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Abstract

We study the smoothness of the density of a semilinear heat equation with multiplicative space-

time white noise. Using Malliavin calculus, we reduce the problem to a question of negative

moments of solutions of a linear heat equation with multiplicative white noise. Then we settle

this question by proving that solutions to the linear equation have negative moments of all or-

ders.
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1 Introduction

Consider a solution u(t, x) to the one-dimensional stochastic heat equation on [0,1] with Dirichlet

boundary conditions u(t, 0) = u(t, 1) = 0, driven by a two-parameter white noise, and with initial

condition u(t, x) = u0(x):

∂ u

∂ t
=
∂ 2u

∂ x2
+ b(t, x ,u(t, x)) +σ(t, x ,u(t, x))

∂ 2W

∂ t∂ x
. (1)

Assume that the coefficients b(t, x ,u),σ(t, x ,u) have linear growth in t, x and are Lipschitz func-

tions of u, uniformly in (t, x).

In [5] Pardoux and Zhang proved that u(t, x) has an absolutely continuous distribution for all (t, x)

such that t > 0 and x ∈ (0,1), if σ(0, y0,u0(y0)) 6= 0 for some y0 ∈ (0,1). Bally and Pardoux have

studied in [1] the regularity of the law of the solution of Equation (1) with Neumann boundary con-

ditions on [0,1], assuming that the coefficients b(u) and σ(u) are infinitely differentiable functions,

which are bounded together with their derivatives. They proved that for any 0≤ x1 < · · ·< xd ≤ 1,

t > 0, the law of (u(t, x1), . . . ,u(t, xd)) admits a strictly positive infinitely differentiable density on

the set {σ 6= 0}d .

Let u(t, x) be the solution of Equation (1) with Dirichlet boundary conditions on [0,1] and assume

that the coefficients b and σ are infinitely differentiable functions of the variable u with bounded

derivatives. The aim of this paper is to show that if σ(0, y0,u0(y0)) 6= 0 for some y0 ∈ (0,1), then

u(t, x) has a smooth density for all (t, x) such that t > 0 and x ∈ (0,1). Notice that this is exactly

the same nondegeneracy condition imposed in [5] to establish the absolute continuity. In order to

show this result we make use of a general theorem on the existence of negative moments for the

solution of Equation (1) in the case b(t, x ,u) = B(t, x)u and σ(t, x ,u) = H(t, x)u, where B and H

are some bounded and adapted random fields.

2 Preliminaries

First we define white noise W . Let

W = {W (A),A a Borel subset of R2, |A|<∞}
be a Gaussian family of random variables with zero mean and covariance

E
�

W (A)W (B)
�

= |A∩ B|,
where |A| denotes the Lebesgue measure of a Borel subset of R2, defined on a complete probability

space (Ω,F , P). Then W (t, x) = W ([0, t] × [0, x]) defines a two-parameter Wiener process on

[0,∞)2.

We are interested in Equation (1), and we will assume that u0 is a continuous function which satisfies

the boundary conditions u0(0) = u0(1) = 0. This equation is formal because the partial derivative
∂ 2W

∂ t∂ x
does not exist, and (1) is usually replaced by the evolution equation

u(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y)b(s, y,u(s, y))d yds

+

∫ t

0

∫ 1

0

Gt−s(x , y)σ(s, t,u(s, y))W (d y, ds), (2)
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where Gt(x , y) is the fundamental solution of the heat equation on [0,1] with Dirichlet boundary

conditions. Equation (2) is called the mild form of the equation.

If the coefficients b and σ are have linear growth and are Lipschitz functions of u, uniformly in

(t, x), there exists a unique solution of Equation (2) (see Walsh [8]).

The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which is mainly

applied to establish the regularity of the law of nonlinear functionals of the underlying Gaussian

process. We will briefly describe the basic criteria for existence and smoothness of densities, and we

refer to Nualart [3] for a more complete presentation of this subject.

