ≥ 1, has the Markov

branching property if, for all n ≥ 2, the tree T ◦n has the same distribution as S◦1 ∗ . . . ∗ S◦Kn
, where

N1 ≥ . . . ≥ NKn
≥ 1 form a random composition of n with Kn ≥ 2 parts, and conditionally given

Kn = k and N j = n j , the trees S◦j , j ∈ [k], are independent and distributed as T ◦n j
, j ∈ [k].

2.2 Colour-marked trees and the proof of Proposition 6

The growth rules (i)F-(iii)F construct binary combinatorial trees T bin
n with vertex set

V = {ROOT} ∪ [n]∪ {b1, . . . , bn−1}

and an edge set E ⊂ V × V . We write v → w if (v, w) ∈ E. In Section 2.1, we identify leaf i with

the set {i} and vertex bi with { j ∈ [n] : bi → . . .→ j}, the edge set E then being identified by the

parent-child relation. In this framework, a colour mark for an edge v → bi can be assigned to the

vertex bi , so that a coloured binary tree as constructed in (iv)col can be represented by

V col = {ROOT} ∪ [n]∪ {(b1,χn(b1)), . . . , (bn−1,χn(bn−1))}

for some χn(bi) ∈ {0,1}, i ∈ [n− 1], where 0 represents red and 1 represents blue.

Proof of Proposition 6. We only need to check that the growth rules (i)F-(iii)F and (iv)col for

(T col
n , n ≥ 1) imply that the uncoloured multifurcating trees (eTn, n ≥ 1) obtained from (T col

n , n ≥ 1)
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via crushing (cr) satisfy the growth rules (i)-(iii). Let therefore tcol
n+1 be a tree with P(T col

n+1 = tcol
n+1)>

0. It is easily seen that there is a unique tree tcol
n , a unique insertion edge acol

n → ccol
n in tcol

n and, if

any, a unique colour χn+1(c
col
n ) to create tcol

n+1 from tcol
n . Denote the trees obtained from tcol

n and tcol
n+1

via crushing (cr) by tn and tn+1. If χn+1(c
col
n ) = 0, denote by k + 1 ≥ 3 the degree of the branch

point of tn with which ccol
n is identified in the first step of the crushing (cr).

• If the insertion edge is a leaf edge (ccol
n = i for some i ∈ [n]), we obtain

P(eTn+1 = tn+1|eTn = tn, T col
n = tcol

n ) = (1−α)/(n−α).

• If the insertion edge has colour blue (χn(c
col
n ) = 1) and also χn+1(c

col
n ) = 1, we obtain

P(eTn+1 = tn+1|eTn = tn, T col
n = tcol

n ) = α(1− c)/(n−α).

• If the insertion edge has colour blue (χn(c
col
n ) = 1), but χn+1(c

col
n ) = 0, or if the insertion edge

has colour red (χn(c
col
n ) = 0, and then necessarily χn+1(c

col
n ) = 0 also), we obtain

P(eTn+1 = tn+1|eTn = tn, T col
n = tcol

n ) = (cα+ (k− 2)α)/(n−α),

because in addition to acol
n → ccol

n , there are k − 2 other edges in tcol
n , where insertion and

crushing also create tn+1.

Because these conditional probabilities do not depend on tcol
n and have the form required, we con-

clude that (eTn, n≥ 1) obeys the growth rules (i)-(iii) with γ= α(1− c).

2.3 The Chinese Restaurant Process

An important tool in this paper is the Chinese Restaurant Process (CRP), a partition-valued process

(Πn, n ≥ 1) due to Dubins and Pitman, see [23], which generates the Ewens-Pitman two-parameter

family of exchangeable random partitions Π∞ of N. In the restaurant framework, each block of

a partition is represented by a table and each element of a block by a customer at a table. The

construction rules are the following. The first customer sits at the first table and the following

customers will be seated at an occupied table or a new one. Given n customers at k tables with

n j ≥ 1 customers at the jth table, customer n+ 1 will be placed at the jth table with probability

(n j−α)/(n+θ), and at a new table with probability (θ +kα)/(n+θ). The parameters α and θ can

be chosen as either α < 0 and θ = −mα for some m ∈ N or 0 ≤ α ≤ 1 and θ > −α. We refer to this

process as the CRP with (α,θ)-seating plan.

In the CRP (Πn, n ≥ 1) with Πn ∈ P[n], we can study the block sizes, which leads us to consider the

proportion of each table relative to the total number of customers. These proportions converge to

limiting frequencies as follows.

Lemma 7 (Theorem 3.2 in [23]). For each pair of parameters (α,θ) subject to the constraints above,

the Chinese restaurant with the (α,θ)-seating plan generates an exchangeable random partition Π∞ of

N. The corresponding EPPF is

pPD
α,θ (n1, . . . , nk) =

αk−1Γ(k+ θ/α)Γ(1+ θ)

Γ(1+ θ/α)Γ(n+ θ)

k∏

i=1

Γ(ni −α)

Γ(1−α)
, ni ≥ 1, i ∈ [k]; k ≥ 1 :

∑
ni = n,
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boundary cases by continuity. The corresponding limiting frequencies of block sizes, in size-biased order

of least elements, are GEMα,θ and can be represented as

(P̃1, P̃2, . . .) = (W1,W 1W2,W 1W 2W3, . . .)

where the Wi are independent, Wi has beta(1− α,θ + iα) distribution, and W i := 1−Wi . The distri-

bution of the associated ranked sequence of limiting frequencies is Poisson-Dirichlet PDα,θ .

We also associate with the EPPF pPD
α,θ

the distribution qPD
α,θ

of block sizes in decreasing order via (1)

and, because the Chinese restaurant EPPF is not the EPPF of a splitting rule leading to k ≥ 2 block

(we use notation qPD∗

α,θ
for the splitting rules induced by conditioning on k ≥ 2 blocks), but can lead

to a single block, we also set qPD
α,θ
(n) = pPD

α,θ
(n).

The asymptotic properties of the number Kn of blocks of Πn under the (α,θ)-seating plan depend

on α: if α < 0 and θ = −mα for some m ∈ N, then Kn = m for all sufficiently large n a.s.; if α = 0

and θ > 0, then limn→∞ Kn/ log n= θ a.s. The most relevant case for us is α > 0.

Lemma 8 (Theorem 3.8 in [23]). For 0< α < 1, θ >−α, ,

Kn

nα
→ S a.s. as n→∞,

where S has a continuous density on (0,∞) given by

d

ds
P(S ∈ ds) =

Γ(θ + 1)

Γ(θ/α+ 1)
s−θ/αgα(s),

and gα is the density of the Mittag-Leffler distribution with pth moment Γ(p+ 1)/Γ(pα+ 1).

As an extension of the CRP, Pitman and Winkel in [24] introduced the ordered CRP. Its seating plan is

as follows. The tables are ordered from left to right. Put the second table to the right of the first with

probability θ/(α+ θ) and to the left with probability α/(α+ θ). Given k tables, put the (k+ 1)st

table to the right of the right-most table with probability θ/(kα+ θ) and to the left of the left-most

or between two adjacent tables with probability α/(kα+ θ) each.

A composition of n is a sequence (n1, . . . , nk) of positive numbers with sum n. A sequence of random

compositions Cn of n is called regenerative if conditionally given that the first part of Cn is n1, the

remaining parts of Cn form a composition of n − n1 with the same distribution as Cn−n1
. Given

any decrement matrix (qdec(n, m), 1 ≤ m ≤ n), there is an associated sequence Cn of regenerative

random compositions of n defined by specifying that qdec(n, ·) is the distribution of the first part of

Cn. Thus for each composition (n1, . . . , nk) of n,

P(Cn = (n1, . . . , nk)) = qdec(n, n1)q
dec(n− n1, n2) . . . qdec(nk−1 + nk, nk−1)q

dec(nk, nk).

