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Abstract

We give new formulas on the total number of born particles in the stable birth-and-assassination
process, and prove that it has a heavy-tailed distribution. We also establish that this process is
a scaling limit of a process of rumor scotching in a network, and is related to a predator-prey
dynamics.
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1 Introduction

Birth-and-assassination process

The birth-and-assassination process was introduced by Aldous and Krebs [2], it is a variant of the
branching process. The original motivation of the authors was then to analyze a scaling limit of a
queueing process with blocking which appeared in database processing, see Tsitsiklis, Papadimitriou
and Humblet [14]. In this paper, we show that the birth-and-assassination process exhibits some
heavy-tailed distribution. For general references on heavy-tail distribution in queueing processes,
see for example Mitzenmacher [9] or Resnick [12]. In this paper, we will not discuss this application.
Instead, we will show that the birth-and-assassination process is also the scaling limit of a rumor
spreading model which is motivated by network epidemics and dynamic data dissemination (see for
example, [10], [4], [11]).

Figure 1: Tllustration of the birth-and-assassination process, living particles are in red, dead particles
in blue, particles at risk are encircled.

We now reproduce the formal definition of the birth-and-assassination process from [2]. Let N/ =
U?;ONk be the set of finite k-tuples of positive integers (with N° = 0). Let {®,},n € N/, be a family
of independent Poisson processes with common arrival rate A. Let {K,},n € N/, be a family of
independent, identically distributed (iid), strictly positive random variables. Suppose the families
{®,} and {K,,} are independent. The particle system starts at time O with only the ancestor particle,
indexed by 0. This particle produces offspring at the arrival times of ®;, which enter the system
with indices (1), (2), --- according to their birth order. Each new particle n entering the system
immediately begins producing offspring at the arrival times of {®,}, the offspring of n are indexed
(n,1), (n,2), --- also according to birth order. The ancestor particle is at risk at time 0. It continues
to produce offspring until time Dy = Ky, when it dies. Let k > 0 and let n = (ny,- -+, ng_1, 1),
n’ = (ny,...,n;_1). When a particle n’ dies (at time D,/), n then becomes at risk; it continues to
produce offspring until time D, = D,y +K,,, when it dies. We will say that the birth-and-assassination
process is stable if with probability 1 there exists some time t < oo with no living particle. The
process is unstable if it is not stable. Aldous and Krebs [2] proved the following:
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Theorem 1 (Aldous and Krebs). Consider a birth-and-assassination process with offspring rate A
whose killing distribution has moment generating function ¢. Suppose ¢ is finite in some neighborhood
of 0. If min,~qAu~'¢(u) < 1 then the process is stable. If min,oAu"'¢(u) > 1 then the process is
unstable.

The birth-and-assassination process is a variant the classical branching process. Indeed, if instead
the particle n is at risk not when its parent dies but when the particle n was born, then we obtain a
well-studied type of branching process, refer to Athreya and Ney [5]. The populations in successive
generations behave as the simple Galton-Walton branching process with mean offspring equal to
AEKj, and so the process is stable if this mean is less than 1. The birth-and-assassination process is
a variation in which the ’clock’ which counts down the time until a particle’s death does not start
ticking until the particle’s parent dies.

In this paper, we will pay attention to the special case where the killing distribution is an exponen-
tial distribution with intensity u. By a straightforward scaling argument, a birth-and-assassination
process with intensities (1, u) and a birth-and-assassination process with intensities (Au~!, 1) where
the time is accelerated by a factor u have the same distribution. Therefore, without loss of general-
ity, from now on, we will consider 93, a birth-and-assassination process with intensities (A,1). As a
corollary of Theorem|1, we get

Corollary 1 (Aldous and Krebs). If 0 < A < 1/4, the process A is stable. If A > 1/4, the process A is
unstable.

In the first part of this paper, we study the behavior of the process 28 in the stable regime, especially
as A get close to 1/4. We introduce a family of probability measures {P,}, A > 0, on our underlying
probability space such that under P,, 2 is a birth-and-assassination process with intensities (A, 1).
Let A € (0,1/4), we define N as the total number of born particles in 9 (including the ancestor
particle) and

y(A) =sup{u>0:E,N" < oo}.

In particular, if 0 < y(A) < oo, from Markov Inequality, for all 0 < € < y(A), there exists a constant
C >1suchthatforall t > 1,
P,(N > t) < CtrWte,

The number y may thus be interpreted as a power tail exponent. There is a simple expression for y.

Theorem 2. Forall A €(0,1/4),

(M_1+«/1—4A
M A=

This result contrasts with the behavior of the classical branching process, where for all A < 1:
there exists a constant ¢ > 0 such that E; exp(cN) < oco. This heavy tail behavior of the birth-and-
assassination process is thus a striking feature of this process. Near criticality, as A T 1/4, we get
y(1) ~ 1, whereas as A | 0, we find y(A) ~ (21) . By recursion, we will also compute the moments
of N.

