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∗

Hua Xu
†

Abstract
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1 Introduction and Statements of Results:

Large random matrices have recently attracted a lot of attention in fields such as statistics, math-
ematical physics or combinatorics (e.g., see Mehta [24], Bai and Silverstein [4], Johnstone [18],
Anderson, Guionnet and Zeitouni [2]). For various classes of matrix ensembles, the asymptotic
behavior of the, properly centered and normalized, spectral measure or of the largest eigenvalue
is understood. Many of these results hold true for matrices with independent entries satisfying
some moment conditions (Wigner [35], Tracy and Widom [33], Soshnikov [28], Girko [8], Pastur
[25], Bai [3], Götze and Tikhomirov [9]).

There is relatively little work outside the independent or finite second moment assumptions. Let
us mention Soshnikov [30] who, using ideas from perturbation theory, studied the distribution of
the largest eigenvalue of Wigner matrices with entries having heavy tails. (Recall that a real (or
complex) Wigner matrix is a symmetric (or Hermitian) matrix whose entries Mi,i, 1 ≤ i ≤ N ,
and Mi,j , 1 ≤ i < j ≤ N , form two independent families of iid (complex valued in the Hermitian
case) random variables.) In particular, (see [30]), for a properly normalized Wigner matrix
with entries belonging to the domain of attraction of an α-stable law, limN→∞ P

N (λmax ≤ x) =
exp (−x−α) (here λmax is the largest eigenvalue of such a normalized matrix). Further, Soshnikov
and Fyodorov [32], using the method of determinants, derived results for the largest singular
value of K ×N rectangular matrices with independent Cauchy entries, showing that the largest
singular value of such a matrix is of order K2N2 (see also the survey article [31], where band
and sparse matrices are studied).

On another front, Guionnet and Zeitouni [10], gave concentration results for functionals of the
empirical spectral measure of, self-adjoint, random matrices whose entries are independent and
either satisfy a logarithmic Sobolev inequality or are compactly supported. They obtained, for
such matrices, the subgaussian decay of the tails of the empirical spectral measure when it
deviates from its mean. They also noted that their technique could be applied to prove results
for the largest eigenvalue or for the spectral radius of such matrices. Alon, Krivelevich and Vu
[1] further obtained concentration results for any of the eigenvalues of a Wigner matrix with
uniformly bounded entries (see, Ledoux [20] for more developments and references).

Our purpose in the present work is to deal with matrices whose entries form a general infinitely
divisible vector, and in particular a stable one (without independence assumption). As well
known, unless degenerated, an infinitely divisible random variable cannot be bounded. We
obtain concentration results for functionals of the corresponding empirical spectral measure,
allowing for any type of light or heavy tails. The methodologies developed here apply as well to
the largest eigenvalue or to the spectral radius of such random matrices.

Following the lead of Guionnet and Zeitouni [10], let us start by setting our notation and
framework.

Let MN×N (C) be the set of N×N Hermitian matrices with complex entries, which is throughout
equipped with the Hilbert-Schmidt (or Frobenius or entrywise Euclidean) norm:

‖M‖ =
√

tr(M∗M) =

√

√

√

√

N
∑

i,j=1

|Mi,j |2.

Let f be a real valued function on R. The function f can be viewed as mapping MN×N (C) to
MN×N (C). Indeed, for M = (Mi,j)1≤i,j≤N ∈ MN×N (C), so that M = UDU∗, where D is a
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diagonal matrix, with real entries λ1, ..., λN , and U is a unitary matrix, set

f(M) = Uf(D)U∗, f(D) =











f(λ1) 0 · · · 0
0 f(λ2) · · · 0
...

...
. . .

...
0 0 · · · f(λN )











.

Let tr(M) =
∑N

i=1 Mi,i be the trace operator on MN×N (C) and set also

trN (M) =
1

N

N
∑

i=1

Mi,i.

For a N × N random Hermitian matrix with eigenvalues λ1, λ2, ..., λN , let FN (x) =
1
N

∑N
i=1 1{λi≤x} be the corresponding empirical spectral distribution function. As well known,

if M is a N × N Hermitian Wigner matrix with E[M1,1] = E[M1,2] = 0, E[|M1,2|2] = 1,
and E[M2

1,1] < ∞, the spectral measure of M/
√

N converges to the semicircle law: σ(dx) =√
4 − x21{|x|≤2}dx/2π ([2]).

We study below the tail behavior of either the spectral measure or the linear statistic of f(M)
for classes of matrices M. Still following Guionnet and Zeitouni, we focus on a general random
matrix XA given as follows:

XA = ((XA)i,j)1≤i,j≤N , XA = X∗
A, (XA)i,j =

1√
N

Ai,jωi,j ,

with (ωi,j)1≤i,j≤N = (ωR
i,j +

√
−1ωI

i,j)1≤i,j≤N , ωi,j = ωj,i, and where ωi,j , 1 ≤ i ≤ j ≤ N is a

complex valued random variable with law Pi,j = PR
i,j +

√
−1P I

i,j , 1 ≤ i ≤ j ≤ N , with P I
i,i = δ0

(by the Hermite property). Moreover, the matrix A = (Ai,j)1≤i,j≤N is Hermitian with, in most
cases, non-random complex valued entries uniformly bounded, say, by a.

Different choices for the entries of A allow to cover various types of ensembles. For instance, if
ωi,j , 1 ≤ i < j ≤ N , and ωi,i, 1 ≤ i ≤ N , are iid N(0, 1) random variables, taking Ai,i =

√
2

and Ai,j = 1, for 1 ≤ i < j ≤ N gives the GOE (Gaussian Orthogonal Ensemble). If
ωR

i,j , ω
I
i,j , 1 ≤ i < j ≤ N , and ωR

i,i, 1 ≤ i ≤ N , are iid N(0, 1) random variables, taking Ai,i = 1

and Ai,j = 1/
√

2, for 1 ≤ i < j ≤ N gives the GUE (Gaussian Unitary Ensemble) (see [24]).
Moreover, if ωR

i,j , ω
I
i,j , 1 ≤ i < j ≤ N , and ωR

i,i, 1 ≤ i ≤ N , are two independent families of real
valued random variables, taking Ai,j = 0 for |i − j| large and Ai,j = 1 otherwise, gives band
matrices.

Proper choices of non-random Ai,j also make it possible to cover Wishart matrices, as seen in
the later part of this section. In certain instances, A can also be chosen to be random, like in the
case of diluted matrices, in which case Ai,j , 1 ≤ i ≤ j ≤ N , are iid Bernoulli random variables
(see [10]).

On R
N2

, let P
N be the joint law of the random vector X = (ωR

i,i, ω
R
i,j , ω

I
i,j), 1 ≤ i < j ≤ N ,

where it is understood that the indices for ωR
i,i are 1 ≤ i ≤ N . Let E

N be the corresponding

expectation. Denote by µ̂N
A the empirical spectral measure of the eigenvalues of XA, and further

note that

trNf(XA) =
1

N
tr(f(XA)) =

∫

R

f(x)µ̂N
A(dx),
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for any bounded Borel function f . For a Lipschitz function f : R
d → R, set

‖f‖Lip = sup
x 6=y

|f(x) − f(y)|
‖x − y‖ ,

where throughout ‖·‖ is the Euclidean norm, and where we write f ∈ Lip(c) whenever ‖f‖Lip ≤ c.