Lemma 9 (Proposition 6 (i) in [24]). For each (α,θ) with 0 < α < 1 and θ ≥ 0, denote by Cn the

composition of block sizes in the ordered Chinese restaurant partition with parameters (α,θ). Then

(Cn, n≥ 1) is regenerative, with decrement matrix

qdec
α,θ (n, m) =

�
n

m

�
(n−m)α+mθ

n

Γ(m−α)Γ(n−m+ θ)

Γ(1−α)Γ(n+ θ)
(1≤ m≤ n). (6)
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2.4 The splitting rule of alpha-gamma trees and the proof of Proposition 1

Proposition 1 claims that the unlabelled alpha-gamma trees (T ◦n , n ≥ 1) have the Markov branching

property, identifies the splitting rule and studies the exchangeability of labels. In preparation of the

proof of the Markov branching property, we use CRPs to compute the probability function of the first

split of T ◦n in Proposition 10. We will then establish the Markov branching property from a spinal

decomposition result (Lemma 11) for T ◦n .

Proposition 10. Let T ◦n be an unlabelled alpha-gamma tree for some 0 ≤ α < 1 and 0 ≤ γ ≤ α, then

the probability function of the first split of T ◦n is

qseq
α,γ(n1, . . . , nk) =

ZnΓ(1−α)

Γ(n−α)


γ+ (1−α− γ)

1

n(n− 1)

∑

i 6= j

nin j


qPD∗

α,−α−γ(n1, . . . , nk),

n1 ≥ . . .≥ nk ≥ 1, k ≥ 2: n1+ . . .+ nk = n, where Zn is the normalisation constant in (2).

In fact, we can express explicitly Zn in (2) as follows (see formula (22) in [17])

Zn =
Γ(1+ θ/α)

Γ(1+ θ)

�
1−
Γ(n−α)Γ(1+ θ)

Γ(1−α)Γ(n+ θ)

�

in the first instance for 0 < α < 1 and θ > −α, and then by analytic continuation and by continuity

to the full parameter range.

Proof. In the binary case γ = α, the expression simplifies and the result follows from Ford [12],

see also [16, Section 5.2]. For the remainder of the proof, let us consider the multifurcating case

γ < α. We start from the growth rules of the labelled alpha-gamma trees Tn. Consider the spine

ROOT → v1 → . . . → vLn−1
→ 1 of Tn, and the spinal subtrees S

sp

i j
, 1 ≤ i ≤ Ln−1, 1 ≤ j ≤ Kn,i , not

containing 1 of the spinal vertices vi , i ∈ [Ln−1]. By joining together the subtrees of the spinal vertex

vi we form the ith spinal bush S
sp

i
= S

sp

i1
∗ . . . ∗ S

sp

iKn,i
. Suppose a bush S

sp

i
consists of k subtrees with

m leaves in total, then its weight will be m− kα− γ+ kα = m− γ according to growth rule (i) –

recall that the total weight of the tree Tn is n−α.

Now we consider each bush as a table, each leaf n= 2,3, . . . as a customer, 2 being the first customer.

Adding a new leaf to a bush or to an edge on the spine corresponds to adding a new customer to an

existing or to a new table. The weights are such that we construct an ordered Chinese restaurant

partition of N \ {1} with parameters (γ, 1−α).

Suppose that the first split of Tn is into tree components with numbers of leaves n1 ≥ . . . ≥ nk ≥ 1.

Now suppose further that leaf 1 is in a subtree with ni leaves in the first split, then the first spinal

bush S
sp

1 will have n − ni leaves. Notice that this event is equivalent to that of n − ni customers

sitting at the first table with a total of n− 1 customers present, in the terminology of the ordered

CRP. According to Lemma 9, the probability of this is

qdec
γ,1−α(n− 1, n− ni) =

�
n− 1

n− ni

�
(ni − 1)γ+ (n− ni)(1−α)

n− 1

Γ(ni −α)Γ(n− ni − γ)

Γ(n−α)Γ(1− γ)

=

�
n

n− ni

��
ni

n
γ+

ni(n− ni)

n(n− 1)
(1−α− γ)

�
Γ(ni −α)Γ(n− ni − γ)

Γ(n−α)Γ(1− γ)
.
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Next consider the probability that the first bush S
sp

1 joins together subtrees with n1 ≥ . . . ≥ ni−1 ≥

ni+1 ≥ . . . nk ≥ 1 leaves conditional on the event that leaf 1 is in a subtree with ni leaves. The

first bush has a weight of n− ni − γ and each subtree in it has a weight of n j − α, j 6= i. Consider

these k−1 subtrees as tables and the leaves in the first bush as customers. According to the growth

procedure, they form a second (unordered, this time) Chinese restaurant partition with parameters

(α,−γ), whose EPPF is

pPD
α,−γ(n1, . . . , ni−1, ni+1, . . . , nk) =

αk−2Γ(k− 1− γ/α)Γ(1− γ)

Γ(1− γ/α)Γ(n− ni − γ)

∏

j∈[k]\{i}

Γ(n j −α)

Γ(1−α)
.

Let m j be the number of js in the sequence of (n1, . . . , nk). Based on the exchangeability of the

second Chinese restaurant partition, the probability that the first bush consists of subtrees with

n1 ≥ . . .≥ ni−1 ≥ ni+1 ≥ . . .≥ nk ≥ 1 leaves conditional on the event that leaf 1 is in one of the mni

subtrees with ni leaves will be

mni

m1! . . . mn!

�
n− ni

n1, . . . , ni−1, ni+1, . . . , nk

�
pPD
α,−γ(n1, . . . , ni−1, ni+1, . . . , nk).

Thus the joint probability that the first split is (n1, . . . , nk) and that leaf 1 is in a subtree with ni

leaves is,

mni

m1! . . . mn!

�
n− ni

n1, . . . , ni−1, ni+1, . . . , nk

�
qdec
γ,1−α(n− 1, n− ni)p

PD
α,−γ(n1, . . . , ni−1, ni+1, . . . , nk)

= mni

�
ni

n
γ+

ni(n− ni)

n(n− 1)
(1−α− γ)

�
ZnΓ(1−α)

Γ(n−α)
qPD∗

α,−α−γ(n1, . . . , nk). (7)

Hence the splitting rule will be the sum of (7) for all different ni (not i) in (n1, . . . , nk), but they

contain factors mni
, so we can write it as sum over i ∈ [k]:

qseq
α,γ(n1, . . . , nk) =

 
k∑

i=1

�
ni

n
γ+

ni(n− ni)

n(n− 1)
(1−α− γ)

�!
ZnΓ(1−α)

Γ(n−α)
qPD∗

α,−α−γ(n1, . . . , nk)

=


γ+ (1−α− γ)

1

n(n− 1)

∑

i 6= j

nin j




ZnΓ(1−α)

Γ(n−α)
qPD∗

α,−α−γ(n1, . . . , nk).

We can use the nested Chinese restaurants described in the proof to study the subtrees of the spine

of Tn. We have decomposed Tn into the subtrees S
sp

i j
of the spine from the ROOT to 1 and can,

conversely, build Tn from S
sp

i j
, for which we now introduce notation

Tn =
∐

i, j

S
sp

i j
.

We will also write
∐

i, j S◦i j when we join together unlabelled trees S◦i j along a spine. The following

unlabelled version of a spinal decomposition theorem will entail the Markov branching property.
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Lemma 11 (Spinal decomposition). Let (T ◦1n , n ≥ 1) be alpha-gamma trees, delabelled apart from

label 1. For all n≥ 2, the tree T ◦1n has the same distribution as
∐

i, j S◦i j , where

• Cn−1 = (N1, . . . , NLn−1
) is a regenerative composition with decrement matrix qdec

γ,1−α,

• conditionally given Ln−1 = ℓ and Ni = ni , i ∈ [ℓ], the sizes Ni1 ≥ . . . ≥ NiKn,i
≥ 1 form random

compositions of ni with distribution qPD
α,−γ, independently for i ∈ [ℓ],

• conditionally given also Kn,i = ki and Ni j = ni j , the trees S◦i j , j ∈ [ki], i ∈ [ℓ], are independent

and distributed as T ◦ni j
.

