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of scalar linear convolution Itô-Volterra equations in which the noise intensity depends lin-
early on the current state. By exploiting the positivity of the solution, various upper and
lower bounds in first mean and almost sure sense are obtained, including Liapunov exponents
.

Key words: almost sure exponential asymptotic stability, Liapunov exponent, subexponen-
tial distribution, subexponential function, Volterra equations, Itô-Volterra equations.
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1 Introduction

The stability and decay rate of linear deterministic Volterra integrodifferential equations to
point equilibria has attracted much attention, in part because of applications to physics, biology
and other sciences (cf., e.g., [13, Ch.1]). Since such real–world systems can be modelled to
include random effects, it is natural to ask how the presence of such stochastic perturbations
can influence the stability and convergence rate of solutions to these equilibria.

Particular applications of Itô-Volterra equations arise in physics and mathematical finance. In
material physics, for example, partial integro–differential equations of Itô type are used to model
the temperature in heat conductors with memory (cf., e.g., [9]). The behaviour of viscoelastic
materials under external stochastic loads has also been analysed using Itô-Volterra equations
(cf., e.g, [12]). In financial mathematics, the presence of inefficiency in real markets can be
modelled by using stochastic functional differential equations. Anh et al. [1; 2] have recently
posited models of the evolution of the asset returns using stochastic Volterra equations with
infinite memory.

This paper is a mathematical contribution to the literature on the stability and rate of conver-
gence to equilibrium. The non–exponential convergence reported in this paper is particularly
interesting in economics, as it may be used in future work to represent the persistent memory
of a shock in a financial system in the distant past.

The asymptotic behaviour of the solution of the deterministic linear convolution integrodiffer-
ential equation

x′(t) = −ax(t) +

∫ t

0
k(t − s)x(s) ds, t ≥ 0, (1)

with x(0) 6= 0, is often analysed by considering the solutions of the characteristic equation

z + a − k̂(z) = 0, (2)

where k̂ is the Laplace transform of k (cf., e.g., [13]). If all solutions λ of this equation obey
Re λ < 0, then the solution decays to zero exponentially fast (cf., e.g., [16]). However it can
happen that (2) has no solutions, in which case this equation gives no information about the
rate of decay of solutions. Nonetheless, in this situation, it is possible for the rate of decay to
be determined exactly when k is asymptotic to a positive weight function γ in the class U(µ),
as introduced in [11]. In this case the solution of (1) is asymptotic as t → ∞ to γ(t) times a
constant (cf., e.g., [7]). The class U(µ) has the property that for γ ∈ U(µ), γ(t) is asymptotic
to the exponential function eµt times a slowly decaying function.

It is natural to ask how the asymptotic behaviour of solutions of (1) will change when it is
perturbed by a simple state–dependent stochastic perturbation, which depends only on the
present value and preserves the zero equilibrium of (1). The stochastic Itô–Volterra equation
which results from such a linear perturbation is

dX(t) =

(

−aX(t) +

∫ t

0
k(t − s)X(s) ds

)

dt + σX(t) dB(t), (3)

where σ 6= 0 and {B(t)}t≥0 is a one-dimensional standard Brownian motion. Assumptions are
imposed on the data which that ensure solutions are non–negative.

923



In this paper we examine the asymptotic decay rate of solutions of (3) in both first mean and
almost sure senses. By exploiting the scalar nature of (3) and positivity of solutions we obtain
both lower and upper estimates on almost sure decay rates, and exact decay rates on the first
mean. In fact we establish estimates closely related to those found for the deterministic equation,
irrespective of whether (2) has solutions or not.

In particular, the following results are established. In the case when k has a Liapunov exponent
i.e., when there exists µ ≤ 0 such that

lim
t→∞

1

t
log k(t) = µ,

it is shown that

lim
t→∞

1

t
log |X(t)| = µ, a.s.

in the cases when µ = 0 or when k ∈ U(µ) for µ < 0. In neither of these cases does (2) have a
solution. When (2) has a solution, it can be shown that there is a constant η > 0 which depends
only on k such that

−η ≤ lim inf
t→∞

1

t
log |X(t)| ≤ lim sup

t→∞

1

t
log |X(t)| ≤ λ, a.s.

where λ < 0 is the unique positive solution of (2). A consequence of this result is that it
is impossible to reduce arbitrarily the a.s. Liapunov exponent of the solution by increasing
the noise intensity σ. This contrasts with the situation for scalar linear stochastic differential
equations. Finally, in the case when k has a zero Liapunov exponent, and is in U(0), we can
establish for each ε > 0 the estimates

lim sup
t→∞

|X(t)|

k(t)
= ∞, lim sup

t→∞

|X(t)|

k(t)t1+ε
= 0, a.s.

on the solution.

Other studies which consider the convergence rates of solutions of stochastic Volterra equations
with state–dependent noise intensities include [3; 6; 18; 19]. [18] deals with exponential stability
of solutions, while [3] examines the asymptotic stability of solutions, but not the rate of decay
to equilibrium. The remaining papers look at non-exponetial decay rates. Further results on
non-exponential decay of solutions of stochastic Volterra equations with state–dependent noise,
as well as a review of literature, may be found in [4].

2 Mathematical Preliminaries

2.1 Notation

We first fix some standard notation. Denote by R
+ the set [0,∞). The maximum of the real

numbers x, y is denoted by x ∨ y; their minimum is denoted by x ∧ y.

If F : R
+ → R is in L1(R+) and G : R

+ → R has bounded variation, we put

(F ⋆ G)(t) =

∫ t

0
F (t − s) dG(s), t ≥ 0.
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Similarly, for f, g ∈ L1(R+), the convolution of f with g is defined to be

(f ∗ g)(t) =

∫ t

0
f(t − s)g(s) ds, t ≥ 0.