Each element M of MN×N (C) has a unique collection of eigenvalues λ = λ(M) = (λ1, · · · , λN )
listed in non increasing order according to multiplicity in the simplex

SN = {λ1 ≥ · · · ≥ λN : λi ∈ R, 1 ≤ i ≤ N},

where throughout SN is equipped with the Euclidian norm ‖λ‖ =
√

∑N
i=1 λ2

i . It is a classical

result sometimes called Lidskii’s theorem ([26]), that the map MN×N (C) → SN which associates
to each Hermitian matrix its ordered list of real eigenvalues is 1-Lipschitz ([11], [19]). For
a matrix XA under consideration with eigenvalues λ(XA), it is then clear that the map ϕ :
(ωR

i,i, ω
R
i,j , ω

I
i,j)1≤i<j≤N 7→ λ(XA) is Lipschitz, from (RN2

, ‖ · ‖) to (SN , ‖ · ‖), with Lipschitz

constant bounded by a
√

2/N . Moreover, for any real valued Lipschitz function F on SN with

Lipschitz constant ‖F‖Lip, the map F ◦ ϕ is Lipschitz, from (RN2
, ‖ · ‖) to R, with Lipschitz

constant at most a‖F‖Lip

√

2/N . Appropriate choices of F ([19], [2]) ensure that the maximal
eigenvalue λmax(XA) = λ1(XA) and, in fact, any one of the N eigenvalues is a Lipschitz function
with Lipschitz constants at most a

√

2/N . Similarly, the spectral radius ρ(XA) = max
1≤i≤N

|λi| and

trN (f(XA)), where f : R → R is a Lipschitz function, are themselves Lipschitz functions with
Lipschitz constants at most a

√

2/N and
√

2a‖f‖Lip/N , respectively. These observations (and
our results) are also valid for the real symmetric matrices, with proper modification of the
Lipschitz constants.

Next, recall that X is a d-dimensional infinitely divisible random vector without Gaussian com-
ponent, X ∼ ID(β, 0, ν), if its characteristic function is given by,

ϕX(t) = Eei〈t,X〉

= exp

{

i〈t, β〉 +

∫

Rd

(

ei〈t,u〉 − 1 − i〈t, u〉1‖u‖≤1

)

ν(du)

}

, (1.1)

where t, β ∈ R
d and ν 6≡ 0 (the Lévy measure) is a positive measure on B(Rd), the Borel σ-field

of R
d, without atom at the origin, and such that

∫

Rd(1 ∧ ‖u‖2)ν(du) < +∞. The vector X has
independent components if and only if its Lévy measure ν is supported on the axes of R

d and is
thus of the form:

ν(dx1, . . . , dxd)=
d

∑

k=1

δ0(dx1) . . . δ0(dxk−1)ν̃k(dxk)δ0(dxk+1) . . . δ0(dxd), (1.2)

for some one-dimensional Lévy measures ν̃k. Moreover, the ν̃k are the same for all k = 1, . . . , d,
if and only if X has identically distributed components.

The following proposition gives an estimate on any median (or the mean, if it exists) of a
Lipschitz function of an infinitely divisible vector X. It is used in most of the results presented
in this paper. The first part is a consequence of Theorem 1 in [14], while the proof of the second
part can be obtained as in [14].
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Proposition 1.1. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N ∼ ID(β, 0, ν) in R

N2
. Let V 2(x) =

∫

‖u‖≤x ‖u‖
2ν(du), ν̄(x) =

∫

‖u‖>x ν(du), and for any γ > 0, let pγ = inf
{

x > 0 : 0 < V 2(x)/x2 ≤
γ
}

. Let f ∈ Lip(1), then for any γ such that ν̄(pγ) ≤ 1/4,

(i) any median m(f(X)) of f(X) satisfies

|m(f(X)) − f(0)| ≤ G1(γ) := pγ

(√
γ + 3kγ(1/4)

)

+ Eγ ,

(ii) the mean E
N [f(X)] of f(X), if it exists, satisfies

|EN [f(X)] − f(0)| ≤ G2(γ) := pγ

(√
γ + kγ(1/4)

)

+ Eγ ,

where kγ(x), x > 0, is the solution, in y, of the equation

y − (y + γ) ln

(

1 +
y

γ

)

= lnx,

and where

Eγ =

(

N2
∑

k=1

(

〈ek, β〉 −
∫

pγ<‖y‖≤1
〈ek, y〉ν(dy) +

∫

1<‖y‖≤pγ

〈ek, y〉ν(dy)
)2

)1/2

, (1.3)

with e1, e2, . . . , eN2 being the canonical basis of R
N2

.

Our first result deals with the spectral measure of a Hermitian matrix whose entries on and
above the diagonal form an infinitely divisible random vector with finite exponential moments.
Below, for any b > 0, c > 0, let

Lipb(c) =
{

f : R → R : ‖f‖Lip ≤ c, ‖f‖∞ ≤ b
}

,

while for a fixed compact set K ⊂ R, with diameter |K| = sup
x,y∈K

|x − y|, let

LipK(c) := {f : R → R : ‖f‖Lip ≤ c, supp(f) ⊂ K},
where supp(f) is the support of f .

Theorem 1.2. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be a random vector with joint law P

N ∼
ID(β, 0, ν) such that E

N [et‖X‖] < +∞, for some t > 0. Let T = sup{t ≥ 0 : E
N

[

et‖X‖] < +∞}
and let h−1 be the inverse of

h(s) =

∫

RN2
‖u‖

(

es‖u‖ − 1
)

ν(du), 0 < s < T.

(i) For any compact set K ⊂ R,

P
N

(

sup
f∈LipK(1)

|trN (f(XA)) − E
N [trN (f(XA))] | ≥ δ

)

≤ 8|K|
δ

exp

{

−
∫ Nδ2

8
√

2a|K|

0
h−1(s)ds

}

, (1.4)

for all δ > 0 such that δ2 < 8
√

2a|K|h (T−) /N .
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(ii)

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N [trN (f(XA))] | ≥ δ

)

≤ C(δ, b)

δ
exp

{

−
∫ Nδ2√

2aC(δ,b)

0
h−1(s)ds

}

, (1.5)

for all δ > 0 such that δ2 ≤
√

2aC(δ, b)h(T−)/N , where

C(δ, b) = C

(
√

2a√
N

(

G2(γ) + h(t0)
)

+ b

)

,

with G2(γ) as in Proposition 1.1, C a universal constant, and with t0 the solution, in t, of
th(t) −

∫ t
0 h(s)ds − ln(12b/δ) = 0.

Remark 1.3. (i) The order of C(δ, b) in part (ii) can be made more specific. Indeed, it will
be clear from the proof of this theorem (see (2.39)), that for any fixed t∗, 0 < t∗ ≤ T ,

C(δ, b) ≤ C

(
√

2a√
N

( ln 12b
δ

t∗
+

∫ t∗

0 h(s)ds

t∗
+ G2(γ)

)

)

.

(ii) As seen from the proof (see (2.38)), in the statement of the above theorem, G2(γ) can be
replaced by E

N
[

‖X‖
]

. Now E
N

[

‖X‖
]

is of order N , since

N min
j=1,2,...,N2

E
N

[

|Xj |
]

≤ E
N

[

‖X‖
]

≤ N max
j=1,2,...,N2

√

EN
[

X2
j

]

, (1.6)

where the Xj, j = 1, 2, . . . , N2 are the components of X. Actually, an estimate more
precise than (1.6) is given by a result of Marcus and Rosiński [22] which asserts that if
E[X] = 0, then

1

4
x0 ≤ E

[

‖X‖
]

≤ 17

8
x0,

where x0 is the solution of the equation:

V 2(x)

x2
+

U(x)

x
= 1, (1.7)

with V 2(x) as defined before and U(x) =
∫

‖u‖≥x ‖u‖ν(du), x > 0.

(iii) As usual, one can easily pass from the mean E
N [trN (f)] to any median m(trN (f)) in either

(1.4) or (1.5). Indeed, for any 0 ≤ δ ≤ 2b, if

sup
f∈Lipb(1)

|trN (f) − m(trN (f))| ≥ δ,

there exist a function f ∈ Lipb(1) and a median m(trN (f)) of trN (f), such that ei-
ther trN (f) − m(trN (f)) ≥ δ or trN (f) − m(trN (f)) ≤ −δ. Without loss of general-
ity assuming the former, otherwise dealing with the latter with −f , consider the func-
tion g(y) = min (d(y, A), δ) /2, y ∈ R

N2
, where A = {trN (f) ≤ m(trN (f)}. Clearly
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g ∈ Lipb(1), E
N [trN (g)] ≤ δ/4, and therefore trN (g) − E

N [trN (g)] ≥ δ/4, which indi-
cates that

sup
g∈Lipb(1)

∣

∣trN (g) − E
N [trN (g)]

∣

∣ ≥ δ

4
.