Proof. For an induction on n, note that the claim is true for n = 2, since T ◦1n and
∐

i, j S◦i j are

deterministic for n= 2. Suppose then that the claim is true for some n≥ 2 and consider T ◦n+1.

The growth rules (i)-(iii) of the labelled alpha-gamma tree Tn are such that, for 0≤ γ < α≤ 1

• leaf n+ 1 is inserted into a new bush or any of the bushes S
sp

i
selected according to the rules

of the ordered CRP with (γ, 1−α)-seating plan,

• further into a new subtree or any of the subtrees S
sp

i j
of the selected bush S

sp

i
according to the

rules of a CRP with (α,−γ)-seating plan,

• and further within the subtree S
sp

i j
according to the weights assigned by (i) and growth rules

(ii)-(iii).

These selections do not depend on Tn except via T ◦1n . In fact, since labels do not feature in the

growth rules (i)-(iii), they are easily seen to induce growth rules for partially labelled alpha-gamma

trees T ◦1n , and also for unlabelled alpha-gamma trees such as S◦i j .

From these observations and the induction hypothesis, we deduce the claim for T ◦n+1. In the multi-

furcating case γ < α, the conditional independence of compositions (Ni1, . . . , NiKn+1,i
), i ∈ [ℓ], given

Ln−1 = ℓ and Ni = ni can be checked by explicit calculation of the conditional probability function.

Similarly, the conditional independence of the trees S◦i j follows, because conditional probabilities

such as the following factorise and do not depend on (i0, j0):

P

�
S(n+1)◦
•• = t(n+1)◦

••

¯̄
¯ Ln = Ln−1 = ℓ, N (n)• = n•, N (n)•• = n••, N

(n+1)

i0 j0
= ni0 j0

+ 1

�
,

where n• = (ni , 1 ≤ i ≤ ℓ) and n•• = (ni j , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ki) etc.; superscripts (n) and (n+1) refer

to the respective stage of the growth process. In the binary case γ = α, the argument is simpler,

because each spinal bush consists of a single tree.

Proof of Proposition 1. (a) Firstly, the distributions of the first splits of the unlabelled alpha-gamma

trees T ◦n were calculated in Proposition 10, for 0≤ α < 1 and 0≤ γ≤ α.

Secondly, let 0≤ α≤ 1 and 0≤ γ≤ α. By the regenerative property of the spinal composition Cn−1

and the conditional distribution of T ◦1n given Cn−1 identified in Lemma 11, we obtain that given

N1 = m, Kn,1 = k1 and N1 j = n1 j , j ∈ [k1], the subtrees S◦1 j , j ∈ [k1], are independent alpha-gamma

trees distributed as T ◦n1 j
, also independent of the remaining tree S1,0 :=

∐
i≥2, j S◦i j , which, by Lemma

11, has the same distribution as T ◦n−m.
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This is equivalent to saying that conditionally given that the first split is into subtrees with n1 ≥

. . . ≥ ni ≥ . . . ≥ nk ≥ 1 leaves and that leaf 1 is in a subtree with ni leaves, the delabelled subtrees

S◦1, . . . ,S◦
k

of the common ancestor are independent and distributed as T ◦n j
respectively, j ∈ [k].

Since this conditional distribution does not depend on i, we have established the Markov branching

property of T ◦n .

(b) Notice that if γ= 1−α, the alpha-gamma model is the model related to stable trees, the labelling

of which is known to be exchangeable, see Section 3.4.

On the other hand, if γ 6= 1−α, let us turn to look at the distribution of T3.

¡¡ ¡¡

¡¡ ¡¡@@ @@
1 2

3

1 3

2

Probability:
γ

2−α
Probability: 1−α

2−α

We can see the probabilities of the two labelled trees in the above picture are different although

they have the same unlabelled tree. So if γ 6= 1−α, Tn is not exchangeable.

2.5 Sampling consistency and strong sampling consistency

Recall that an unlabelled Markov branching tree T ◦n , n≥ 2 has the property of sampling consistency,

if when we select a leaf uniformly and delete it (together with the adjacent branch point if its

degree is reduced to 2), then the new tree, denoted by T ◦n,−1, is distributed as T ◦n−1. Denote by

d : Dn→ Dn−1 the induced deletion operator on the space Dn of probability measures on T◦n, so that

for the distribution Pn of T ◦n , we define d(Pn) as the distribution of T ◦n,−1. Sampling consistency is

equivalent to d(Pn) = Pn−1. This property is also called deletion stability in [12].

Proposition 12. The unlabelled alpha-gamma trees for 0 ≤ α ≤ 1 and 0 ≤ γ ≤ α are sampling

consistent.

Proof. The sampling consistency formula (14) in [16] states that d(Pn) = Pn−1 is equivalent to

q(n1, . . . , nk) =

k∑

i=1

(ni + 1)(mni+1+ 1)

(n+ 1)mni

q((n1, . . . , ni + 1, . . . , nk)
↓)

+
m1+ 1

n+ 1
q(n1, . . . , nk, 1) +

1

n+ 1
q(n, 1)q(n1, . . . , nk) (8)

for all n1 ≥ . . .≥ nk ≥ 1 with n1+ . . .+nk = n≥ 2, where m j is the number of ni , i ∈ [k], that equal

j, and where q is the splitting rule of T ◦n ∼ Pn. In terms of EPPFs (1), formula (8) is equivalent to

�
1− p(n, 1)

�
p(n1, . . . , nk) =

k∑

i=1

p(n1, . . . , ni + 1, . . . , nk) + p(n1, . . . , nk, 1). (9)

Now according to Proposition 10, the EPPF of the alpha-gamma model with α < 1 is

pseq
α,γ(n1, . . . , nk) =

Zn

Γα(n)


γ+ (1−α− γ)

1

n(n− 1)

∑

u6=v

nunv


 pPD∗

α,−α−γ(n1, . . . , nk), (10)
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where Γα(n) = Γ(n−α)/Γ(1−α). Therefore, we can write p
seq
α,γ(n1, . . . , ni + 1, . . . , nk) using (2)

Zn+1

Γα(n+ 1)


γ+ (1−α− γ)

1

(n+ 1)n



∑

u6=v

nunv + 2(n− ni)




 ak

Zn+1



∏

j: j 6=i

wn j


wni+1

=

 
pseq
α,γ(n1, . . . , nk) + 2(1−α− γ)

(n− 1)(n− ni)−
∑

u6=v nunv

(n+ 1)n(n− 1)

Zn

Γα(n)
pPD∗

α,−α−γ(n1, . . . , nk)

!

×
ni −α

n−α

and p
seq
α,γ(n1, . . . , nk, 1) as

Zn+1

Γα(n+ 1)


γ+ (1−α− γ)

1

(n+ 1)n



∑

u6=v

nunv + 2n




 ak+1

Zn+1




k∏

j=1

wn j


w1

=

 
pseq
α,γ(n1, . . . , nk) + 2(1−α− γ)

(n− 1)n−
∑

u6=v nunv

(n+ 1)n(n− 1)

Zn

Γα(n)
pPD∗

α,−α−γ(n1, . . . , nk)

!

×
(k− 1)α− γ

n−α
.

Sum over the above formulas, then the right-hand side of (9) is
�

1−
1

n−α

�
γ+

2

n+ 1
(1−α− γ)

��
pseq
α,γ(n1, . . . , nk).

Notice that the factor is indeed p
seq
α,γ(n, 1). Hence, the splitting rules of the alpha-gamma model

satisfy (9), which implies sampling consistency for α < 1. The case α = 1 is postponed to Section

3.2.

Moreover, sampling consistency can be enhanced to strong sampling consistency [16] by requiring

that (T ◦n−1, T ◦n ) has the same distribution as (T ◦n,−1, T ◦n ).

Proposition 13. The alpha-gamma model is strongly sampling consistent if and only if γ= 1−α.