Theorem 3. (i) Forall p >2, E;NP < oo if and only if 2 € (0,p(p +1)72).
(i) If 2 <(0,1/4],
EN=—— 1)



(i) If A €(0,2/9),
2
E,N2= ——— | 2
A 3vVI—4A—1 @

Theorem [3(i) is consistent with Theorem 28 A € (0,p(p + 1)72) is equivalent to p € [1,(1 +
V1—=42)(1 - V1—42A)"') . Theorem 3(ii) implies a surprising discontinuity of the function
A — E;N at the critical intensity A = 1/4: limyy;,,E;N = 2. Again, this discontinuity contrasts
with what happens in a standard Galton-Watson process near criticality, where for 0 < A < 1,
E;N = (1 — A)~!. We will prove also that this discontinuity is specific to A = 1/4 and for all p > 2,
lim 4, p41)-2 EA[NP] = 0o. We will explain a method to compute all integers moments of N by re-
cursion. The third moment has already a complicated expression (see §2.5.1). From Theorem 3(ii),
we may fill the gap in Corollary/|1}

Corollary 2. If A = 1/4, the process 9B is stable.

In Section 2, we will prove Theorems 2] and [3 by exhibiting a Recursive Distributional Equation
(RDE) for a random variable related to N. Unfortunately, our method does not give much insights
on the heavy-tail phenomena involved in the birth-and-assassination process.

Rumor scotching process

We now define the rumor scotching process on a graph. It is a nonstandard SIR dynamics (see
for example [10] or [4] for some background). This process represents the dynamics of a ru-
mor/epidemic spreading on the vertices of a graph along its edges. A vertex may be unaware of
the rumor/susceptible (S), aware of the rumor and spreading it as true/infected (I), or aware of the
rumor and trying to scotch it/recovered (R).

More formally, we fix a connected graph G = (V,E), and let &, denote the set of subsets of V
and Z = (2, x {S,I,R})V. The spread of the rumor is described by a Markov process on % . For
X=X,),ey €X,withX, =(A,,s,), A, is interpreted as the set of neighbors of v which can change
the opinion of v on the veracity of the rumor. If (uv) € E, we define the operations E,, and E, on
ZbyX+E,),=X-E),=X,,ifw#vand (X+E,,), =, U{u}l,I), X —E,), =(0,R). Let
A > 0 be a fixed intensity, the rumor scotching process is the Markov process with generator:

K(X,X+E,) = A1(s,=D1((u,v) € E)1(s, #R),
K(X.X-E) = 1(s,=1) Y 1(s,=R),
ueA

and all other transitions have rate 0. Typically, at time O, there is non-empty finite set of I-vertices
and there is a vertex v such that A, contains a R-vertex. The absorbing states of this process are the
states without I-vertices. The case when at time 0, A, is the set to all neighbors of v is interesting in
its own (there, A, does not evolve before s, =R).

If G is the infinite k-ary tree this process has been analyzed by Kordzakhia [7] and it was defined
there as the chase-escape model. It is thought as a predator-prey dynamics: each vertex may be un-
occupied (8), occupied by a prey (I) or occupied by a predator (R). The preys spread on unoccupied
vertices and predators spread on vertices occupied by preys. If G is the Z9-lattice and if there is
no R-vertices, the process is the original Richardson’s model [13]. With R-vertices, this process is a
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variant of the two-species Richardson model with prey and predators, see for example Haggstréom
and Pemantle [6], Kordzakhia and Lalley [8]. Nothing is apparently known on this process.

In Section (3, we show that the birth-and-assassination process is the scaling limit, as n goes to infin-
ity, of the rumor scotching process when G is the complete graph over n vertices and the intensity is
A/n (Theorem 4).

2 Integral equations for the birth-and-assassination process

2.1 Proof of Theorem 3 for the first moment

In this paragraph, we prove Theorem/(3(ii). Let X(t) € [0, +00] be the total number of born particles
in the process £ given that the root cannot die before time t, and Y(t) be the total number of born
particles given that the root dies at time t. By definition, if D is an exponential variable with mean
1 independent of Y, then N 4x (0) 4 Y (D), where the symbol £ stands for distributional equality.

We notice also that the memoryless property of the exponential variable implies X (t) 4 Y(t + D).
The recursive structure of the birth-and-assassination process leads to the following equality in
distribution

Y(OS1+ Y X(t—E)E1+ Y X,(&),

iléisf ilgift

where ® = {&;},cy is a Poisson point process of intensity A and (X;),i € N, are independent copies
of X. Note that since all variables are non-negative, there is no issue with the case Y (t) = +00. We
obtain the following RDE for the random function Y:

Y(O)Z1+ Y. Yi(&+D), 3)

i:§;<t

where Y;, and D; are independent copies of Y and D respectively. This last RDE is the cornerstone
of this work.