Let S denote the class of smooth random variables of the the form

F = f (W (A1), . . . ,W (An)), (3)

where f belongs to C∞p (R
n) ( f and all its partial derivatives have polynomial growth order), and

A1, . . . ,An are Borel subsets of R2
+ with finite Lebesgue measure. The derivative of F is the two-

parameter stochastic process defined by

Dt,x F =

n
∑

i=1

∂ f

∂ x i

(W (A1), . . . ,W (An))1Ai
(t, x).

In a similar way we define the iterated derivative D(k)F . The derivative operator D (resp. its iteration

D(k)) is a closed operator from Lp(Ω) into Lp(Ω; L2(R2)) (resp. Lp(Ω; L2(R2k))) for any p > 1. For

any p > 1 and for any positive integer k we denote by Dp,k the completion of S with respect to the

norm

‖F‖k,p =







E(|F |p) +
k
∑

j=1

E







�∫

R
2 j

�

Dz1
· · ·Dz j

F
�2

dz1 · · · dz j

�
p

2













1

p

.

Set D∞ = ∩k,pD
k,p.

Suppose that F = (F1, . . . , F d) is a d-dimensional random vector whose components are in D1,2.

Then, we define the Malliavin matrix of F as the random symmetric nonnegative definite matrix

σF =
�
¬

DF i , DF j
¶

L2(R2)

�

1≤i, j≤d
.

The basic criteria for the existence and regularity of the density are the following:

Theorem 1. Suppose that F = (F1, . . . , F d) is a d-dimensional random vector whose components are

in D1,2. Then,

1. If detσF > 0 almost surely, the law of F is absolutely continuous.

2. If F i ∈ D∞ for each i = 1, . . . , d and E
�

(detσF )
−p
�

< ∞ for all p ≥ 1, then the F has an

infinitely differentiable density.
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3 Negative moments

Theorem 2. Let u(t, x) be the solution to the stochastic heat equation

∂ u

∂ t
=
∂ 2u

∂ x2
+ Bu+ Hu

∂ 2W

∂ t∂ x
, (4)

u(0, x) = u0(x)

on x ∈ [0,1] with Dirichlet boundary conditions. Assume that B = B(t, x) and H = H(t, x) are

bounded and adapted processes. Suppose that u0(x) is a nonnegative continuous function not identi-

cally zero. Then,

E
h

|u(t, x)|−p
i

<∞

for all p ≥ 2, t > 0 and 0< x < 1.

For the proof of this theorem we will make use of the following large deviations lemma, which

follows from Proposition A.2, page 530, of Sowers [7]. We remark that the proof of this result

holds true if we replace the periodic boundary conditions considered in [7] by Dirichlet boundary

conditions, and the integrand is just measurable, adapted and bounded.

Lemma 3. Let w(t, x) be an adapted stochastic process, bounded in absolute value by a constant M.

Let ε > 0. Then, there exist constants C0, C1 > 0 such that for all λ > 0 and all T > 0

P

 

sup
0≤t≤T

sup
0≤x≤1

¯

¯

¯

¯

¯

∫ t

0

∫ 1

0

Gt−s(x , y)w(s, y)W (ds, d y)

¯

¯

¯

¯

¯

> λ

!

≤ C0 exp

�

−
C1λ

2

T
1

2
−ε

�

.

We also need a comparison theorem such as Corollary 2.4 of [6]; see also Theorem 3.1 of Mueller

[4] or Theorem 2.1 of Donati-Martin and Pardoux [2]. Shiga’s result is for x ∈ R, but it can easily

be extended to the following lemma, which deals with x ∈ [0,1] and Dirichlet boundary conditions.

Lemma 4. Let ui(t, x) : i = 1,2 be two solutions of

∂ ui

∂ t
=
∂ 2ui

∂ x2
+ Biui + Hui

∂ 2W

∂ t∂ x
, (5)

ui(0, x) = u
(i)

0 (x)

where Bi(t, x), H(t, x),u
(i)

0 (x) satisfy the same conditions as in Theorem 2. Also assume that with

probability one for all t ≥ 0, x ∈ [0,1]

B1(t, x) ≤ B2(t, x)

u
(1)
0 (x) ≤ u

(2)
0 (x).

Then with probability 1, for all t ≥ 0, x ∈ [0,1]

u1(t, x)≤ u2(t, x).