Hence,

P
N

(

sup
f∈Lipb(1)

∣

∣trN (f) − m(trN (f))
∣

∣ ≥ δ

)

≤ P
N

(

sup
g∈Lipb(1)

∣

∣trN (g) − E
N [trN (g)]

∣

∣ ≥ δ

4

)

. (1.8)

(iv) When the entries of X are independent, and under a finite exponential moment assumption,
the dependency in N of the function h (above and below) can sometimes be improved. We
refer the reader to [15] where some of these generic problems are discussed and tackled.

Next, recall (see [7], [19]) that the Wasserstein distance between any two probability measures
µ1 and µ2 on R is defined by

dW (µ1, µ2) = sup
f∈Lipb(1)

∣

∣

∣

∫

R

fdµ1 −
∫

R

fdµ2

∣

∣

∣. (1.9)

Hence, Theorem 1.2 actually gives a concentration result, with respect to the Wasserstein dis-
tance, for the empirical spectral measure µ̂N

A
, when it deviates from its mean E

N [µ̂N
A

].

As in [10], we can also obtain a concentration result for the distance between any particular
probability measure and the empirical spectral measure.

Proposition 1.4. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be a random vector with joint law P

N ∼
ID(β, 0, ν) such that E

N
[

et‖X‖] < +∞, for some t > 0. Let T = sup{t > 0 : E
N

[

et‖X‖] < +∞}
and let h−1 be the inverse of h(s) =

∫

RN2 ‖u‖(es‖u‖ − 1)ν(du), 0 < s < T . Then, for any
probability measure µ,

P
N

(

dW (µ̂N
A , µ) − E

N [dW (µ̂N
A , µ)] ≥ δ

)

≤ exp

{

−
∫ Nδ√

2a

0
h−1(s)ds

}

, (1.10)

for all 0 < δ <
√

2ah (T−) /N .

Of particular importance is the case of an infinitely divisible vector having boundedly supported
Lévy measure. We then have:

Corollary 1.5. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be a random vector with joint law P

N ∼
ID(β, 0, ν) such that ν has bounded support. Let R = inf{r > 0 : ν(x : ‖x‖ > r) = 0}, let
V 2

(

= V 2(R)
)

=
∫

RN2 ‖u‖2ν(du), and for x > 0 let

ℓ(x) = (1 + x) ln(1 + x) − x.
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(i) For any δ > 0,

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N [trN (f(XA))]| ≥ δ

)

≤ C(δ, b)

δ
exp

{

− V 2

R2
ℓ

(

NRδ2

√
2aC(δ, b)V 2

)

}

, (1.11)

where

C(δ, b) = C

(
√

2a√
N

(

G2(γ) +
V 2

R

(

et0R − 1
)

)

+ b

)

,

with G2(γ) as in Proposition 1.1, C a universal constant, and t0 the solution, in t, of

V 2

R2

(

tRetR − etR + 1
)

= ln
12b

δ
.

(ii) For any probability measure µ on R, and any δ > 0,

P
N

(

dW (µ̂N
A , µ) − E

N [dW (µ̂N
A , µ)] ≥ δ

)

≤ exp

{

Nδ√
2aR

−
(

Nδ√
2aR

+
V 2

R2

)

ln

(

1 +
NRδ2

√
2aV 2

)}

. (1.12)

Remark 1.6. (i) As in Theorem 1.2, the dependency of C(δ, b) in δ and b can be made more
precise. A key step in the proof of (1.11) is to choose τ such that

E
N [trN (1{|XA|≥τ})] ≤ δ/12b,

and then C(δ, b) is determined by τ . Minimizing, in t, the right hand side of (2.38), leads
to the following estimate

E
N [trN (1{|XA|≥τ})] ≤ exp

{

− V 2

R2
ℓ

(

R
(√

N√
2a

τ − G2(γ)
)

V 2

)}

,

where ℓ(x) = (1 + x) ln(1 + x) − x. For x ≥ 1, 2ℓ(x) ≥ x lnx. Hence one can choose τ to
be the solution, in x, of the equation

x

R
ln

xR

V 2
= 2 ln

12b

δ
.

It then follows that C(δ, b) can be taken to be

C

(
√

2a√
N

(

G2(γ) + τ
)

+ b

)

.

Without the finite exponential moment assumption, an interesting class of random matrices with
infinitely divisible entries are the ones with stable entries, which we now analyze.

Recall that X in R
d is α-stable, (0 < α < 2), if its Lévy measure ν is given, for any Borel set

B ∈ B(Rd), by

ν(B) =

∫

Sd−1

σ(dξ)

∫ +∞

0
1B(rξ)

dr

r1+α
, (1.13)
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where σ, the spherical component of the Lévy measure, is a finite positive measure on Sd−1, the
unit sphere of R

d. Since the expected value of the spectral measure of a matrix with α-stable
entries might not exist, we study the deviation from a median. Here is a sample result.

Theorem 1.7. Let 0 < α < 2, and let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be an α-stable random vector

in R
N2

, with Lévy measure ν given by (1.13).

(i) Let f ∈ Lip(1), and let m(trN (f(XA))) be any median of trN (f(XA)). Then,

P
N
(

trN (f(XA)) − m(trN (f(XA)))≥δ
)

≤C(α)(
√

2a)α σ(SN2−1)

Nαδα
, (1.14)

whenever δN >
√

2a
[

2σ(SN2−1)C(α)
]1/α

, and where C(α) = 4α(2 − α + eα)/α(2 − α).

(ii) Let λmax(XA) be the largest eigenvalue of XA, and let m(λmax(XA)) be any median of
λmax(XA), then

P
N

(

λmax(XA) − m(λmax(XA)) ≥ δ
)

≤ C(α)(
√

2a)α σ(SN2−1)

Nα/2δα
, (1.15)

whenever δ
√

N >
√

2a
[

2σ(SN2−1)C(α)
]1/α

, and where C(α) = 4α(2 − α + eα)/α(2 − α).

Remark 1.8. Let M be a Wigner matrix whose entries Mi,i,1≤i≤N ,MR
i,j,1≤i<j≤N , and MI

i,j,
1≤ i<j≤N , are iid random variables, such that the distribution of |M1,1| belongs to the domain
of attraction of an α-stable distribution, i.e., for any δ > 0,

P(|M1,1| > δ) =
L(δ)

δα
,

for some slowly varying positive function L such that lim
δ→∞

L(tδ)/L(δ) = 1, for all t > 0. Sosh-

nikov [30] showed that, for any δ > 0,

lim
N→∞

P
N (λmax(b−1

N M) ≥ δ) = 1 − exp(−δ−α),

where bN is a normalizing factor such that lim
N→∞

N2L(bN )/bα
N = 2 and where λmax(b−1

N M) is

the largest eigenvalue of b−1
N M. In fact lim

N→∞
N

2
α
−ǫ/bN = 0 and lim

N→∞
bN/N

2
α

+ǫ = 0, for any

ǫ > 0. As stated in [13], when the random vector X is in the domain of attraction of an α-stable
distribution, concentration inequalities similar to (1.14) or (1.15) can be obtained for general
Lipschitz function. In particular, if the Lévy measure of X is given by

ν(B) =

∫

SN2−1

σ(dξ)

∫ +∞

0
1B(rξ)

L(r)dr

r1+α
, (1.16)

for some slowly varying function L on [0, +∞), and if we still choose the normalizing factor bN

such that limN→∞ σ(SN2−1)L(bN )/bα
N is constant, then,
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P
N

(

λmax(b−1
N M) − m(λmax(b−1

N M)) ≥ δ
)

≤ C(α)σ(SN2−1)2α/2

bα
N

L
(

bN
δ√
2

)

δα
, (1.17)

whenever
(δbN )α ≥ 21+α/2C(α)σ(SN2−1)L

(

bNδ/
√

2
)

.

Now, recall that for an N2 dimensional vector with iid entries, σ(SN2−1) = N2(σ̂(1) + σ̂(−1)),
where σ̂(1) is short for σ(1, 0, . . . , 0) and similarly for σ̂(−1). Thus, for fixed N , our result gives
the correct order of the upper bound for large values of δ, since for δ > 1,

e − 1

eδα
≤ 1 − e−δ−α ≤ 1

δα
.