Assuming that E; N < oo we first prove that necessarily A € (0,1/4). For convenience, we often drop
the parameter A in E, and other objects depending on A. From Fubini’s theorem, EX(0) = EN =
f;o EY(t)e tdt and therefore EY (t) < oo for almost all t > 0. Note however that since t — Y (t) is
monotone for the stochastic domination, it implies that EY (t) < oo for all t > 0. The same argument
gives the next lemma.

Lemma 1. Let t > 0 and u > 0, if E[N"] < oo then E[Y (t)] < 0.

Now, taking expectation in (3), we get

t o0
EY(t) = 1+AJ J EY(x +s)e*dsdx.
o Jo

Let f1(t) = EY(t), it satisfies the integral equation, for all t > 0,
t (o]
) =1+ lf e"f f1(s)e*dsdx. 4)
0 X
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Taking the derivative once and multiplying by e™*, we get: f/(t)e™" =24 f too f1(s)e~ds. Then, taking
the derivative a second time and multiplying by e’: f,"(t) — f(t) = —Af;(¢). So, finally, f; solves a
linear ordinary differential equation of the second order

x"—x"+2Ax =0, (5)

with initial condition x(0) = 1. If A > 1/4 the solutions of (5) are

x(t) = e'/?(cos(ty/4A — 1) + asin(t/ 41 — 1)),

for some constant a. Since f;(t) is necessarily positive, this leads to a contradiction and EN = oo.
Assume now that 0 < A < 1/4 and let
1-A 1+A
A=11-47A, azT and [J’zT. (6)

(a, B) are the roots of the polynomial X? — X + A = 0. The solutions of (5) are
x,(6) = (1 — a)e™ + aePt
for some constant a. Whereas, for A =1/4, a = 1/2 and the solutions of (5) are
xq(t) = (at +1)e'/?.

For 0 < A < 1/4, we check easily that the functions x, with a > 0 are the nonnegative solutions of
the integral equation (4).
It remains to prove that if 0 < A < 1/4 then EN < oo and f;(t) = e*". Indeed, then EN =
f;o fi(t)e~tdt = (1 — @) ! as stated in Theorem [3(ii). To this end, define fl(")(t) =Emin(Y(t),n),
from (3),

min(Y(t),n) <, 1+ Y min(Y;(§; +D;),n).

i:g;<t

Taking expectation, we obtain, for all t > 0,

t [ee}
fl(n)(t) <1+ kj e"f fl(")(s)e_sdsdx. 7
0 X

We now state a lemma which will be used multiple times in this paper. We define
YW =0+4)/A-A)=p/a. 8

Let 1 < u < 7 (or equivalently A < u(u + 1)72), we define 5, the set of measurable functions
h : [0,00) — [0, 00) such that h is non-decreasing and sup,>qh(t)e “*" < co. Let C > 0, we define
the mapping from %, to 54,

t o]
U:h— Ce"* + AJ exf h(s)e*dsdx.
0 X
In order to check that W is indeed a mapping from ¢, to ¢, we use the fact thatif 1 <u <7, then

ua < 1. Note also that if 1 < u <7, then ua — A —u?a? > 0. If A = 1/4, we also define the mapping
from 4 to 74,

1 t 00
d:h—1+ —J eXJ h(s)e *dsdx.
4 0 X

(recall that for A=1/4, a=1/2).
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Lemma 2. (i) Letl<u<Yandf €5, such that f < W(f). Then forall t >0,
ua(l—ua) .. _c A at
ua — A —u?a? ua—A—ua?

fo=c

(i) IfA=1/4and f € 74 is such that f < ®(f), then forall t > 0,

f(6) <e'?

Before proving Lemma 2, we conclude the proof of Theorem [3(ii). For 0 < A < 1/4, from (7), we
may apply Lemma |2(i) applied to 1 <u < f8/a, C = 1. We get that

fl(n)(t) < Cueaut
for some C, > 0. The monotone convergence theorem implies that f;(t) = lim,_,« 1(n)(t) exists
and is bounded by C,e*‘. Therefore f; solves the integral equation and is equal to x, for some
a > 0. From what precedes, we get x,(t) < C,e*!, however, since au < f3, the only possibility is
a=0and f;(t) =e*.
Similarly, if A = 1/4, from Lemma 2(ii), f;(t) < e'/2. This proves that f; is finite, and we thus have
f1 = x, for some a > 0. Again, the only possibility is a = 0 since x,(t) < e!/? implies a = 0.

