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Abstract

We consider the cutoff phenomenon in the context of families of ergodic Markov transition
functions. This includes classical examples such as families of ergodic finite Markov chains
and Brownian motion on families of compact Riemannian manifolds. We give criteria for the
existence of a cutoff when convergence is measured in Lp-norm, 1 < p < ∞. This allows us
to prove the existence of a cutoff in cases where the cutoff time is not explicitly known. In
the reversible case, for 1 < p ≤ ∞, we show that a necessary and sufficient condition for the
existence of a max-Lp cutoff is that the product of the spectral gap by the max-Lp mixing
time tends to infinity. This type of condition was suggested by Yuval Peres. Illustrative
examples are discussed.
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1 Introduction

Let K be an irreducible aperiodic Markov kernel with invariant probability π on a finite state
space Ω. Let K l

x = K l(x, ·) denote the iterated kernel. Then

lim
l→∞

K l
x = π

and this convergence can be studied in various ways. Set kl
x = K l

x/π (this is the density of the
probability measure K l

x w.r.t. π). Set D∞(x, l) = maxy{|kl
x(y) − 1|} and, for 1 ≤ p < ∞,

Dp(x, l) =

(
∑

y

|kl
x(y) − 1|pπ(y)

)1/p

.

For p = 1, this is (twice) the total variation distance between K l
x and π. For p = 2, this is the

so-called chi-square distance.

In this context, the idea of cutoff phenomenon was introduced by D. Aldous and P. Diaconis in
[1; 2; 3] to capture the fact that some ergodic Markov chains converge abruptly to their invariant
distributions. In these seminal works convergence was usually measured in total variation.
See also [9; 21; 29] where many examples are described. The first example where a cutoff in
total variation was proved (although the term cutoff was actually introduced in later works)
is the random transposition Markov chain on the symmetric group studied by Diaconis and
Shahshahani in [13]. One of the most precise and interesting cutoff result was proved by D.
Aldous [1] and improved by D. Bayer and P. Diaconis [4]. It concerns repeated riffle shuffles.
We quote here Bayer and Diaconis version for illustration purpose.

Theorem 1.1 ([4]). Let P l
n denote the distribution of a deck of n cards after l riffle shuffles

(starting from the deck in order). Let un be the uniform distribution and set l = (3/2) log2 n +c.
Then, for large n,

‖P l
n − un‖TV = 1 − 2Φ

(
− 2−c

4
√

3

)
+ O

(
1

n1/4

)

where

Φ(t) =
1√
2π

∫ t

−∞
e−s2/2ds.

As this example illustrates, the notion of cutoff is really meaningful only when applied to a
family of Markov chains (here, the family is indexed by the number of cards). Precise definitions
are given below in a more general context.

Proving results in the spirit of the theorem above turns out to be quite difficult because it often
requires a very detailed analysis of the underlying family of Markov chains. At the same time,
it is believed that the cutoff phenomenon is widely spread and rather typical among fast mixing
Markov chains. Hence a basic natural question is whether or not it is possible to prove that
a family of ergodic Markov chains has a cutoff without studying the problem in excruciating
detail and, in particular, without having to determine the cutoff time. In this spirit, Yuval Peres
proposed a simple criterion involving only the notion of spectral gap and mixing time.

The aim of this paper is to show that, somewhat surprisingly, the answer to this question is yes
and Peres criterion works as long as convergence is measured using the chi-square distance D2
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(and, to some extent, Dp with 1 < p ≤ ∞). Unfortunately, for the very natural total variation
distance (i.e., the case p = 1), the question is more subtle and no good general answer is known
(other measuring tools such as relative entropy and separation will also be briefly mentioned
later).

Although the cutoff phenomenon has mostly been discussed in the literature for finite Markov
chains, it makes perfect sense in the much more general context of ergodic Markov semigroups.
For instance, on a compact Riemannian manifold, let µt be the distribution of Brownian motion
at time t, started at some given fixed point x at time 0. In this case, the density of µt with
respect to the underlying normalized Riemannian measure is the heat kernel h(t, x, ·). Now,
given a sequence of Riemannian Manifolds Mn, we can ask whether or not the convergence of
Brownian motion to its equilibrium presents a cutoff. Anticipating the definitions given later in
this paper, we state the following series of results which illustrates well the spirit of this work.

Theorem 1.2. Referring to the convergence of Brownian motion to its stationary measure on
a family (Mn) of compact Riemannian manifolds, we have:

1. If all manifolds in the family have the same dimension and non-negative Ricci curvature,
then there is no max-Lp cutoff, for any p, 1 ≤ p ≤ ∞.

2. If for each n, Mn = Sn is the (unit) sphere in R
n+1 then, for each p ∈ [1,∞) (resp.

p = ∞), there is a max-Lp cutoff at time tn = log n
2n (resp. tn = log n

n ) with strongly optimal
window 1/n.

3. If for each n, Mn = SO(n) (the special orthogonal group of n by n matrices, equipped
with its canonical Killing metric) then, for each p ∈ (1,∞], there is a max-Lp cutoff
at time tn with window 1. The exact time tn is not known but, for any η ∈ (0, 1), tn is
asymptotically between (1−η) log n and 2(1+η) log n if p ∈ (1,∞) and between 2(1−η) log n
and 4(1 + η) log n if p = ∞.

The last case in this theorem is the most interesting to us here as it illustrates the main result
of this paper which provides a way of asserting that a cutoff exists even though one is not able
to determine the cutoff time. Note that p = 1 (i.e., total variation) is excluded in (3) above. It
is believed that there is a cutoff in total variation in (3) but no proof is known at this writing.

Returning to the setting of finite Markov chains, it was mentioned above that the random
transposition random walk on the symmetric group Sn was the first example for which a cutoff
was proved. The original result of [13] shows (essentially) that random transposition has a
cutoff both in total variation and in L2 (i.e., chi-square distance) at time 1

2n log n. It may be
surprising then that for great many other random walks on Sn (e.g., adjacent transpositions,
random insertions, random reversals, ...), cutoffs and cutoff times are still largely a mystery.
The main result of this paper sheds some light on these problems by showing that, even if one
is not able to determine the cutoff times, all these examples present L2-cutoffs.

Theorem 1.3. For each n, consider an irreducible aperiodic random walk on the symmetric
group Sn driven by a symmetric probability measure vn. Let βn be the second largest eigenvalue,
in absolute value. Assume that infn βn > 0 and set

σn =
∑

x∈Sn

sgn(x)vn(x).
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If |σn| < βn or |σn| = βn but x 7→ sgn(x) is not the only eigenfunction associated to ±βn, then,
for any fixed p ∈ (1,∞], this family of random walks on Sn has a max-Lp cutoff

To see how this applies to the adjacent transposition random walk, i.e., vn is uniform on {Id, (i, i+
1), 1 ≤ i ≤ n − 1}, recall that 1 − βn is of order 1/n3 in this case whereas one easily computes
that σn = −1 + 2/n. See [29] for details and further references to the literature.

The crucial property of the symmetric group Sn used in the theorem above is that most irre-
ducible representations have high multiplicity. This is true for many family of groups (most
simple groups, either in the finite group sense or in the Lie group sense). The following theo-
rem is stated for special orthogonal groups but it holds also for any of the classical families of
compact Lie groups. Recall that a probability measure v on a compact group G is symmetric
if v(A) = v(A−1). Convolution by a symmetric measure is a self-adjoint operator on L2(G). If
there exists l such that the l-th convolution power v(l) is absolutely continuous with a continuous
density then this operator is compact.

Theorem 1.4. For each n, consider a symmetric probability measure vn on the special orthogonal

group SO(n) and assume that there exists ln such that v
(ln)
n is absolutely continuous with respect

to Haar measure and admits a continuous density. Let βn be the second largest eigenvalue, in
absolute value, of the operator of convolution by vn. Assume that infn βn > 0. Then, for any
fixed p ∈ (1,∞], this family of random walks on SO(n) has a max-Lp cutoff.

Among the many examples to which this theorem applies, one can consider the family of random
planar rotations studied in [24] which are modelled by first picking up a random plane and then
making a θ rotation. In the case θ = π, [24] proves a cutoff (both in total variation and in L2)
at time (1/4)n log n. Other examples are in [22; 23].

Another simple but noteworthy application of our results concerns expander graphs. For sim-
plicity, for any fixed k, say that a family (Vn, En) of finite non-oriented k-regular graphs is a
family of expanders if (a) the cardinality |Vn| of the vertex set Vn tends to infinity with n, (b)
there exists ǫ > 0 such that, for any n and any set A ⊂ Vn of cardinality at most |Vn|/2, the
number of edges between A and its complement is at least ǫ|A|. Recall that the lazy simple
random walk on a graph is the Markov chain which either stays put or jumps to a neighbor
chosen uniformly at random, each with probability 1/2.

Theorem 1.5. Let (Vn, En) be a family of k-regular expander graphs. Then, for any p ∈ (1,∞],
the associated family of lazy simple random walks presents a max-Lp cutoff as well as an Lp

cutoff from any fixed sequence of starting points.

We close this introduction with remarks regarding practical implementations of Monte Carlo
Markov Chain techniques. In idealized MCMC practice, an ergodic Markov chain is run in order
to sample from a probability distribution of interest. In such situation, one can often identify
parameters that describe the complexity of the task (in card shuffling examples, the number of
cards). For simplicity, denote by n the complexity parameter. Now, in order to obtain a “good”
sample, one needs to determine a “sufficiently large” running time Tn to be used in the sampling
algorithm. Cost constraints (of various sorts) imply that it is desirable to find a reasonably low
sufficient running time. The relevance of the cutoff phenomenon in this context is that it implies
that there indeed exists an asymptotically optimal sufficient running time. Namely, if the family
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of Markov chains underlying the sampling algorithm (indexed by the complexity parameter
n) presents a cutoff at time tn then the optimal sufficient running time Tn is asymptotically
equivalent to tn. If there is a cutoff at time tn with window size bn (by definition, this implies
that bn/tn tends to 0), then one gets the more precise result that the optimal running time Tn

should satisfy |Tn − tn| = O(bn) as n tends to infinity. The crucial point here is that, if there
is a cutoff, these relations hold for any desired fixed admissible error size whereas, if there is
no cutoff, the optimal sufficient running time Tn depends greatly of the desired admissible error
size.

Now, in the discussion above, it is understood that errors are measured in some fixed acceptable
way. The chi-square distance at the center of the present work is a very strong measure of
convergence, possibly stronger than desirable in many applications. Still, what we show is that
in any reversible MCMC algorithm, assuming that errors are measured in chi-square distance,
if any sufficient running time is much longer than the relaxation time (i.e., the inverse of the
spectral gap) then there is a cutoff phenomenon. This means that for any such algorithm, there
is an asymptotically well defined notion of optimal sufficient running time as discussed above
(with window size equal to the relaxation time). This work says nothing however about how to
find this optimal sufficient running time.

Description of the paper

In Section 2, we introduce the notion of cutoff and its variants in a very general context. We
also discuss the issue of optimality of the window of a cutoff. This section contains technical
results whose proofs are in the appendix.

In Section 3, we introduce the general setting of Markov transition functions and discuss Lp

cutoffs from a fixed starting distribution.

Section 4 treats max-Lp cutoffs under the hypothesis that the underlying Markov operators are
normal operators. In this case, a workable necessary and sufficient condition is obtained for the
existence of a max-Lp cutoff when 1 < p < ∞.

In Section 5, we consider the reversible case and the normal transitive case (existence of a
transitive group action). In those cases, we show that the existence of a max-Lp cutoff is
independent of p ∈ (1,∞). In the reversible case, p = +∞ is included.

Finally, in Section 6, we briefly describe examples proposed by David Aldous and by Igor Pak
that show that the criterion obtained in this paper in the case p ∈ (1,∞) does not work for
p = 1 (i.e., in total variation).

2 Terminology

This section introduces some terminology concerning the notion of cutoff. We give the basic
definitions and establish some relations between them in a context that emphasizes the fact that
no underlying probability structure is needed.

2.1 Cutoffs

The idea of a cutoff applies to any family of non-increasing functions taking values in [0,∞].
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Definition 2.1. For n ≥ 1, let Dn ⊂ [0,∞) be an unbounded set containing 0. Let fn : Dn →
[0,∞] be a non-increasing function vanishing at infinity. Assume that

M = lim sup
n→∞

fn(0) > 0. (2.1)

Then the family F = {fn : n = 1, 2, ...} is said to present

(c1) a precutoff if there exist a sequence of positive numbers tn and b > a > 0 such that

lim
n→∞

sup
t>btn

fn(t) = 0, lim inf
n→∞

inf
t<atn

fn(t) > 0.

(c2) a cutoff if there exists a sequence of positive numbers tn such that

lim
n→∞

sup
t>(1+ǫ)tn

fn(t) = 0, lim
n→∞

inf
t<(1−ǫ)tn

fn(t) = M,

for all ǫ ∈ (0, 1).

(c3) a (tn, bn) cutoff if tn > 0, bn ≥ 0, bn = o(tn) and

lim
c→∞

F (c) = 0, lim
c→−∞

F (c) = M,

where, for c ∈ R,

F (c) = lim sup
n→∞

sup
t>tn+cbn

fn(t), F (c) = lim inf
n→∞

inf
t<tn+cbn

fn(t). (2.2)

Regarding (c2) and (c3), we sometimes refer informally to tn as a cutoff sequence and bn as a
window sequence.

Remark 2.1. In (c3), since fn might not be defined at tn + cbn, we have to take the supremum
and the infimum in (2.2). However, if Dn = [0,∞) and bn > 0, then a (tn, bn) cutoff is equivalent
to ask limc→∞ G(c) = 0 and limc→−∞ G(c) = M , where for c ∈ R,

G(c) = lim sup
n→∞

fn(tn + cbn), G(c) = lim inf
n→∞

fn(tn + cbn).

Remark 2.2. To understand and picture what a cutoff entails, let F be a family as in Definition
2.1 with Dn ≡ [0,∞) and let (tn)∞1 be a sequence of positive numbers. Set gn(t) = fn(tnt) for
t > 0 and n ≥ 1. Then F has a precutoff if and only if there exist b > a > 0 and tn > 0 such
that

lim
n→∞

gn(b) = 0, lim inf
n→∞

gn(a) > 0.

Similarly, F has a cutoff with cutoff sequence tn if and only if

lim
n→∞

gn(t) =

{
0 for t > 1

M for 0 < t < 1

Equivalently, the family {gn : n = 1, 2, ...} has a cutoff with cutoff sequence 1.
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Remark 2.3. Obviously, (c3)⇒(c2)⇒(c1). In (c3), if, for n ≥ 1, Dn = [0,∞) and fn is continuous,
then the existence of a (tn, bn) cutoff implies that bn > 0 for n large enough.