We denote by C the set of complex numbers, and the real part of z ∈ C by Re z. If f : R
+ → R

satisfies
∫ ∞
0 |f(t)|e−αt dt < ∞ for some α ∈ R, we can define the Laplace transform of f for all

Re z ≥ −α by

f̂(z) =

∫ ∞

0
f(t)e−zt dt.

We also define eα(t) = e−αt for all t ∈ R
+.

2.2 Linear Itô-Volterra Equations

In this paper, we concentrate upon the asymptotic behaviour of the solution of the scalar linear
convolution Itô-Volterra equation

dX(t) =

(

−aX(t) +

∫ t

0
k(t − s)X(s) ds

)

dt + σX(t) dB(t), t ≥ 0. (4)

We have as a standing hypothesis

k ∈ C(R+; R+) ∩ L1(R+). (5)

(B(t))t≥0 is an standard one-dimensional Brownian motion on a complete filtered probability
space (Ω,F , (FB(t))t≥0, P), where the filtration is the natural one, namely FB(t) = σ{B(s) :
0 ≤ s ≤ t}. We introduce the initial condition

X(0) = X0, (6)

where X0 is a random variable, independent of (B(t))t≥0, with E[X2
0 ] < ∞. Then there is a

unique almost surely continuous solution to (4) (cf., e. g., Theorem 2E of [8]), satisfying (4)
and (6). More precisely the solution is the unique adapted process satisfying (4) and (6) on
the augmented filtered space (Ω,F , (F(t))t≥0, P), where (F(t))t≥0 is the augmented filtration
such that B is a (F(t))t≥0–standard Brownian motion, and X0 is F(0)–measurable. We denote
a realisation of the solution of (4) and (6) by t 7→ X(t, ω; X0). Usually this is abbreviated to
t 7→ X(t, ω), and the value of the process at time t by X(t).

We assume without loss of generality that

σ > 0. (7)

The case that σ = 0 is the deterministic problem. For σ < 0 we may consider the Brownian
motion B−(t) = −B(t) on (Ω,F , (FB(t))t≥0, P): for then, we can rewrite (4) as

dX(t) =

(

−aX(t) +

∫ t

0
k(t − s)X(s) ds

)

dt + σ−X(t) dB−(t),

with σ− = −σ > 0, which is in exactly the form of (4). The augmentation of the filtration
required to accommodate a random initial condition can then be achieved as indicated above.

We will impose additional hypotheses on the decay rate of k to obtain different decay rates on
the solution X.

If X(0) = 0, then X(t) = 0 for all t ≥ 0, almost surely. This is called the zero solution of (4).
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Remark 1. The solution of (4) satisfying (6) satisfies X(t, ω; X0) = X(t, ω; 1)X0. For this reason,
we often take X(0) = 1 in proofs without loss of generality.

2.3 Stochastic Analysis Preliminaries

We collect in this subsection a few results concerning solutions of Itô-Volterra equations.

We say that the zero solution of (4) is almost surely globally asymptotically stable if, for each
solution of (4) and (6),

P

[

{ω ∈ Ω : lim
t→∞

X(t, ω) = 0}
]

= 1.

We say that the zero solution is almost surely exponentially asymptotically stable if there exists
a postive random variable β0 such that

P

[{

ω ∈ Ω : lim sup
t→∞

1

t
log |X(t, ω)| ≤ −β0(ω)

}]

= 1.

We say that a process X = {X(t); t ≥ 0} with |X(t)| > 0 for all t ≥ 0 a.s., has an a.s. lower

Liapunov exponent µ if there is a deterministic µ such that

lim inf
t→∞

1

t
log |X(t)| ≥ µ, a.s. (8)

A scalar process X = {X(t); t ≥ 0} has an a.s. upper Liapunov exponent ν if there is a deter-
ministic ν such that

lim sup
t→∞

1

t
log |X(t)| ≤ ν, a.s. (9)

The positive process X has a.s. Liapunov exponent β if there is a deterministic β which is both
a lower and upper Liapunov exponent.

The following result follows directly by using Problem 5.3.15 in [15].

Lemma 2.1. If (X(t))t≥0 is a solution of (4) and (6), then for each 0 ≤ p ≤ 2, the mapping

t 7→ E[|X(t)|p] is continuous on R
+.

3 Estimates on Lower Liapunov Exponents

In this section, we recall results which show that it is not destabilising to add the noise per-
turbation σX(t)dB(t) to (1), yielding (4). We also establish lower bounds on the decay rate
of solutions. In each case, the results are established without any additional hypotheses being
imposed on the kernel k. We will appeal to the following result frequently in the sequel.

Lemma 3.1. Suppose that X is the solution of (4) and (6). If k is continuous, then E[|X(t)|] =
r(t)E[|X0|] for t ≥ 0, where r is the differential resolvent of k defined by

r′(t) = −ar(t) +

∫ t

0
k(t − s)r(s) ds, t > 0; r(0) = 1. (10)

A consequence of this is the following, which is Theorem 6 of [3].
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Theorem 3.2. Suppose that k satisfies (5). If the solution r of (10) is in L1(R+), then the

solution of (4) and (6) satisfies

lim
t→∞

X(t) = 0, a.s. (11)

X ∈ L1(R+), a.s. (12)

To establish lower bounds on the decay rate of solutions of (4), we observe a result essentially
contained in the proof of [6, Theorem 1].

Lemma 3.3. Suppose that k satisfies (5). If X is the solution of (4) and (6) with X0 6= 0 a.s.,

then

|X(t)| > 0 for all t ≥ 0, a.s.

The next result gives a deterministic lower estimate on the a.s. rate of decay of |X(t)| as t → ∞.