Proof. For γ = 1 − α, the model is known to be strongly sampling consistent, cf. Section 3.4.

¡¡ ¡¡

¡¡ ¡¡@@ @@

@@

t◦3 t◦4

If γ 6= 1−α, consider the above two deterministic unlabelled trees.

P(T ◦4 = t◦4) = qseq
α,γ(2,1,1)qseq

α,γ(1,1) = (α− γ)(5− 5α+ γ)/((2−α)(3−α)).

Then we delete one of the two leaves at the first branch point of t◦4 to get t◦3. Therefore

P((T ◦4,−1, T ◦4 ) = (t
◦
3, t◦4)) =

1

2
P(T ◦4 = t◦4) =

(α− γ)(5− 5α+ γ)

2(2−α)(3−α)
.
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On the other hand, if T ◦3 = t◦3, we have to add the new leaf to the first branch point to get t◦4. Thus

P((T ◦3 , T ◦4 ) = (t
◦
3, t◦4)) =

α− γ

3−α
P(T ◦3 = t◦3) =

(α− γ)(2− 2α+ γ)

(2−α)(3−α)
.

It is easy to check that P((T ◦4,−1, T ◦4 ) = (t
◦
3, t◦4)) 6= P((T

◦
3 , T ◦4 ) = (t

◦
3, t◦4)) if γ 6= 1− α, which means

that the alpha-gamma model is then not strongly sampling consistent.

3 Dislocation measures and asymptotics of alpha-gamma trees

3.1 Dislocation measures associated with the alpha-gamma-splitting rules

Theorem 2 claims that the alpha-gamma trees are sampling consistent, which we proved in Section

2.5, and identifies the integral representation of the splitting rule in terms of a dislocation measure,

which we will now establish.

Proof of Theorem 2. In the binary case γ = α, the expression simplifies and the result follows from

Ford [12], see also [16, Section 5.2].

In the multifurcating case γ < α, we first make some rearrangement for the coefficient of the sam-

pling consistent splitting rules of alpha-gamma trees identified in Proposition 10:

γ+ (1−α− γ)
1

n(n− 1)

∑

i 6= j

nin j

=
(n+ 1−α− γ)(n−α− γ)

n(n− 1)


γ+ (1−α− γ)



∑

i 6= j

Ai j + 2

k∑

i=1

Bi + C





 ,

where

Ai j =
(ni −α)(n j −α)

(n+ 1−α− γ)(n−α− γ)
,

Bi =
(ni −α)((k− 1)α− γ)

(n+ 1−α− γ)(n−α− γ)
,

C =
((k− 1)α− γ)(kα− γ)

(n+ 1−α− γ)(n−α− γ)
.

Notice that Bi p
PD∗

α,−α−γ(n1, . . . , nk) simplifies to

(ni −α)((k− 1)α− γ)

(n+ 1−α− γ)(n−α− γ)

αk−2Γ(k− 1− γ/α)

ZnΓ(1− γ/α)
Γα(n1) . . .Γα(nk)

=
Zn+2

Zn(n+ 1−α− γ)(n−α− γ)

αk−1Γ(k− γ/α)

Zn+2Γ(1− γ/α)
Γα(n1) . . .Γα(ni + 1) . . .Γα(nk)

=
eZn+2

eZn

pPD∗

α,−α−γ(n1, . . . , ni + 1, . . . , nk, 1),
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where Γα(n) = Γ(n−α)/Γ(1−α) and eZn = ZnαΓ(1−γ/α)/Γ(n−α−γ) is the normalisation constant

in (4) for ν = PD∗α,−γ−α. The latter can be seen from [17, Formula (17)], which yields

eZn =
∑

{A1,...,Ak}∈P[n]\{[n]}

αk−1Γ(k− 1− γ/α)

Γ(n−α− γ)

k∏

i=1

Γ(#Ai −α)

Γ(1−α)
,

whereas Zn is the normalisation constant in (2) and hence satisfies

Zn =
∑

{A1,...,Ak}∈P[n]\{[n]}

αk−2Γ(k− 1− γ/α)

Γ(1− γ/α)

k∏

i=1

Γ(#Ai −α)

Γ(1−α)
.

According to (4),

pPD∗

α,−α−γ(n1, . . . , nk) =
1

eZn

∫

S ↓

∑

i1,...,ik≥1
distinct

k∏

l=1

s
nl

il
PD∗α,−α−γ(ds).

Thus,

k∑

i=1

Bi p
PD∗

α,−α−γ(n1, . . . , nk) =
1

eZn

∫

S ↓

∑

i1,...,ik≥1
distinct

k∏

l=1

s
nl

il




∑

u∈{i1,...,ik},v 6∈{i1,...,ik}

susv


PD∗α,−α−γ(ds)

Similarly,

∑

i 6= j

Ai j p
PD∗

α,−α−γ(n1, . . . , nk) =
1

eZn

∫

S ↓

∑

i1,...,ik≥1
distinct

k∏

l=1

s
nl

il




∑

u,v∈{i1,...,ik}:u6=v

susv


PD∗α,−α−γ(ds)

C pPD∗

α,−α−γ(n1, . . . , nk) =
1

eZn

∫

S ↓

∑

i1,...,ik≥1
distinct

k∏

l=1

s
nl

il




∑

u,v 6∈{i1,...,ik}:u6=v

susv


PD∗α,−α−γ(ds),

Hence, the EPPF p
seq
α,γ(n1, . . . , nk) of the sampling consistent splitting rule takes the following form:

(n+ 1−α− γ)(n−α− γ)Zn

n(n− 1)Γα(n)


γ+ (1−α− γ)



∑

i 6= j

Ai j + 2

k∑

i=1

Bi + C





 pPD∗

α,γ (n1, . . . , nk)

=
1

Yn

∫

S ↓

∑

i1,...,ik≥1
distinct

k∏

l=1

s
nl

il


γ+ (1−α− γ)

∑

i 6= j

sis j


PD∗α,−α−γ(ds), (11)

where Yn = n(n− 1)Γα(n)αΓ(1− γ/α)/Γ(n+ 2− α− γ) is the normalisation constant. Hence, we

have να,γ(ds) =
�
γ+ (1−α− γ)

∑
i 6= j sis j

�
PD∗α,−α−γ(ds).

417



3.2 The alpha-gamma model when α= 1, spine with bushes of singleton-trees

Within the discussion of the alpha-gamma model so far, we restricted to 0 ≤ α < 1. In fact, we can

still get some interesting results when α = 1. The weight of each leaf edge is 1− α in the growth

procedure of the alpha-gamma model. If α = 1, the weight of each leaf edge becomes zero, which

means that the new leaf can only be inserted to internal edges or branch points. Starting from the

two leaf tree, leaf 3 must be inserted into the root edge or the branch point. Similarly, any new

leaf must be inserted into the spine leading from the root to the common ancestor of leaf 1 and leaf

2. Hence, the shape of the tree is just a spine with some bushes of one-leaf subtrees rooted on it.

Moreover, the first split of an n-leaf tree will be into k parts (n− k+ 1,1, . . . , 1) for some 2≤ k ≤ n.

The cases γ = 0 and γ = 1 lead to degenerate trees with, respectively, all leaves connected to a

single branch point and all leaves connected to a spine of binary branch points (comb).

Proposition 14. Consider the alpha-gamma model with α= 1 and 0< γ < 1.

(a) The model is sampling consistent with splitting rules

q
seq

1,γ(n1, . . . , nk)

=





γΓγ(k− 1)/(k− 1)!, if 2≤ k ≤ n− 1 and (n1, . . . , nk) = (n− k+ 1,1, . . . , 1);

Γγ(n− 1)/(n− 2)!, if k = n and (n1, . . . , nk) = (1, . . . , 1);

0, otherwise,

(12)

where n1 ≥ . . .≥ nk ≥ 1 and n1+ . . .+ nk = n.