Moreover, in the stable case, L(δ) becomes constant, and bN = N2/α. Since λmax(N−2/αM) is
a Lipschitz function of the entries of the matrix M with Lipschitz constant at most

√
2N−2/α,

for any median m(λmax(N−2/αM)) of λmax(N−2/αM), we have,

P
N
(

λmax(N− 2
α M) − m(λmax(N− 2

α M))≥δ
)

≤C(α)

(

σ̂(1)+σ̂(−1)
)

2α/2

1

δα
, (1.18)

whenever δ ≥
[

2C(α)
(

σ̂(1) + σ̂(−1)
)]1/α

. Furthermore, using Theorem 1 in [14], it is not

difficult to see that m(λmax(N−2/αM)) can be upper and lower bounded independently of N .
Finally, an argument as in Remark 1.15 below will give a lower bound on λmax(N−2/αM) of the
same order as (1.18).

The following proposition will give an estimate on any median of a Lipschitz function of X,
where X is a stable vector. It is the version of Proposition 1.1 for α-stable vectors.

Proposition 1.9. Let 0 < α < 2, and let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be an α-stable random

vector in R
N2

, with Lévy measure ν given by (1.13). Let f ∈ Lip(1), then

(i) any median m(f(X)) of f(X) satisfies

|m(f(X)) − f(0)|

≤J1(α) :=

(

σ(SN2−1)

4α

)1/α
(

√

α

4(2 − α)
+ 3k α

4(2−α)
(1/4)

)

+E, (1.19)

(ii) the mean E
N [f(X)] of f(X), if it exists, satisfies

|EN [f(X)] − f(0)|

≤J2(α) :=

(

σ(SN2−1)

4α

)1/α
(

√

α

4(2 − α)
+ k α

4(2−α)
(1/4)

)

+E, (1.20)

116



where kα/4(2−α)(x), x > 0, is the solution, in y, of the equation

y −
(

y +
α

4(2 − α)

)

ln

(

1 +
4(2 − α)y

α

)

= lnx,

and where

E =

(

N2
∑

k=1

(

〈ek, β〉−
∫

(

4σ(SN2−1)
α

)1/α
<‖y‖≤1

〈ek, y〉ν(dy)

+

∫

1<‖y‖≤
(

4σ(SN2−1)
α

)1/α
〈ek, y〉ν(dy)

)2
)1/2

, (1.21)

with e1, e2, . . . , eN2 being the canonical basis of R
N2

.

Remark 1.10. When the components of X are independent, a direct computation shows that,

up to a constant, E in both J1(α) and J2(α) is dominated by

(

σ(SN2−1)
4α

)1/α

, as N → ∞.

In complete similarity to the finite exponential moments case, we can obtain concentration
results for the spectral measure of matrices with α-stable entries.

Theorem 1.11. Let 0 < α < 2, and let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be an α-stable random

vector in R
N2

, with Lévy measure ν given by (1.13).

(i) Then,

P
N

(

sup
f∈Lipb(1)

∣

∣trN (f(XA))−E
N [trN (f(XA))]

∣

∣ ≥ δ

)

≤ C(δ, b, α)
aασ(SN2−1)

Nαδα
∧ 1, (1.22)

where

C(δ, b, α) =

(

C1(α)

(
√

2a√
N

)1+α(

J1(α)+1

δ
+ b

)1+α

+ C2(α)

)

,

with C1(α) and C2(α) constants depending only on α, and with J1(α) as in Proposition
1.9.

(ii) For any probability measure µ,

P
N
(

dW (µ̂N
A , µ)−m(dW (µ̂N

A , µ))≥δ
)

≤C(α)(
√

2a)α σ(SN2−1)

Nαδα
, (1.23)

whenever δN ≥
√

2a
[

2σ(SN2−1)C(α)
]1/α

and where C(α) = 4α(2 − α + eα)/α(2 − α).
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It is also possible to obtain concentration results for smaller values of δ. Indeed, the lower
and intermediate range for the stable deviation obtained in [5] provide the appropriate tools to
achieve such results. We refer to [5] for complete arguments, and only provide below a sample
result.

Theorem 1.12. Let 0 < α < 2, and let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be an α-stable random vector

in R
N2

, with Lévy measure ν given by (1.13). For any ǫ > 0, there exists η(ǫ), and constants
D1 = D1

(

α, a, N, σ(SN2−1)
)

and D2 = D2

(

α, a, N, σ(SN2−1)
)

, such that for all 0 < δ < η(ǫ),

P
N

(

sup
f∈Lipb(1)

∣

∣trN (f(XA)) − E
N [trN (f(XA))]

∣

∣ ≥ δ
)

≤ (1 + ǫ)
D1

δ
α+1

α

exp
(

−D2δ
2α+1
α−1

)

. (1.24)

Remark 1.13. (i) In (1.14), (1.15) or (1.23), the constant C(α) is not of the right order as
α → 2. It is, however, a simple matter to adapt Theorem 2 of [13] to obtain, at the price
of worsening the range of validity of the concentration inequalities, the right order in the
constants as α → 2.

(ii) Let us now provide some estimation of D1 and D2, which are needed for comparison
with the GUE results of [10] (see (iii) below). Let C(α) = 2α(eα + 2 − α)/(2(2 − α)),

K(α) = max
{

2α/(α − 1), C(α)
}

, L(α) =
(

(α − 1)/α
)α/(α−1)

(2 − α)/10 and let

D∗=2

(
√

2a√
N

)
2α−1

α
(

12
C(α)

K(α)

) 1
α

J2(α)b
1
α + 2

(
√

2a√
N

)
α−1

α
(

12
C(α)

K(α)

) 1
α

b
α+1

α

+
2
√

2a√
N

(

12C(α)σ(SN2−1)
) 1

α
b

1
α . (1.25)

As shown in the proof of the theorem, D1 = 24D∗, while

D2 =
L(α)

(

σ(SN2−1)
) 1

α−1

(

N√
2a

) α
α−1 1

(

72D∗)
α

α−1

.

Thus, as N → +∞, D1 is of order N−1/2

(

σ(SN2−1)

)1/α

, while D2 is of order

N3α/(2α−2)

(

σ(SN2−1)

)2/(1−α)

.

(iii) Guionnet and Zeitouni [10], obtained concentration results for the spectral measure of
matrices with independent entries, which are either compactly supported or satisfy a loga-
rithmic Sobolev inequality. In particular for the elements of the GUE, their upper bound
of concentration for the spectral measure is

C1 + b3/2

δ3/2
exp

{

− C2

8ca2
N2 δ5

(C1 + b3/2)2

}

, (1.26)
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where C1 and C2 are universal constants. In Theorem 1.12, the order, in b, of D1 is at
most bα+1/α, while that of D2 is at least b−(α+1)/(α−1). For α close to 2, this order is thus
consistent with the one in (1.26). Taking into account part (ii) above, the order of the
constants in (1.24) are correct when α → 2. Following [5] (see also Remark 4 in [21]),
we can recover a suboptimal Gaussian result by considering a particular stable random
vector X(α) and letting α → 2. Toward this end, let X(α) be the stable random vector
whose Lévy measure has for spherical component σ, the uniform measure with total mass
σ(SN2−1) = N2(2−α). As α converges to 2, X(α) converges in distribution to a standard
normal random vector. Also, as α → 2, the range of δ in Theorem 1.12 becomes (0, +∞)
while the constants in the concentration bound do converge. Thus, the right hand side of
(1.24) becomes

D1

δ3/2
exp

{

− D2δ
5

}

,

which is of the same order, in δ, as (1.26). However our order in N is suboptimal.

(iv) In the proof of Theorem 1.12, the desired estimate in (2.56) is achieved through a truncation
of order δ−1/α, which, when α → 2, is of the same order as the one used in obtaining
(1.26). However, for the GUE result, using Gaussian concentration, a truncation of order
√

ln(12b/δ) gives a slightly better bound, namely,

C1

√

ln 12b
δ

δ
exp

{

− C2N
2δ4

8ca2 ln 12b
δ

}

,

where C1 and C2 are absolute constants (different from those of (1.26)).