Theorem 3.4. Let a + σ2/2 > 0 and k satisfies (5). If X is the solution of (4) and (6) with

X0 6= 0 a.s., then

lim inf
t→∞

1

t
log |X(t)| ≥ lim inf

t→∞

1

t
log(k ∗ ea+σ2/2)(t), a.s. (13)

Proof. As remarked earlier, we take X(0) = 1 without loss of generality. Define the process
ϕ = {ϕ(t);FB(t); 0 ≤ t < ∞} by

ϕ(t) = 1 +

∫ t

0
−aϕ(s) ds +

∫ t

0
σϕ(s) dB(s), t ≥ 0. (14)

Setting λ = a + σ2/2 > 0, ϕ is given by ϕ(t) = exp(λt + σB(t)), t ≥ 0. Since ϕ(t) > 0 for
all t ≥ 0, a.s., we may define the process y according to y(t) = X(t)/ϕ(t), t ≥ 0. Then, by
Lemma 3.3, it follows that y(t) > 0 for all t ≥ 0 a.s. Moreover, by (stochastic) integration by
parts, we can show that y obeys

y(t) = 1 +

∫ t

0

1

ϕ(s)

∫ s

0
k(s − u)X(u) du ds, t ≥ 0.

Therefore, as ϕ, k and X possess a.s. continuous sample paths, y ∈ C1(0,∞) and so we have

y′(t) =
1

ϕ(t)

∫ t

0
k(t − s)ϕ(s)y(s) ds, t > 0.

Since k is non–negative, and ϕ and y are positive a.s., it follows that y′(t) ≥ 0 for all t > 0.
Thus y(t) ≥ 1 and so

y′(t) ≥
1

ϕ(t)

∫ t

0
k(t − s)ϕ(s) ds =

∫ t

0
k(t − s)eλ(t−s)e−σ(B(t)−B(s)) ds. (15)

Now, by the Law of the Iterated Logarithm, it follows that there exists an a.s. event Ω∗ such
that for each ω ∈ Ω∗ there exists a T (ω) > 0 such that |σB(t)| ≤ t2/3 for all t ≥ T (ω). Then for
t ≥ s ≥ T (ω) we have

e−σ(B(t)−B(s)) ≥ e−t2/3−s2/3

≥ e−2t2/3

.
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Therefore, applying this estimate to (15), for t ≥ T (ω), we get

y′(t) ≥

∫ t

T
k(t − s)eλ(t−s)e−σ(B(t)−B(s)) ds ≥

∫ t

T
k(t − s)eλ(t−s)e−2t2/3

ds

= e−2t2/3

∫ t−T

0
k(u)eλu du.

Define α := lim inft→∞
1
t log

∫ t
0 k(u)eλu du. Then α ≥ 0 (we do not exclude a priori the possibility

that α = ∞). Since

1

t
log y′(t) ≥ −2

1

t1/3
+

t − T

t
·

1

t − T
log

∫ t−T

0
k(u)eλu du, t ≥ T,

we see that

lim inf
t→∞

1

t
log y′(t) ≥ α, a.s. (16)

If α = 0, since y is increasing, we have that lim inft→∞
1
t log y(t) ≥ 0. If α > 0 is finite, (16)

implies that

lim inf
t→∞

1

t
log y(t) ≥ α, a.s. (17)

In the case α = ∞, (16) implies (17). Hence (17) holds whatever the value of α ≥ 0. The Strong
Law of Large numbers implies that limt→∞

1
t log ϕ(t) = −λ, a.s., so we have

lim inf
t→∞

1

t
log |X(t)| ≥ α − λ, a.s.

Finally, (13) holds because

α − λ = lim
t→∞

1

t
log e−λt + lim inf

t→∞

1

t
log

∫ t

0
k(u)eλu du

= lim inf
t→∞

1

t
log

∫ t

0
k(u)e−λ(t−u) du

= lim inf
t→∞

1

t
log

∫ t

0
k(u)e−(a+σ2/2)(t−u) du,

which establishes (13).

The lower estimate furnished by Theorem 3.4 can be simplified in the case when

lim inf
t→∞

1

t
log k(t) ≥ µ. (18)

In order to see this, it is first necessary to prove the following preliminary lemma.

Lemma 3.5. Let k ∈ C([0,∞); (0,∞)) and suppose that there exists a µ ≤ 0 such that (18)
holds. Suppose that a + σ2/2 + µ > 0. Then

lim inf
t→∞

1

t
log

∫ t

0
k(s)ea+σ2/2(t − s) ds ≥ µ. (19)

928



Proof. For every ε ∈ (0, a + σ2/2 + µ) there exists T = T (ε) > 0 such that k(t) > e(µ−ε)t for all
t > T (ε). Then, for t > T , we have

e(−µ+ε)t

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds ≥ e(−µ+ε)t

∫ t

T
k(s)e−(a+σ2/2)(t−s) ds

≥

∫ t

T
e−(a+σ2/2+µ−ε)(t−s) ds =

∫ t−T

0
e−(a+σ2/2+µ−ε)u du.

Thus

lim inf
t→∞

e(−µ+ε)t

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds ≥

1

a + σ2

2 + µ − ε
,

which implies

lim inf
t→∞

t

(

−µ + ε +
1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds

)

≥ log
1

a + σ2

2 + µ − ε
,

Hence, for every ε ∈ (0, a + σ2/2 + µ) we have

lim inf
t→∞

1

t
log(k ∗ ea+σ2/2)(t) = lim inf

t→∞

1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds ≥ µ − ε,

so, letting ε → 0, we get (19).

We may now combine Lemma 3.5 and Theorem 3.4 to obtain explicit and simple estimates on
the Liapunov exponent and lower Liapunov exponent of |X|.

Corollary 3.6. Suppose that k satisfies (5) and

lim
t→∞

1

t
log k(t) = 0. (20)

Let X0 6= 0 a.s. If the solution of (4) qand (6) obeys X(t) → 0 as t → ∞ a.s., then

lim
t→∞

1

t
log |X(t)| = 0, a.s. (21)

Proof. Once more we let X(0) = 1 without loss of generality. Suppose as in the proof of
Theorem 3.4 that ϕ obeys (14) and y = X/ϕ. In this case, the proof of Theorem 3.4 implies
that y(t) ≥ 1 and so X(t) ≥ ϕ(t). Therefore X(t) → 0 a.s. implies that ϕ(t) → 0 as t → ∞ a.s.
This implies that a + σ2/2 > 0. Theorem 3.4 now gives

lim inf
t→∞

1

t
log X(t) ≥ lim inf

t→∞

1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds, a.s.