(b) The dislocation measure associated with the splitting rules can be expressed as follows

∫

S ↓
f (s1, s2, . . .)ν1,γ(ds) =

∫ 1

0

f (s1, 0, . . .)
�
γ(1− s1)

−1−γds1+ δ0(ds1)
�

. (13)

In particular, it does not satisfy ν({s ∈ S ↓ : s1 + s2 + . . . < 1}) = 0. The erosion coefficient c

vanishes.

The presence of the Dirac measure δ0 in the dislocation measure means that the associated frag-

mentation process exhibits dislocation events that split a fragment of positive mass into infinitesimal

fragments of zero mass, often referred to as dust in the fragmentation literature. Dust is also pro-

duced by the other part of ν1,γ, where also a fraction s1 of the fragment of positive mass is retained.

Proof. (a) We start from the growth procedure of the alpha-gamma model when α = 1. Consider a

first split into k parts (n− k+ 1,1, . . . , 1) for some labelled n-leaf tree for some 2 ≤ k ≤ n. Suppose

k ≤ n−1 and that the branch point adjacent to the root is created when leaf l is inserted to the root

edge, where l ≥ 3. This insertion happens with probability γ/(l − 2), as α = 1. At stage l, the first

split is (l − 1,1). In the following insertions, leaves l + 1, . . . , n have to be added either to the first

branch point or to the subtree with l − 1 leaves at stage l. Hence the probability that the first split

of this tree is (n− k+ 1,1, . . . , 1) is

(n− k− 1)!

(n− 2)!
γΓγ(k− 1),
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which does not depend on l. Notice that the growth rules imply that if the first split of [n] is

(n− k+ 1,1, . . . , 1) with k ≤ n− 1, then leaves 1 and 2 will be located in the subtree with n− k+ 1

leaves. There are
� n−2

n−k−1

�
labelled trees with the above first split. Therefore,

q
seq

1,γ(n− k+ 1,1, . . . , 1) =

�
n− 2

n− k− 1

�
(n− k− 1)!

(n− 2)!
γΓγ(k− 1) = γΓγ(k− 1)/(k− 1)!.

On the other hand, for k = n, there is only one n-leaf labelled tree with the corresponding first split

(1, . . . , 1) and in this case, all leaves have to be added to the only branch point. Hence

q
seq

1,γ(1, . . . , 1) = Γγ(n− 1)/(n− 2)!.

For sampling consistency, we check criterion (8), which reduces to the two formulas for 2≤ k ≤ n−1

and k = n, respectively,

�
1−

1

n+ 1
q

seq

1,γ(n, 1)

�
q

seq

1,γ(n− k+ 1,1, . . . , 1) =
n− k+ 2

n+ 1
q

seq

1,γ(n− k+ 2,1, . . . , 1)

+
k

n+ 1
q

seq

1,γ(n− k+ 1,1, . . . , 1)

�
1−

1

n+ 1
q

seq

1,γ(n, 1)

�
q

seq

1,γ(1, . . . , 1) =
2

n+ 1
q

seq

1,γ(2,1, . . . , 1) + q
seq

1,γ(1, . . . , 1),

where the right-hand term on the left-hand side is a split of n (into k parts), all others are splits of

n+ 1.

(b) According to (12), we have for 2≤ k ≤ n− 1

q
seq

1,γ(n− k+ 1,1, . . . , 1)

=

�
n

n− k+ 1

�
Γγ(n+ 1)

n!
γB(n− k+ 2, k− 1− γ)

=
1

Yn

�
n

n− k+ 1

�∫ 1

0

sn−k+1
1 (1− s1)

k−1
�
γ(1− s1)

−1−γds1

�

=
1

Yn

�
n

n− k+ 1

�∫ 1

0

sn−k+1
1 (1− s1)

k−1
�
γ(1− s1)

−1−γds1+δ0(ds1)
�

, (14)

where Yn = n!/Γγ(n+ 1). Similarly, for k = n,

q
seq

1,γ(1, . . . , 1) =
1

Yn

∫ 1

0

�
n(1− s1)

n−1s1+ (1− s1)
n
��
(γ(1− s1)

−1−γds1+ δ0(ds1)
�

. (15)

Formulas (14) and (15) are of the form of [16, Formula (2)], which generalises (4) to the case

where ν does not necessarily satisfy ν({s ∈ S ↓ : s1+ s2+ . . .< 1}) = 0, hence ν1,γ is identified.

3.3 Continuum random trees and self-similar trees

Let B ⊂ N finite. A labelled tree with edge lengths is a pair ϑ = (t,η), where t ∈ TB is a labelled tree,

η = (ηA,A∈ t \ {ROOT}) is a collection of marks, and every edge C → A of t is associated with mark
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ηA ∈ (0,∞) at vertex A, which we interpret as the edge length of C → A. Let ΘB be the set of such

trees (t,η) with t ∈ TB.

We now introduce continuum trees, following the construction by Evans et al. in [9]. A complete

separable metric space (τ, d) is called an R-tree, if it satisfies the following two conditions:

1. for all x , y ∈ τ, there is an isometry ϕx ,y : [0, d(x , y)] → τ such that ϕx ,y(0) = x and

ϕx ,y(d(x , y)) = y ,

2. for every injective path c : [0,1] → τ with c(0) = x and c(1) = y , one has c([0,1]) =

ϕx ,y([0, d(x , y)]).

We will consider rooted R-trees (τ, d,ρ), where ρ ∈ τ is a distinguished element, the root. We think

of the root as the lowest element of the tree.

We denote the range of ϕx ,y by [[x , y]] and call the quantity d(ρ, x) the height of x . We say that

x is an ancestor of y whenever x ∈ [[ρ, y]]. We let x ∧ y be the unique element in τ such that

[[ρ, x]]∩ [[ρ, y]] = [[ρ, x ∧ y]], and call it the highest common ancestor of x and y in τ. Denoted

by (τx , d|τx
, x) the set of y ∈ τ such that x is an ancestor of y , which is an R-tree rooted at x that

we call the fringe subtree of τ above x .

Two rooted R-trees (τ, d,ρ), (τ′, d ′,ρ′) are called equivalent if there is a bijective isometry between

the two metric spaces that maps the root of one to the root of the other. We also denote by Θ the set

of equivalence classes of compact rooted R-trees. We define the Gromov-Hausdorff distance between

two rooted R-trees (or their equivalence classes) as

dGH(τ,τ′) = inf{dH(eτ, eτ′)}

where the infimum is over all metric spaces E and isometric embeddings eτ⊂ E of τ and eτ′ ⊂ E of τ′

with common root eρ ∈ E; the Hausdorff distance on compact subsets of E is denoted by dH. Evans

et al. [9] showed that (Θ, dGH) is a complete separable metric space.

We call an element x ∈ τ, x 6= ρ, in a rooted R-tree τ, a leaf if its removal does not disconnect τ,

and let L (τ) be the set of leaves of τ. On the other hand, we call an element of τ a branch point, if

it has the form x ∧ y where x is neither an ancestor of y nor vice-visa. Equivalently, we can define

branch points as points disconnecting τ into three or more connected components when removed.

We letB(τ) be the set of branch points of τ.

A weighted R-tree (τ,µ) is called a continuum tree [1], if µ is a probability measure on τ and

1. µ is supported by the set L (τ),

2. µ has no atom,

3. for every x ∈ τ\L (τ), µ(τx)> 0.

A continuum random tree (CRT) is a random variable whose values are continuum trees, defined on

some probability space (Ω,A ,P). Several methods to formalize this have been developed [2; 10;

13]. For technical simplicity, we use the method of Aldous [2]. Let the space ℓ1 = ℓ1(N) be the base

space for defining CRTs. We endow the set of compact subsets of ℓ1 with the Hausdorff metric, and

the set of probability measures on ℓ1 with any metric inducing the topology of weak convergence, so
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that the set of pairs (T,µ) where T is a rooted R-tree embedded as a subset of ℓ1 and µ is a measure

on T , is endowed with the product σ-algebra.