Remark 2.4. It is worth noting that another version of cutoff, called a weak cutoff, is introduced
by Saloff-Coste in [28]. By definition, a family F as above is said to present a weak cutoff if
there exists a sequence of positive numbers tn such that

∀ǫ > 0, lim
n→∞

sup
t>(1+ǫ)tn

fn(t) = 0, lim inf
n→∞

inf
t<tn

fn(t) > 0.

It is easy to see that the weak cutoff is stronger than the precutoff but weaker than the cutoff.
The weak cutoff requires a positive lower bound on the left limit of fn at tn whereas the cutoffs
in (c1)-(c3) require no information on the values of fn in a small neighborhood of tn. This makes
it harder to find a cutoff sequence for a weak cutoff and differentiates the weak cutoff from the
notions considered above.

The following examples illustrate Definition 2.1. Observe that the functions fn below are all
sums of exponential functions. Such functions appear naturally when the chi-square distance is
used in the context of ergodic Markov processes.

Example 2.1. Fix α > 0. For n ≥ 1, let fn be an extended function on [0,∞) defined by fn(t) =∑
k≥1 e−tkα/n. Note that fn(0) = ∞ for n ≥ 1. This implies M = lim supn→∞ fn(0) = ∞. We

shall prove that F has no precutoff. To this end, observe that since kα ≥ 1 + α log k, k ≥ 1, we
have

e−t/n ≤ fn(t) ≤ e−t/n
∞∑

k=1

k−αt/n, ∀t ≥ 0, n ≥ 1. (2.3)

Let tn and b be positive numbers such that fn(btn) → 0. The first inequality above implies
tn/n → ∞. The second inequality gives fn(atn) = O(e−atn/n) for all a > 0. Hence, we must
have fn(atn) → 0 for all a > 0. This rules out any precutoff.

Example 2.2. Let F = {fn : n ≥ 1}, where fn(t) =
∑

k≥1 nke−tk/n for t ≥ 0 and n ≥ 1. Then

fn(t) = ∞ for t ∈ [0, n log n] and fn(t) = ne−t/n/(1 − ne−t/n) for t > n log n. This implies that
M = ∞. Setting tn = n log n and bn = n, the functions F and F defined in (2.2) are given by

F (c) = F (c) =

{
e−c

1−e−c if c > 0

∞ if c ≤ 0
(2.4)

Hence, F has a (n log n, n) cutoff.

Example 2.3. Let F = {fn : n ≥ 1}, where fn(t) = (1 + e−t/n)n − 1 for t ≥ 0, n ≥ 1. Obviously,
M = ∞. In this case, setting tn = n log n and bn = n yields

F (c) = F (c) = ee−c − 1, ∀c ∈ R. (2.5)

This proves that F has the (n log n, n) cutoff.

2.2 Window optimality

It is clear that the quantity bn in (c3) reflects the sharpness of a cutoff and may depend on the
choice of tn. We now introduce different notions of optimality for the window sequence in (c3).
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Definition 2.2. Let F and M be as in Definition 2.1. Assume that F presents a (tn, bn) cutoff.
Then, the cutoff is

(w1) weakly optimal if, for any (tn, dn) cutoff for F , one has bn = O(dn).

(w2) optimal if, for any (sn, dn) cutoff for F , we have bn = O(dn). In this case, bn is called an
optimal window for the cutoff.

(w3) strongly optimal if, for all c > 0,

0 < lim inf
n→∞

sup
t>tn+cbn

fn(t) ≤ lim sup
n→∞

inf
t<tn−cbn

fn(t) < M.

Remark 2.5. Obviously, (w3)⇒(w2)⇒(w1). If F has a strongly optimal (tn, bn) cutoff, then
bn > 0 for n large enough. If Dn is equal to N for all n ≥ 1, then a strongly optimal (tn, bn)
cutoff for F implies lim inf

n→∞
bn > 0.

Remark 2.6. Let F be a family of extended functions defined on N. If F has a (tn, bn) cutoff
with bn → 0, it makes no sense to discuss the optimality of the cutoff and the window. Instead,
it is worthwhile to determine the limsup and liminf of the sequences

fn([tn] + k) for k = −1, 0, 1.

See [7] for various examples.

Remark 2.7. Let F be a family of extended functions presenting a strongly optimal (tn, bn)
cutoff. If T = [0,∞) then there exist N > 0 and 0 < c1 < c2 < M such that c1 ≤ fn(tn) ≤ c2 for
all n > N . In the discrete time case where T = N, we have instead c1 ≤ fn(⌈tn⌉) ≤ fn(⌊tn⌋) ≤ c2

for all n > N .

The following lemma gives an equivalent definition for (w3) using the functions in (2.2).

Lemma 2.1. Let F be a family as in Definition 2.1 with Dn = N for all n ≥ 1 or Dn = [0,∞)
for all n ≥ 1. Assume (2.1) holds. Then a family presents a strongly optimal (tn, bn) cutoff if
and only if the functions, F and F , defined in (2.2) with respect to tn, bn satisfy F (−c) < M
and F (c) > 0 for all c > 0.

Proof. See the appendix.

Our next proposition gives conditions that are almost equivalent to the various optimality condi-
tions introduced in Definition 2.2. These are useful in investigating the optimality of a window.

Proposition 2.2. Let F = {fn, n = 1, 2, ...} be a family of non-increasing functions fn :
[0,∞) → [0,∞] vanishing at infinity. Set M = lim supn fn(0). Assume that M > 0 and that F
has a (tn, bn) cutoff with bn > 0. For c ∈ R, let

G(c) = lim sup
n→∞

fn(tn + cbn), G(c) = lim inf
n→∞

fn(tn + cbn). (2.6)

(i) If there exists c > 0 such that either G(c) > 0 or G(−c) < M holds, then the (tn, bn) cutoff
is weakly optimal. Conversely, if the (tn, bn) cutoff is weakly optimal, then there is c > 0
such that either G(c) > 0 or G(−c) < M .
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(ii) If there exist c2 > c1 such that 0 < G(c2) ≤ G(c1) < M , then the (tn, bn) cutoff is optimal.
Conversely, if the (tn, bn) cutoff is optimal, then there are c2 > c1 such that G(c2) > 0 and
G(c1) < M .

(iii) The (tn, bn) cutoff is strongly optimal if and only if 0 < G(c) ≤ G(c) < M for all c ∈ R.
In particular, if (tn, bn) is an optimal cutoff and there exists c ∈ R such that G(c) = M or
G(c) = 0, then there is no strongly optimal cutoff for F .

Remark 2.8. Proposition 2.2 also holds if one replaces G, G with F , F defined at (2.2).

Remark 2.9. Consider the case when fn has domain N. Assume that lim infn bn > 0 and replace
G, G in Proposition 2.2 with F , F defined at (2.2). Then (iii) remains true whereas the first
parts of (i),(ii) still hold if, respectively,

lim inf
n→∞

bn > 2/c, lim inf
n→∞

bn > 4/(c2 − c1).

The second parts of (i),(ii) hold if we assume lim supn bn = ∞.

Example 2.4 (Continuation of Example 2.2). Let F be the family in Example 2.2. By (2.4),
F has a (tn, n) cutoff with tn = n log n. Suppose F has a (tn, cn) cutoff. By definition, since
fn(tn + n) = 1/(e − 1), we may choose C > 0, N > 0 such that

fn(tn + Ccn) < fn(tn + n), ∀n ≥ N.

This implies n = O(cn) and, hence, the (n log n, n) cutoff is weakly optimal. We will prove later
in Example 2.6 that such a cutoff is optimal but that no strongly optimal cutoff exists.

Example 2.5 (Continuation of Example 2.3). For the family F in Example 2.3, (2.5) implies that
the (n log n, n) cutoff is strongly optimal.

2.3 Mixing time

The cutoff phenomenon in Definition 2.1 is closely related to the way each function in F tends
to 0. To make this precise, consider the following definition.

Definition 2.3. Let f be an extended real-valued non-negative function defined on D ⊂ [0,∞).
For ǫ > 0, set

T (f, ǫ) = inf{t ∈ D : f(t) ≤ ǫ}
if the right hand side above is non-empty and let T (f, ǫ) = ∞ otherwise.

In the context of ergodic Markov processes, T (fn, ǫ) appears as the mixing time. This explains
the title of this subsection.

Proposition 2.3. Let F = {fn : [0,∞) → [0,∞]|n = 1, 2, ...} be a family of non-increasing
functions vanishing at infinity. Assume that (2.1) holds. Then:

(i) F has a precutoff if and only if there exist constants C ≥ 1 and δ > 0 such that, for all
0 < η < δ,

lim sup
n→∞

T (fn, η)

T (fn, δ)
≤ C. (2.7)
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(ii) F has a cutoff if and only if (2.7) holds for all 0 < η < δ < M with C = 1.

(iii) For n ≥ 1, let tn > 0, bn ≥ 0 be such that bn = o(tn). Then F has a (tn, bn) cutoff if and
only if, for all δ ∈ (0, M),

|tn − T (fn, δ)| = Oδ(bn). (2.8)

Proof. The proof is similar to that of the next proposition.

Remark 2.10. If (2.7) holds for 0 < η < δ < M with C = 1, then T (fn, η) ∼ T (fn, δ) for all
0 < η < δ < M , where, for two sequences of positive numbers (tn) and (sn), tn ∼ sn means that
tn/sn → 1 as n → ∞.

Proposition 2.4. Let F = {fn : N → [0,∞]|n = 1, 2, ...} be a family of non-increasing functions
vanishing at infinity. Let M be the limit defined in (2.1). Assume that there exists δ0 > 0 such
that

lim
n→∞

T (fn, δ0) = ∞. (2.9)

Then (i) and (ii) in Proposition 2.3 hold. Furthermore, if bn satisfies

lim inf
n→∞

bn > 0, (2.10)

then (iii) in Proposition 2.3 holds.

Proof. See the appendix.

Remark 2.11. A similar equivalent condition for a weak cutoff is established in [6]. In detail,
referring to the setting of Proposition 2.3 and 2.4, a family F = {fn : n = 1, 2, ...} has a weak
cutoff if and only if there exists a positive constant δ > 0 such that (2.7) holds for 0 < η < δ
with C = 1.

Remark 2.12. More generally, if F is the family introduced in Definition 2.1, then Proposition
2.3 holds when Dn is dense in [0,∞) for all n ≥ 1. Proposition 2.4 holds when [0,∞) =⋃

x∈Dn
(x − r, x + r) for all n ≥ 1, where r is a fixed positive constant. This fact is also true for

the equivalence of the weak cutoff in Remark 2.11.

A natural question concerning cutoff sequences arises. Suppose a family F has a cutoff with
cutoff sequence (sn)∞1 and a cutoff with cutoff sequence (tn)∞1 . What is the relation between
sn and tn? The following corollary which follows immediately from Propositions 2.3 and 2.4
answers this question.

Corollary 2.5. Let F be a family as in Proposition 2.3 satisfying (2.1) or as in Proposition 2.4
satisfying (2.9).

(i) If F has a cutoff, then the cutoff sequence can be taken to be (T (fn, δ))∞1 for any 0 < δ <
M .

(ii) F has a cutoff with cutoff sequence (tn)∞1 if and only if tn ∼ T (fn, δ) for all 0 < δ < M .

(iii) Assume that F has a cutoff with cutoff sequence (tn)∞1 . Then F has a cutoff with cutoff
sequence (sn)∞1 if and only if tn ∼ sn.
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In the following, if F is the family in Proposition 2.4, we assume further that the sequence (bn)∞1
satisfies (2.10).

(iv) If F has a (tn, bn) cutoff, then F has a (T (fn, δ), bn) cutoff for any 0 < δ < M .

(v) Assume that F has a (tn, bn) cutoff. Let sn > 0 and dn ≥ 0 be such that dn = o(sn) and
bn = O(dn). Then F has a (sn, dn) cutoff if and only if |tn − sn| = O(dn).

The next corollaries also follow immediately from Propositions 2.3 and 2.4. They address the
optimality of a window.

Corollary 2.6. Let F be a family in Proposition 2.3 satisfying (2.1). Assume that F has a
cutoff. Then the following are equivalent.

(i) bn is an optimal window.

(ii) F has an optimal (T (fn, δ), bn) cutoff for some 0 < δ < M .

(iii) F has a weakly optimal (T (fn, δ), bn) cutoff for some 0 < δ < M .

Proof. (ii)⇒(iii) is obvious. For (i)⇒(ii), assume that F has a (tn, bn) cutoff. Then, by Propo-
sition 2.3, F has a (T (fn, δ), bn) cutoff for all δ ∈ (0, M). The optimality is obvious from that
of the (tn, bn) cutoff. For (iii)⇒(i), assume that F has a (sn, cn) cutoff. By Proposition 2.3, F
has a (T (fn, δ), cn) cutoff. Consequently, the weak optimality implies that bn = O(cn).

Remark 2.13. In the case where F consists of functions defined on [0,∞), there is no difference
between a weakly optimal cutoff and an optimal cutoff if the cutoff sequence is selected to be
(T (fn, δ))∞1 for some 0 < δ < M .

Corollary 2.7. Let F be as in Proposition 2.4 satisfying (2.9) and (bn)∞1 be such that
lim inf
n→∞

bn > 0. Assume that F has a cutoff. Then the following are equivalent.

(i) bn is an optimal window.

(ii) For some δ ∈ (0, M), the family F has both weakly optimal (T (fn, δ), bn) and (T (fn, δ) −
1, bn) cutoffs.

Proof. See the appendix.

Example 2.6 (Continuation of Example 2.2). In Example 2.2, the family F has been proved
to have a (n log n, n) cutoff and the functions F , F are computed out in (2.4). We noticed in
Example 2.4 that this is weakly optimal. By Lemma 2.8, we may conclude from (2.4) that n is
an optimal window and also that no strongly optimal cutoff exists. Indeed, the forms of F , F
show that the optimal “right window” is of order n but the optimal “left window” is 0. Since our
definition for an optimal cutoff is symmetric, the optimal window should be the larger one and
no strongly optimal window can exist. The following lemma generalizes this observation.

Lemma 2.8. Let F be a family as in Proposition 2.3 that satisfies (2.1). Assume that F has a
(tn, bn) cutoff and let F , F be functions in (2.2) associated with tn, bn.
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(i) Assume that either F > 0 or F < M . Then the (tn, bn) cutoff is optimal.

(ii) Assume that either F > 0 with F (c) = M for some c ∈ R or F < M with F (c) = 0 for
some c ∈ R. Then there is no strongly optimal cutoff for F .

The above is true for a family as in Proposition 2.4 if we assume further lim inf
n→∞

bn > 0.

Proof. See the appendix.

The following proposition compares the window of a cutoff between two families. This is useful
in comparing the sharpness of cutoffs when two families have the same cutoff sequence.