Now by Lemma 3.5 with µ = 0 we get

lim inf
t→∞

1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds ≥ 0.

Therefore, by Theorem 3.4 we get

lim inf
t→∞

1

t
log X(t) ≥ 0 a.s. (22)

Finally, X(t) → 0 as t → ∞ a.s. implies that lim supt→∞
1
t log X(t) ≤ 0 a.s. Combining this

with (22) gives the result.
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Corollary 3.7. Suppose that k satisfies (5) and there exists µ < 0 such that (18). Assume that

a + σ2/2 + µ > 0. Let X0 6= 0 a.s. If the solution X of (4) and (6) obeys X(t) → 0 as t → ∞
a.s., then

lim inf
t→∞

1

t
log |X(t)| ≥ µ a.s. (23)

Proof. Theorem 3.4 gives

lim inf
t→∞

1

t
log X(t) ≥ lim inf

t→∞

1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds, a.s.

Now, as k satisfies all the hypotheses of Lemma 3.5, we have

lim inf
t→∞

1

t
log

∫ t

0
k(s)e−(a+σ2/2)(t−s) ds ≥ µ.

Therefore, we must have (23), as required.

4 Decay Rate when Characteristic Equation has no Roots

Corollary 3.6 shows that rate of decay of X(t) to zero as t → ∞, cannot be exponential if the
kernel obeys (20). However it does not precisely quantify the relationship between the decay
rate of X(t) and that of the kernel k(t). In this section, we investigate this under additional
assumptions on the decay of k. Moreover the corresponding problem for kernels obeying (18)
can be reduced to one in which it obeys (20), by considering the equation for Xµ(t) = e−µtX(t),
which is

dXµ(t) =

(

−(µ + a)Xµ(t) +

∫ t

0
kµ(t − s)Xµ(s) ds

)

dt + σXµ(t)dB(t). (24)

Recall that kµ(t) = e−µtk(t), and that in our case µ ≤ 0.

4.1 k is in U(µ)

We recall the definition of a class of decaying functions employed in [7]: it was based on the
hypotheses of Theorem 3 of [11].

Definition 4.1. Let µ ∈ R. A function γ : [0,∞) → R is in U(µ) if it is continuous with
γ(t) > 0 for all t ≥ 0, and

γ̂(µ) =

∫ ∞

0
γ(t)e−µt dt < ∞, (25)

lim
t→∞

(γ ∗ γ)(t)

γ(t)
= 2γ̂(µ), (26)

lim
t→∞

γ(t − s)

γ(t)
= e−µs uniformly for 0 ≤ s ≤ S, for all S > 0. (27)
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The functions in U(0) are called subexponential. The reason for this nomenclature is that, if k
is subexponential, then k(t)eǫt → ∞ as t → ∞, for each ǫ > 0: consequently k obeys (20). The
connection between U(µ) and U(0) is that, if k is in U(µ), then kµ is subexponential.

Many slowly decaying functions belong to the class U(0). For instance a positive function which
is regularly varying at infinity with index α < −1 (such as k(t) = (t + 1)−α for α < −1) is a
member of U(0). Functions such as k(t) = e−tα , for α ∈ (0, 1), which decay faster than any
polynomial, but more slowly than any negative exponential, are also in U(0). We refer the reader
to [5] for a further discussion regarding the properties of subexponential functions.

For k ∈ U(µ), applying [7, Theorem 15] to the scalar equation (10), we see that the solution r
of (10) inherits precisely the decay rate of k.

Lemma 4.2. Suppose that k satisfies (5), is in U(µ) and

µ + a − k̂(µ) > 0. (28)

Then the solution of (10) obeys

lim
t→∞

r(t)

k(t)
=

1

(µ + a − k̂(µ))2
. (29)

We also state a corollary of Theorem 4.2 in [5], which is used later.

Lemma 4.3. Let f be in C(R+; R) ∩ L1(R+) and k ∈ U(0). If f(t)/k(t) → α < ∞ as t → ∞,

then

lim
t→∞

(f ∗ k)(t)

k(t)
= α

∫ ∞

0
k(s) ds +

∫ ∞

0
f(s) ds. (30)

We start by determining the exact asymptotic decay rate of solutions in first mean. Its proof is
a corollary of Lemmata 3.1 and 4.2.

Theorem 4.4. Suppose that k satisfies (5), is in U(µ) and (28) holds. Then the solution of (4)
and (6) obeys

lim
t→∞

E[|X(t)|]

k(t)
=

E[|X0|]

(µ + a − k̂(µ))2
. (31)

The result of Theorem 4.4 is interesting in itself, and may be used to obtain an upper bound on
the almost sure asymptotic behaviour of solutions of (4).

Theorem 4.5. Suppose that k satisfies (5), is in U(µ) and (28) holds. Then the solution of (4)
and (6) obeys

lim
t→∞

|X(t)|

k(t)tγ
= 0, a.s., for every γ > 1. (32)

It suffices to suppose that k is in U(0), since we may consider (24) instead of (4). The idea
of the proof of Theorem 4.5 is similar to that used to prove the main result in [3], which in
turn uses the strategy employed to prove Theorem 4.3.1 in [17]. We use a carefully chosen
partition P = ∪∞

n=1[an, an+1) of the positive real half-line, where an ր ∞, as n → ∞. By
the appropriate choice of the partition, and using the properties of subexponential functions,
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together with Theorem 4.4 above, we can show that for sufficiently large n there is a finite B̃ > 0
such that

E

[

sup
an≤t≤an+1

|X(t)|

]

≤ B̃k(an).