Proof of Lemma 2. (i). The fixed points of the mapping ¥ are the functions h, , such that

ua(l —ua)

—e
ua — A —u?a?

uat

hep(t) = ae® + bePt +C

with a+b+C42U=4Y_ — ¢ The only fixed pointin 2, is h, :=h, o with a, = —CA/(ua—A—u2a?).
ua—A—u’a ; ) u a.,0 -

Let %6, denote the set of continuous functions in 4, note that ¥ is also a mapping from %, to 6,.

Now let g, € 6, and for k > 1, g; = W(gx_,). We first prove that for all t > 0, lim; gi(t) = h,(¢t).

If 1 <u <Y then ua(l —ua) > A and % is positive. We deduce easily that if go(t) < Le"**

then g,(t) = ¥(g)(t) < Ce'®t + —L2__(euat _ 1) <[ ¢4 with L; = (C 4+ —L%—). By recursion,

ua(l—ua) ua(l—ua)
we obtain that limsup, g;(t) < Lye“®, with Ly, = Cua(l — ua)/(ua — A — u?a?) < co. From
Arzela-Ascoli’s theorem, (g; )ren is relatively compact in %, and any accumulation point converges
to h, (since h, is the only fixed point of ¥ in 6,).

Now since f € 5£,, there exists a constant L > 0 such that for all t > 0, f(t) < go(t) := Le"*". The
monotonicity of the mapping W implies that ¥(f) < ¥(g,) = g;. By assumption, f < ¥(f) thus by
recursion f <lim, g, = h,.

(ii). The function x,(t) = e!/? is the only fixed point of ® in .#;. Moreover, if g(t) < Ce!/? then we
also have ®(g)(t) < Ce'/2. Then, if g is continuous, arguing as above, from Arzela-Ascoli’s theorem,
(®*(g))ken converges to x,. We conclude as in (i). O

2.2 Proof of Theorem [3(i)

We define f,(t) = E;[Y(t)’]. As above, we often drop the parameter A in E; and other objects
depending on A.

Lemma 3. Let p > 2, there exists a polynomial Q,, with degree p such that for all t > 0,

2020



@ If2€(0,p(p+1)72), then f,(t) =Q,(e™).
(i) If 2> p(p+1)72, then f,(t) = oo,

Note that if such polynomial Q,, exists then Q,(x) = 1 for all x > 1. Note also that A € (0, p(p+1)72)
implies that p < ¥ = f/a (where ¥ was defined by (8))), and thus pa < § < 1. Hence Lemma 3]
implies Theorem 3(i) since E[N?] = ffp(t)e_tdt.
Let k,(X) denote the p'" cumulant of a random variable X whose moment generating function is
defined in a neighborhood of 0: InEe%* = szo K, (X)6P /p!. In particular x((X) = 0, x1(X) =EX
and k4(X) = VarX. Using the exponential formula

Eexp Z h(&;,Z;) = EXP@J (Eeh2) — 1)dx), 9
0

gicd

valid for all non-negative function h and iid variables (Z;),i € N, independent of ® = {&;};cy a
Poisson point process of intensity A, we obtain that for all p > 1,

t
kp | D h(EiZ) =Aj0 ERP(x, Z)dx. (10)

i:5;<t

Due to this last formula, it will be easier to deal with the cumulant g,(t) = k,(Y(t)). By recursion,
we will prove the next lemma which implies Lemma 3.

Lemma 4. Let p > 2, there exists a polynomial R, with degree p, positive on [1,00) such that, for all
t>0,

(@) IfA€(0,p(p +1)72), then fp(t) < oo and g,(t) =Rp(e‘“).

(i) If 2> p(p+1)72 then f,(t) = oo,
Proof of Lemma 4. In §2.1, we have computed f, for p = 1 and found R;(x) = x. Let p > 2 and
assume now that the statement of the Lemma |4/ holds for ¢ = 1,---,p — 1. We assume first that
fp(t) < oo, we shall prove that necessarily A € (0, p(p + 1)72) and g,(t) =R, (e*"). Without loss of

generality we assume that 0 < A < 1/4. From Fubini’s theorem, using the linearity of cumulants in
(3) and (10), we get

gp(t) = AJJ E[Y(x +s)’]le *dsdx
0o Jo

t o0
= lj e f fp(s)edsdx, (1D
0 X

(note that Fubini’s Theorem implies the existence of f,(s) for all s > 0). From Jensen inequality
fp(t) > g1(t)P = eP*" and the integral fxoo eP® e~ dsdx is finite if and only if pa < 1. We may thus
assume that pa < 1. We now recall the identity: EX? =) ][, k;/(X), where the sum is over all
set partitions of {1,---,p}, I € ® means I is one of the subsets into which the set is partitioned, and
|T| is the cardinal of I. This formula implies that EX? = x,(X) + X,_;(x1(X), -+ ,k,_1(X)), where
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Y,-1(xq, -+, Xxp—1) is a polynomial in p — 1 variables with non-negative coefficients and each of its
monomial ]_[]g:1 xg ! satisfies )}, nsiy = p. Using the recurence hypothesis, we deduce from (11)
that there exists a polynomial ﬁp(x) = Zizl rixk of degree p with rp > 0 such that

gp(t) = AJ exf (gp(s)e_s+Rp(e“5)e_5)dsdx
0 X

L }\,rk t o0
kat x s
D At k) A dsd 12
i ka(l—ka)¢ Le L g,(s)e*dsdx, (12)