Proposition 2.9. Let F = {fn : n ≥ 1} and G = {gn : n ≥ 1} be families both as in Proposition
2.3 or 2.4 and set

lim sup
n→∞

fn(0) = M1, lim sup
n→∞

gn(0) = M2.

Assume that M1 > 0 and M2 > 0. Assume further that F has a strongly optimal (tn, bn) cutoff
and that G has a (sn, cn) cutoff with |sn − tn| = O(bn). Then:

(i) If fn ≤ gn for all n ≥ 1, then bn = O(cn).

(ii) If M1 = M2 and, for n ≥ 1, either fn ≥ gn or fn ≤ gn, then bn = O(cn).

Proof. See the appendix.

3 Ergodic Markov processes and semigroups

3.1 Transition functions, Markov processes

As explained in the introduction, the cutoff phenomenon was originally introduced in the con-
text of finite Markov chains. However, it makes sense in the much larger context of ergodic
Markov processes. In what follows, we let time be either continuous t ∈ [0,∞) or discrete
t ∈ {0, 1, 2, . . . ,∞} = N.

A Markov transition function on a space Ω equipped with a σ-algebra B, is a family of probability
measures p(t, x, ·) indexed by t ∈ T (T = [0,∞) or N) and x ∈ Ω such that p(0, x,Ω \ {x}) = 0
and, for each t ∈ T and A ∈ B, p(t, x, A) is B-measurable and satisfies

p(t + s, x, A) =

∫

Ω
p(s, y, A)p(t, x, dy).

A Markov process X = (Xt, t ∈ T ) with filtration Ft = σ(Xs : s ≤ t) ⊂ B has p(t, x, ·), t ∈ T ,
x ∈ Ω, as transition function provided

E(f ◦ Xs |Ft ) =

∫

Ω
f(y)p(s − t, Xt, dy)
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for all 0 < t < s < ∞ and all bounded measurable f . The measure µ0(A) = P (X0 ∈ A) is called
the initial distribution of the process X. All finite dimensional marginals of X can be expressed
in terms of µ0 and the transition function. In particular,

µt(A) = P (Xt ∈ A) =

∫
p(t, x, A)µ0(dx).

Given a Markov transition function p(t, x, ·), t ∈ T, x ∈ Ω, for any bounded measurable function
f , set

Ptf(x) =

∫
f(y)p(t, x, dy).

For any measure ν on (Ω,B) with finite total mass, set

νPt(A) =

∫
p(t, x, A)ν(dx).

We say that a probability measure π is invariant if πPt = π for all t ∈ T . In this general setting,
invariant measures are not necessarily unique.

Example 3.1 (Finite Markov chains). A (time homogeneous) Markov chain on finite state space
Ω is often described by its Markov kernel K(x, y) which gives the probability of moving from x
to y. The associated discrete time transition function pd(t, ·, ·) is defined inductively for t ∈ N,
x, y ∈ Ω, by pd(0, x, y) = δx(y) and

pd(1, x, y) = K(x, y), pd(t, x, y) =
∑

z∈Ω

pd(t − 1, x, z)pd(1, z, y). (3.1)

The associated continuous time transition function pc(t, ·, ·) is defined for t ≥ 0 and x, y ∈ Ω by

pc(t, x, y) = e−t
∞∑

j=0

tj

j!
pd(j, x, y). (3.2)

One says that K is irreducible if, for any x, y ∈ Ω, there exists l ∈ N such that pd(l, x, y) > 0.
For irreducible K, there exists a unique invariant probability π such that πK = π and pc(t, x, ·)
tends to π as t tends to infinity.

3.2 Measure of ergodicity

Our interest here is in the case where some sort of ergodicity holds in the sense that, for some
initial measure µ0, µ0Pt converges (in some sense) to a probability measure. By a simple
argument, this limit must be an invariant probability measure.

In order to state our main results, we need the following definition.

Definition 3.1. Let p(t, x, ·), t ∈ T, x ∈ Ω, be a Markov transition function with invariant
measure π. We call spectral gap (of this Markov transition function) and denote by λ the
largest c ≥ 0 such that, for all t ∈ T and all f ∈ L2(Ω, π),

‖(Pt − π)f‖2 ≤ e−tc‖f‖2 (3.3)
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Remark 3.1. If T = [0,∞) and Ptf tends to f in L2(Ω, π) as t tends to 0 (i.e., Pt is a strongly
continuous semigroup of contractions on L2(Ω, π)) then λ can be computed in term of the
infinitesimal generator A of Pt = etA. Namely,

λ = inf {〈−Af, f〉 : f ∈ Dom(A), real valued, π(f) = 0, ‖f‖2 = 1} .

Note that A is not self-adjoint in general and thus λ is not always in the spectrum of A (it is
in the spectrum of the self-adjoint operator 1

2(A + A∗)). If A is self-adjoint then λ measures
the gap between the smallest element of the spectrum of −A (which is the eigenvalue 0 with
associated eigenspace the space of constant functions) and the rest of the spectrum of −A which
lies on the positive real axis.

Remark 3.2. If T = N then λ is simply defined by

λ = − log
(
‖P1 − π‖L2(Ω,π)→L2(Ω,π)

)
.

In other words, e−λ is the second largest singular value of the operator P1 on L2(Ω, π).

Remark 3.3. If λ > 0 then limt→∞ p(t, x, A) = π(A) for π almost all x. Indeed (assuming for
simplicity that T = N), for any bounded measurable function f , we have

π(
∑

n

|Pnf − π(f)|2) =
∑

n

‖(Pn − π)(f)‖2
L2(Ω,π) ≤

(
∑

n

e−2λn

)
‖f‖2

∞.

Hence Pnf(x) converges to π(f), π almost surely.

Remark 3.4. As ‖Pt − π‖L1(Ω,π)→L1(Ω,π) and ‖Pt − π‖L∞(Ω,π)→L∞(Ω,π) are bounded by 2, the
Riesz-Thorin interpolation theorem yields

‖Pt − π‖Lp(Ω,π)→Lp(Ω,π) ≤ 2|1−2/p|e−tλ(1−|1−2/p|). (3.4)

We now introduce the distance functions that will be used throughout this work to measure
convergence to stationarity. First, set

DTV(µ0, t) = ‖µ0Pt − π‖TV = sup
A∈B

{|µ0Pt(A) − π(A)|}.

This is the total variation distance between probability measures.

Next, fix p ∈ [1,∞]. If t is such that the measure µ0Pt is absolutely continuous w.r.t. π with
density h(t, µ0, y), set

Dp(µ0, t) =

(∫

Ω
|h(t, µ0, y) − 1|pπ(dy)

)1/p

, (3.5)

(understood as D∞(µ0, t) = ‖h(t, µ0, ·)−1‖∞ when p = ∞). If µ0Pt is not absolutely continuous
with respect to π, set D1(µ0, t) = 2 and, for p > 1, Dp(µ0, t) = ∞.

When µ0 = δx, we write

h(t, x, ·) for h(t, δx, ·) and Dp(x, t) for Dp(δx, t).

Note that t 7→ Dp(x, t) is well defined for every starting point x.

The main results of this paper concern the functions Dp with p ∈ (1,∞]. For completeness, we
mention three other traditional ways of measuring convergence.
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• Separation: use sep(µ0, t) = supy{1 − h(t, µ0, y)} if the density exists, sep(µ0, t) = 1,
otherwise.

• Relative entropy: use Entπ(µ0, t) =
∫

h(t, µ0, y) log h(t, µ0, y)π(dy) if the density exists,
Entπ(µ0, t) = ∞ otherwise.

• Hellinger: use Hπ(µ0, t) = 1 −
∫ √

h(t, µ0, y)π(dy) if the density exists, Hπ(µ0, t) = 1
otherwise.

Proposition 3.1. Let p(t, x, ·), t ∈ T, x ∈ Ω, be a Markov transition function with invariant
measure π. Then, for any 1 ≤ p ≤ ∞, and any initial measure µ0 on Ω, the function t 7→
Dp(µ0, t) from T to [0,∞] is non-increasing.

Proof. Fix 1 ≤ p ≤ ∞. Consider the operator Pt acting on bounded functions. Since π is
invariant, Jensen inequality shows that Pt extends as a contraction on Lp(Ω, π). Given an initial
measure µ0, the measure µ0Pt is absolutely continuous w.r.t. π with a density in Lp(Ω, π) if and
only if there exists a constant C such that

|µ0Pt(f)| ≤ C‖f‖q

for all f ∈ Lq(Ω, π) where 1/p + 1/q = 1 (for p ∈ (1,∞], this amounts to the fact that Lp is the
dual of Lq whereas, for p = 1, it follows from a slightly more subtle argument). Moreover, if this
holds then the density h(t, µ0, ·) has Lp(Ω, π)-norm

‖h(t, µ0, ·)‖p = sup{µ0Pt(f) : f ∈ Lq(Ω, π), ‖f‖q ≤ 1}.

Now, observe that µt+s = µtPs with µt = µ0Pt. Also, by the invariance of π, µt+s − π =
(µt − π)Ps. Finally, for any f ∈ Lq(Ω, π),

|[µt+s − π](f)| = |[µt − π]Ps(f)|.

Hence, if µt is absolutely continuous w.r.t. π with a density h(t, µ0, ·) in Lp(Ω, π) then

|[µt+s − π](f)| ≤ ‖h(t, µ0, ·) − 1‖p‖Psf‖q ≤ ‖h(t, µ0, ·) − 1‖p‖f‖q.

It follows that µt+s is absolutely continuous with density h(t + s, µ0, ·) in Lp(Ω, π) satisfying

Dp(µ0, t + s) = ‖h(t + s, µ0, ·) − 1‖p ≤ ‖h(t, µ0, ·) − 1‖p = Dp(µ0, t)

as desired.

Remark 3.5. Somewhat different arguments show that total variation, separation, relative en-
tropy and the Hellinger distance all lead to non-increasing functions of time.

Next, given a Markov transition function with invariant measure π, we introduce the maximal
Lp distance over all starting points (equivalently, over all initial measures). Namely, for any
fixed p ∈ [1,∞], set

Dp(t) = DΩ,p(t) = sup
x∈Ω

Dp(x, t). (3.6)
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Obviously, the previous proposition shows that this is a non-increasing function of time. Let us
insist on the fact that the supremum is taken over all starting points. In fact, let us introduce
also

D̃π,p(t) = π- ess sup
x∈Ω

Dp(x, t). (3.7)

Obviously D̃π,p(t) ≤ Dp(t). Note that, in general, D̃π,p(t) cannot be used to control Dp(µ0, t)
unless µ0 is absolutely continuous w.r.t. π. However, if Ω is a topological space and x 7→ Dp(x, t)

is continuous then D̃π,p(t) = Dp(t).

Proposition 3.2. Let p(t, x, ·), t ∈ T, x ∈ Ω, be a Markov transition function with invariant
measure π. Then, for any p ∈ [1,∞], the functions t 7→ Dp(t) and t 7→ D̃π,p(t) are non-increasing
and sub-multiplicative.

Proof. Assume that t, s ∈ T are such that h(s, x, ·) and h(t, x, ·) exist and are in Lp(Ω, π), for a.e.
x (otherwise there is nothing to prove). Fix such an x and observe that, for any f ∈ Lq(Ω, π)
with 1/p + 1/q = 1,

p(t + s, x, f) − π(f) = [p(s, x, ·) − π][Pt − π](f).

It follows that

|p(t + s, x, f) − π(f)| ≤ ‖h(s, x, ·) − 1‖p‖[Pt − π](f)‖q

≤ ‖h(s, x, ·) − 1‖p‖(Pt − π)f‖∞
≤ ‖h(s, x, ·) − 1‖p ess sup

y∈Ω
‖h(t, y, ·) − 1‖p‖f‖q

≤ ‖h(s, x, ·) − 1‖pD̃π,p(t)‖f‖q.

Hence
Dp(x, t + s) ≤ Dp(x, s)D̃π,p(t).

This is a slightly more precise result than stated in the proposition.

Remark 3.6. One of the reasons behind the sub-multiplicative property of Dp and D̃π,p is that
these quantities can be understood as operator norms. Namely,

Dp(t) = sup

{
sup
Ω

{|(Pt − π)f |} : f ∈ Lq(Ω, π), ‖f‖q = 1

}

= ‖Pt − π‖Lq(Ω,π)→B(Ω) (3.8)

where B(Ω) is the set of all bounded measurable functions on Ω equipped with the sup-norm,
and

D̃π,p = sup

{
π- ess sup

Ω
{|(Pt − π)f |} : f ∈ Lq(Ω, π), ‖f‖q = 1

}

= ‖Pt − π‖Lq(Ω,π)→L∞(Ω,π). (3.9)

See [14, Theorem 6, p.503].
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3.3 Lp-cutoffs

Fix p ∈ [1,∞]. Consider a family of spaces Ωn indexed by n = 1, 2, . . . For each n, let pn(t, x, ·),
t ∈ [0,∞), x ∈ Ωn be a transition function with invariant probability πn. Fix a subset En

of probability measures on Ωn and consider the supremum of the corresponding Lp distance
between µPn,t and πn overall µ ∈ En, that is,

fn(t) = sup
µ∈En

Dp(µ, t)

where Dp(µ, t) is defined by (3.5). One says that the sequence (pn, En) presents an Lp-cutoff
when the family of functions F = {fn, n = 1, 2, . . . } presents a cutoff in the sense of Definition
2.1. Similarly, one defines Lp precutoff and Lp (tn, bn)-cutoff for the sequence (pn, En).

We can now state the first version of our main result.

Theorem 3.3 (Lp-cutoff, 1 < p < ∞). Fix p ∈ (1,∞). Consider a family of spaces Ωn indexed
by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ T , T = [0,∞) or T = N, be a transition function on
Ωn with invariant probability πn and spectral gap λn. For each n, let En be a set of probability
measures on Ωn and consider the supremum of the corresponding Lp distance to stationarity

fn(t) = sup
µ∈En

Dp(µ, t),

where Dp(µ, t) is defined at (3.5). Assume that each fn tends to zero at infinity, fix ǫ > 0 and
consider the ǫ-Lp-mixing time

tn = Tp(En, ǫ) = T (fn, ǫ) = inf{t ∈ T : Dp(µ, t) ≤ ǫ,∀µ ∈ En}.

1. When T = [0,∞), assume that
lim

n→∞
λntn = ∞. (3.10)

Then the family of functions F = {fn, n = 1, . . . , } presents a (tn, λ−1
n ) cutoff.

2. When T = N, set γn = min{1, λn} and assume that

lim
n→∞

γntn = ∞. (3.11)

Then the family of functions F = {fn, n = 1, . . . , } presents a (tn, γ−1
n ) cutoff.

If En = {µ}, we write Tp(µ, ǫ) for Tp(En, ǫ). If µ = δx, we write Tp(x, ǫ) for Tp(δx, ǫ). It is
obvious that

Tp(En, ǫ) = sup
µ∈En

Tp(µ, ǫ).