A Borel-Cantelli argument along the lines of [17, Theorem 4.3.1] is then used to obtain an upper
bound on the almost sure decay rate.

Before we start the proof of Theorem 4.5, we recall that a Burkholder-Davis-Gundy inequality
(see, for example, [15], p.166) implies that for every a.s. locally square integrable scalar process
{Y (t),FB(t); 0 ≤ t < ∞}, and every 0 ≤ t1 ≤ t2, there exists a universal (i.e., Y -, t1-, t2-
independent) positive constant c2 such that

E

[∣

∣

∣

∣

sup
t1≤t≤t2

∫ t

t1

Y (s) dB(s)

∣

∣

∣

∣

]

≤ c2E

[

(
∫ t2

t1

Y (s)2 ds

)1/2
]

. (33)

Now, consider an increasing sequence {an}
∞
n=0 with a0 = 0, such that an = nη for some η ∈ (0, 1).

Then
an+1 − an < 1, for all n ≥ 1, (34)

and for all n > n0(η), we have

c2|σ|(an+1 − an)1/2 <
1

2
. (35)

Proof of Theorem 4.5. Suppose that k is in U(0) and X(0) = 1. It follows thatE[|X(t)|] = r(t),
where r obeys (10). Fix ε > 0. Let η ∈ (0, 1) be given by η = 1/(1+ε/2), and ε′ = 1−η ∈ (0, 1).
Define λ = −(1 + ε). Then

λ = −
1 + ε′

η
. (36)

Let {an}
∞
n=0 be as defined in the preamble to this proof. For every t ∈ R

+, there exists n =
n(t) ∈ N such that an ≤ t < an+1 so

X(t) = X(an) +

∫ t

an

(

−aX(s) +

∫ s

0
k(s − u)X(u) du

)

ds

+

∫ t

an

σX(s) dB(s).

Using the triangle inequality, taking suprema over [an, an+1), and then expectations, and availing
of the continuity of X, we arrive at

E

[

sup
an≤t≤an+1

|X(t)|

]

≤ r(an) +

∫ an+1

an

(ar(s) + (k ∗ r)(s) ds

+ E

[

sup
an≤t≤an+1

∣

∣

∣

∣

∫ t

an

σX(s) dB(s)

∣

∣

∣

∣

]

. (37)
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Using (35), (33), we can bound the third term on the right hand side of (37) for n > n0 as
follows:

E

[

sup
an≤t≤an+1

∣

∣

∣

∣

∫ t

an

σX(s) dB(s)

∣

∣

∣

∣

]

≤ c2E

[

(
∫ an+1

an

σ2X(s)2 ds

)1/2
]

≤ c2(an+1 − an)1/2|σ|E

[

sup
an≤s≤an+1

|X(s)|

]

<
1

2
E

[

sup
an≤s≤an+1

|X(s)|

]

. (38)

Combining (37), (38) for n > n0, we obtain

E

[

sup
an≤s≤an+1

|X(s)|

]

≤ 2r(an) + 2

∫ an+1

an

ar(s) ds + 2

∫ an+1

an

(k ∗ r)(s) ds. (39)

We now obtain asymptotic estimates on the behaviour of the second and third terms on the
right hand side of (39). Considering the second term first, remembering that k(t) > 0 and that
(34) holds, we have

∫ an+1

an

r(s) ds ≤ sup
an≤s≤an+1

r(s)

k(s)

k(s)

k(an)
k(an)

≤ k(an) sup
an≤s≤an+1

r(s)

k(s)
sup

an≤s≤an+1

k(s)

k(an)
. (40)

Since k ∈ U(0), we can use (27) to give

lim
n→∞

sup
an≤s≤an+1

k(s)

k(an)
= 1,

while Theorem 4.4 yields

lim
n→∞

sup
an≤s≤an+1

r(s)

k(s)
= A1 :=

1

(a −
∫ ∞
0 k(s) ds)2

.

Inserting these estimates into (40) implies that for n > n′
0 there exists B1 > 0 such that

∫ an+1

an

ar(s) ds ≤ B1k(an).

We proceed similarly for the third term on the right hand side of (39). First, we obtain

∫ an+1

an

(k ∗ r)(s) ds ≤ k(an) sup
an≤s≤an+1

(k ∗ r)(s)

k(s)
sup

an≤s≤an+1

k(s)

k(an)
. (41)

Since r is integrable, by using Lemma 4.3, we have

lim
n→∞

sup
an≤s≤an+1

(k ∗ r)(s)

k(s)
= A1

∫ ∞

0
k(s) ds +

∫ ∞

0
r(s) ds.
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Using (27) as before, and the above limit, we can infer from (41) the existence of n′′
0 ∈ N, and

B2 > 0 such that n > n′′
0 implies

∫ an+1

an

(k ∗ r)(s) ds ≤ B2k(an).

By Theorem 4.4, there exists n′′′
0 ∈ N and B3 > 0 such that

r(an)

k(an)
≤ B3, for all n > n′′′

0 .

Choosing n1 = n0 ∨ n′
0 ∨ n′′

0 ∨ n′′′
0 ∨ 1, for n > n1, from (39) and the above estimates, we have

E

[

sup
an≤t≤an+1

|X(t)|

]

≤ B̃k(an). (42)

where B̃ = 2(B1 + B2 + B3). Hence, by Markov’s inequality, for every γ′ > 0 and n > n1, we
have

P

[

sup
nη≤t≤(n+1)η

|X(t)|
1

k(nη)

1

n1+ε′
> γ′

]

≤
B̃

γ′

1

n1+ε′
.