2251



Proof of Theorem 2. We will construct a process w(t, x) satisfying 0 ≤ w(t, x) ≤ u(t, x), and bound

E
�

w(t, x)−p
�

. Since E
�

u(t, x)−p
�

≤ E
�

w(t, x)−p
�

, this will give us a bound on E
�

u(t, x)−p
�

.

Suppose that |B(t, x)| ≤ K almost surely for some constant K > 0. By the comparison lemma,

Lemma 4, it suffices to consider the solution to the equation

∂ w

∂ t
=
∂ 2w

∂ x2
− Kw + Hw

∂ 2W

∂ t∂ x
(6)

w(0, x) = u0(x)

on x ∈ [0,1] with Dirichlet boundary conditions. Indeed, the comparison lemma implies that a

solution w(t, x) of (6) will be less than or equal to a solution u(t, x) of (4), and w(t, x) ≥ 0. As

mentioned in the previous paragraph, Theorem 2 will follow if we can bound E
�

w(t, x)−p
�

.

Set u(t, x) = e−K t w(t, x), where u(t, x) is not the same as earlier in the paper. Simple calculus

shows that u(t, x) satisfies

∂ u

∂ t
=
∂ 2u

∂ x2
+ Hu

∂ 2W

∂ t∂ x
(7)

u(0, x) = u0(x)

and we have

E
�

w(t, x)−p
�

= eK tpE
�

u(t, x)−p
�

.

So, we can assume that K = 0, that is that u(t, x) satisfies (7). The mild formulation of Equation

(7) is

u(t, x) =

∫ 1

0

Gt(x , y)u0(y)d y +

∫ t

0

∫ 1

0

Gt−s(x , y)H(s, y)u(s, y)W (ds, d y).

Suppose that u0(x) ≥ δ > 0 for all x ∈ [a, b] ⊂ (0,1). Since (7) is linear, we may divide this

equation by δ, and assume δ = 1. We also replace u0 by 1[a,b](x), using the comparison lemma.

Fix T > 0, and consider a larger interval [a, b] ⊂ [a1, b1] ⊂ (0,1) of the form b1 = b + γ2T and

a1 = a− γ1T , where γ1,γ2 > 0. We are going to show that E[(u(T, x)−p] <∞ for x ∈ [a1, b1] and

for any p ≥ 1. Define

c =
1

2
inf

0≤t+s≤T,
inf

a−γ1(t+s)≤x≤b+γ2(t+s)

∫ b+γ2s

a−γ1s

Gt(x , y)d y

and note that 0 < c < 1 for each 0 < γ1 <
a

T
, 0 < γ2 <

1−b

T
, and [a, b] ⊂ (0,1). To see that c > 0,

note that Gt(x , y) is positive and bounded away from 0 except near t = 0. Also, considering the

restrictions on x in the infimum, the worst situation for a lower bound on c is when x is at one of

the endpoints of the interval under the infimum, say x = a− γ1(t + s). The reader can verify that

inf
a−γ1T≤x≤b+γ2T

inf
x+2
p

t≤T

∫ x+2
p

t

x+
p

t

Gt(x , y)d y > 0.

However, for small t and for x = a− γ1(t + s) we have that [x +
p

t, x + 2
p

t]⊂ [a− γ1s, b+ γ2s].

This verifies that c > 0.
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Next we inductively define a sequence
�

τn, n≥ 0
	

of stopping times and a sequence of processes

vn(t, x) as follows. Let v0(t, x) be the solution of (7) with initial condition u0 = 1[a,b] and let

τ0 = inf

¨

t > 0 : inf
a−γ1 t≤x≤b+γ2 t

v0(t, x) = c or sup
0≤x≤1

v0(t, x) = c + 1

«

.

Next, assume that we have defined τn−1 and vn−1(t, x) for τn−2 ≤ t ≤ τn−1. Then, {vn(t, x),τn−1 ≤
t} is defined by (7) with initial condition vn(τn−1, x) = cn1[a−γ1τn−1,b+γ2τn−1]

(x). Taking into account

that the solution satisfy the Dirichlet boundary conditions, by construction we have 0< a−γ1τn−1 <

b+ γ2τn−1 < 1. Also, let

τn = inf

¨

t > τn−1 : inf
a−γ1 t≤x≤b+γ2 t

vn(t, x) = cn+1

or sup
0≤x≤1

vn(t, x) = cn(c+ 1)

«

.