In particular, if Mn is the set of probability measures on Ωn, then

Tp(Mn, ǫ) = sup
x∈Ωn

Tp(x, ǫ).
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Proof of Theorem 3.3. Set 1/p + 1/q = 1. Let µn,t = µn,0Pn,t. Fix ǫ > 0 and set tn = Tp(En, ǫ)
and assume (as we may) that tn is finite for n large enough. For f ∈ Lq(Ωn, πn) and t = u + v,
u, v > 0, we have

[µn,t − πn](f) = [µn,u − πn][Pn,v − πn](f).

Hence, using (3.4),

|[µn,t − πn](f)| ≤ Dp(µn,0, u)‖[Pn,v − πn](f)‖q

≤ Dp(µn,0, u)2|1−2/p|e−vλn(1−|1−2/p|)‖f‖q.

Taking the supremum over all f with ‖f‖q = 1 and over all µn,0 ∈ En yields

fn(u + v) ≤ 2|1−2/p|fn(u)e−vλn(1−|1−2/p|).

Using this with either u > tn, v = λ−1
n c, c > 0, or 0 < u < tn + λ−1

n c, v = −λ−1
n c, c < 0, (the

latter u can be taken positive for n large enough because, by hypothesis, tnλn tends to infinity),
we obtain

F (c) = lim sup
n→∞

sup
t>tn+cλ−1

n

fn(t) ≤ ǫ2|1−2/p|e−c(1−|1−2/p|), c > 0,

and
F (c) = lim inf

n→∞
inf

t<tn+cλ−1
n

fn(t) ≥ ǫ2|1−2/p|e−c(1−|1−2/p|), c < 0.

This proves the desired cutoff.

Remark 3.7. In Theorem 3.3 the stated sufficient condition, i.e., λntn → ∞ (resp. γntn → ∞) is
also obviously necessary for a (tn, λ−1

n ) cutoff (resp. a (tn, γ−1
n ) cutoff). However, it is important

to notice that these conditions are not necessary for the existence of a cutoff with cutoff time tn
and unspecified window. See Example 3.2 below.

Remark 3.8. The reason one needs to introduce γn = min{1, λn} in order to state the result
in Theorem 3.3(2) is obvious. In discrete time, it makes little sense to talk about a window of
width less than 1.

Remark 3.9. The conclusion of Theorem 3.3 (in both cases (1) and (2)) is false for p = 1, even
under an additional self-adjoiness assumption. Whether or not it holds true for p = ∞ is an
open question in general. It does hold true for p = ∞ when self-adjoiness is assumed.

The following result is an immediate corollary of Theorem 3.3. It indicates one of the most
common ways Theorem 3.3 is applied to prove an L2-cutoff.

Corollary 3.4 (L2-cutoff). Consider a family of spaces Ωn indexed by n = 1, 2, . . . For each
n, let pn(t, ·, ·), t ∈ T , T = [0,∞) or T = N, be a transition function on Ωn with invariant
probability πn and spectral gap λn. Assume that there exists c > 0 such that, for each n, there
exist φn ∈ L2(Ω,, πn) and xn ∈ Ωn such that

|(Pn,t − πn)φn(xn)| ≥ e−cλnt|φn(xn)|.

1. If T = [0,∞) and
lim

n→∞
(|φn(xn)|/‖φn‖L2(Ωn,πn)) = ∞

then the family of functions D2(xn, t) presents a cutoff.
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2. If T = N, supn λn < ∞ and

lim
n→∞

(|φn(xn)|/‖φn‖L2(Ωn,πn)) = ∞

then the family of functions D2(xn, t) presents a cutoff.

3.4 Some examples of cutoffs

This section illustrates Theorem 3.3 with several examples. We start with an example showing
that the sufficient conditions of Theorem 3.3 are not necessary.

Example 3.2. For n ≥ 1, let Kn be a Markov kernel on the finite set Ωn = {0, 1}n defined by

Kn(x, y) =

{
1/2 if yi+1 = xi for 1 ≤ i ≤ n − 1

0 otherwise
(3.12)

for all x = xnxn−1 · · ·x1, y = yn · · · y1 ∈ Ωn. In other words, if we identify (Z2)
n with Z2n

by mapping x = xn · · ·x1 to
∑

i xi2
i−1, then Kn(x, y) > 0 if and only if y = 2x or y =

2x + 1(mod 2n). For such a Markov kernel, let pd
n(t, ·, ·), pc

n(t, ·, ·), be, respectively, the discrete
and continuous Markov transition functions defined at (3.1) and (3.2). Obviously, the unique
invariant probability measure πn for both Markov transition functions is uniform on Ωn. It is
worth noting that, for n ≥ 1, 1 ≤ p ≤ ∞ and t ≥ 0, the Lp distance between δxP c

n,t(resp. δxP d
n,t)

and πn is independent of x ∈ Ωn. Hence we fix the starting point to be 0 (the string of n 0s)
and set (with ∗ = d or c)

f∗
n,p(t) =

(
∑

y

|(p∗n(t,0, y)/πn(y)) − 1|pπn(y)

)1/p

.

The following proposition shows that, for any 1 ≤ p ≤ ∞, there are cutoffs in both discrete and
continuous time with tn = T (f∗

n, 1/2) of order n and spectral gap bounded above by 1/n. This
provides examples with a cutoff even so tnλn (or tnγn) stays bounded.

Proposition 3.5. Referring to the example and notation introduced above, let λd
n and λc

n be re-
spectively the spectral gaps of pd

n and pc
n. Then λd

n = 0 and λc
n ≤ 1/n.

Moreover, for any fixed p, 1 ≤ p ≤ ∞, we have:

(i) The family {fd
n} has an optimal (n, 1) cutoff. No strongly optimal cutoff exists.

(ii) The family {f c
n} has an (tn(p), bn(p)) cutoff, where

tn(p) =
(1 − 1/p)n log 2

1 − 21/p−1
, bn(p) = log n, for 1 < p < ∞,

and
tn(1) = n, bn(1) =

√
n, tn(∞) = (2 log 2)n, bn(∞) = 1.

For p = 1,∞, these cutoffs are strongly optimal.

Proof. See the appendix.
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Example 3.3 (Riffle shuffle). The aim of this example is to point out that applying Theorem 3.3
requires some non-trivial information that is not always easy to obtain. For a precise definition
of the riffle shuffle model, we refer the reader to [1; 8; 29]. Theorem 1.1 (due to Bayer and
Diaconis) gives a sharp cutoff in total variation (i.e., L1). The argument uses the explicit form
of the distribution of the deck of cards after l riffle shuffles. It can be extended to prove an Lp

cutoff for each p ∈ [1,∞] with cutoff time (3/2) log2 n for each finite p and 2 log2 n for p = ∞.
See [6].

The question we want to address here is whether or not Theorem 3.3 easily yields these Lp

cutoffs in the restricted range p ∈ (1,∞). The answer is no, at least, not easily. Indeed, to apply
Theorem 3.3, we basically need two ingredients: (a) a lower bound on Tn,p(µn,0, ǫ) for some fixed
ǫ; (b) a lower bound on λn.

Here µn,0 is the Dirac mass at the identity and we will omit all references to it. As Tn,p(ǫ) ≥
Tn,1(ǫ), a lower bound on Tn,p(ǫ) of order log n is easily obtained from elementary entropy
consideration as in [1, (3.9)]. The difficulty is in obtaining a lower bound on λn. Note that
λn = − log βn where βn is the second largest singular value of the riffle shuffle random walk. It
is known that the riffle shuffle walk is diagonalizable with eigenvalue 2−i but its singular values
are not known. This problem amounts to study the walk corresponding to a riffle shuffle followed
by the inverse of a riffle shuffle.

Example 3.4 (Top in at random). Recall that top in at random is the walk on the symmetric
group corresponding to inserting the top card at a uniform random position. Simple elegant
arguments (using either coupling or stationary time) can be used to prove a total variation (and
a separation) cutoff at time n log n. In particular, Tn,p(ǫ) is at least of order n log n for all
p ∈ [1,∞]. To prove a cutoff in Lp, it suffices to bound βn, the second largest singular value of
the walk, from above (note that this example is known to be diagonalizable with eigenvalues i/n
but this is not what we need). Fortunately, β2

n is actually the second largest eigenvalue of the
walk called random insertion which is bounded using comparison techniques in [11]. This shows
that λn = − log βn ≥ c/n. Hence top in at random presents a cutoff for all p ∈ (1,∞). The
cutoff time is not known although one might be able to find it using the results in [10]. Note
that Theorem 3.3 does not treat the case p = ∞.

Example 3.5 (Random transposition). In the celebrated random transposition walk, two posi-
tions i, j are chosen independently uniformly at random and the cards at these positions are
switched (hence nothing changes with probability 1/n). This example was first studied us-
ing representation theory in [13]. A simple argument (coupon collector problem) shows that
Tn,1(ǫ) is at least of order n log n for ǫ > 0 small enough. This example is reversible so that
βn = e−λn is the second largest eigenvalue. Representation theory easily yields all eigenvalues
and βn = 1 − 2/n so that λn ∼ 2/n. Hence, Theorem 3.3 yields a cutoff in Lp for p ∈ (1,∞).
This is well known for p ∈ [1, 2] with cutoff time (1/2)n log n (and also for p = ∞ with cutoff
time n log n) but the Lp cutoff for p ∈ (2,∞) is a new result. The cutoff time for p ∈ (2,∞) is
not known!

Example 3.6 (Regular expander graphs). Expander graphs are graphs with very good“expansion
properties”. For simplicity, for any fixed k, say that a family (Vn, En) of finite non-oriented k-
regular graphs is a family of expanders if (a) the cardinality |Vn| of the vertex set Vn tends to
infinity with n, (b) there exists ǫ > 0 such that, for any n and any set A ⊂ Vn of cardinality at
most |Vn|/2, the number of edges between A and its complement is at least ǫ|A|. Recall that
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the lazy simple random walk on a graph is the Markov chain which either stays put or jumps to
a neighbor chosen uniformly at random, each with probability 1/2.

A simple entropy like argument shows that, for any family of k-regular graphs we have Tn,1(η) ≥
ck log Vn if η > 0 is small enough. The lazy walk on a regular graph is reversible with the
uniform probability as reversible measure. Hence, βn = e−λn is the second largest eigenvalue
of the walk. By the celebrated Cheeger type inequality, the expansion property implies that
βn ≤ 1−ǫ2/(64k2). Hence λn is bounded below by a constant independent of n. This shows that
Theorem 3.3 applies and gives a Lp cutoff for p ∈ (1,∞). The L∞ cutoff follows by Theorem 5.4
below because these walks are reversible. This proves Theorem 1.5 of the introduction. Whether
or not there is always a total variation (i.e., L1) cutoff is an open problem.

Example 3.7 (Birth and death chains). In this example, for simplicity, we consider a single
positive recurrent lazy birth and death chain on the non-negative integers N with invariant
probability measure π. We will prove that, under minimal hypotheses, there is a cutoff for the
family of functions D2(x, t) as x tends to infinity. Thus this result deals with a single Markov
chain and consider what happens when the starting point is taken as the parameter. Our main
hypothesis will be the existence of a non-trivial spectral gap (i.e., λ > 0), a hypothesis that can
be cast as an explicit condition on the coefficients of the birth and death chain.

For each i, fix pi, qi ∈ (0, 1), pi + qi = 1 and consider the (lazy) birth and death chain with with
transition probabilities P (Xl+1 = 0|Xl = 0) = (1 + q0)/2, P (Xl+1 = 1|Xl = 0) = p0/2 and, for
i ≥ 1,

P (Xl+1 = j|Xl = i) =





1/2 if j = i,
pi/2 if j = i + 1,
qi/2 if j = i − 1
0 otherwise.

For t ∈ N, x, y ∈ N, let p(t, x, y) be the probability of moving from x to y in t steps (this is our
transition function). The associated process is an irreducible aperiodic reversible Markov chain
with reversible measure (not necessary a probability measure)

π(0) = c, π(i) = c
i∏

0

(pi/qi+1).

Let us assume that
∑

i

i∏

0

(pi/qi+1) < ∞

and pick c such that π is a probability measure. Consider the self-adjoint Markov operator
P1 : L2(N, π) → L2(N, π). Because of the laziness that is built into the chain, the spectrum of
P1 is contained in [0, 1]. Let us further make the hypothesis that

M = sup
j








∑

i<j

1

π(i)pi







∑

i≥j

π(i)






 < ∞. (3.13)

This is our main hypothesis. It implies that there is a gap in the spectrum of P1 between the
eigenvalue 1 and the rest of the spectrum. In other words, the spectrum of P1 − π is contained
in an interval of the form [0, µ] with

‖P1 − π‖L2(N,π)→L2(N,π) = µ < 1.
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Obviously, this is equivalent to

‖Pt − π‖L2(N,π)→L2(N,π) = µt = e−λt with λ = − log µ > 0.

For an elegant proof of sharp spectral estimates of birth and death chains, see [20].

Because the underlying space is countable (i.e., for each x, the probability measure concentrated
at x, δx, has density π(x)−11{x} w.r.t. π), it follows that

∀x ∈ N, ∀ t ∈ N, D2(x, t) ≤ π(x)−1/2e−tλ.

In particular, D2(x, t) tends to zero when t tends to infinity. Next, observe that

D2(x, t) ≥ c for t < x

because, if t < x, then p(t, x, 0) = 0 whereas π(0) = c. This implies T2(x, c/2) ≥ x. Applying
Theorem 3.3(2), we find that the family of functions F = {D2(x, t) : x ∈ N} presents a cutoff
(as x tends to infinity) with window 1 (the cutoff time is unknown and it would be extremely
difficult to describe it in this generality).

This example can be generalized to allow the treatment of families of birth and death chains
pn(t, x, y), πn with starting points xn that may vary or not. The simplest case occurs when exists
ǫ > 0 such that

πn({0}) > ǫ (3.14)

(i.e., the point 0 has minimal mass ǫ for all chains in the family). Assuming (3.14), there is a
constant C(ǫ) ∈ (0,∞) such that 1/(8Mn) ≤ 1 − βn ≤ C(ǫ)/Mn with Mn defined at (3.13) and
we have the obvious mixing time lower bound Tn,2(xn, ǫ/2) ≥ xn. This implies a cutoff as long
as xn/Mn tends to infinity.

4 Normal ergodic Markov operators

Although it is customary in the subject to work with self-adjoint operators, there are many
interesting examples that are normal but not self-adjoint. The simplest ones are non-symmetric
random walks on abelian groups.