(recall that pa < 1). Now we take the derivative of this last expression, multiply by e™" and take
the derivative again. We get that g, is a solution of the differential equation:

p
X' —=x"+Ax =— Z Argekat, (13)
k=1

with initial condition x(0) = 0. Thus necessarily g,(t) = ae* + bePt + o(t), where p(t) is a
particular solution of the differential equation (13). Assume first that A # p(p + 1)72, then it is
easy to check that (p + 1)A — pa and p(p + 1)72 — A are different from 0 and have the same sign.
Looking for a function ¢ of the form ¢(t) = i:1 crekdt gives ¢ = —Ar(k?a® —ka+ 1)1 =
Ar(k— D)7 ((k+ DA —ka) L. If A > p(p +1)72 then pa > 8 and the leading term in g, is c el
However, if A > p(p +1)72, ¢, < 0 and thus gp(t) <0 for t large enough. This is a contradiction
with Equation (11) which asserts that g,(t) is positive.

We now check that if 0 < A < p(p + 1)72 then fp(t) is finite. We define fp(”)(t) = E[min(Y (t),n)P].
We use the following identity,

N P N p-1 p—1 N pokt
_ k
Bo) =580 (3
i=1 i=1 k=0 J#
Then from (3) we get,
(Y()-1p £ (14)
p—2 p—k—-1
2
ZYi(ii‘l'Di)p‘l‘ZZ( K )Yi(gﬁLDi)kH Z Y;(&;+D;)

gist §i<tk=0 &i#E i<t

The recursion hypothesis implies that there exists a constant C such that fi(t) = Q(e*") < Cek*

for all 1 < k < p — 1. Thus, the identity Y (t)? = (Y (t) — 1)P — Zi;é (i)(—l)P_kY(t)k gives

p—1
HO) < Bmingy ()= 1001+ 3, (7 ) oe
k=0

E[min(Y (t) — 1,n)P] + C;eP*.

IA

From the recursion hypothesis, if 1 <k <p—1,

f E[Y(x +D)]dx = J exf fiu(s)e*dsdx = Q(e*) < Cekt
0 0 X
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for some constant C > 0. We take the expectation in (14) and use Slyvniak’s theorem to obtain

t [o.9]
0 X

tp—2
2 fo pZ(p o JErrCern0 e | (D ne +0)) T ax

= gi<t
t [ee]
< Clep“t+7tf exJ fp(”)(s)e_sdsdx
0 X
p—2 p_l
+ A Vir1(€*DE[(Y (1) — 1)P~F1
3 (7 Jaentemmero -1y
<

t [e]
CyeP* + kf e~ J fp(”)(s)e_sdsdx
0 X

So finally for a suitable choice of C,
t 00
|fp(”)(t) < CeP 4 AJ exJ f}f")(s)e_sdsdx. (15)
0 X

From Lemma 2, fp(")(t) < C’eP*t, and, by the monotone convergence theorem, gp(t) < fp(t) <
C’eP*". From what precedes: g,(t) = ae® + bePt 4 (1), with ¢(t) = 1 creket with ¢, > 0. If
b >0, since A > p(p+1)~2 then pa < f8 and the leading term in gp is bef* which is in contradiction
with g,(t) < C 'eP* If b < 0, this is a contraction with Equation (11) which asserts that gp(t) is
positive. Therefore b =0 and g,(t) = ae* + ¢(t) =R,(e*").

It remains to check that if A = p(p +1)~2 then for all ¢ > 0, f»(t) = 0o. We have proved that, for all
A<p(p+1)72, g(t)= up(l)(p—1)_1((p+1)7t—pa)_1epat—I—Sp_l(e“t), where S,,_; is a polynomial
of degree at most p —1 and u,(24) > 0. Note that limj,(,4.1)-2(p+1)A—pa = 0. A closer look at the
recursion shows also that u,(2) is a sum of products of terms in A and A({ — DN +DA—La) ™,
with 2 < ¢ < p — 1. In particular, we deduce that lim3,(,11)-2 u,(A) > 0. Similarly, the coefficients
of S,_; are equal to sums of products of integers and terms in A and A(£ — DN E+DA—La)L,
with 2 < ¢ < p — 1. Thus they stay bounded as A goes to p(p + 1)~ and we obtain, for all ¢ > 0,

liminf f,(t)= lim g,(t)=oco. (16)
Ap(p+1)~2 Alp(p+1)~2

Now, for all t > 0, the random variable Y (t) is stochastically non-decreasing with A. Therefore
E;[Y(£)P] is non-decreasing and (16) implies that E;,,[Y (¢t)P] = oo. The proof of the recursion is
complete.