Notice that

inf
a−γ1τn≤x≤b+γ2τn

vn(τn, x)≥ cn+1,

and by the comparison lemma, we have that

u(t, x)≥ vn(t, x) (8)

for all x ∈ [0,1], t ≥ τn−1 and all n≥ 0. For all p ≥ 1 we have

E
�

u(T, x)−p
�

≤ P
�

u(T, x)≥ 1
�

+

∞
∑

n=0

c−(n+1)pP
�

u(T, x) ∈ [cn+1, cn)
�

≤ 2+

∞
∑

n=0

c−(n+2)pP
�

u(T, x)< cn+1
�

. (9)

Taking into account (8), the event {u(T, x) < cn+1} is included in An = {τn < T}. Set σn =

τn−τn−1, for all n≥ 0, with the convention τ−1 = 0. For any i ≥ 0 the event
¦

σi <
2T

n

©

is included

into the union Cn ∪Dn, where

Cn =

¨

sup
τi−1≤t≤τi

sup
0≤x≤1

vi(t, x)≥ c i(c+ 1)

«

and

Dn =

½

inf
τi−1≤t≤τi

inf
a−γ1 t≤x≤b+γ2 t

vi(t, x)≤ c i+1

¾

.

Notice that, for τi−1 < t < τi we have

c−i vi(t, x) =

∫ b+γ2τi−1

a−γ1τi−1

Gt−τi−1
(x , y)d y

+

∫ t

τi−1

∫ 1

0

Gt−s(x , y)H(s, y)
��

c−i vi(s, y)
�

∧ (c+ 1)
�

W (ds, d y).
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By the definition of c it holds that

2c ≤
∫ b+γ2τi−1

a−γ1τi−1

Gt−τi−1
(x , y)d y ≤ 1.

As a consequence, on the events Cn and Dn we have

sup
τi−1≤t≤τi

sup
0≤x≤1

¯

¯Ni(t, x)
¯

¯> c,

where

Ni(t, x) =

∫ t

τi−1

∫ 1

0

Gt−s(x , y)H(s, y)
��

c−i vi(s, y)
�

∧ (c + 1)
�

W (ds, d y).

Therefore,

P

�

σi <
2T

n

¯

¯

¯

¯

Fτi−1

�

≤ P





 sup
τi−1≤t≤τi−1+

2T

n
,

sup
0≤x≤1

¯

¯Ni(t, x)
¯

¯> c

¯

¯

¯

¯

Fτi−1





 .

Then Lemma 3 implies that

P

�

σi <
2T

n

¯

¯

¯

¯

Fτi−1

�

≤ C0 exp
�

−C1n
1

2
−ε
�

. (10)

Next we set up some notation. LetBn be the event that at least half of the variables σi : i = 0, . . . , n

satisfy

σi <
2T

n

Note that

An ⊂Bn

since if more than half of the σi : i = 1, . . . , n are larger than or equal to 2T

n
then τn > T .

For convenience we assume that n = 2k is even, and leave the odd case to the reader. Let Ξn be all

the subsets of {1, . . . , n} of cardinality k = n

2
. The number of such subsets is bounded by the total

number of subsets of Ξn, which is 2n. Then,

P(Bn) ≤ P







⋃

{i1,...,ik}∈Ξn

k
⋂

j=1

½

σi j
<

2T

n

¾







≤
∑

{i1,...,ik}∈Ξn

P







k
⋂

j=1

½

σi j
<

2T

n

¾





 .