Wishart matrices are of interest in many contexts, in particular as sample covariance matrices in
statistics. Recall that M = Y∗Y is a complex Wishart matrix if Y is a K ×N matrix, K > N ,
with entries Yi,j = YR

i,j +
√
−1YI

i,j (a real Wishart matrix is defined similarly with YI
i,j = δ0

and M = YtY). Recall also that if the entries of Y are iid centered random variables with
finite variance σ2, the empirical distribution of the eigenvalues of Y∗Y/N converges as K → ∞,
N → ∞, and K/N → γ ∈ (0, +∞) to the Marčenko-Pastur law ([4], [23]) with density

pγ(x) =
1

2πxγσ2

√

(c2 − x)(x − c1), c1 ≤ x ≤ c2,

where c1 = σ2(1 − γ−1/2)2 and c2 = σ2(1 + γ−1/2)2. When the entries of Y are iid normal,
Johansson [16] and Johnstone [17] showed, in the complex and real case respectively, that the
properly normalized largest eigenvalue converges in distribution to the Tracy-Widom law ([33],
[34]). Soshnikov [29] extended the results of Johansson and Johnstone to Wishart matrices
with symmetric subgaussian entries under the condition that K − N = O(N1/3). (As kindly
indicated to us by a referee, this last condition has recently been removed by Péché). Soshnikov
and Fyodorov [32] studied the distribution of the largest eigenvalue of the Wishart matrix Y∗Y,
when the entries of Y are iid Cauchy random variables. We are interested here in concentration
for the linear statistics of the spectral measure and for the largest eigenvalue of the Wishart
matrix Y∗Y, where the entries of Y form an infinitely divisible vector and, in particular, a
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stable one. We restrict our work to the complex framework, the real framework being essentially
the same.

It is not difficult to see that if Y has iid Gaussian entries, Y∗Y has infinitely divisible entries,
each with a Lévy measure without a known explicit form. However the dependence structure
among the entries of Y∗Y prevents the vector of entries to be, itself, infinitely divisible (this is a
well known fact originating with Lévy, see [27]). Thus the methodology, we used till this point,
cannot be directly applied to deal with functions of eigenvalues of Y∗Y. However, concentration
results can be obtained when we consider the following facts, due to Guionnet and Zeitouni [10]
and already used for that purpose in their paper.

Let

Ai,j =























0 for 1 ≤ i ≤ K, 1 ≤ j ≤ K

0 for N + 1 ≤ i ≤ K + N, K + 1 ≤ j ≤ K + N

1 for 1 ≤ i ≤ K, K + 1 ≤ j ≤ K + N

1 for N + 1 ≤ i ≤ K + N, 1 ≤ j ≤ K,

(1.27)

and

ωi,j =























0 for 1 ≤ i ≤ K, 1 ≤ j ≤ K

0 for N + 1 ≤ i ≤ K + N, K + 1 ≤ j ≤ K + N

Ȳi,j for 1 ≤ i ≤ K, K + 1 ≤ j ≤ K + N

Yi,j for N + 1 ≤ i ≤ K + N, 1 ≤ j ≤ K,

(1.28)

then XA =

(

0 Y∗

Y 0

)

∈ M(K+N)×(K+N)(C), and

X2
A =

(

Y∗Y 0
0 YY∗

)

.

Moreover, since the spectrum of Y∗Y differs from that of YY∗ only by the multiplicity of the
zero eigenvalue, for any function f , one has

tr(f(X2
A)) = 2tr(f(Y∗Y)) + (K − N)f(0),

and
λmax(M1/2) = max

1≤i≤N
|λi(XA)|,

where M1/2 is the unique positive semi-definite square root of M = Y∗Y.

Next let P
K,N be the joint law of (YR

i,j ,Y
I
i,j)1≤i≤K,1≤j≤N on R

2KN , and let E
K,N be the corre-

sponding expectation. We present below, in the infinitely divisible case, a concentration result
for the largest eigenvalue λmax(M), of the Wishart matrices M = Y∗Y. The concentration for
the linear statistic trN (f(M)) could also be obtained using the above observations.

Corollary 1.14. Let M = Y∗Y, with Yi,j = YR
i,j +

√
−1YI

i,j.

(i) Let X = (YR
i,j ,Y

I
i,j)1≤i≤N,1≤j≤K be a random vector with joint law P

K,N ∼ ID(β, 0, ν)

such that E
K,N [et‖X‖] < +∞, for some t > 0. Let T = sup{t > 0 : E

K,N [et‖X‖] < +∞}
and let h−1 be the inverse of

h(s) =

∫

R2KN

‖u‖(es‖u‖ − 1)ν(du), 0 < s < T.
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Then,

P
K,N

(

λmax(M1/2) − E
K,N [λmax(M1/2)] ≥ δ

)

≤ e−
R δ/

√
2

0 h−1(s)ds, (1.29)

for all 0 < δ < h (T−).

(ii) Let X = (YR
i,j ,Y

I
i,j)1≤i≤K,1≤j≤N be an α-stable random vector with Lévy measure ν given

by ν(B) =
∫

S2KN−1 σ(dξ)
∫ +∞
0 1B(rξ)dr/r1+α. Then,

P
K,N

(

λmax(M1/2) − m(λmax(M1/2)) ≥ δ
)

≤ C(α)(
√

2)α σ(S2KN−1)

δα
,

whenever δ >
√

2a
[

2σ(S2KN−1)C(α)
]1/α

and where C(α) = 4α(2 − α + eα)/α(2 − α).

Remark 1.15. (i) As already mentioned, Soshnikov and Fyodorov ([32]) obtained the asymp-
totic behavior of the largest eigenvalue of the Wishart matrix Y∗Y when the entries of,
the K × N matrix, Y are iid Cauchy random variables. They further argue that although
the typical eigenvalues of Y∗Y are of order KN , the correct order for the largest one is
K2N2. The above corollary combined with Remark 1.10 and the estimate (1.19), shows
that when the entries of Y form an α-stable random vector, the largest eigenvalue of Y∗Y
is of order at most σ(S2KN−1)2/α. There is also a lower concentration result, described
next, which leads to a lower bound on the order of this largest eigenvalue. Thus, from
these two estimates, if the entries of Y are iid α-stable, the largest eigenvalue of Y∗Y is
of order K2/αN2/α.

(ii) Let X ∼ ID(β, 0, ν) in R
d, then (see Lemma 5.4 in [6]) for any x > 0, and any norm

‖ · ‖N on R
d,

P
(

‖X‖N ≥ x
)

≥ 1

4

(

1 − exp
{

− ν
({

u ∈ R
d : ‖u‖N ≥ 2x

})

})

.

But, λmax(M1/2) is a norm of the vector X = (YR
i,j ,Y

I
i,j), which we denote by ‖X‖λ, if

X is a stable vector in R
2KN .

P
K,N

(

λmax(M1/2) − m(λmax(M1/2)) ≥ δ
)

= P
K,N

(

λmax(M1/2) ≥ δ + m(λmax(M1/2))
)

≥ 1

4

(

1 − exp
{

− ν
({

λmax(M1/2) ≥ 2
(

δ + m(λmax(M1/2))
)})

})

≥ 1

4

(

1 − exp
{

− ν
({

‖X‖λ ≥ 2
(

δ + m(λmax(M1/2))
)})

})

=
1

4

(

1 − exp

{

−
σ̃
(

S2KN−1
‖·‖λ

)

α
(

δ + m(λmax(M1/2))
)α

})

, (1.30)

where S2KN−1
‖·‖λ

is the unit sphere relative to the norm ‖ · ‖λ and where σ̃ is the spherical
part of the Lévy measure corresponding to this norm. Moreover, if the components of
X are independent, in which case the Lévy measure is supported on the axes of R

2KN ,
σ̃
(

S2KN−1
‖·‖λ

)

is of order KN , and so, as above, the largest eigenvalue of M1/2 is of order

K1/αN1/α.
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(iii) For any function f such that g(x) = f(x2) is Lipschitz with Lipschitz constant ‖g‖Lip :=
|||f |||L, tr(g(XA)) = tr(f(X2

A
)) is a Lipschitz function of the entries of Y with Lipschitz

constant at most
√

2|||f |||L
√

K + N . Hence, under the assumptions of part (i) of Corollary
1.14,

P
K,N

(

trN (f(M)) − E
K,N [trN (f(M))] ≥ δ

K + N

N

)

≤ exp

{

−
∫

√
2(K+N)δ

/

|||f |||L

0
h−1(s)ds

}

, (1.31)

for all 0 < δ < |||f |||Lh (T−) /
√

2(K + N).