O

2.3 Proof of Theorem [3(iii)

In this paragraph, we prove Theorem [3(iii). Let A € (0,2/9), recall that f,(t) = EY(t)? and g,(t) =
Var(Y(t)). From applied to p = 2,

t (e
g,(t) = AJ f Zo(x +5)e™* +f12(x +s)e *dsdx.
0o Jo

2023



Since f;(t) = e* and a? = a — A, g, satisfies the integral equation:

A t 0
g(t) = ——(e®* —1) + AJ e"f go(s)e*dsdx.
2022 — a) ( ) o .

We deduce that g, solves an ordinary differential equation:

x" = x"+ Ax = —Ae?%t,
with initial condition x(0) = 0. Thus g, is of the form: g,(t) = ae® + bef! + SliZaezat' with
a+b+ 37&2(1 = 0. From Lemma 4, b = 0 so finally
20—« A
2at at 2at at
t)= e“? —e and t)y=2 e“dt — e
g2(0)= 375 ( A =25 31— 2a

We conclude by computing EN2 = f e ' fy(t)dt.

2.4 Proof of Theorem 2

As usual we drop the parameter A in E;. From (8), we have y(1) = % V1-42

2, we shall prove two statements

. To prove Theorem

IfE[NY] <ocothenu <7, (17)

If 1 <u <Y then E[N"] < oc. (18)

2.4.1 Proof of (17).

Let u > 1, we assume that E[N“] < co. From Lemma|1/and (3), we get

u

E[Y(t)']=E | 1+ > Yi(&+D))

iigiff

Let f,,(t) = E[Y(t)"]. Taking expectation and using the inequality (x +y)* > x"+ y", for all positive
x and y, we get:

fult) = 1+7Lf Ef,(x + D)dx
0

t [ee)
> 1+7LJ exf fu(s)e*dsdx. (19)
0 X

From Jensen’s Inequality, f,(t) > f1(t)" = e“*'. Note that the integral f;o e™e™ds is finite if and

only if u < a™!. Suppose now that ¥ < u < a~!. We use the fact: if u > ¥ then u?a? —ua + A > 0,
to deduce that there exists 0 < € < A such that

a2 —ua+A>e. (20)
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Let A=A —¢, @=a(A), f = B(L), we may assume that e is small enough to ensure also that
ua > p. (21
(Indeed, for all A € (0,1/4), a(A)y(A) = B(A) and the mapping A — (L) is obviously continuous).

We compute a lower bound from (19) as follows:

fu(t)y = 1+1f e’CJ fu(s)e_sdsdx+ef exf fu(s)e*dsdx
0 X 0 X

t [ee} t o0
1+ ZJ exf fu(s)e*dsdx + eJ exJ e"® e dsdx
0 X 0 X

t 00
> 1+C(e"* —-1)+ ZJ exJ fu(s)e*dsdx, (22)
0 X

A%

with C = e(ua(l — ua))™* > 0. We consider the mapping ¥ : h — 1+ C(e“* — 1) +
ifot ex f:o h(s)e™*dsdx. W is monotone: if for all t > 0, h;(t) > hy(t) then for all ¢ > O,
W(hy)(t) = ¥(hy)(t). Since, for all t > 0, f,(t) > ¥(f,)(t) > 1, we deduce by iteration that there
exists a function h such that h = ¥(h) > 1. Solving h = ¥(h) is simple, taking twice the derivative,
we get, " — W' 4+ Ah = —eeP®'. Therefore, h = ae® + beP! — e(u?a?® —ua + 1)~ 'e!™ for some con-
stant a and b. From (21) the leading term as t goes to infinity is equal to —e(u?a? —ua+ 1)~ Let®t,
However from (20), —e(u?a® — ua + 1)~ < 0 and it contradicts the assumption that h(t) > 1 for
all t > 0. Therefore we have proved that u <7.

2.4.2 Proof of (18).
Let fu(”)(t) = E[min(Y (t), n)*], we have the following lemma.

Lemma 5. There exists a constant C > 0 such that for all t > 0:
t [ele}
fu(”)(t) < Ce"* + AJ exf fu(")(s)e_sdsdx.
0 x

The statement (18) is a direct consequence of Lemmas[2/and (5] Indeed, note that fu(”) < n", thus by
Lemma/2, for all t > 0, fu(")(t) < C,e"*" for some positive constant C; independent of n. From the
Monotone Convergence Theorem, we deduce that, for all t > 0, f,(t) < C;e"*". It remains to prove
Lemmal5.