4.1 Max-Lp cutoffs

A bounded operator P on a Hilbert space H is normal if it commutes with its adjoint, i.e.,
PP ∗ = P ∗P . The spectral theorem for normal operator implies that, to any continuous function
f on the spectrum σ(P ) of P , one can associate in a natural way a normal operator f(P ) which
satisfies

‖f(P )‖H→H = max{|f(s)| : s ∈ σ(P )}.
An important special case is the case of self-adjoint operators where P = P ∗.

The notion of normal operator is relevant to us here because, if p(t, x, ·), t ∈ T , x ∈ Ω, is
a Markov transition function with invariant probability π such that, for each t ∈ T ∩ [0, 1],
Pt : L2(Ω, π) → L2(Ω, π) is normal, then the spectral gap defined at (3.3) satisfies

‖Pt − π‖L2(Ω,π)→L2(Ω,π) = e−tλ. (4.1)
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First, observe that Pt preserves the space L2
0(Ω, π) = {f ∈ L2(Ω, π) : π(f) = 0} and that

‖Pt − π‖L2(Ω,π)→L2(Ω,π) = ‖Pt‖L2
0(Ω,π)→L2

0(Ω,π).

Now, the case when T = N is clear since Pt = (P1)
t and P1 is normal. When T = [0,∞), observe

that, by the semigroup property, for any rational a/b > 0, P b
a/b = P a

1 . If we set

‖P1‖L2
0(Ω,π)→L2

0(Ω,π) = e−ρ,

it follows that ‖Pa/b‖L2
0(Ω,π)→L2

0(Ω,π) = e−(a/b)ρ. As t 7→ ‖Pt‖L2
0(Ω,π)→L2

0(Ω,π) is non-increasing,

this implies ‖Pt‖L2
0(Ω,π)→L2

0(Ω,π) = e−tρ for all t ≥ 0 and ρ = λ.

The following lemma is crucial for our purpose.

Lemma 4.1. Consider a Markov transition function p(t, x, ·), t ∈ T , x ∈ Ω with invariant
probability measure π and spectral gap λ. Assume that for each t ∈ T ∩ [0, 1], Pt is normal on
L2(Ω, π). Then, for any r ∈ [1,∞], there exists θr ∈ [1/2, 1] such that

‖Pt − π‖Lr(Ω,π)→Lr(Ω,π) ≥ 2−1+θre−θrλt.

Proof. By the Riesz-Thorin interpolation theorem, we have

‖Pt − π‖θ
Lr(Ω,π)→Lr(Ω,π)‖Pt − π‖1−θ

L∞(Ω,π)→L∞(Ω,π) ≥ ‖Pt − π‖L2(Ω,π)→L2(Ω,π)

if r ∈ [1, 2] and θ = r/2 and

‖Pt − π‖θ
Lr(Ω,π)→Lr(Ω,π)‖Pt − π‖1−θ

L1(Ω,π)→L1(Ω,π)
≥ ‖Pt − π‖L2(Ω,π)→L2(Ω,π)

if r ∈ [2,∞] and θ = r′/2, 1/r + 1/r′ = 1. Since the operator norms on L1 and L∞ are bounded
by 2 and since Pt, t ∈ T ∩ [0, 1], is normal, this shows that for any r ∈ (1,∞), there exists
θr ∈ [1/2, 1] such that

‖Pt − π‖Lr(Ω,π)→Lr(Ω,π) ≥ 2−1+θre−θrλt.

We can now state and prove our main theorems.

Theorem 4.2 (Max-Lp cutoff, continuous time normal case). Fix p ∈ (1,∞). Consider a family
of spaces Ωn indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ [0,∞), be a transition function
on Ωn with invariant probability πn and with spectral gap λn. Assume that Pn,t is normal on
L2(Ωn, πn), for each t ∈ [0, 1].

Consider the Max-Lp distance to stationarity fn(t) = DΩn,p(t) defined at (3.6) and set

F = {fn : n = 1, 2, . . . }.

Assume that each fn tends to zero at infinity, fix ǫ > 0 and consider the ǫ-max-Lp-mixing time

tn = Tn,p(ǫ) = T (fn, ǫ) = inf{t > 0 : DΩn,p(t) ≤ ǫ}.

The following properties are equivalent:
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1. λntn tends to infinity;

2. The family F presents a precutoff;

3. The family F presents a cutoff;

4. The family F presents a (tn, λ−1
n )-cutoff.

Proof. It suffices to show that (2) implies (1). Fix p ∈ (1,∞), define q by 1 = 1/p + 1/q and
observe that

DΩn,p(t) = sup
x∈Ωn

{Dp(x, t)} ≥ ‖Pn,t − πn‖Lq(Ωn,πn)→L∞(Ωn,πn)

≥ ‖Pn,t − πn‖Lq(Ωn,πn)→Lq(Ωn,πn) ≥ 2−1+θqe−tθqλn ,

where we have used Lemma 4.1 to obtain the last inequality. Now, suppose that there is a
precutoff at time sn. Then there exists positive reals a < b such that

lim inf
n→∞

DΩn,p(asn) = 2δ > 0.

and
0 = lim sup

n→∞
DΩn,p(bsn) ≥ 2−1+θq lim sup

n→∞
e−bsnλnθq

The first inequality implies sn = O(Tn,p(δ)) and the second one implies that λnsn tends to
infinity. A fortiori, λnTn,p(δ) tends to infinity. By Theorem 3.3, this proves the (Tn,p(δ), λ

−1
n )

cutoff and, by Corollary 2.5(ii), λntn tends to infinity.

Theorem 4.3 (Max-Lp cutoff, discrete time normal case). Fix p ∈ (1,∞). Consider a family of
spaces Ωn indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ N, be a transition function on Ωn

with invariant probability πn and spectral gap λn. Assume that Pn,1 is normal on L2(Ωn, πn).

Consider the Max-Lp distance to stationarity fn(t) = DΩn,p(t) defined at (3.6) and set

F = {fn : n = 1, 2, . . . }.

Assume that each fn tends to zero at infinity, fix ǫ > 0 and consider the ǫ-max-Lp-mixing time

tn = Tn,p(ǫ) = T (fn, ǫ) = inf{t > 0 : DΩn,p(t) ≤ ǫ}.

Assume further that tn → ∞. Setting γn = min{1, λn}, the following properties are equivalent:

1. γntn tends to infinity;

2. The family F presents a precutoff;

3. The family F presents a cutoff;

4. The family F presents a (tn, γ−1
n )-cutoff.

Proof. The proof is similar to that of the continuous time case and is omitted.
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4.2 Examples of max-Lp cutoffs

This section describes a number of interesting situations where either Theorem 4.2 or Theorem
4.3 applies.

4.2.1 High multiplicity

Consider a family of spaces Ωn indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ T , be a
Markov transition function on Ωn with invariant probability πn and spectral gap λn. Assume
that Pn,1 is normal on L2(Ωn, πn) and that there is an eigenvalue ζn of modulus |ζn| = e−λn

with multiplicity at least mn (i.e., the space of functions ψ ∈ L2(Ωn, πn) such that Ptψ = ζt
nψ,

t ∈ T , is of dimension at least mn). We claim that the following hold:

(1) If T = (0,∞) and mn tends to infinity then there is a max-L2 cutoff.

(2) If T = N, supn λn < ∞ and mn tends to infinity then there is a max-L2 cutoff.

We give the proof for the continuous time case (the discrete time case is similar). Let ψn,i,
i = 1, . . . , mn be orthonormal eigenfunctions such that Pn,tψn,i = ζt

nψn,i. For x ∈ Ωn, ψn(x, y) =∑mn
1 ψn,i(x)ψn,i(y). Observe that, for each x ∈ Ωn,

‖ψn(x, ·)‖2
L2(Ωn,πn) =

∑

i

|ψn,i(x)|2 = ψn(x, x)

and maxx ψn(x, x) ≥ πn(ψn(x, x)) = mn. By hypothesis

Dn,2(x, t) = sup
{
|(Pn,t − πn)f(x)| : f ∈ L2(Ωn, πn), ‖f‖L2(Ωn,πn) = 1

}

≥ |ζt
n|

|ψn(x, x)|
‖ψn(x, ·)‖L2(Ωn,πn)

= e−tλn |ψn(x, x)|1/2.

It follows that
DΩn,2(t) ≥ e−tλnm1/2

n .

In particular, if tn = Tn,2(ǫ) = inf{t > 0 : DΩn,2(t) ≤ ǫ}, we get

e−2tnλn ≤ ǫ/m1/2
n .

If mn tends to infinity, this shows that tnλn tends to infinity and it follows from Theorem 4.2
that there is a max-L2 cutoff.

This result can be extended using Corollary 3.4 as follows. If xn ∈ Ωn is such that ψn(xn, xn)
tends to infinity then there is an L2 cutoff starting from xn.

4.2.2 Brownian motion examples

Let (Mn, gn) be a family of compact Riemannian manifolds (for simplicity, without boundary)
where each manifold is equipped with its normalized Riemannian measure πn. The heat semi-
group Pn,t on Mn is the Markov semigroup with infinitesimal generator the Laplace-Beltrami
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operator on (Mn, gn). It corresponds to Brownian motion and has πn as invariant measure. It
is self-adjoint on L2(Mn, πn) and ergodic. We denote by λn the spectral gap of (Mn, gn) and set

Tn,p = TMn,p(ǫ) = inf{t : DMn,p(t) ≤ ǫ}

for some fixed ǫ, e.g., ǫ = 1. Here, if hn(t, x, y) denotes the heat kernel on (Mn, gn) with respect
to πn, we have

DMn,p(t) = sup
x∈Mn

(∫

Mn

|hn(t, x, y) − 1|pπn(dy)

)1/p

.

Examples with fixed dimension

We first consider two different situations where all the manifolds have the same dimension d.
For details and further references concerning background material, we refer to [25].

Example 4.1 (Non-negative Ricci curvature). Consider the case where all the manifold Mn have
non-negative Ricci curvature. Let δn be the diameter of (Mn, gn). In this case, well-known
spectral estimates show that there are constants c(d), C(d) such that

c(d)δ−2
n ≤ λn ≤ C(d)δ−2

n .

Moreover, [25] shows that there are constants a(d), A(d) such that

a(d)δ−2
n ≤ Tn,p ≤ A(d)δ−2

n .

By Theorem 4.2, there is no max-Lp precutoff, 1 < p < ∞. In fact, there is no max-L1 precutoff
either. See [25, Theorem 5]. This proves Theorem 1.2(1).

Example 4.2 (Compact coverings). Consider a fixed compact manifold (N, g) with non-compact
universal cover Ñ and fundamental group Γ = π1(N). Assume that Γ admits a countable
family Γn of subgroups and, for each n, consider the manifold Mn = Ñ/Γn, equipped with the
Riemannian structure gn induced by g. Again, let δn be the diameter of (Mn, gn). Now, Theorem
4.2 offers the following dichotomy: either (a) λnTn,2 tends to infinity and there is a (Tn,2, λ

−1
n )

max-L2 cutoff, or (b) λnTn,2 does not tend to infinity and there is no max-L2 precutoff. The
result of [25, Theorem 3] relates this to properties of Γ as follows. If Γ is a group of polynomial
volume growth (for instance, Γ is nilpotent) then we must be in case (a). If Γ has Kazhdan’s
property (T) (for instance Γ = SL(2, Rn), n > 2) then we must be in case (b).

Examples with varying dimension

The unit spheres Sn (in R
n+1) provides one of the most obvious natural family of compact

manifolds with increasing dimension. Theorem 1.2(2) describes the Brownian motion cutoff
on spheres. Details are in [26]. The infinite families of classical simple compact Lie groups,
SO(n), SU(n), Sp(n) yield natural examples of families of Riemannian manifolds with increasing
dimensions (the dimension of each of these groups is of order n2).

Example 4.3 (Classical simple compact Lie groups). On each simple compact Lie group G,
there is, up to time change, a unique bi-invariant Brownian motion which corresponds to the
canonical bi-invariant Riemannian metric obtained by considering on the Lie algebra g of G
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the bilinear form B(X, Y ) = −trace(adXadY ) where adX is the linear map defined on g by
Z 7→ adX(Z) = [X, Z] (on compact simple Lie groups, this bilinear form – equals to minus
the Killing form — is positive definite). In what follows, we consider that each simple compact
Lie group is equipped with this canonical Riemannian structure. We let d(G) and λ(G) be the
dimension and spectral gap of G. See [26; 27] for further relevant details. It is well-known that
there exist constants c1, c2 (one can take c1 = 1/4, c2 = 1) such that

c1 ≤ λ(G) ≤ c2.

Moreover, [27, Theorem 1.1] shows that, for any ǫ ∈ (0, 2), there exist c3 = c3(ǫ) > 0 such that,
for any 1 ≤ p ≤ ∞,

TG,p(ǫ) ≥ c3 log d(G).

From this and Theorem 4.2 we deduce that, for any fixed p ∈ (1,∞) and for any sequence (Gn)
of simple compact Lie groups, Brownian motion on Gn presents a max-Lp cutoff if and only if
the dimension d(Gn) of Gn tends to infinity. This proves Theorem 1.2(3) in the case p 6= ∞.
The case p = ∞ follows from Theorem 5.3.

4.2.3 Random walks on the symmetric and alternating groups

For further background on random walks on finite groups, see [8; 29]. Let G be a finite group
and let u be the uniform probability measure on G. The (left-invariant) random walk driven by
a given probability measure v on G is the discrete time Markov process with transition function

pd(l, x, A) = v(l)(x−1A)

where v(l) is the l-th convolution power of v by itself. A walk is irreducible if the support of v
generates G. It is aperiodic if the support v is not contained in any coset of a proper normal
subgroup of G. If the walk driven by v is irreducible and aperiodic then its limiting distribution
as l tends to infinity is u. The adjoint walk is driven by the v̌ where v̌(A) = v(A−1). Hence, the
walk is normal if and only if v̌ ∗ v = v ∗ v̌ where ∗ denotes convolution. To ease the comparison
with the literature, when the walk is normal, let us denote by µ the second largest singular value
of the operator of convolution by v on L2(G, u). If λd is the spectral gap as defined at (3.3) for
the discrete time transition function pd(l, x, ·) = v(l)(x−1·) then

µ = e−λd
.

The following theorem shows that most families of normal walks on the symmetric group Sn or
the alternating group An have a max-L2 cutoff. For clarity, recall that, in the present context,
the notion of max-L2 cutoff is based on the chi-square distance function

DG,2(l) =


|G|−1

∑

y∈G

[|G|v(l)(y) − 1]2




1/2

.

Theorem 4.4. Let Gn = Sn or An. For each n, let vn be a probability measure on Gn such that
the associated (left-invariant) random walk is irreducible, aperiodic and normal. Let βn = e−λd

n

be the corresponding second largest singular value and assume that infn βn > 0.
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• If Gn = An, n = 1, 2, . . . , then the family of random walks driven by these vn presents a
max-L2 cutoff with window size (1 − βn)−1.