The summability of this sequence of probabilities enables us to conclude, by the first Borel-
Cantelli lemma and (36), that

lim
n→∞

sup
an≤t≤an+1

|X(t)|

k(an)
nηλ = 0 a.s. (43)

Therefore, using (27) and (43), we get

lim sup
n→∞

sup
an≤t≤an+1

|X(t)|

k(t)
nηλ

≤ lim sup
n→∞

sup
an≤t≤an+1

|X(t)|

k(an)
nηλ · lim sup

n→∞
sup

an≤t≤an+1

k(an)

k(t)
= 0 a.s. (44)

For each t ∈ R
+, we define N(t) to be the largest integer such that N(t) ≤ t1/η. Hence

N(t)η ≤ t < (N(t) + 1)η, and so limt→∞ t/N(t)η = 1. Using this and (44), we have

lim sup
t→∞

|X(t)|

k(t)
tλ ≤ lim sup

t→∞

|X(t)|

k(t)
N(t)ηλ · lim sup

t→∞

(

t

N(t)η

)λ

≤ lim sup
t→∞

sup
N(t)η≤s≤(N(t)+1)η

|X(s)|

k(s)
N(t)ηλ

= lim sup
n→∞

sup
nη≤s≤(n+1)η

|X(s)|

k(s)
nηλ = 0 a.s.

Putting γ = −λ = 1 + ε, we have the result.

The following result can be inferred from Theorem 4.5 and [6, Corollary 2] by considering the
equation (24) for Xµ.
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Theorem 4.6. Suppose that k satisfies (5), is in U(µ) and (28) holds. Then the solution of (4)
and (6) with X0 6= 0, obeys

lim sup
t→∞

|X(t)|

k(t)
= ∞, a.s.,

lim sup
t→∞

|X(t)|

k(t)t1+ε
= 0 a.s., for each ε > 0

When k ∈ U(µ) for µ < 0, by combining the results of Theorem 4.5 and Corollary 3.7, we may
show that |X| has a.s. Liapunov exponent µ.

Theorem 4.7. Suppose that k is U(µ) for some µ < 0, and obeys (28). If X is the solution of

(4) and (6) with X0 6= 0 a.s.,then

lim
t→∞

1

t
log |X(t)| = µ, a.s. (45)

Proof. For k ∈ U(µ), µ < 0, we have

lim
t→∞

1

t
log k(t) = µ.

By Theorem 4.5, it follows that

lim sup
t→∞

1

t
log |X(t)| ≤ µ, a.s.

On the other hand, by Corollary 3.7 it follows that

lim inf
t→∞

1

t
log |X(t)| ≥ µ, a.s.

We close this section with a discussion on almost sure asymptotic behaviour for k ∈ U(0). Just
as in the deterministic case, the decay rate of solutions of (4) is closely determined by the decay
rate of the kernel. If the kernel decays polynomially in the sense that

lim
t→∞

log k(t)

log t
= −α,

for some α > 1, then the solution inherits this polynomial decay, in the sense that

−α ≤ lim sup
t→∞

log |X(t)|

log t
≤ −(α − 1), a.s.

For certain kernels whose decay rate is between exponential and polynomial, we can prove a
very precise result about the asymptotic behaviour of solutions of (4). We will call these kernels
superpolynomial kernels; more precisely, we give the following definition.
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Definition 4.8. k ∈ U(0) is a superpolynomial function if there exists a continuous nonnegative
function λ such that

lim
t→∞

λ(t)

t
= 0, lim

t→∞

λ(t)

log t
= ∞,

and

lim
t→∞

log k(t)

λ(t)
= −1.

We call the function λ a negative exponent of k (or say that k has negative exponent λ).

Note that k(t) = e−tα , for α ∈ (0, 1) is an example of a superpolynomial function, with negative
exponent λ(t) = tα; another is k(t) = e−t/ log(t+2) with λ(t) = t/ log t.

If k is a superpolynomial function, the solution of (4) inherits the superpolynomial character of
the kernel to a significant degree. Indeed, by Theorem 4.6 we have

lim sup
t→∞

log |X(t)|

λ(t)
= −1, a.s.,

and therefore

lim sup
t→∞

log |X(t)|

log k(t)
= 1, a.s. (46)

It is instructive to compare this result with that which is obtained for (10) when k is superpoly-
nomial, namely (29), which implies

lim
t→∞

log |r(t)|

log k(t)
= 1. (47)

This serves to show the sharpness of (46).

When k is in U(µ), we observe an interesting result: although solutions of the stochastic Volterra
equation (4) are asymptotically stable whenever those of the deterministic problem (1) are also
stable, the decay rate of solutions of (4) is slower than that for solutions of (1) . Therefore,
although the noise seems to be stabilising solutions of the original Volterra equation, it is doing
so at the expense of the convergence rate (although that convergence rate cannot be worse by
more than a factor of t−(1+ε), for any ε > 0).

4.2 K is in S(µ)

We consider another class of kernels for which the characteristic equation (2) does not have a so-
lution. but which is larger than U(µ). This enables us to study the decay rate of

∫ ∞
t e−µt|X(s)| ds

under weaker assumptions on k than required for U(µ). We start by recalling the definition of
a subexponential distribution introduced by Chistyakov [10].

Definition 4.9. Let F be a distribution function on R. Then F is subexponential if F (0+) = 0
and

lim
t→∞

1 − (F ⋆ F )(t)

1 − F (t)
= 2.

The class of subexponential distribution functions is denoted by S.
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Chistyakov [10] showed that if F is a subexponential distribution function, then

lim
t→∞

1 − F (t − s)

1 − F (t)
= 1 (48)

uniformly for s in compact intervals of R
+. Chistyakov [10] demonstrated that a consequence

of (48) is that subexponential distribution functions have “heavy tails” which decay more slowly
than any exponential functions. Indeed, he showed that for F ∈ S that

lim
t→∞

(1 − F (t))eγt = ∞, for all γ > 0. (49)

We now extend this definition to include the possibility of exponential decay.

Definition 4.10. Let F be a distribution function on R. Then F is in S(µ) if F (0+) = 0, there
exists µ ≤ 0 such that F̂ (µ) :=

∫ ∞
0 e−µs dF (s) is finite, and the distribution G on R, defined by

G(0+) = 0 and

G(t) =

∫ t
0 e−µs dF (s)

∫ ∞
0 e−µs dF (s)

, t ≥ 0,

is in S.