(iv) Under the assumptions of part (ii) of Corollary 1.14, for any function f such that g(x) =
f(x2) is Lipschitz with ‖g‖Lip = |||f |||L, and any median m(trN (f(M))) of trN (f(M)) we
have:

P
K,N

(

trN (f(M)) − m(trN (f(M))) ≥ δ
K + N

N

)

≤ C(α)
|||f |||αL

√

2α(K + N)α

σ(S2KN−1)

δα
, (1.32)

whenever δ > |||f |||L
[

2σ(S2KN−1)C(α)
]1/α

/
√

2(K + N), and where C(α) = 4α(2 − α +
eα)/α(2 − α).

Remark 1.16. In the absence of finite exponential moments, the methods described in the
present paper extend beyond the heavy tail case and apply to any random matrix whose entries
on and above the main diagonal form an infinitely divisible vector X. However, to obtain explicit
concentration estimates, we do need explicit bounds on V 2 and on ν̄. Such bounds are not always
available when further knowledge on the Lévy measure of X is lacking.

2 Proofs:

We start with a proposition, which is a direct consequence of the concentration inequalities
obtained in [12] for general Lipschitz function of infinitely divisible random vectors with finite
exponential moment.

Proposition 2.1. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be a random vector with joint law P

N ∼
ID(β, 0, ν) such that E

N
[

et‖X‖] < +∞, for some t > 0 and let T = sup{t > 0 : E
N

[

et‖X‖] <
+∞}. Let h−1 be the inverse of

h(s) =

∫

RN2
‖u‖

(

es‖u‖ − 1
)

ν(du), 0 < s < T.

(i) For any Lipschitz function f ,

P
N

(

trN (f(XA)) − E
N [trN (f(XA))]≥δ

)

≤exp

{

−
∫ Nδ√

2a‖f‖Lip

0
h−1(s)ds

}

,

for all 0 < δ <
√

2a‖f‖Liph (T−) /N .
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(ii) Let λmax(XA) be the largest eigenvalue of the matrix XA. Then,

P
N

(

λmax(XA) − E
N [λmax(XA)] ≥ δ

)

≤ exp

{

−
∫

√
Nδ√
2a

0
h−1(s)ds

}

,

for all 0 < δ <
√

2ah (T−) /
√

N .

Proof of Theorem 1.2:

For part (i), following the proof of Theorem 1.3 of [10], without loss of generality, by shift
invariance, assume that min{x : x ∈ K} = 0. Next, for any v > 0, let

gv(x) =











0 if x ≤ 0

x if 0 < x < v

v if x ≥ v.

(2.33)

Clearly gv ∈ Lip(1) with ‖gv‖∞ = v. Next for any function f ∈ LipK(1), any ∆ > 0, define
recursively f∆(x) = 0 for x ≤ 0, and for (j − 1)∆ ≤ x ≤ j∆, j = 1, . . . , ⌈ x

∆⌉, let

f∆(x) =

⌈ x
∆
⌉

∑

j=1

g
(j)
∆ ,

where g
(j)
∆ := (21{f(j∆)>f∆((j−1)∆)}−1)g∆(x− (j−1)∆). Then |f −f∆| ≤ ∆ and the 1-Lipschitz

function f∆ is the sum of at most |K|/∆ functions g
(j)
∆ ∈ Lip(1), regardless of the function f .

Now, for δ > 2∆,

P
N

(

sup
f∈LipK(1)

∣

∣trN (f(XA)) − E
N [trN (f(XA))]

∣

∣ ≥ δ

)

≤ P
N

(

sup
f∈LipK(1)

{

∣

∣trN (f∆(XA)) − E
N (trN (f∆(XA)))

∣

∣ +
∣

∣trN (f(XA))

− trN (f∆(XA))
∣

∣ +
∣

∣E
N [trN (f(XA))] − E

N [trN (f∆(XA))]
∣

∣

}

≥ δ

)

≤ P
N

(

sup
f∆

∣

∣trN (f∆(XA)) − E
N (trN (f∆(XA)))

∣

∣ > δ − 2∆

)

≤ |K|
∆

sup
g
(j)
∆ ∈Lip(1)

P
N

(

∣

∣trN (g
(j)
∆ (XA)) − E

N [trN (g
(j)
∆ (XA))]

∣

∣ ≥ ∆(δ − 2∆)

|K|

)

≤ 8|K|
δ

exp

{

−
∫ Nδ2

8
√

2a|K|

0
h−1(s)ds

}

, (2.34)

whenever 0 < δ <
√

8
√

2a|K|h (T−) /N , and where the last inequality follows from part (i) of

the previous proposition by taking also ∆ = δ/4.
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In order to prove part (ii), for any f ∈ Lipb(1), i.e, such that ‖f‖Lip ≤ 1, ‖f‖∞ ≤ b, and any
τ > 0, let fτ be given via:

fτ (x) =























f(x) if |x| < τ

f(τ) − sign(f(τ))(x − τ) if τ ≤ x < τ + |f(τ)|
f(−τ) + sign(f(−τ))(x + τ) if −τ − |f(−τ)| < x ≤ −τ

0 otherwise.

(2.35)

Clearly fτ ∈ Lip(1) and supp(fτ ) ⊂ [−τ − |f(−τ)|, τ + |f(τ)|]. Moreover,

sup
f∈Lipb(1)

∣

∣

∣
trN (f(XA))−E

N (trN (f(XA)))
∣

∣

∣

≤ sup
f∈Lipb(1)

∣

∣

∣trN (fτ (XA))−E
N (trN (fτ (XA)))

∣

∣

∣

+ sup
f∈Lipb(1)

∣

∣

∣trN (f(XA) − fτ (XA)) − E
N [trN (f(XA) − fτ (XA))]

∣

∣

∣

≤ sup
f∈Lipb(1)

∣

∣

∣
trN (fτ (XA)) − E

N (trN (fτ (XA)))
∣

∣

∣

+ 2trN (gb(|XA| − τ)) +2E
N [trN (gb(|XA| − τ))], (2.36)

with gb given as in (2.33). Now,

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N (trN (f(XA)))| ≥ δ

)

≤ P
N

(

sup
f∈Lipb(1)

|trN (fτ (XA)) − E
N (trN (fτ (XA)))| ≥ δ

3

)

+ P
N

(

2trN (gb(|XA| − τ)) + 2E
N [trN (gb(|XA| − τ))] ≥ 2δ

3

)

≤ P
N

(

sup
f∈Lipb(1)

|trN (fτ (XA))−E
N (trN (fτ (XA)))| ≥ δ

3

)

+P
N
(

trN (gb(|XA|−τ))−E
N[trN (gb(|XA|−τ))]≥ δ

3
−2E

N[trN (gb(|XA|−τ))]
)

≤ P
N

(

sup
f∈Lipb(1)

|trN (fτ (XA))−E
N (trN (fτ (XA)))| ≥ δ

3

)

+P
N
(

trN (gb(|XA|−τ))−E
N [trN (gb(|XA|−τ))]≥ δ

3
− 2bEN[trN (1{|XA|≥τ}]

)

. (2.37)

Let us first bound the second probability in (2.37). Recall that the spectral radius ρ(XA) =
max

1≤i≤N
|λi| is a Lipschitz function of X with Lipschitz constant at most a

√

2/N . Hence, for any
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0 < t ≤ T , and γ > 0 such that ν̄(pγ) ≤ 1/4,

E
N [trN (1{|XA|≥τ})] =

1

N

N
∑

i=1

P
N

(

|λi(XA)| ≥ τ
)

≤ P
N

(

ρ(XA) ≥ τ
)

≤ P
N

(
√

N√
2a

ρ(XA) −
√

N√
2a

E
N

[

ρ(XA)
]

≥
√

N√
2a

τ − G2(γ)

)

≤ exp

{

H(t) −
(
√

N√
2a

τ − G2(γ)

)

t

}

(2.38)

where, above, we have used Proposition 1.1 in the next to last inequality and where the last
inequality follows from Theorem 1 in [12] (p. 1233) with

H(t) =

∫ t

0
h(s)ds =

∫

RN2

(

et‖u‖ − t‖u‖ − 1
)

ν(du).