• If G = Sn, set

σn =
∑

x∈Sn

sgn(x)vn(x).

If |σn| < βn then the family of random walks driven by these vn presents a max-L2 cutoff
with window size (1 − βn)−1.

Proof. Let Tn,2 = inf{l > 0 : fn(l) ≤ 1} be the L2-mixing time. Observe that infn βn > 0 implies
min{− log βn, 1} ≍ (1 − βn) ≍ λd

n where ≍ is used to indicate that the ratio of the two sides is
uniformly bounded away form 0 and infinity. To prove that there is a (Tn,2, (1− βn)−1)-max-L2

cutoff, it suffices by Theorem 4.3 to show that λnTn,2 tends to infinity. Let ρn be an irreducible
representation of Gn at which the singular value βn is attained. Let d(ρn) be the dimension
of the representation ρn. Then, since each irreducible representation appears with multiplicity
equal to its dimension, the Plancherel formula yields

D
2
Gn,2(l) ≥ d(ρn)β2l

n .

Hence we obtain
λd

nTn,2 = (− log βn)Tn,2 ≥ (1/2) log d(ρn). (4.2)

By Theorem 4.3, the family has a (Tn,2, λ
−1
n ) max-L2 cutoff if d(ρn) tends to infinity. Now,

for n ≥ 5, the irreducible representations of Sn all have dimensions at least n − 1 except the
trivial and sign representations which both have dimension 1. The irreducible representations
of An are obtained in a simple way by restriction of the irreducible representations of Sn and it
follows that the non-trivial irreducible representations of An have dimension at least (n − 1)/2.
If G = An this together with Theorem 4.3 and (4.2) proves that there is a max-L2 cutoff as
desired. If G = Sn, in order to obtain the announced max-L2 cutoff, it suffices to rule out the
possibility that βn = |σn|.

Remark 4.1. The proof of Theorem 4.4 shows that, in the case of Sn, we can replace the
hypothesis that |σn| < βn by weaker hypothesis, for instance, that the singular value βn is
attained at least by one representation different from the sign representation. The celebrated
random transposition walk is such an example: it has βn = −1 + 2/n and βn = 1 − 2/n so that
|σn| = βn but βn is also attained at the natural dimension n − 1 representation.

Remark 4.2. Instead of the discrete time random walk associated to vn, consider the associated
continuous time random walk with transition function

pc
n(t, x, A) = e−t

∞∑

0

tl

l!
v(l)
n (x−1A).

Let λc
n be the spectral gap of this transition function. Dropping the irrelevant hypothesis inf βn >

0 in Theorem 4.4, there is always a max-L2 cutoff in continuous time on An and there is one on
Sn if βn < 1 − λc

n.
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Remark 4.3. There are many explicit random walks on the symmetric group for which the max-
L2 cutoff time is not known explicitly. One celebrated example is the adjacent transposition
random walk where v is the uniform probability on the generating set E = {Id, (i, i + 1), i =
1, . . . , n−1}. Many other examples, (e.g., random insertions, random reversals, ...) are described
in [29].

Remark 4.4. The proof of theorem 1.4 is the same as that of the case G = An in Theorem 4.4:
It is well known that the irreducible representations of SO(n) have dimension at least n.

5 Comparison of max-Lp mixing times and cutoffs when p varies

The aim of this section is to show that, for some families of Markov transition functions, the
existence of a max-Lp cutoff is a property that is independent of p for 1 < p ≤ ∞. Two cases are
of special interests, namely, the reversible case and the normal transitive case (all operators are
normal and invariant under a transitive group action). For this purpose we present comparison
results for Lp-mixing times of Markov transition functions.

5.1 Good adjoint

Let p(t, x, ·), t ∈ T, x ∈ Ω be a Markov transition function with invariant measure π. The adjoint
of Pt on L2(Ω, π) is given formally by

p∗(t, x, A) =

∫
A p(t, z, dx)π(dz)

π(dx)
,

i.e., the Radon-Nikodym derivative of the measure B 7→ νA(B) =
∫
A p(t, z, B)π(dz) with respect

to π. Observe that νΩ(B) =
∫
Ω p(t, z, B)π(dz) = π(B) so that νA is absolutely continuous w.r.t.

π. However this defines p∗(t, x, A) only for π almost all x. Thus we consider the following
technical hypothesis (very often satisfied in practice). We say that a Markov transition function
p(t, x, ·), t ∈ T , x ∈ Ω, with invariant measure π admits a good adjoint with respect to π if
there is a Markov transition function p∗(t, x, ·), t ∈ T, x ∈ Ω, such that the adjoint P ∗

t of Pt on
L2(Ω, π) is the Markov operator associated to the Markov transition function p∗(t, x, ·). This
allows us to act with P ∗

t on measures by µP ∗
t (A) =

∫
Ω p∗(t, x, A)µ(dx). In particular, πP ∗

t is
well defined and we have

πP ∗
t (A) =

∫
1Ω(x)P ∗

t 1A(x)π(dx) =

∫
Pt1Ω(x)1A(x)π(dx) = π(A).

That is, π is an invariant measure for the transition function p∗.

There are at least three important instances when this property is automatically satisfied. These
instances are described below.

The first case is when Ω is a topological space and the Markov transition function p(t, x, ·) is of
the form

p(t, x, dy) = h(t, x, y)π(dy), h(t, x, y) ∈ C(Ω × Ω, π ⊗ π), 0 < t ∈ T.

In this case,
p∗(t, x, dy) = h(t, y, x)π(dy).
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The second case is when Pt, t ∈ T , is self-adjoint on L2(Ω, π), in which case P ∗
t = Pt and

p∗(t, x, dy) = p(t, x, dy).

The third case is when there is a compact group acting continuously transitively on Ω and
preserving the transition function. This case will be discussed in detail below. The simplest
instance is when Ω = G is a compact group and p(t, x, A) = p(t, e, x−1A), t ∈ T , x ∈ G. Then
the (normalized) Haar measure is an invariant measure and the adjoint P ∗

t of Pt has transition
function

p∗(t, x, A) = p(t, e, A−1x).

5.2 Mixing time comparisons

Let p(t, x, ·) be a Markov transition function on Ω with invariant probability measure π. This
section is devoted to comparisons between the various max-Lp mixing times, 1 ≤ p ≤ ∞. Hence,
we set

Tp(ǫ) = inf{t ∈ T : Dp(t) ≤ ǫ}
with Dp defined at (3.6). We will also need to use

T̃p(ǫ) = inf{t ∈ T : D̃π,p(t) ≤ ǫ}

The advantage of T̃ over T is that, since it requires only Ptf(x) be defined for π almost all x,
it is well-defined for the adjoint p∗(t, x, A) without the technical hypothesis that a good adjoint
exists. In particular, we set

T̃ ∗
p (ǫ) = inf{t ∈ T : D̃∗

π,p(t) ≤ ǫ}

where

D̃∗
π,p(t) = π- ess sup

x∈Ω

(∫

Ω
|h∗(t, x, y) − 1|pπ(dy)

)1/p

if p∗(t, x, ·) = h∗(t, x, y)π(dy), π-almost surely, and D̃∗
π,p(t) = ∞ otherwise. In terms of operator

norms, setting 1/p + 1/q = 1, we have

D̃∗
π,p(t) = ‖P ∗

t ‖Lq(Ω,π)→L∞(Ω,π) = ‖Pt‖L1(Ω,π)→Lp(Ω,π).

In cases when we assume that there is a good adjoint, we set

T ∗
p (ǫ) = inf{t ∈ T : D

∗
p(t) ≤ ǫ}

with D
∗
p is defined at (3.6) but with p(t, x, ·) replaced by p∗(t, x, ·) .

Our main mixing time comparisons are stated in the following proposition.

Proposition 5.1. Let p(t, x, ·) be a Markov transition function with invariant measure π. Re-
ferring to the mixing times introduced above, the following inequalities hold:

1. For 1 ≤ p ≤ q ≤ ∞ and any fixed ǫ > 0, Tp(ǫ) ≤ Tq(ǫ) and T̃p(ǫ) ≤ T̃q(ǫ).
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2. For 1 ≤ q, r, s,≤ ∞ with 1 + 1/q = 1/r + 1/s and any ǫ, η, δ > 0,

Tq(ǫ
s/qη1−s/qδ) ≤ max{1[1,∞)(q)T̃s(ǫ),1(1,∞](q)T̃

∗
s (η)} + Tr(δ).

3. For 1 ≤ p ≤ ∞, 1/p + 1/p′ = 1 and ǫ > 0,

T∞(ǫ2) ≤ Tp(ǫ) + T̃ ∗
p′(ǫ).

4. For 1 < p < q ≤ ∞ and ǫ > 0,

Tq(ǫ
mp,q) ≤ mp,q max

{
Tp(ǫ), T̃

∗
p (ǫ)

}

where mp,q = ⌈p′/q′⌉, 1/p + 1/p′ = 1, 1/q + 1/q′ = 1.

Proof. The inequalities stated in (1) follow readily from Jensen’s inequality. In order to prove
(2), let q′, r′, s′ the dual exponents of q, r, s (e.g., 1/q + 1/q′ = 1). Observe that

Dq(u + v) ≤ ‖Pu − π‖Lq′ (Ω,π)→Lr′ (Ω,π)Dr(v).

Next, note that 1/q′ = 1/r′ + 1/s′ and recall the interpolation inequality

‖Pu − π‖Lq′ (Ω,π)→Lr′ (Ω,π) ≤ ‖Pu − π‖s/q

Ls′ (Ω,π)→L∞(Ω,π)
‖Pu − π‖1−s/q

L1(Ω,π)→Ls(Ω,π)

≤ (D̃π,s(u))s/q(D̃∗
π,s(u))1−s/q.

From this we deduce that

Dq(u + v) ≤ (D̃π,s(u))s/q(D̃∗
π,s(u))1−s/qDr(v).

The mixing time inequality stated in (2) follows. The inequality in (3) follows from (2) with
q = ∞, r = p, s = p′ η = δ = ǫ.

To prove (4), set 1/pj = (1 − 1/p)j + 1/q, j = 0, 1, 2 . . . . As

1 + 1/pi = 1/pi+1 + 1/p,

the result in (2) yields
Tpi(ǫη) ≤ max{T̃p(ǫ), T̃

∗
p (ǫ)} + Tpi+1

(η).

Hence, for each i = 1, 2, . . . ,

Tq(ǫ
i+1) ≤ imax{T̃p(ǫ), T̃

∗
p (ǫ)} + Tpi(ǫ).

Now, pj ≤ p if and only if j + 1 ≥ p(q − 1)/(q(p − 1)) = p′/q′. By (1), it follows that

Tq(ǫ
mp,q) ≤ (mp,q − 1)max{T̃p(ǫ), T̃

∗
p (ǫ)} + Tp(ǫ)

≤ mp,q max{Tp(ǫ), T̃
∗
p (ǫ)}

Remark 5.1. Proposition 5.1(1) and Theorem 4.2 show that, for normal transition functions
with T = [0,∞), a max-Lp cutoff always implies a max-Lq cutoff for 1 ≤ p ≤ q < ∞. In the
discrete time case T = N, the same conclusion holds assuming Tn,p(ǫ) tends to infinity for ǫ
small enough.

Remark 5.2. In the reversible case, Proposition 5.1 shows that the max-Lp mixing time controls
the max-Lq mixing time if 1 < p ≤ q ≤ ∞. See the next section. The interesting examples
studied in [21] show that there can be no such control when p = 1.
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5.3 Max-Lp cutoffs: the reversible case

Let p(t, x, ·) be a Markov transition function with invariant distribution π. Assume that for each
t ∈ T , Pt is self-adjoint on L2(Ω, π) (hence, has a good adjoint!). Then, obviously, we have

Dp(x, t) = D∗
p(x, t), Dp(t) = D

∗
p(t), Tp(ǫ) = T ∗

p (ǫ).

Using the notation introduced in Proposition 5.1, it follows that for 1 < p ≤ q ≤ ∞,

Tp(ǫ) ≤ Tq(ǫ) ≤ mp,qTp(ǫ
mp,q).

Furthermore, when T = [0,∞), we have

D∞(t) = [D2(t/2)]2.

When T = N, if t is even,
D∞(t) = [D2(t/2)]2.

whereas, if t is odd,

D∞(t) ≤ D2((t − 1)/2)D2((t + 1)/2) ≤ [D2((t + 1)/2)]2.

Together with Theorems 4.2-4.3, this yields the following statements.

Lemma 5.2. Consider a family of spaces Ωn indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·),
t ∈ T , be a transition function on Ωn with invariant probability πn. Assume that Pn,t is reversible
on L2(Ωn, πn), for each t ∈ T . The following properties holds:

1. For each n, the function t 7→ DΩn,p(t) tends to zero at infinity for some p ∈ (1,∞] if and
only if it tends to zero for any p ∈ (1,∞].

2. Assume that for each n, the functions in (1) tend to zero. Then Tn,p(ǫ) tends to infinity
with n for some p ∈ (1,∞] and ǫ > 0 if and only if it does for all such p and ǫ.

Theorem 5.3 (Max-Lp cutoff, continuous time reversible case). Consider a family of spaces Ωn

indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ [0,∞), be a transition function on Ωn with
invariant probability πn and with spectral gap λn. Assume that Pn,t is reversible on L2(Ωn, πn),
for each t ∈ (0,∞).

Assume that for each n and p ∈ (1,∞], the function t 7→ DΩn,p(t) tends to zero at infinity. Then
the following properties are equivalent:

1. For some p ∈ (1,∞] and some ǫ > 0, λnTn,p(ǫ) tends to infinity;

2. For any p ∈ (1,∞] and any ǫ > 0, λnTn,p(ǫ) tends to infinity;

3. For some p ∈ (1,∞] there is a max-Lp precutoff.

4. For any p ∈ (1,∞] there is a max-Lp cutoff.

5. For any p ∈ (1,∞] and any ǫ > 0, there is a (Tn,p(ǫ), λ
−1
n ) max-Lp cutoff.
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Finally, for any ǫ > 0, Tn,∞(ǫ2) = 2Tn,2(ǫ), and there is a tn (resp. (tn, bn)) max-L2 cutoff if
and only if there is a 2tn (resp. (2tn, bn)) max-L∞ cutoff.

Theorem 5.4 (Max-Lp cutoff, discrete time reversible case). Consider a family of spaces Ωn

indexed by n = 1, 2, . . . For each n, let pn(t, ·, ·), t ∈ N, be a transition function on Ωn with
invariant probability πn and with spectral gap λn. Assume that Pn,1 is reversible on L2(Ωn, πn).