We notice that S(0) = S. There is a fundamental connection between S and U(0), and between
S(µ) and U(µ) in general: if k ∈ U(µ), then K defined by K(0+) = 0 and

K(t) =

∫ t
0 k(s) ds

∫ ∞
0 k(s) ds

, t ≥ 0, (50)

is in S(µ).

By considering the Volterra integrodifferential equation for rµ(t) = e−µtr(t), and applying The-
orem 6.5 of [5], we can infer the following result.

Lemma 4.11. Suppose that k satisfies (5), that K defined by (50) is in S(µ) and (28) holds.

Then the solution of (10) obeys

lim
t→∞

∫ ∞
t e−µsr(s) ds

∫ ∞
t e−µsk(s) ds

=
1

(a + µ − k̂(µ)) ds)2
. (51)

We determine the decay rates of solutions of equations whose kernels satisfy the weaker hypoth-
esis that K be in S(µ), where K is defined in terms of k by (50). The next result is an immediate
corollary of Lemmata 3.1 and 4.11.

Theorem 4.12. Suppose that k satisfies (5), that K defined by (50) is in S(µ) and (28) holds.

Then the solution of (4) and (6) with X0 6= 0 a.s., obeys

lim
t→∞

∫ ∞
t e−µs

E|X(s)| ds
∫ ∞
t e−µsk(s) ds

=
E[|X0|]

(a + µ − k̂(µ))2
. (52)
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A similar–though less intricate–argument to that of Theorem 4.5 now enables us to obtain an
upper bound on the a.s. decay rate of

∫ ∞
t |X(s)| ds to zero, as t → ∞. Note that this is

meaningful because a conclusion of Theorem 3.2 applied to the solution Xµ of (24) is that Xµ

is in L1(R+) a.s.

Theorem 4.13. Suppose that k satisfies (5), that K is in S(µ) and (28) holds. Then the

solution of (4) and (6) with X0 6= 0 obeys

lim sup
t→∞

∫ ∞
t e−µs|X(s)| ds

tγ
∫ ∞
t e−µsk(s) ds

= 0 a.s., for each γ > 1. (53)

Proof. Theorem 4.12 implies the existence of a number C > 0 such that

E

∫ ∞

t
e−µs|X(s)| ds ≤ C

∫ ∞

t
e−µsk(s) ds. (54)

For any fixed γ > 1, define the sequence of random variables

Yn =

∫ ∞
n e−µs|X(s)| ds

nγ
∫ ∞
n e−µsk(s) ds

.

By (54) and Markov’s inequality, we have

P [|Yn| ≥ ε] ≤
C

εnγ
for every ε > 0.

The first Borel-Cantelli lemma now gives

lim
n→∞

Yn = 0, a.s. (55)

For every t ∈ R
+, let n(t) be the largest integer less than or equal to t. By defining

G(t) =

∫ t
0 e−µsk(s) ds

∫ ∞
0 e−µsk(s) ds

,

we see that K ∈ S(µ) implies G ∈ S, so (48) yields

lim
t→∞

∫ ∞
n(t) e−µsk(s) ds
∫ ∞
t e−µsk(s) ds

= lim
t→∞

1 − G(n(t))

1 − G(t)
= 1.

Using this in conjunction with (55) and

∫ ∞
t e−µs|X(s)| ds

tγ
∫ ∞
t e−µsk(s) ds

≤

∫ ∞
n(t) e−µs|X(s)| ds

n(t)γ
∫ ∞
n(t) e−µsk(s) ds

(

n(t)

t

)γ
∫ ∞
n(t) e−µsk(s) ds
∫ ∞
t e−µsk(s) ds

= Yn(t)

(

n(t)

t

)γ
∫ ∞
n(t) e−µsk(s) ds
∫ ∞
t e−µsk(s) ds

,

gives the result, on taking the limit superior as t → ∞.
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5 Decay Rates when Characteristic Roots exist

In the previous section, we saw that solutions of (4) decay more slowly that those of its deter-
ministic counterpart (1), for k in a subclass of functions for which the characteristic equation
(2) has no solutions. We now consider the asymptotic behaviour of solutions of (4) when (2)
has solutions and the differential resolvent r satisfying (10) is in L1(R+). By Grossman and
Miller [14], this precludes solutions of (2) being in {z ∈ C : Re z ≥ 0}. Furthermore, there exists
a γ > 0 such that

∫ ∞

0
k(s)eγs ds < +∞. (56)

In fact, because (2) has solutions, it follows that there is a λ > 0 such that

− λ = sup{Re z ≥ −γ : z + a − k̂(z) = 0}. (57)

We show in this case that the decay rate of solutions of (4) is at least as fast as that of solutions
of (1). This is established by obtaining an upper bound on the a.s. Liapunov exponent of X.
Lower bounds on the decay rate are also given. For exponentially integrable kernels satisfying
some additional mild conditions, these show that the a.s. Liapunov exponent cannot be less
than −γ.

5.1 Upper Bounds

The following is essentially proven in [16].

Lemma 5.1. Suppose that k satisfies (5), a >
∫ ∞
0 k(s) ds, and suppose the characteristic equa-

tion (2) has a solution. Then the solution of (10) satisfies

lim
t→∞

r(t)

e−λt
=

1

1 +
∫ ∞
0 sk(s)eλs ds

,

where γ > 0 is given by (56) and λ in (0, a ∧ γ) by (57).

As at the beginning of the last section, we start with an estimate of the decay rate of E[|X|]. It
is a consequence of Lemmata 3.1 and 5.1.