An exchangeablePN-valued fragmentation process (Π(t), t ≥ 0) is called self-similar with index a ∈ R

if given Π(t) = π = {πi , i ≥ 1} with asymptotic frequencies |πi | = limn→∞ n−1#[n] ∩ π j , the

random variable Π(t + s) has the same law as the random partition whose blocks are those of

πi ∩ Π
(i)(|πi|

as), i ≥ 1, where (Π(i), i ≥ 1) is a sequence of i.i.d. copies of (Π(t), t ≥ 0). The

process (|Π(t)|↓, t ≥ 0) is an S↓-valued self-similar fragmentation process. Bertoin [5] proved that

the distribution of a PN-valued self-similar fragmentation process is determined by a triple (a, c,ν),

where a ∈ R, c ≥ 0 and ν is a dislocation measure on S↓. For this article, we are only interested in

the case c = 0 and when ν(s1+ s2+ . . . < 1) = 0. We call (a,ν) the characteristic pair. When a = 0,

the process (Π(t), t ≥ 0) is also called homogeneous fragmentation process.

A CRT (T ,µ) is a self-similar CRT with index a = −γ < 0 if for every t ≥ 0, given (µ(T i
t ), i ≥ 1))

where T i
t , i ≥ 1 is the ranked order of connected components of the open set {x ∈ τ : d(x ,ρ(τ)) >

t}, the continuum random trees

�
µ(T 1

t )
−γT 1

t ,
µ(· ∩ T 1

t )

µ(T 1
t )

�
,

�
µ(T 2

t )
−γT 2

t ,
µ(· ∩ T 2

t )

µ(T 2
t )

�
, . . .

are i.i.d copies of (T ,µ), where µ(T i
t )
−γT i

t is the tree that has the same set of points as T i
t , but

whose distance function is divided by µ(T i
t )
γ. Haas and Miermont in [15] have shown that there

exists a self-similar continuum random tree T(γ,ν) characterized by such a pair (γ,ν), which can be

constructed from a self-similar fragmentation process with characteristic pair (γ,ν).

3.4 The alpha-gamma model when γ= 1−α, sampling from the stable CRT

Let (T ,ρ,µ) be the stable tree of Duquesne and Le Gall [7]. The distribution on Θ of any CRT

is determined by its so-called finite-dimensional marginals: the distributions of Rk, k ≥ 1, the

subtrees Rk ⊂ T defined as the discrete trees with edge lengths spanned by ρ, U1, . . . , Uk, where

given (T ,µ), the sequence Ui ∈ T , i ≥ 1, of leaves is sampled independently from µ. See also

[22; 8; 16; 17; 19] for various approaches to stable trees. Let us denote the discrete tree without

edge lengths associated with Rk by Tk and note the Markov branching structure.

Lemma 15 (Corollary 22 in [16]). Let 1/α ∈ (1,2]. The trees Tn, n ≥ 1, sampled from the (1/α)-

stable CRT are Markov branching trees, whose splitting rule has EPPF

pstable
1/α

(n1, . . . , nk) =
αk−2Γ(k− 1/α)Γ(2−α)

Γ(2− 1/α)Γ(n−α)

k∏

j=1

Γ(n j −α)

Γ(1−α)

for any k ≥ 2, n1 ≥ 1, . . . , nk ≥ 1, n= n1+ . . .+ nk.

We recognise pstable
1/α

= pPD∗

α,−1 in (2), and by Proposition 1, we have pPD∗

α,−1 = p
seq

α,1−α. The full distri-

bution of Rn, n ≥ 1, is displayed in Theorem 5, which in the stable case was first obtained by [7,

Theorem 3.3.3]. Furthermore, it can be shown that the trees (Tk, k ≥ 1) obtained by sampling from

the stable CRT follow the alpha-gamma growth rules for γ = 1− α, see e.g. Marchal [19]. This

observation yields the following corollary:
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Corollary 16. The alpha-gamma trees with γ = 1−α are strongly sampling consistent and exchange-

able.

Proof. These properties follow from the representation by sampling from the stable CRT, particularly

the exchangeability of the sequence Ui , i ≥ 1. Specifically, since Ui , i ≥ 1, are conditionally inde-

pendent and identically distributed given (T ,µ), they are exchangeable. If we denote by Ln,−1 the

random set of leavesLn = {U1, . . . , Un} with a uniformly chosen member removed, then (Ln,−1,Ln)

has the same conditional distribution as (Ln−1,Ln). Hence the pairs of (unlabelled) tree shapes

spanned by ρ and these sets of leaves have the same distribution – this is strong sampling consis-

tency as defined before Proposition 13.

3.5 Dislocation measures in size-biased order

In actual calculations, we may find that the splitting rules in Proposition 1 are quite difficult and

the corresponding dislocation measure ν is always inexplicit, which leads us to transform ν to a

more explicit form. For simplicity, let us assume that ν satisfies ν({s ∈ S ↓ : s1 + s2 + . . . < 1}) = 0.

The method proposed here is to change the space S ↓ into the space [0,1]N and to rearrange the

elements s ∈ S ↓ under ν into the size-biased random order that places si1
first with probability si1

(its size) and, successively, the remaining ones with probabilities si j
/(1−si1

− . . .−si j−1
) proportional

to their sizes si j
into the following positions, j ≥ 2.

Definition 2. We call a measure ν sb on the space [0,1]N the size-biased dislocation measure asso-

ciated with dislocation measure ν , if for any subset A1× A2× . . .× Ak × [0,1]N of [0,1]N,

ν sb(A1× A2× . . .× Ak × [0,1]N) =
∑

i1,...,ik≥1
distinct

∫

{s∈S ↓:si1
∈A1,...,sik

∈Ak}

si1
. . . sik∏k−1

j=1 (1−
∑ j

l=1
sil
)
ν(ds) (16)

for any k ∈ N, where ν is a dislocation measure on S ↓ satisfying ν(s ∈ S ↓ : s1 + s2 + . . . < 1) = 0.

We also denote by ν sb
k
(A1× A2× . . .× Ak) = ν

sb(A1× A2× . . .× Ak × [0,1]N) the distribution of the

first k marginals.

The sum in (16) is over all possible rank sequences (i1, . . . , ik) to determine the first k entries of the

size-biased vector. The integral in (16) is over the decreasing sequences that have the jth entry of

the re-ordered vector fall into A j , j ∈ [k]. Notice that the support of such a size-biased dislocation

measure ν sb is a subset of S sb := {s ∈ [0,1]N :
∑∞

i=1 si = 1}. If we denote by s↓ the sequence

s ∈ S sb rearranged into ranked order, taking (16) into formula (4), we obtain

Proposition 17. The EPPF associated with a dislocation measure ν can be represented as:

p(n1, . . . , nk) =
1

eZn

∫

[0,1]k
x

n1−1

1 . . . x
nk−1

k

k−1∏

j=1

(1−

j∑

l=1

x l)ν
sb
k
(d x),

where ν sb is the size-biased dislocation measure associated with ν , where n1 ≥ . . .≥ nk ≥ 1, k ≥ 2, n=

n1+ . . .+ nk and x = (x1, . . . , xk).

Now turn to see the case of Poisson-Dirichlet measures PD∗
α,θ

to then study ν sb
α,γ.
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Lemma 18. If we define GEM∗
α,θ

as the size-biased dislocation measure associated with PD∗
α,θ

for

0< α < 1 and θ > −2α, then the first k marginals have joint density

gem∗α,θ (x1, . . . , xk) =
αΓ(2+ θ/α)

Γ(1−α)Γ(θ +α+ 1)
∏k

j=2 B(1−α,θ + jα)

(1−
∑k

i=1 x i)
θ+kα

∏k

j=1 x−α
j

∏k

j=1(1−
∑ j

i=1 x i)
,

(17)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1d x is the beta function.

This is a simple σ-finite extension of the GEM distribution and (17) can be derived analogously

to Lemma 7. Applying Proposition 17, we can get an explicit form of the size-biased dislocation

measure associated with the alpha-gamma model.