Assume that for each n and some p ∈ (1,∞], the function t 7→ DΩn,p(t) tends to zero at infinity.
Assume further that, for some ǫ > 0 and p ∈ (1,∞], Tn,p(ǫ) tends to infinity with n. Then,
setting γn = min{1, λn}, the following properties are equivalent:

1. For some p ∈ (1,∞] and some ǫ > 0, γnTn,p(ǫ) tends to infinity;

2. For any p ∈ (1,∞] and any ǫ > 0, γnTn,p(ǫ) tends to infinity;

3. For some p ∈ (1,∞] there is max-Lp precutoff.

4. For any p ∈ (1,∞] there is max-Lp cutoff.

5. For any p ∈ (1,∞] and any ǫ > 0, there is max-Lp (Tn,p(ǫ), γ
−1
n ) max-Lp cutoff.

Finally, there is a tn (resp. (tn, bn)) max-L2 cutoff if and only if there is a 2tn (resp. (2tn, bn))
max-L∞ cutoff.

Remark 5.3. The precise relation between max-L2 and max-L∞ cutoffs stated in Theorems 5.3
and 5.4 is specific to maximum cutoffs and to the reversible case. We do not know how to
treat max-L∞ cutoffs in the normal non-reversible case. We now show that the precise relation
between L2 and L∞ cutoff times does not hold in general for reversible chains in the case of
a fixed starting distribution. The simplest example may be the lazy birth and death chain on
{0, . . . , n} with p + q = 1, p > 1/2, and

P (Xt+1 = y|Xt = x) =





p/2 if y = x + 1, x = 0, . . . , n − 1
q/2 if y = x + 1, x = 1, . . . , n
1/2 if y = x, x = 1, . . . , n − 1

(1 + q)/2 if y = x = 0
(1 + p)/2 if y = x = n

This chain is reversible with reversible measure π(x) = c(p/q)x. It can be diagonalized explicitly
(see [15, Pages 436-438]). In any case, it is easy to see that the spectral gap λn is bounded
above and below by positive constants independent of n. It is also clear that, starting from 0,
the Lr mixing time is of order n, for any r ∈ [1,∞] (this is because most of the mass of the
stationary distribution is near n). Using Theorem 5.4 we deduce that there is a max-Lr cutoff,
for any r ∈ (1,∞]. Moreover the max-L∞ cutoff time is twice the max-L2 cutoff time. Now,
consider the chain started at n. Then, for any r ∈ [1,∞) and ǫ ∈ (0, 1), one easily shows that the
mixing time Tr(n, ǫ) is bounded above independently of n (use Dr(n, t) ≤ e−crλntπn(n)−1+1/r,
r ∈ (1,∞), and, for r = 1, remember that D1(n, t) ≤ D2(n, t)). However, D∞(n, n − 1) ≥ 1
because, starting from n, we cannot reach 0 in less than n steps. Hence T∞(n, 1/2) ≥ n. In
particular, T∞(n, 1/2) is much bigger than 2T2(n, 1/2).
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5.4 Max-Lp cutoffs for birth and death chains

Let Ω = {0, . . . , m}. A birth and death chain is described by a Markov kernel K on Ω such that
K(x, y) = 0 unless |x − y| ≤ 1. Write

qx = K(x, x − 1), x = 1, . . . , m
rx = K(x, x), x = 0, . . . , m
px = K(x, x + 1), x = 0, . . . , m − 1,

and, by convention, q0 = pm = 0. We assume throughout that the chain is irreducible, i.e., that
qx > 0 for 0 < x ≤ m and px > 0 for 0 ≤ x < m. Such chains have invariant probability

ν(x) = c

x∏

y=1

py−1

qy

with c = ν(0) a normalizing constant. Birth and death chains are in fact reversible (i.e., satisfy
ν(x)K(x, y) = ν(y)K(y, x)), hence diagonalizable with real eigenvalues in [−1, 1]. Let αi, i =
0, . . . , m, be the eigenvalues of I −K in non-decreasing order (I denotes the identity operator).
Thus α0 = 0 < α1 ≤ α2 ≤ · · · ≤ αm ≤ 2. The irreducibility of the chain is reflected in the
fact that α1 > 0. It is also well known that αm = 2 if and only if the chain is periodic (of
period 2) which happens if and only if rx = 0 for all x. In fact, because we are dealing here
with irreducible birth and death chains, it is known that the αi’s are all distinct (e.g., [5; 19]).
Karlin and McGregor [18; 17] observed that the spectral analysis of any given birth and death
chain can be treated as an orthogonal polynomial problem. This sometimes leads to the exact
computation of the spectrum. See, e.g., [16; 18; 17; 31].

Given a finite birth and death chain as above, we consider the discrete and continuous time
transition functions p∗(t, x, y), ∗ = d, c, defined at (3.1)-(3.2). Moreover, in what follows we
consider families of birth and death chains indexed by n with Ωn = {0, . . . , mn}. For any
1 ≤ p ≤ ∞, we set

f∗
n,p(t) = D∗

Ωn,p(0, t) =

(
∑

y

|(p∗n(t, 0, y)/νn(y)) − 1|pνn(y)

)1/p

and
f∗

n,sep(t) = max
y

{1 − (p∗n(t, 0, y)/νn(y))}.

The following theorem is proved in [12]. It gives a spectral necessary and sufficient condition for
a family of birth and death chains (all started at 0) to have a cutoff in separation.

Theorem 5.5 ([12, Theorems 5.1–5.2]). Referring to a sequence of birth and death chains as
described above, set

χn = αn,1, θn =

mn∑

i=1

α−1
n,i .

1. The family {f c
n,sep} has a cutoff if and only if χnθn tends to infinity.

2. Assume that pn,x + qn,x+1 ≤ 1 for all n and all x ∈ {0, . . . , mn − 1}. Then the family
{fd

n,sep} has a cutoff if and only if χnθn tends to infinity.
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In both cases, whenever a cutoff occurs, it occurs at time θn.

Using this result and Theorems 5.3-5.4, we will prove the following statement.

Theorem 5.6. Referring to a sequence of birth and death chains as described above, assume
that χnθn tends to infinity. Then, for any 1 < p ≤ ∞,

1. the family has a max-Lp cutoff in continuous time;

2. assuming that pn,x + qn,x+1 ≤ 1 for all n and all x ∈ {0, . . . , mn − 1}, the family has a
max-Lp cutoff in discrete time.

Proof. Consider the continuous time case. Then, because of reversibility, we have λn = χn =
αn,1. By Theorem 5.3, for reversible chains the max-Lp cutoffs, 1 < p ≤ ∞, are all equivalent.
Let Tn,∞(0, ǫ) be the ǫ-L∞-mixing time starting from 0, with ǫ fixed small enough, say ǫ = 1/4.
Assume that χnθn tends to infinity. By Theorem 5.3, to prove the desired L∞-cutoff it suffices to
prove that χnTn,∞(1/4) tends to infinity. By Theorem 5.5 (θn) is a separation cutoff sequence.
Thus, there are constants 0 < a < 1 < b < ∞ and a sequence θ′n such that

aθn < θ′n < bθn

and
sepn(θ′n) = max

y
{1 − (pc

n(θ′n, 0, y)/νn(y))} = 1/4.

Now, obviously,
sepn(θ′n) ≤ max

x,y
{|1 − (pc

n(θ′n, x, y)/νn(y))|}

Hence, Tn,∞(1/4) ≥ θ′n. This shows that χnTn,∞(1/4) tends to infinity. Hence there is a max-L∞

cutoff as desired. The proof of the discrete case is similar (note that the hypothesis χnθn tends
to infinity implies that mn tends to infinity. For any birth and death chain family, this implies
that Tn,∞(1/4) tends to infinity).

5.5 Max-Lp cutoff: the transitive normal case

This section is devoted to the important case where a group acts continuously transitively on
the underlying space and this action preserves the transition function.

5.5.1 Transitive group action

Assume Ω is a compact topological space on which a compact group G acts continuously tran-
sitively. In this case, Ω = G/Go (as topological spaces) where Go is the stabilizer of any
fixed point o ∈ Ω. In this case, Ω = G/Go carries a unique G invariant measure π given by
π(A) = u(φ−1(A)) where φ : G → G/Go denotes the canonical projection map.

We assume that this action preserves a given transition function p(t, x, ·), t ∈ T , x ∈ Ω, defined
on the Borel σ-algebra B of Ω. By definition, this means that, for all t ∈ T , x ∈ Ω, A ∈ B and
g ∈ G,

p(t, x, A) = p(t, gx, gA) (5.1)
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This implies that π is an invariant measure for this transition function.

A crucial observation is that we can lift p(t, x, ·) to a transition function on G (for further details,
see, e.g., [30]). Namely, for any x ∈ Ω, let gx be an element in G such that gxo = x. For any
g ∈ G and any Borel subset A ⊂ G

p̃(t, g, A) =

∫

Ω

∫

Go

1A(gyh)dGoh p(t, go, dy) =

∫

Ω
|g−1

y A ∩ Go|Gop(t, go, dy)

where |g−1
y A∩Go|Go is the measure of g−1

y A∩Go with respect to normalized Haar measure dGoh
on Go. Note that |g−1

y A ∩ Go|Go is independent of the choice of gy. Note also that if A has the
property that A = AGo (i.e., φ−1[φ(A)] = A), then

g−1
y A ∩ Go 6= ∅ ⇔ y ∈ φ(A).

Hence, if A = AGo then
p̃(t, g, A) = p(t, go, φ(A)).

This transition function on G obviously satisfies

p̃(t, hg, hA) = p̃(t, g, A) = p̃(t, e, g−1A), g, h ∈ G

This means that the Markov operators

µ 7→ µP̃t, f 7→ P̃tf

are in fact convolution operators. Namely, setting

qt(A) = p̃(t, e, A),

we have

µP̃t(A) =

∫

G
qt(g

−1A)µ(dg), P̃tf(g) =

∫

G
f(gh)qt(dh).

These measures form a convolution semigroup and have the property that for any g ∈ Go,
qt(Ag) = qt(gA) = qt(A). Conversely, if we start with a convolution semigroup of probability
measures qt on G satisfying this last property (bi-invariance under Go), we obtain a G invariant
transition function on Ω = G/Go by setting

p(t, x, A) = qt(g
−1
x φ−1(A)).

To clarify the relations between operating on G and operating on Ω, it suffices to consider the
operators S : Lp(G, dg) → Lp(Ω, π) and T : Lp(Ω, π) → Lp(G, dg) defined by

Sf(x) =

∫

Go

f(gxh)dGoh, Tf(g) = f(go).

It is clear that this operators, originally defined on continuous functions, extends uniquely to
operators with norm equal to 1 between the relevant Lp spaces. They are, formally, adjoint of
each other. Moreover, we clearly have

P̃t = TPtS and Pt = SP̃tT.
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This structure also allows us to see that the adjoint P ∗
t of Pt is of the same form with transition

function given by
p∗(t, x, A) = q̌t(g

−1
x φ−1(A)).

Indeed,
P ∗

t = SP̃ ∗
t T

and P ∗ is convolution by q̌t where q̌t(A) = qt(A
−1).

For any fixed t ∈ T , the measures p(t, x, ·), x ∈ Ω, all are absolutely continuous w.r.t π if and
only if p(t, o, ·) is, if and only if the measure qt on G is absolutely continuous w.r.t. the Haar
measure dg on G. In this case, if we set

p(t, x, dy) = h(t, x, y)π(dy), p̃(t, g, dg′) = h̃(t, g, g′)dg′, qt(dg) = φt(g)dg

we have
h(t, x, y) = h̃(t, gx, gy) = φt(g

−1
x gy)

and
p∗(t, x, dy) = h(t, y, x)π(dy).

With this preparation, we can state and prove the following result.

Proposition 5.7. Let Ω be a compact space equipped with its Borel σ-algebra. Let p(t, x, ·),
t ∈ T , x ∈ Ω, be a transition function . Assume that there exists a compact group G that acts
continuously and transitively on Ω and such that p(t, gx, gA) = p(t, x, A), for all t ∈ T , x ∈ Ω,
g ∈ G. Let π be the unique G-invariant probability measure on Ω as above. For any 1 ≤ p ≤ ∞,
we have:

1. For all x, y ∈ Ω, Dp(x, t) = Dp(y, t) = Dp(t).

2. For all x ∈ Ω, Dp(x, t) = D∗
p(x, t) where D∗

p corresponds to the adjoint transition function
p∗(t, x, ·) on Ω.

Proof. The first assertion is obvious. To prove the second, observe that

Dp
p(x, t) =

∫

Ω
|h(t, o, y) − 1|pπ(dy) =

∫

Ω
|φt(gy) − 1|pπ(dy)

=

∫

Ω

∫

Go

|φt(gyh) − 1|pdGoh π(dy) =

∫

G
|φt(g) − 1|pdg.

Similarly,

D∗
p(x, t) =

∫

G
|φ̌t(g) − 1|pdg =

∫

G
|φt(g

−1) − 1|pdg.

The desired result follows since Haar measure is preserved by the transformation g 7→ g−1
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5.5.2 Mixing time and Max-Lp cutoffs in the transitive case

In the transitive case, Proposition 5.7 allows us to simplify the mixing time comparisons of
Proposition 5.1 as follows.

Proposition 5.8. Let Ω be a compact space equipped with its Borel σ-algebra. Let p(t, x, ·),
t ∈ T , x ∈ Ω, be a transition function. Assume that there exists a compact group G that acts
continuously and transitively on Ω and such that p(t, gx, gA) = p(t, x, A), for all t ∈ T , x ∈ Ω,
g ∈ G. Let π be the unique G-invariant probability measure on Ω. Referring to the mixing times
Tp(ǫ) = inf{t > 0 : Dp(t) ≤ ǫ}, the following inequalities hold:

1. For 1 ≤ p ≤ q ≤ ∞ and any fixed ǫ > 0, Tp(ǫ) ≤ Tq(ǫ).

2. For 1 ≤ q, r, s,≤ ∞ with 1 + 1/q = 1/r + 1/s and any ǫ, δ > 0,

Tq(ǫδ) ≤ Ts(ǫ) + Tr(δ).

3. For 1 < p < q ≤ ∞ and ǫ > 0,

Tq(ǫ
mp,q) ≤ mp,qTp(ǫ)

where mp,q = ⌈p′/q′⌉, 1/p + 1/p′ = 1/q + 1/q′ = 1.

In the next three statements we consider a family of compact spaces Ωn indexed by n = 1, 2, . . . .
For each n, assume that there exists a compact group Gn that acts continuously and transitively
on Ωn and let πn be the unique Gn-invariant measure on Ωn. Let pn(t, ·, ·), t ∈ T , be a transition
function on Ωn Assume that pn(t, gx, gA) = pn(t, x, A), for all t ∈ T , x ∈ Ωn, g ∈ Gn. Assume
also that Pn,t is normal on L2(Ωn, πn), for each t ∈ T ∩ (0, 1] and let λn be the spectral gap as
defined at (3.3). We will refer to this as the normal transitive setup. This of course includes
the case where Ω = G is a compact group and the transition function is given by convolution.
The proof of the following statements easily follows from Theorems 4.2-4.3 and Proposition 5.8.
Details are omitted.