We can write for i1 < · · ·< ik

P







k
⋂

j=1

½

σi j
<

2T

n

¾





 = P

�½

σi1
<

2T

n

¾�

E







k
∏

j=2

P

�

σi j
<

2T

n

¯

¯

¯

¯

Fτi j−1

�





 .
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Using the estimate (10) and the fact that we are summing over at most 2n sets yields

P(Bn) ≤ C02n exp
�

−C1n
1

2
−ǫ
� n

2

≤ C0 exp
�

−C1n
3

2
−ǫ + C2n

�

≤ C0 exp
�

−C1n
3

2
−ǫ
�

,

where the constants C0, C1 may have changed from line to line. Hence,

P
�

u(T, x)< cn+1
�

≤ C0 exp
�

−C1n
3

2
−ǫ
�

(11)

Finally, substituting (11) into (9) yields E
�

u(T, x)−p
�

<∞.

4 Smoothness of the density

Let u(t, x) be the solution to Equation (1). Assume that the coefficients b and σ are continuously

differentiable with bounded derivatives. Then u(t, x) belongs to the Sobolev space D1,p for all p > 1,

and the derivative Dθ ,ξu(t, x) satisfies the following evolution equation

Dθ ,ξu(t, x) =

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ b

∂ u
(s, y,u(s, y))Dθ ,ξu(s, y)d yds

+

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ σ

∂ u
(s, y,u(s, y))Dθ ,ξu(s, y)W (d y, ds)

+σ(u(θ ,ξ))Gt−θ (x ,ξ), (12)

if θ < t and Dθ ,ξu(t, x) = 0 if θ > t. That is, Dθ ,ξu(t, x) is the solution of the stochastic partial

differential equation

∂ Dθ ,ξu

∂ t
=
∂ 2Dθ ,ξu

∂ x2
+
∂ b

∂ u
(t, x ,u(t, x))Dθ ,ξu+

∂ σ

∂ u
(t, x ,u(t, x))Dθ ,ξu

∂ 2W

∂ t∂ x

on [θ ,∞)× [0,1], with Dirichlet boundary conditions and initial condition σ(u(θ ,ξ))δ0(x − ξ).

Theorem 5. Let u(t, x) be the solution of Equation (1) with initial condition u(0, x) = u0(x), and

Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0. We will assume that u0 is an α-Hölder contin-

uous function for some α > 0, which satisfies the boundary conditions u0(0) = u0(1) = 0. Assume

that the coefficients b and σ are infinitely differentiable functions with bounded derivatives. Then, if

σ(0, y0,u0(y0)) 6= 0 for some y0 ∈ (0,1), u(t, x) has a smooth density for all (t, x) such that t > 0

and x ∈ (0,1).

Proof. From the results proved by Bally and Pardoux in [1] we know that u(t, x) belongs to the

space D∞ for all (t, x). Set

Ct,x =

∫ t

0

∫ 1

0

�

Dθ ,ξu(t, x)
�2

dξdθ .
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Then, by Theorem 1 it suffices to show that E(C
−p
t,x )<∞ for all p ≥ 2.

Suppose that σ(0, y0,u0(y0)) > 0. By continuity we have that σ(0, y,u(0, y)) ≥ δ > 0 for all

y ∈ [a, b] ⊂ (0,1). Then

Ct,x ≥
∫ t

0

∫ b

a

�

Dθ ,ξu(t, x)
�2

dξdθ ≥
∫ t

0

 
∫ b

a

Dθ ,ξu(t, x)dξ

!2

dθ .

Set Y θt,x =
∫ b

a
Dθ ,ξu(t, x)dξ. Fix r < 1 and ǫ > 0 such that ǫr < t. From

ǫr
�

Y 0
t,x

�2

≤
∫ ǫr

0

¯

¯

¯

¯

�

Y 0
t,x

�2

−
�

Y θt,x

�2
¯

¯

¯

¯

dθ + Ct,x

we get

P(Ct,x < ǫ) ≤ P

 
∫ ǫr

0

¯

¯

¯

¯

�

Y 0
t,x

�2

−
�

Y θt,x

�2
¯

¯

¯

¯

dθ > ǫ

!

+P

�¯

¯

¯Y 0
t,x

¯

¯

¯<
p

2ǫ
1−r

2

�

= P(A1) + P(A2).