Proof of Lemmal5] The lemma is already proved if u is an integer in (15). The general case is a slight
extension of the same argument. We write u = p — 1+ v with v € (0,1) and p € N*. We use the
inequality, forall y; > 0,1 <i <N,

p—k-1
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(which follows from the inequality (3. ;)" < >. ¥!). Then from (3) we get the stochastic domina-
tion

(Y(O-1" < Y Yi(E+Dy)
&<t
p—k—-1

p—2 _
+ZZ(pk1)n(£i+Di)k+v PR AEETN

Ei<tk=0 &j#E i<t

From Lemma there exists C such that for all 1 < k < p — 1, fi(t) < Ce** and and
fOtE[Y(x + D)Xldx < Cek**. Note also, by Jensen inequality, that for all 1 < k < p — 2,

fren(t) < fp_l(t)(k+v)/ (-1 < celk+v)at  The same argument (with p replaced by u) which led
to (15) in the proof of Lemma 4 leads to the result. O

2.5 Some comments on the birth-and-assassination process

2.5.1 Computation of higher moments

It is probably hard to derive an expression for all moments of N, even if in the proof of Lemma |4, we
have built an expression of the cumulants of Y (t) by recursion. However, exact formulas become
quickly very complicated. The third moment, computed by hand, gives

A—a A2A —a) A2A —a) 3A—a
3at_6 2at+(1+6 -3 ) at
¢ (3A—2a)2 “4r-3a)°

3
f0=37"3,¢ (34 —2a)

Since N < Y (D), we obtain,

(BA — a)a 224 — a)a 1

3 _
EN (42 —3a)(1 —a—31) (BA—=2a)%(1 —a—21) + 1—a

2.5.2 Integral equation of the Laplace transform

It is also possible to derive an integral equation for the Laplace transform of Y(t): Lg(t) =
Eexp(—0Y(t)), with 6 > 0. Indeed, using RDE (3) and the exponential formula (9),

Le(t) = e Pexp ()\J (ELg(x + D) — 1)dx)
0

e %exp (AJ exf (Lo(s)— 1)e_5dsdx) .
0 X

Taking twice the derivative, we deduce that, for all 6 > 0, Ly solves the differential equation:

x"x —x* = x'x + Ax*(x —1) = 0.

We have not been able to use fruitfully this non-linear differential equation.
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2.5.3 Probability of extinction

If A > 1/4 from Corollary (1} the probability of extinction of 23 is strictly less than 1. It would be
very interesting to have an asymptotic formula for this probability as A get close to 1/4 and compare
it with the Galton-Watson process. To this end, we define n(t) as the probability of extinction of %
given than the root cannot die before t. With the notation of Equation (3), 7t(t) satisfies

n(t)=E [] ne+D-&)=E [] n(&),
i:§;<t+D i:§;<t+D

Using the exponential formula (9), we find that the function 7 solves the integral equation:

n(t)=¢' f exp (—(A +1)s+ AJ n(x)dx) ds.

After a quick calculation, we deduce that 7 is solution of the second order non-linear differential

equation

p—

— = Alx —1).
x—x
Unfortunately, we have not been able to get any result on the function 7(t) from this differential

equation.

3 Rumor scotching in a complete network

3.1 Definition and result

Figure 2: The graph Gg.

We consider the rumor scotching process on the graph G,, on {0, ---,n} obtained by adding on the
complete graph on {1,---,n} the edge (0, 1), see Figure|2. Let &, be the set of subsets of {0,--- ,n}.
With the notation in introduction, the rumor scotching process on G, is the Markov process on
X, = (2, x {S,1,R})" with generator, for X = (A;,5;)o<i<n>

K(X,X 4+ E;;) = An~'1(s; = D1(s; # R),

i=1
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and all other transitions have rate 0. At time 0, the initial state is X(0) = (X;(0))p<;<, With X,(0) =
(0,R), X;(0) =({0},I) and for i > 2, X;(0) = (0, S).

With this initial condition, the process describes the propagation of a rumor started from vertex 1
at time 0. After an exponential time, vertex 1 learns that the rumor is false and starts to scotch the
rumor to the vertices it had previously informed. This process is a Markov process on a finite set
with as absorbing states, all states without I-vertices. We define N,, as the total number of recovered
vertices in {1,...,n} when the process stops evolving. We also define Y, (t) as the distribution N,
given that vertex 1 is recovered at time t. We have the following

Theorem 4. (i) If0 <A < 1/4and t > 0, as n goes to infinity, N, and Y,(t) converge weakly
respectively to N and Y (t) in the birth-and-assassination process of intensity A.

(i) If A > 1/4, there exists & > 0 such that

liminfP, (N, > én) > 0.

The proof of Theorem 4] relies on the convergence of the rumor scotching process to the birth-and-
assassination process, exactly as the classical SIR dynamics converges to a branching process as the
size of the population goes to infinity.