Theorem 5.2. Suppose that k satisfies (5), a >
∫ ∞
0 k(s) ds, and suppose the characteristic

equation (2) has a solution. Then the solution of (4) and (6) with X0 6= 0 a.s., satisfies

lim
t→∞

E[|X(t)|]

e−λt
=

E[|X0|]

1 +
∫ ∞
0 sk(s)eλs ds

, (58)

where λ > 0 is given by (57).

We remark that Lemma 5.1 implies

lim
t→∞

1

t
log |r(t)| = −λ. (59)

Also, observe that Theorem 5.2 and Lemma 2.1 imply that there exists C > 0 such that

E[|X(t)|] ≤ Ce−λt, t ≥ 0. (60)

We now show that X has an a.s. upper Liapunov exponent −λ, using the estimate on E[|X(t)|]
given by Theorem 5.2. The proof has the same form as that of Theorem 4.5.
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Theorem 5.3. Suppose that k satisfies (5), a >
∫ ∞
0 k(s) ds, and suppose the characteristic

equation (2) has a solution. Then the solution of (4) and (6) with X0 6= 0 a.s., satisfies

lim sup
t→∞

1

t
log |X(t)| ≤ −λ, a.s., (61)

where λ > 0 is given by (57).

Proof. Consider the sequence an = τn where τ > 0 satisfies

c2τ
1/2|σ| =

1

2
, (62)

and c2 > 0 is the constant in (33). As in Theorem 4.5, we have (37). Using (62), and the same
argument used to obtain (38), we get

E

[

sup
an≤t≤an+1

∣

∣

∣

∣

∫ t

an

σX(s) dB(s)

∣

∣

∣

∣

]

≤
1

2
E

[

sup
an≤an+1

|X(s)|

]

. (63)

Combining (37), (63) and (60) yields

E

[

sup
an≤t≤an+1

|X(t)|

]

≤ 2C

{

e−λan + a

∫ an+1

an

e−λs ds

+

∫ an+1

an

∫ s

0
k(s − u)e−λu du ds

}

.

Noting that 0 < λ < γ, we get

E

[

sup
an≤t≤an+1

|X(t)|

]

≤

2C

{

e−λan +

(

a +

∫ ∞

0
k(s)eλs ds

)
∫ an+1

an

e−λs ds

}

.

Hence there exists a number C0 > 0 such that

E

[

sup
an≤t≤an+1

|X(t)|

]

≤ C0e
−λan .

Therefore, for every ε ∈ (0, λ),

P

[

sup
an≤t≤an+1

|X(t)|e(λ−ε)an ≥ 1

]

≤ C0e
−ετn.

By the first Borel-Cantelli lemma, this implies that for almost all ω ∈ Ω

sup
τn≤t≤τ(n+1)

|X(t)| ≤ e−(λ−ε)τn

holds for all but finitely many n. Using the conclusion of the proof of [17, Theorem 4.3.1] now
yields (61).
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5.2 Lower Bounds

The final result of the paper involves obtaining lower bounds on the top a.s. Liapunov exponent
in the case when (2) has a solution. For this problem, with γ > 0 defined by (56), it transpires
that

lim
t→∞

1

t
log |r(t)| > −γ.

This indicates for the deterministic equation (1) that increasing a, the intensity of the negative
instantaneous feedback, will not arbitrarily increase the rate of decay of the solution. This
contrasts to the situation for the non-delay problem

r′0(t) = −ar0(t), r0(0) = 1.

Moreover stabilisation occurs if an instantaneous multiplicative noise term is added to this
deterministic non-delay equation, so that the dynamics of the resulting non-trivial process Z is
governed by Z(0) 6= 0 and

dZ(t) = −aZ(t) dt + σZ(t) dB(t). (64)

Then the a.s. Liapunov exponent of Z is defined by

ΛZ(a, σ) = lim
t→∞

1

t
log |Z(t)|, a.s.

and is given by the formula

ΛZ(a, σ) = −a −
1

2
σ2.

For fixed a, this is a decreasing function of |σ|. Furthermore,

lim
|σ|→∞

ΛZ(a, σ) = −∞,

so that the decay rate can be made arbitrarily fast by increasing |σ|. Our final result shows that
neither increasing the intensity of the negative instantaneous feedback a, nor that of the noise
σ by an arbitrarily large amount, will decrease the a.s. top Liapunov exponent corresponding
to (4) arbitrarily.

Theorem 5.4. Suppose that k satisfies (5), a >
∫ ∞
0 k(s) ds and (2) has a solution. If there

exists µ > 0 such that

lim inf
t→∞

1

t
log k(t) ≥ −µ,

then the solution X of (4) and (6) with X0 6= 0, satisfies

− {µ ∧ (a + σ2/2)} ≤ lim inf
t→∞

1

t
log |X(t)| ≤ lim sup

t→∞

1

t
log |X(t)| ≤ −λ, a.s. (65)

where λ is given by (57).

Proof. As before, we assume without loss of generality that X(0) = 1. From Theorem 5.3, it
follows that

lim sup
t→∞

1

t
log |X(t)| ≤ −λ, a.s.,
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proving one half of the inequality (65). We also know that limt→∞ X(t) = 0, and X ∈ L1(R+)
a.s., by Theorem 3.2. This forces a + σ2/2 > 0.

In the case when µ ≥ a+σ2/2 > 0, we have µ∧ (a+σ2/2) = a+σ2/2. If ϕ solves (14), we have
that y defined by y = X/ϕ obeys y(t) ≥ 1 for all t ≥ 0. Hence X(t) ≥ ϕ(t), so

lim inf
t→∞

1

t
log |X(t)| ≥ lim inf

t→∞

1

t
log ϕ(t) = −(a + σ2/2),

proving the result in this case. If, on the other hand, µ < a + σ2/2, we have µ∧ (a + σ2/2) = µ.
All the conditions of Corollary 3.7 apply, so we have

lim inf
t→∞

1

t
log |X(t)| ≥ −µ = −{µ ∧ (a + σ2/2)}, a.s.

proving the left half of the inequality (65) in this case also.
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