Integrating equation (12) in the variable ξ yields the following equation for the process {Y θt,x , t ≥
θ , x ∈ [0,1]}

Y θt,x =

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ b

∂ u
(s, y,u(s, y))Y θs,y d yds

+

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ σ

∂ u
(s, y,u(s, y))Y θs,yW (d y, ds)

+

∫ b

a

σ(u(θ ,ξ))Gt−θ (x ,ξ)dξ. (13)

In particular, for θ = 0, the initial condition is Y 0
0,ξ
= σ(0,ξ,u(0,ξ))1[a,b](ξ), and by Theorem 2 the

random variable Y 0
t,x has negative moments of all orders. Hence, for all p ≥ 1,

P(A2)≤ Cp,rǫ
p

if ǫ ≤ ǫ0. In order to handle the probability P(A1) we write

P(A1)≤ ǫ(r−1)q sup
0≤θ≤ǫr

�

E

�
¯

¯

¯Y θt,x − Y 0
t,x

¯

¯

¯

2q
�

E

�
¯

¯

¯Y θt,x + Y 0
t,x

¯

¯

¯

2q
��1/2

.

We claim that

sup
0≤θ≤t

E

�
¯

¯

¯Y θx ,t

¯

¯

¯

2q
�

<∞, (14)

and

sup
0≤θ≤ǫr

E

�
¯

¯

¯Y θt,x − Y 0
t,x

¯

¯

¯

2q
�

< ǫrηq, (15)
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for some η > 0. Property (14) follows easily from Equation (13). On the other hand, the difference

Y θt,x − Y 0
t,x satisfies

Y θt,x − Y 0
t,x =

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ b

∂ u
(s, y,u(s, y))(Y θs,y − Y 0

s,x)d yds

+

∫ t

θ

∫ 1

0

Gt−s(x , y)
∂ σ

∂ u
(s, y,u(s, y))(Y θs,y − Y 0

s,x)W (d y, ds)

+

∫ θ

0

∫ 1

0

Gt−s(x , y)
∂ b

∂ u
(s, y,u(s, y))Y 0

s,y d yds

+

∫ θ

0

∫ 1

0

Gt−s(x , y)
∂ σ

∂ u
(s, y,u(s, y))Y 0

s,yW (d y, ds)

+

∫ b

a

(σ(u(θ ,ξ))Gt−θ (x ,ξ)−σ(u0(ξ))Gt(x ,ξ))dξ

=

5
∑

i=1

Ψi(θ).

Applying Gronwall’s lemma and standard estimates, to show (15) it suffices to prove that

sup
0≤θ≤ǫr

E
�
¯

¯Ψi(θ)
¯

¯

2q
�

< ǫrηq, (16)

for i = 3,4,5 and for some η > 0. The estimate (16) for i = 4 follows from Burkholder’s inequality

for two-parameter stochastic integrals and (14) as follows,

E
�
¯

¯Ψ4(θ)
¯

¯

2q
�

≤ cq









∂ σ

∂ u









2q

∞
E





¯

¯

¯

¯

¯

∫ θ

0

∫ 1

0

G2
t−s(x , y)|Y 0

s,y |
2d yds

¯

¯

¯

¯

¯

q



≤ cq









∂ σ

∂ u









2q

∞

 
∫ θ

0

∫ 1

0

G2
t−s(x , y)





Y 0
s,y







2

L2q
d yds

!q

≤ Cθ
q

2 .

This implies (16) with η= 1

2
. The term i = 3 can be estimated in the same way. For i = 5 we write

Ψ5(θ) =

∫ b

a

Gt−θ (x , y)

∫ 1

0

Gθ (y,ξ)
�

σ(u(θ , y))−σ(u0(ξ))
�

dξd y. (17)

The Hölder continuity of u0 yields

E(|u(θ , y)− u0(ξ)|2q)≤ C(|ξ− y |2αq + E(|u(θ , y)− u0(y)|2q))

and we know that E(|u(θ , y)− u0(y)|2q) can be estimated by Cθβq where β = inf(α, 1

2
) (see [8]).

Substituting these estimates in (17) we get the desired bound (16) for i = 5.

Finally, it suffices to choose r ∈ (0,1) such that r(1+
η

2
)> 1. Then for all q ≥ 1 we get the estimate

P(A1)≤ Cqǫ
q,

for any ǫ ≤ ǫ0. The proof is now complete.
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