Proof of Proposition 4. We start our proof from the dislocation measure associated with the alpha-

gamma model. According to (5) and (16), the first k marginals of ν sb
α,γ are given by

ν sb
k
(A1× . . .× Ak)

=
∑

i1,...,ik≥1
distinct

∫

{s∈S ↓:si j
∈A j , j∈[k]}

si1
. . . sik∏k−1

j=1 (1−
∑ j

l=1
sil
)


γ+ (1−α− γ)

∑

i 6= j

sis j


PD∗α,−α−γ(ds)

= γD+ (1−α− γ)(E − F),

where

D =
∑

i1,...,ik≥1
distinct

∫

{s∈S ↓: si1
∈A1,...,sik

∈Ak}

si1
. . . sik∏k−1

j=1 (1−
∑ j

l=1
sil
)
PD∗α,−α−γ(ds)

= GEM∗α,−α−γ(A1× . . .× Ak),

E =
∑

i1,...,ik≥1
distinct

∫

{s∈S ↓: si1
∈A1,...,sik

∈Ak}

 
1−

k∑

u=1

s2
iu

!
si1

. . . sik∏k−1

j=1 (1−
∑ j

l=1
sil
)
PD∗α,−α−γ(ds)

=

∫

A1×...×Ak

 
1−

k∑

i=1

x2
i

!
GEM∗α,−α−γ(d x)

F =
∑

i1,...,ik≥1
distinct

∫

{s∈S ↓: si1
∈A1,...,sik

∈Ak}




∑

v 6∈{i1,...,ik}

s2
v




si1
. . . sik∏k−1

j=1 (1−
∑ j

l=1
sil
)
PD∗α,−α−γ(ds)

=
∑

i1,...,ik+1≥1
distinct

∫

{s∈S ↓: si1
∈A1,...,sik

∈Ak}

s2
ik+1

1−
∑k

l=1 sil

si1
. . . sik+1∏k

j=1(1−
∑ j

l=1
sil
)
PD∗α,−α−γ(ds)

=

∫

A1×...×Ak×[0,1]

xk+1

1−
∑k

i=1 x i

GEM∗α,−α−γ(d(x1, . . . , xk+1)).

Applying (17) to F (and setting θ =−α− γ), then integrating out xk+1, we get:

F =

∫

A1×...×Ak

1−α

1+ (k− 1)α− γ

 
1−

k∑

i=1

x i

!2

GEM∗α,−α−γ(d x).

423



Summing over D, E, F , we obtain the formula stated in Proposition 4.

As the model related to stable trees is a special case of the alpha-gamma model when γ= 1−α, the

sized-biased dislocation measure for it is

ν sb
α,1−α(ds) = γGEM∗α,−1(ds).

For general (α,γ), the explicit form of the dislocation measure in size-biased order, specifically the

density gα,γ of the first marginal of ν sb
α,γ, yields immediately the tagged particle [4] Lévy measure

associated with a fragmentation process with alpha-gamma dislocation measure.

Corollary 19. Let (Πα,γ(t), t ≥ 0) be an exchangeable homogeneous PN-valued fragmentation process

with dislocation measure να,γ for some 0 < α < 1 and 0 ≤ γ < α. Then, for the size |Π
α,γ

(i)
(t)| of the

block containing i ≥ 1, the process ξ(i)(t) = − log |Π
α,γ

(i)
(t)|, t ≥ 0, is a pure-jump subordinator with

Lévy measure

Λα,γ(d x) = e−x gα,γ(e
−x)d x =

αΓ(1− γ/α)

Γ(1−α)Γ(1− γ)

�
1− e−x

�−1−γ �
e−x
�1−α

×

�
γ+ (1−α− γ)

�
2e−x(1− e−x) +

α− γ

1− γ
(1− e−x)2

��
d x .

A similar result holds for the binary case γ= α, see [24, Equation (10), also Section 4.2].

3.6 Convergence of alpha-gamma trees to self-similar CRTs

In this subsection, we will prove that the delabelled alpha-gamma trees T ◦n , represented as R-trees

with unit edge lengths and suitably rescaled converge to fragmentation CRTs T α,γ as n tends to

infinity, where T α,γ is a γ-selfsimilar fragmentation CRT whose dislocation measure is a multiple of

να,γ, as in Corollary 3, cf. Section 3.3.

Lemma 20. If (eT ◦n )n≥1 are strongly sampling consistent discrete fragmentation trees in the sense that

(T ◦n−1, T ◦n ) has the same distribution as (T ◦n,−1, T ◦n ) for all n ≥ 2, cf. Section 2.5, associated with

dislocation measure να,γ for some 0< α < 1 and 0< γ≤ α, then

eT ◦n
nγ
→T α,γ

in the Gromov-Hausdorff sense, in probability as n→∞.

Proof. For γ= α this is [16, Corollary 17]. For γ < α, we apply Theorem 2 in [16], which says that a

strongly sampling consistent family of discrete fragmentation trees (eT ◦n )n≥1 converges in probability

to a CRT
eT ◦n

nγν ℓ(n)Γ(1− γν)
→T(γν ,ν)

for the Gromov-Hausdorff metric if the dislocation measure ν satisfies following two conditions:

ν(s1 ≤ 1− ǫ) = ǫ−γν ℓ(1/ǫ); (18)
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∫

S ↓

∑

i≥2

si|lnsi|
ρν(ds)<∞, (19)

where ρ is some positive real number, γν ∈ (0,1), and x 7→ ℓ(x) is slowly varying as x →∞.

By virtue of (19) in [16], we know that (18) is equivalent to

Λ([x ,∞)) = x−γν ℓ∗(1/x), as x ↓ 0,

where Λ is the Lévy measure of the tagged particle subordinator as in Corollary 19. Specifically, the

slowly varying functions ℓ and ℓ∗ are asymptotically equivalent since

Λ([x ,∞)) =

∫

S ↓
(1− s1)ν(ds) + ν(s1 ≤ e−x) =

∫

S ↓
(1− s1)ν(ds) + (1− e−x)−γν ℓ

�
1

1− e−x

�

implies that

ℓ∗(1/x)

ℓ(1/x)
=
Λ([x ,∞)

x−γν ℓ(1/x)
∼

�
1− e−x

x

�−γν ℓ(x + 1−x+xe−x

1−e−x )

ℓ(x)
→ 1.

So, the dislocation measure να,γ satisfies (18) with ℓ(x) → αΓ(1 − γ/α)/Γ(1 − α)Γ(1 − γ) and

γνα,γ
= γ. Notice that ∫

S ↓

∑

i≥2

si |lnsi|
ρνα,γ(ds)≤

∫ ∞

0

xρΛα,γ(d x).

As x →∞, Λα,γ decays exponentially, so να,γ satisfies condition (19). This completes the proof.

Proof of Corollary 3. The splitting rules of T ◦n are the same as those of eT ◦n , which leads to the identity

in distribution for the whole trees. The preceding lemma yields convergence in distribution for

T ◦n .

4 Limiting results for labelled alpha-gamma trees

In this section we suppose 0 < α < 1 and 0 < γ ≤ α. In the boundary case γ = 0 trees grow

logarithmically and do not possess non-degenerate scaling limits; for α= 1 the study in Section 3.2

can be refined to give results analogous to the ones below, but with degenerate tree shapes.

4.1 The scaling limits of reduced alpha-gamma trees

For τ a rooted R-tree and x1, . . . , xn ∈ τ, we call R(τ, x1, . . . , xn) =
⋃n

i=1[[ρ, x i]] the reduced

subtree associated with τ, x1, . . . , xn, where ρ is the root of τ.

As a fragmentation CRT, the limiting CRT (T α,γ,µ) is naturally equipped with a mass measure µ

and contains subtrees eRk, k ≥ 1 spanned by k leaves chosen independently according to µ. Denote

the discrete tree without edge lengths by T̃n – it has exchangeable leaf labels. Then eRn is the almost

sure scaling limit of the reduced trees R(eTn, [k]), by Proposition 7 in [16].