3.2 Proof of Theorem 4
3.2.1 Proof of Theorem [4(i)

The proof of Theorem |4 relies on an explicit contruction of the rumor scotching process. Let
(& l(.;.l)), 1 <i < j <n,be a collection of independent exponential variables with parameter An~*
and, for all 1 <i < j, let D;; be an independent exponential variable with parameter 1. We set
Dj; = D;; and 55?) =& E]n) A network being a graph with marks attached on edges, we define .7,
as the network on the complete graph of {1,---,n} where the mark attached on the edge (ij) is the
pair (ggl),Di ;)- Now, the rumor scotching process is built on the network %, by setting ég.l) as the
time for the infected particle i to infect the particle j and D;; as the time for the recovered particle i
to recover the particle j that it had previously infected.

The network %, has a local weak limit as n goes to infinity (see Aldous and Steele [3] for a definition
of the local weak convergence). This limit network of %, is %, the Poisson weighted infinite tree
(PWIT) which is described as follows. The root vertex, say @, has an infinite number of children
indexed by integers. The marks associated to the edges from the root to the children are (&;,D;);>1
where {&;};>; is the realization of a Poisson process of intensity A on R, and (D;);>; is a sequence
of independent exponential variables with parameter 1. Now recursively, for each vertex i > 1 we
associate an infinite number of children denoted by (i, 1), (i, 2), - - - and the marks on the edges from
i to its children are obtained from the realization of an independent Poisson process of intensity A
on R, and a sequence of independent exponential variables with parameter 1. This procedure is
continued for all generations. Theorem 4.1 in [3] implies the local weak convergence of %, to &
(for a proof see Section 3 in Aldous [1]).

Now notice that the birth-and-assissination process is the rumor scotching process on ¢ with initial
condition: all vertices susceptible apart from the root which is infected and will be restored after an
exponential time with mean 1.
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For s > 0 and { € N, let £, [s,£] be the network spanned by the set of vertices j € {1,---,n} such
that there exists a sequence (iy,---,i;) with iy = 1, i, = j, k < { and max(él(.lni)z,--- ,51(.:_)11.]{) <s.
If T, is the time elapsed before an absorbing state is reached, we get that 1(t, < s)1(N, < {) is
measurable with respect to ¢, [s,{]. From Theorem 4.1 in [3], we deduce that 1(7,, <s)1(N, < {)
converges in distribution to 1(t < s)1(N < {£) where 7 is the time elapsed before all particles die
in the birth-and-assassination process. If 0 < A < 1/4, 7 is almost surely finite and we deduce the

statement (i).

3.2.2 Proof of Theorem [4(ii)

In order to prove part (ii) we couple the birth-and-assassination process and the rumor scotching
process. We use the above notation and build the rumor scotching process on the network ¢;,. If
X =((A;,8:)0<i<n) € Zp, wedefine IX)={1<i<n:s;=I}and S(X)={1<i<n:s;=S}.

Let X = X, (u) € &, be the state of the rumor scotching process at time u > 0. Let i € I(X), we

reorder the variables (55?))1'55()() in non-decreasing order: 55}? <... < Egzz(x)‘. Define §gg =0,

(n) _ g(n)
ik k-1

exponential variable with parameter A(|S(X)| — k + 1)/n independent of (SEZ) - 55;?_1, L < k).
Therefore, for all 1 < k < |S(X)|, the vector (& 8.11), - E 8.?) is stochastically dominated component-
wise by the vector (§4,--, &) where {£;};>, is a Poisson process of intensity A(|S(X)| —k +1)/n
on R, (ie. forall0 <¢t; <--- < ty, P(Sg.? > tq, ,Eglk) >t ) SP(E; =ty .8k = t)). In

particular if |S(X)| > (1 — &)n, with 0 < § < 1/2, then (gﬁ”, e ngrzgj) is stochastically dominated

component-wise by the first [né | arrival times of a Poisson process of intensity A(1 — 25).

Now, let 6 > 0 such that A’ = A(1 — 25) > 1/4. We define S,S"),Il(ln),Rfln), as the number of S,I,R-
particles at time u > 0 in .#;, and I, as the number of particles "at risk" at time u in the birth-and-
assassination process with intensity A’. Let 7, = inf{u >0 : SIS”) <(1-96)n}. Note thatif0<u <7,
then any I-particle has infected less than |dn] S-particles. From what precedes, we get

from the memoryless property of the exponential variable, for 1 < k < [S(X)|, & is an

Sl(l”)l(u <T)<en—1I.
So that Sl(l”) <, max(n—1I;,(1—6)n). In particular, since N,, > sup,>o(n — Sfl”)), we get

P, (N, = 6n) > P,/(limsup I, = o0).

u—oo
Finally, it is proved in [2] that if A’ > 1/4 then P,,(limsup,_,,, I, = 00) > 0.
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