We want to choose τ , such that E
N [trN (1{|XA|≥τ})] ≤ δ/12b. This can be achieved if

√
N√
2a

τ − G2(γ) ≥ ln 12b
δ + H(t)

t
. (2.39)

Since
d

dt

(

ln 12b
δ + H(t)

t

)

=
th(t) − ln 12b

δ − H(t)

t2
,

and
d2

dt2

(

ln 12b
δ + H(t)

t

)

=
t3H

′′
(t) − 2t(th(t) − ln 12b

δ − H(t))

t4
,

it is clear that the right hand side of (2.39) is minimized when t = t0, where t0 is the solution of

th(t) − H(t) − ln
12b

δ
= 0,

and the minimum is then h(t0).

Thus, if

τ = C0(δ, b) :=

√
2a√
N

(

G2(γ) + h(t0)

)

, (2.40)

then

E
N [trN (1{|XA|≥τ})] ≤

δ

12b
,

and so,

P
N

(

trN (gb(|XA|−τ))−E
N[trN (gb(|XA|−τ))]≥ δ

3
−2bEN[trN (1{|XA|≥τ}]

)

≤ P
N

(

trN (gb(|XA|−τ))−E
N[trN (gb(|XA|−τ))]≥ δ

6

)

≤ exp

{

−
∫ Nδ

6
√

2a

0
h−1(s)ds

}

, (2.41)
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for all 0 < δ < 6
√

2ah (T−) /N , where Proposition 2.1 is used in the last inequality.

For τ chosen as in (2.40), letting K = [−τ − b, τ + b], it follows that for any f ∈ Lipb(1),
fτ ∈ LipK(1). By part (i), the first term in (2.37) is such that

P
N

(

sup
f∈Lipb(1)

|trN (fτ (XA))−E
N (trN (fτ (XA)))| ≥ δ

3

)

≤ P
N

(

sup
fτ∈LipK(1)

|trN (fτ (XA)) − E
N [trN (fτ (XA))]| ≥ δ

3

)

≤ 48(C0(δ, b) + b)

δ
exp

{

−
∫ Nδ2

144
√

2a(C0(δ,b)+b)

0
h−1(s)ds

}

, (2.42)

for all 0<δ2≤ 144
√

2a
(

C0(δ, b) + b
)

h(T−)/N .

Hence, returning to (2.37), using (2.41) and (2.42) and for

δ < min
{

6
√

2ah
(

T−)

/N,

√

144
√

2a
(

C0(δ, b) + b
)

h(T−)/N
}

,

we have

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N (trN (f(XA)))| ≥ δ

)

≤2
24(C0(δ, b)+b)

δ
exp

{

−
∫ Nδ

6
√

2a
δ

24(C0(δ,b)+b)

0
h−1(s)ds

}

+exp

{

−
∫ Nδ

6
√

2a

0
h−1(s)ds

}

≤
(

2 +
1

12

)

24(C0(δ, b) + b)

δ
exp

{

−
∫ Nδ2

144
√

2a(C0(δ,b)+b)

0
h−1(s)ds

}

, (2.43)

since only the case δ ≤ 2b presents some interest (otherwise the probability in the statement of
the theorem is zero). Part (ii) is then proved.

2

Proof of Proposition 1.4:

As a function of x ∈ R
N2

, dW (µ̂N
A , µ)(x) is Lipschitz with Lipschitz constant at most

√
2a/N .

Indeed, for x, y ∈ R
N2

,

dW (µ̂N
A , µ)(x) = sup

f∈Lipb(1)

∣

∣

∣

∣

trN

(

f(XA)(x)
)

−
∫

R

fdµ

∣

∣

∣

∣

≤ sup
f∈Lipb(1)

∣

∣

∣

∣

trN (f(XA)(x)) − trN (f(XA)(y))

∣

∣

∣

∣

+ sup
f∈Lipb(1)

∣

∣

∣

∣

trN (f(XA)(y)) −
∫

R

fdµ

∣

∣

∣

∣

≤
√

2a

N
‖x − y‖ + dW (µ̂N

A , µ)(y). (2.44)
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Theorem 1.4 then follows from Theorem 1 in [12]. 2

Proof of Corollary 1.5:

For Lévy measures with bounded support, E
N

[

et‖X‖] < +∞, for all t ≥ 0, and moreover

h(t) ≤ V 2

(

etR − 1

R

)

.

Hence

H(t) =

∫ t

0
h(s)ds ≤ V 2

R2

(

stR − 1 − tR
)

,

and

exp

{

−
∫ x

0
h−1(s)ds

}

≤ exp

{

x

R
−

(

x

R
+

V 2

R2

)

ln

(

1 +
Rx

V 2

)}

.

Thus, one can take

C(δ, b) = C

(
√

2a√
N

(

G2(γ) +
V 2

R

(

et0R − 1
)

)

+ b

)

,

where t0 is the solution, in t, of

V 2

R2

(

tRetR − etR + 1
)

= ln
12b

δ
.

Applying Theorem 1.2 (ii) yields the result.

2

In order to prove Theorem 1.11, we first need the following lemma, whose proof is essentially as
the proof of Theorem 1 in [13].

Lemma 2.2. Let X = (ωR
i,i, ω

R
i,j , ω

I
i,j)1≤i<j≤N be an α-stable vector, 0 < α < 2, with Lévy

measure ν given by (1.13). For any x0, x1 > 0, let gx0,x1(x) = gx1(x − x0), where gx1(x) is
defined as in (2.33). Then,

P
N

(

∣

∣

∣
trN (gx0,x1(XA)) − E

N [trN (gx0,x1(XA))]
∣

∣

∣
≥ δ

)

≤ C(α)
aασ(SN2−1)

Nαδα
,

whenever δ1+α >
(

2
√

2a
)1+α

σ(SN2−1)x1/αN1+α and where C(α) = 25α/2(2eα + 2−α)/α(2−α).

Proof of Theorem 1.11

For part (i), first consider f ∈ LipK(1). Using the same approximation as in Theorem 1.2, any
function f ∈ LipK(1) can be approximated by f∆, which is the sum of at most |K|/∆ functions

g
(j)
∆ ∈ Lip(1), regardless of the function f . Now, and as before, for δ > 2∆,

127



P
N

(

sup
f∈LipK(1)

|trN (f(XA)) − E
N (trN (f(XA)))| ≥ δ

)

≤ |K|
∆

sup
g
(j)
∆ ∈Lipb(1)

j=1,··· ,⌈ |K|
∆

⌉

P
N

(

∣

∣

∣
trN (g

(j)
∆ (XA)) − E

N [trN (g
(j)
∆ (XA))]

∣

∣

∣
≥ ∆(δ − 2∆)

|K|

)

≤ 4|K|
δ

8αaαC2(α)σ(SN2−1)|K|α
Nαδ2α

, (2.45)

whenever
δ2

8|K| >
2
√

2a

N

(σ(SN2−1)δ

4α

) 1
1+α

, (2.46)

and where the last inequality follows from Lemma 2.2, taking also ∆ = δ/4.

For any f ∈ Lipb(1), and any τ > 0, let fτ be given as in (2.35). Then, fτ ∈ LipK(1), where
K = [−τ − b, τ + b], and moreover,

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N (trN (f(XA)))| ≥ δ

)

≤ P
N
(

trN (gτ,b(|XA|))−E
N[trN (gτ,b(|XA|))]≥

δ

3
−2bEN[trN (1{|XA|≥τ}]

)

+ P
N

(

sup
fτ∈LipK(1)

|trN (fτ (XA)) − E
N (trN (fτ (XA)))| ≥ δ

3

)

. (2.47)

The spectral radius ρ(XA) is a Lipschitz function of X with Lipschitz constant at most
√

2a/
√

N .
Then by Theorem 1 in [13],

E
N [trN (1{|XA|≥τ})] =

1

N

N
∑

i=1

P
N

(

|λi(XA)| ≥ τ
)

≤ P
N

(

ρ(XA) > τ
)

≤ P
N

(

ρ(XA) − m(ρ(XA)) > τ −
√

2a√
N

J1(α)

)

≤ C1(α)2α/2aασ(SN2−1)

Nα/2
(

τ −
√

2a√
N

J1(α)
)α

, (2.48)

whenever
(

τ −
√

2a√
N

J1(α)

)α

≥ 2C1(α)2α/2aασ(SN2−1)

Nα/2
, (2.49)

and where C1(α) = 4α(2 − α + eα)/α(2 − α). Now, if τ is chosen such that

C1(α)2α/2aασ(SN2−1)

Nα/2
(

τ −
√

2a√
N

J1(α)
)α

≤ δ

12b
,
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that is, if
(

τ −
√

2a√
N

J1(α)

)α

≥ 12bC1(α)2α/2aασ(SN2−1)

δNα/2
, (2.50)

it then follows that

E
N [trN (1{|XA|≥τ})] ≤

δ

12b
.