On the other hand, if we denote by Tn the (non-exchangeably) labelled trees obtained via the alpha-

gamma growth rules, the above result will not apply, but, similarly to the result for the alpha model
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2 3

1

Figure 2: We display an example of S(T16, [3]), seven skeletal subtrees in five skeletal bushes (within the

dashed lines, white leaves) and further subtrees in the branch points of S(T16, [3]) (with black leaves).

shown in Proposition 18 in [16], we can still establish a.s. convergence of the reduced subtrees in

the alpha-gamma model as stated in Theorem 5, and the convergence result can be strengthened as

follows.

Proposition 21. In the setting of Theorem 5

(n−γR(Tn, [k]), n−1Wn,k)→ (Rk,Wk) a.s. as n→∞,

in the sense of Gromov-Hausdorff convergence, where Wn,k is the total number of leaves in subtrees of

Tn\R(Tn, [k]) that are linked to the present branch points of R(Tn, [k]).

Proof of Theorem 5 and Proposition 21. Actually, the labelled discrete tree R(Tn, [k]) with edge

lengths removed is Tk for all n. Thus, it suffices to prove the convergence of its total length and of

its edge length proportions.

Let us consider a first urn model, cf. [11], where at level n the urn contains a black ball for each leaf

in a subtree that is directly connected to a branch point of R(Tn, [k]), and a white ball for each leaf

in one of the remaining subtrees connected to the edges of R(Tn, [k]). Suppose that the balls are

labelled like the leaves they represent. If the urn then contains Wn,k = m black balls and n− k−m

white balls, the induced partition of {k+ 1, . . . , n} has probability function

p(m, n− k−m) =
Γ(n−m−α−w)Γ(w+m)Γ(k−α)

Γ(k−α−w)Γ(w)Γ(n−α)
=

B(n−m−α−w, w +m)

B(k−α−w, w)

where w = k(1−α) + ℓγ is the total weight on the k leaf edges and ℓ other edges of Tk. As n→∞,

the urn is such that Wn,k/n→Wk a.s., where Wk ∼ beta((k− 1)α− lγ, k(1−α) + lγ).

We will partition the white balls further. Extending the notions of spine, spinal subtrees and spinal

bushes from Proposition 10 (k = 1), we call, for k ≥ 2, skeleton the tree S(Tn, [k]) of Tn spanned by

the ROOT and leaves [k] including the degree-2 vertices, for each such degree-2 vertex v ∈ S(Tn, [k]),

we consider the skeletal subtrees Ssk
v j

that we join together into a skeletal bush Ssk
v , cf. Figure 2. Note

that the total length L
(n)

k
of the skeleton S(Tn, [k]) will increase by 1 if leaf n+1 in Tn+1 is added to
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any of the edges of S(Tn, [k]); also, L
(n)

k
is equal to the number of skeletal bushes (denoted by Kn)

plus the original total length k+ ℓ of Tk. Hence, as n→∞

L
(n)

k

nγ
∼

Kn

W
γ

n,k

�
Wn,k

n

�γ
∼

Kn

W
γ

n,k

W
γ

k
. (20)

The partition of leaves (associated with white balls), where each skeletal bush gives rise to a block,

follows the dynamics of a Chinese Restaurant Process with (γ, w)-seating plan: given that the num-

ber of white balls in the first urn is m and that there are Km := Kn skeletal bushes on the edges of

S(Tn, [k]) with ni leaves on the ith bush, the next leaf associated with a white ball will be inserted

into any particular bush with ni leaves with probability proportional to ni − γ and will create a new

bush with probability proportional to w + Kmγ. Hence, the EPPF of this partition of the white balls

is

pγ,w(n1, . . . , nKm
) =
γKm−1Γ(Km+w/γ)Γ(1+w)

Γ(1+w/γ)Γ(m+w)

Km∏

i=1

Γγ(ni).

Applying Lemma 8 in connection with (20), we get the probability density of Lk/W
γ

k
as specified.

Finally, we set up another urn model that is updated whenever a new skeletal bush is created.

This model records the edge lengths of R(Tn, [k]). The alpha-gamma growth rules assign weights

1− α+ (ni − 1)γ to leaf edges of R(Tn, [k]) and weights niγ to other edges of length ni , and each

new skeletal bush makes one of the weights increase by γ. Hence, the conditional probability that

the length of each edge is (n1, . . . , nk+l) at stage n is that

∏k

i=1Γ1−α(ni)
∏k+ℓ

i=k+1Γγ(ni)

Γkα+ℓγ(n− k)
.

Then D
(n)

k
converge a.s. to the Dirichlet limit as specified. Moreover, L

(n)

k
D
(n)

k
→ LkDk a.s., and it is

easily seen that this implies convergence in the Gromov-Hausdorff sense.

The above argument actually gives us the conditional distribution of Lk/W
γ

k
given Tk and Wk, which

does not depend on Wk. Similarly, the conditional distribution of Dk given given Tk, Wk and Lk does

not depend on Wk and Lk. Hence, the conditional independence of Wk, Lk/W
γ

k
and Dk given Tk

follows.

4.2 Further limiting results

Alpha-gamma trees not only have edge weights but also vertex weights, and the latter are in corre-

spondence with the vertex degrees. We can get a result on the limiting ratio between the degree of

each vertex and the total number of leaves. To be specific, it is useful to enumerate all vertices in a

unique way, e.g. in the order they are visited by depth first search [18], where beginning from the

root each subtree is visited recursively, in the order of least labels.

Proposition 22. Let (c1 + 1, . . . , cℓ + 1) be the degree of each vertex in Tk, listed by depth first search.

The ratio between the degrees in Tn of these vertices and nα will converge to

Ck = (Ck,1, . . . , Ck,ℓ) =W
α

k MkD′k, where D′
k
∼ Dirichlet(c1− 1− γ/α, . . . , cℓ − 1− γ/α),
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Mk and Wk are conditionally independent given Tk, where W k = 1−Wk, and Mk has density

Γ(w+ 1)

Γ(w/α+ 1)
sw/αgα(s), s ∈ (0,∞),

w = (k− 1)α− ℓγ is total branch point weight in Tk and gα(s) is the Mittag-Leffler density.

Proof. Recall the first urn model in the preceding proof which assigns colour black to leaves attached

in subtrees of branch points of Tk. We will partition the black balls further. The partition of leaves

(associated with black balls), where each subtree Ssk
v j

of a branch point v ∈ R(Tn, [k]) gives rise to

a block, follows the dynamics of a Chinese Restaurant Process with (α, w)-seating plan. Hence, the

total degree C tot
k
(n)/W

α

n,k→ Mk a.s., where C tot
k
(n) is the sum of degrees in Tn of the branch points

of Tk, and W n,k = n − k −Wn,k is the total number of leaves of Tn that are in subtrees directly

connected to the branch points of Tk.

Similarly to the discussion of edge length proportions, we now see that the sequence of degree

proportions will converge a.s. to the Dirichlet limit as specified. Since 1−Wk is the a.s. limiting

proportion of leaves in subtrees connected to the vertices of Tk.

Given an alpha-gamma tree Tn, if we decompose along the spine that connects the ROOT to leaf 1,

we will find the leaf numbers of subtrees connected to the spine is a Chinese restaurant partition of

{2, . . . , n} with parameters (α, 1−α). Applying Lemma 7, we get following result.

Proposition 23. Let (Tn, n ≥ 1) be alpha-gamma trees. Denote by (P1, P2, . . .) the limiting frequencies

of the leaf numbers of each subtree of the spine connecting the ROOT to leaf 1 in the order of appearance.

These can be represented as

(P1, P2, . . .) = (W1,W 1W2,W 1W 2W3, . . .)

where the Wi are independent, Wi has beta(1−α, 1+ (i − 1)α) distribution, and W i = 1−Wi.

Observe that this result does not depend on γ. This observation also follows from Proposition 6,

because colouring (iv)col and crushing (cr) do not affect the partition of leaf labels according to

subtrees of the spine.
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