Since gτ,b(|XA|) is the sum of two functions of the type studied in Lemma 2.2 with x1 = b, we
have,

P
N
(

trN (gτ,b(|XA|))−E
N [trN (gτ,b(|XA|))]≥ δ

3
−2bEN [trN (1{|XA|≥τ}]

)

≤ 2P
N

(

trN (gτ,b(XA)) − E
N [trN (gτ,b(XA))] ≥ δ

12

)

≤ 2C2(α)
12αaασ(SN2−1)

Nαδα
, (2.51)

whenever

δ1+α >
(2

√
2a

N

)1+α 121+ασ(SN2−1)b

α
, (2.52)

and where C2(α) = 25α/2(2eα+2−α)/α(2−α). The respective ranges (2.50) and (2.52) suggest
that one can choose, for example,

τ =

√
2a√
N

J1(α) +

√
2a√
N

δ.

Then, there exists δ(α, a, N, ν) such that for δ > δ(α, a, N, ν),

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N [trN (f(XA))]| ≥ δ

)

≤ P
N

(

sup
fτ LipK(1)

|trN (fτ (XA)) − E
N [trN (fτ (XA))]| ≥ δ

3

)

+ P
N
(

trN (gτ,b(|XA|))−E
N [trN (gτ,b(|XA|))]≥ δ

3
−2bEN [trN (1{|XA|≥τ}]

)

≤
C3(α)aασ(SN2−1)

(√
2a√
N

J1(α) + b +
√

2a√
N

δ
)1+α

Nαδ1+2α
+

C4(α)aασ(SN2−1)

Nαδα
,

where C3(α) = 24+2α12αC2(α), C4(α) = 2(12α)C2(α) and δ(α, a, N, ν) is such that (2.46) and
(2.52) hold.

Part (ii) is a direct consequence of Theorem 1 of [13], since dW (µ̂N
A , µ) ∈ Lip(

√
2a/N) as shown

in the proof of Proposition 1.4. 2

Proof of Theorem 1.12. For any f ∈ Lip(1), Theorem 1 in [13] gives a concentration inequal-
ity for f(X), when it deviates from one of its medians. For 1 < α < 2, a completely similar
(even simpler) argument gives the following result,

P
N
(

f(X) − E
N [f(X)]≥x

)

≤ C(α)σ(SN2−1)

xα
, (2.53)
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whenever xα ≥ K(α)σ(SN2−1), where C(α) = 2α(eα + 2 − α)/(α(2 − α)) and K(α) =
max

{

2α/(α − 1), C(α)
}

.

Next, following the proof of Theorem 1.2, approximate any function f ∈ Lipb(1) by fτ ∈
Lip[−τ−b,τ+b](1) defined via (2.35). Hence,

P
N

(

sup
f∈Lipb(1)

|trN (f(XA)) − E
N (trN (f(XA)))| ≥ δ

)

≤ P
N

(

sup
fτ∈LipK(1)

|trN (fτ (XA)) − E
N (trN (fτ (XA)))| ≥ δ

3

)

+P
N
(

trN (gτ,b(|XA|))−E
N [trN (gτ,b(|XA|))]≥ δ

3
−2bEN [trN (1{|XA|≥τ}]

)

. (2.54)

For ρ(XA) the spectral radius of the matrix XA, and for any τ , such that τ − E
N [ρ(XA)] ≥

(√
2a√
N

K(α)σ(SN2−1)
)1/α

,

E
N

(

trN (1{|XA|>τ})
)

≤ P
N

(

ρ(XA) − E
N [ρ(XA)] ≥ τ − E

N [ρ(XA)]
)

≤

(√
2a√
N

)α
C(α)σ(SN2−1)

(

τ − EN [ρ(XA)]
)α , (2.55)

where we have used, in the last inequality, (2.53) and the fact that ρ(XA) ∈ Lip(
√

2a/
√

N). For
Q > 0, let τ = E

N [ρ(XA)] + Qδ−1/α. With this choice, we then have:

E
N

(

trN (1{|XA|>τ})
)

≤

(√
2a√
N

)α
C(α)σ(SN2−1)

(

τ − EN [ρ(XA)]
)α

≤ δ

(√
2a√
N

)α
C(α)σ(SN2−1)

Qα

≤ δ

12b
, (2.56)

provided Qα/δ >
√

2aK(α)σ(SN2−1)/
√

N , and
(√

2a√
N

)α
C(α)σ(SN2−1)/Qα ≤ 1/(12b). Now,

taking Q =
√

2a
(

12bC(α)σ(SN2−1)
)1/α

/
√

N , and recalling, for 1 < α < 2, the lower range
concentration result for stable vectors (Theorem 1 and Remark 3 in [5]): For any ǫ > 0, there
exists η0(ǫ), such that for all 0 < δ <

√
2a‖f‖Lipη0(ǫ)/N ,

P
N

(

trN (f(XA)) − E
N (trN (f(XA))) ≥ δ

)

≤ (1 + ǫ) exp

{

−
2−α
10

(

α−1
α

) α
α−1

(σ(SN2−1))1/(α−1)

(

N√
2a‖f‖Lip

) α
α−1

δ
α

α−1

}

. (2.57)
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With arguments as in the proof of Theorem 1.2, if

δ < η(ǫ) :=

(

72
√

2a

N

(
√

2a√
N

J2(α) + b +

(
√

2a√
N

K(α)σ(SN2−1)

)1/α)

η0(ǫ)

)1/2

,

there exist constants D1

(

α, a, N, σ(SN2−1)
)

and D2

(

α, a, N, σ(SN2−1)
)

, such that the first term
in (2.54) is bounded above by

(1 + ǫ)
D1

(

α, a, N, σ(SN2−1)
)

δ
α+1

α

exp
(

−D2

(

α, a, N, σ(SN2−1)
)

δ
2α+1
α−1

)

. (2.58)

Indeed, with the choice of τ above and D∗ as in (1.25), 2(τ + b) ≤ D∗/δ1/α. Moreover, as in
obtaining (2.34), D1 can be chosen to be 24D∗, while D2 can be chosen to be

2−α
10

(

α−1
α

) α
α−1

(

σ(SN2−1)
) 1

α−1

(

N√
2a

) α
α−1 1

(

72D∗)
α

α−1

.

Next, as already mentioned, J2(α) can be replaced by E
N [‖X‖]. In fact, according to (1.7) and

an estimation in [14], if E
N [X] = 0, then

1

4(2 − α)1/α
σ(SN2−1)

1/α ≤ E
N [‖X‖] ≤ 17

8
(

(2 − α)(α − 1)
)1/α

σ(SN2−1)
1/α

.

Finally, note that, as in the proof of Theorem 1.2 (ii), the second term in (2.54) is dominated
by the first term. The theorem is then proved, with the constant D1

(

a, N, σ(SN2−1)
)

magnified
by 2.

Proof of Corollary 1.14. As a function of (YR
i,j ,Y

I
i,j)1≤i≤K,1≤j≤N , with the choice of A made

in (1.27), λmax(XA) ∈ Lip(
√

2). Hence part(i) is a direct application of Theorem 1 in [12], while
part(ii) can be obtained by applying Theorem 1.7.
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[23] V.A. Marčenko, L.A. Pastur. Distributions of eigenvalues of some sets of random matrices.
Math. USSR-Sb., 1 (1967), 507-536.

[24] M.L. Mehta, Random matrices, 2nd ed. Academic Press, San Diego, (1991). MR1083764

[25] L.A. Pastur, On the spectrum of random matrices. Teor. Mat. Fiz. 10 (1972), 102-112.
MR0475502

[26] B. Simon, Trace ideals and their applications. Cambridge University Press, (1979).
MR0541149
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