Lemma 5.9. Referring to the normal transitive setup introduced above, the following properties
holds:

1. For each n, the function t 7→ DΩn,p(t) tends to zero at infinity for some p ∈ (1,∞] if and
only if it tends to zero for any p ∈ (1,∞].

2. Assume that for each n, the functions in (1) tend to zero. Then Tn,p(ǫ) tends to infinity
with n for some p ∈ (1,∞] and ǫ > 0 if and only if it does for all such p and ǫ.

Theorem 5.10 (Max-Lp cutoff, normal transitive continuous case). Referring to the normal
transitive setup introduced above, assume that T = [0,∞) and that, for each n and p ∈ (1,∞],
the function t 7→ DΩn,p(t) tends to zero at infinity. Then the following properties are equivalent:

1. For some p ∈ (1,∞] and some ǫ > 0, λnTn,p(ǫ) tends to infinity;

2. For any p ∈ (1,∞] and any ǫ > 0, λnTn,p(ǫ) tends to infinity;
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3. For some p ∈ (1,∞] there is a max-Lp precutoff.

4. For any p ∈ (1,∞) there is a max-Lp cutoff.

5. For any p ∈ (1,∞) and any ǫ > 0, there is a (Tn,p(ǫ), λ
−1
n ) max-Lp cutoff.

Theorem 5.11 (Max-Lp cutoff, normal transitive discrete case). Referring to the normal tran-
sitive setup introduced above, assume that T = N and that, for each n, p ∈ (1,∞] and ǫ > 0, the
function t 7→ DΩn,p(t) tends to zero as t tends to infinity. Assume further that Tn,p(ǫ) tends to
infinity with n. Then, setting γn = min{1, λn}, the following properties are equivalent:

1. For some p ∈ (1,∞] and some ǫ > 0, γnTn,p(ǫ) tends to infinity;

2. For any p ∈ (1,∞] and any ǫ > 0, γnTn,p(ǫ) tends to infinity;

3. For some p ∈ (1,∞] there is a max-Lp precutoff.

4. For any p ∈ (1,∞) there is a max-Lp cutoff.

5. For any p ∈ (1,∞) and any ǫ > 0, there is a (Tn,p(ǫ), γ
−1
n ) max-Lp cutoff.

Note that in statements (4)-(5) of these theorems, the case p = ∞ is excluded. This is a
important difference between the above result and the similar statement in the reversible case.
We do not know whether or not a max-L2 cutoff implies a max-L∞ cutoff in this setting (note
that it does imply a max-L∞ precutoff).

6 Total variation examples

This section discusses examples showing that the Lp results described in this paper for 1 < p < ∞
do not hold true for p = 1.

6.1 Aldous’ example

At the ARCC workshop ”Sharp Thresholds for Mixing Times” organized at AIM, Palo Alto, in
December 2004, David Aldous proposed the following example of a reversible Markov chain with
the property that the product “spectral gap × maximum total variation mixing time” tends to
infinity but which does not have a total variation cutoff. The proposed chain is made of three
parts: a tail and two arms. The two arms are attached to the tail and are joined together at
the other end. The tail is a finite segment of length n, say {x1, . . . xn}. The left arm also has
length n, {y1, . . . , yn}. The right arm has length 2n {z1, . . . z2n} with z2n = yn. Transitions
are essentially like a birth and death chain with a constant upward drift. More precisely, pick
pi,n > 1/2, qi,n < 1/2, pi,n + qi,n = 1, i = t, l, r (t for tail, l, r for left and right). Along the
tail, go up with probability pt,n and down with probability qt,n. At the top of the tail, go down
with probability (ql,n + qr,n)/2, left with probability pl,n/2, right with probability pr,n/2. Along
each arm go up or down with the corresponding probability pi,n, qi,n, i = l or r. At the point
yn = z2n, go to yn−1 with probability ql,n, to z2n−1 with probability qr,n, or stay put with
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probability 1 − ql,n − qr,n. See Figure 1. To make this chain reversible, we must choose the left
and right arm probabilities so that

pl,n/ql,n = (pr,n/qr,n)2.

The stationary measure is easy to compute and concentrates mostly around the point yn = z2n.
The idea now is as follows. Assuming that pi,n > 2/3, i = t, l, r, it is easy to show using an
isoperimetric (i.e., conductance) type argument that the spectral gap of this chain is bounded
away from 0. The claim is that there exists 1 < a < b < ∞ and ǫ ∈ (0, 1) such that, for the chain
started at x1, the variation distance is less than 1 − ǫ at time an but still more than ǫ at time
bn, uniformly over all large n. In addition, the starting point with the slowest total variation
mixing is the end of the tail x1. This implies that there is no maximum total variation cutoff.
Nevertheless the product “spectral gap × maximum total variation mixing time” is of order n
and tends to infinity. The reason why total variation is less than 1− ǫ at time an is that one has
a good chance to reach yn through the left arm at that time. The reason why total variation is
greater than ǫ at time bn (b > a) is that it takes longer to reach yn = z2n along the right arm.

The computations required to prove these claims are somewhat technical. They become quite
simple if one assumes that pi,n ≥ 1 − 1/n, i = t, l, r. In this case the stationary measure
concentrates strongly at yn = z2n. See [6].

Figure 1: Aldous’ example. In this figure, each edge has two directions which denote the
neighboring transitions and have weights specified by the side notations except those five marked
directly on the graph with probability described in the right-bottom corner.
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6.2 Pak’s example

Igor Pak suggested the following type of examples. Let Ωn be a sequence of finite sets, each
equipped with a transition function pn(t, x, ·), t ∈ N, x ∈ Ωn, with stationary distribution πn.
For each n, consider the new Markov chain with one step kernel

qn(1, x, y) = (1 − an)pn(1, x, y) + anπn(y).

A simple calculation (using the fact that πn is stationary for pn) shows that this has transition
function

qn(t, x, y) = (1 − an)tpn(t, x, y) + (1 − (1 − an)t)πn(y).

Hence,
‖qn(t, x, ·) − πn‖TV = (1 − an)t‖pn(t, x, ·) − πn‖TV.

The same relation holds for other norms and other starting distributions. In particular, for
1 ≤ p ≤ ∞,

‖(qn(t, x, ·)/πn) − 1‖Lp(Ωn,πn) = (1 − an)t‖(pn(t, x, ·)/πn) − 1‖Lp(Ωn,πn).

Furthermore (using obvious notation)

‖Qn,t − πn‖L2(Ωn,πn)→L2(Ωn,πn) = (1 − an)t‖Pn,t − πn‖L2(Ωn,πn)→L2(Ωn,πn).

This implies that the spectral gap λ(Qn) (relative to qn) is related to the spectral gap λ(Pn)
(relative to pn) by

λ(Qn) = λ(Pn) − log(1 − an).

Now, let us assume that the family pn(t, xn, ·) admits a total variation cutoff with cutoff sequence
tn tending to infinity and spectral gap λ(Pn) such that λ(Pn)tn tends to infinity and λ(Pn) ≤ 1.
Pick a sequence an tending to 0 such that λ(Pn)a−1

n and tnan tends to infinity (that is a−1
n tends

to infinity faster than λ(Pn)−1 but slower than tn). Then, the family qn(t, xn, ·) (indexed by n)
has the following properties;

1. Its spectral gap λ(Qn) satisfies λ(Qn) ∼ λ(Pn);

2. For any ǫ ∈ (0, 1), its total variation mixing time TTV(qn, xn, ǫ) satisfies TTV(qn, xn, ǫ) ∼
a−1

n log(1/ǫ);

3. The product λn(Qn)TTV(qn, xn, ǫ) ∼ λ(Pn)a−1
n log(1/ǫ) tends to infinity

4. There is no total variation cutoff and, in fact, no total variation precutoff.

5. For each p ∈ (1,∞), there is a Lp cutoff with window λ(Pn)−1 and cutoff time sn(p) of
order at least the order of a−1

n .

The assertions (1)-(2)-(3) are clear. Assertion (4) follows from Proposition 2.3(i). For p ∈ (1,∞),
Tp(qn, xn, 2ǫ) ≥ TTV(qn, xn, ǫ). Hence (3) and Theorem 3.3 imply an Lp cutoff as stated in (5).
If sn(p) is an Lp cutoff time then, for any η ∈ (0, 1), we must have (1+η)sn(p) ≥ a−1

n for n large
enough.
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The same type of computations holds for max total variation cutoff if the original chain has a
max total variation cutoff. Similar computations work in continuous time. This general class
of examples clearly shows that the conclusions of Theorems 3.3, 4.2, 4.3, 5.10 and 5.11 do not
hold true in the case p = 1. Namely, the condition λ(Qn)TTV(qn, xn, ǫ) → ∞ is not sufficient for
a total variation cutoff.

It is interesting to consider the case (excluded above) when a−1
n = tn. In this case, (1) still

holds true. Assertion (2) can be replaced by (an/2) ≤ TTV(qn, xn, ǫ) ≤ a−1
n log(1/ǫ), for n large

enough. It follows that the product λn(Qn)TTV(qn, xn, ǫ) still tends to infinity. Furthermore, for
any η ∈ (0, 1), we have

lim
n→∞

‖qn((1 − η)tn, xn, ·) − πn‖TV = e−1+η

and
lim

n→∞
‖qn((1 + η)tn, xn, ·) − πn‖TV = 0

This shows that this family does not have a total variation cutoff but does have a total variation
precutoff and even a total variation weak cutoff in the the sense of Remark 2.4. This yields
examples with a total variation weak cutoff but no total variation cutoff. A similar analysis also
applies to max total variation.

Finally, it is worth pointing out that this same class of examples shows that the condition
λ(Qn)Tsep(qn, xn, ǫ) → ∞ is not sufficient for a separation cutoff.

A Techniques and proofs

Proof of Lemma 2.1. For the case Dn = [0,∞) for all n ≥ 1, we may choose, by Remark 2.5,
an integer N such that bn > 0 for n ≥ N . This implies the following inequalities which are
sufficient to show the desired equivalence.

lim sup
n→∞

inf
t<tn−cbn

fn(t) ≤ F (−2c) ≤ lim sup
n→∞

inf
t<tn−2cbn

fn(t), ∀c > 0,

and
lim inf
n→∞

sup
t>tn+2cbn

fn(t) ≤ F (2c) ≤ lim inf
n→∞

sup
t>tn+cbn

fn(t), ∀c > 0.

For the case Dn = N for n ≥ 1, we let, by Remark 2.5, N, b be positive numbers such that bn ≥ b
for n ≥ N . Then the above two inequalities become, for c > 0,

lim sup
n→∞

inf
t<tn−cbn

fn(t) ≤ F (−c − 2/b) ≤ lim sup
n→∞

inf
t<tn−(c+2/b)bn

fn(t),

and
lim inf
n→∞

sup
t>tn+(c+2/b)bn

fn(t) ≤ F (c + 2/b) ≤ lim inf
n→∞

sup
t>tn+cbn

fn(t).

This proves the second case.
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Proof of Proposition 2.2. For part (i), consider the case where G(c) > 0 (the other case is
similar). Assume that F has a (tn, dn) cutoff. Then, by definition, we may choose positive
integers C, N such that fn(tn +Cdn) < G(c) for n ≥ N . Observe that we may enlarge N so that
fn(tn + Cdn) < fn(tn + cbn) for n ≥ 1. The weak optimality is then given by the monotonicity
of fn.

In the other direction, assume that G(c) = 0 and G(c) = M for all c > 0. Set n1 = 1 and, for
k ≥ 1, let nk+1 be an integer greater than nk such that, for 1 ≤ i ≤ k,

fnk
(tnk

+ 21−ibnk
) ≤ 2i−k, fnk

(tnk
− 2i−kbnk

) ≥ min{(1 − 2−i)M, 2i}.

For n ≥ 1, let cn = bn if n /∈ {nk : k ≥ 1} and let cnk
= 2kbnk

for k ≥ 1. It is easy to see that,
for j ≥ 1,

lim sup
n→∞

fn(tn + 2jcn) ≤ lim sup
n→∞

fnk
(tnk

+ 2j−kbnk
) ≤ 21−j

and
lim inf
n→∞

fn(tn − 2jcn) ≥ lim inf
n→∞

fnk
(tnk

− 2j−kbnk
) ≥ min{(1 − 2−j)M, 2j}.

This implies there is a (tn, cn) cutoff (let j tend to infinity). Hence, the (tn, bn) cutoff is not
weakly optimal.

For part (ii), assume that 0 < G(c2) ≤ G(c1) < M for some c2 > c1 and that F has a (sn, dn)
cutoff. As before, we may choose C2 > C1 and N > 0 such that, for n ≥ N ,

fn(sn + C2dn) ≤ fn(tn + c2bn) ≤ fn(tn + c1bn) ≤ fn(sn + C1dn).

The monotonicity of fn then implies (C2 − C1)dn > (c2 − c1)bn for n ≥ N . This proves the
optimality of the (tn, bn) cutoff.

In the other direction, assume that the (tn, bn) cutoff is optimal. Let A = {c ∈ R : G(c) = 0}.
If A is empty, there is nothing to prove. If A is nonempty, let c0 = inf{c ∈ A}. For n ≥ 1, let
sn = tn + c0bn. Then the family has an optimal (sn, bn) cutoff. By part (ii), we may choose
c < 0 such that G(c+ c0) < M . Also, by the definition of c0, one has G(c/2+ c0) > 0 as desired.

Part (iii) is an immediate consequence of Lemma 2.1.

Proof of Proposition 2.4. Observe that (2.9) implies

M = lim sup
n→∞

fn(0) ≥ δ0 > 0.

As fn vanishes at infinity, if η > 0 is small, then T (fn, η) is contained in (0,∞) for n large
enough. This shows the limit of the ratios in (2.7) is well-defined for 0 < η < δ < M .

We first consider case (i) of Proposition 2.4. Assume that (2.7) holds for 0 < η < δ with C ≥ 1.
Let δ1 = 1

2 min{δ0, δ} and tn = T (fn, δ1). Observe that, for 0 < η ≤ δ1, we may choose an
integer N(η) such that T (fn, η) < 2Ctn for n ≥ N(η). This implies

sup
t>2Ctn

fn(t) ≤ η ∀n ≥ N(η), η ∈ (0, δ1).

The first condition in (c1) of Definition 2.1 follows. The definition of T (fn, δ1) gives

inf
t<tn

fn(t) ≥ δ1
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for n large enough. This proves the second condition in (c1) of Definition 2.1 with a = 1. Hence,
F has a precutoff.

For the converse direction, let tn, a, b be positive numbers as in (c1). Since supt>btn fn(t) → 0,
we must have btn ≥ T (fn, δ0) for n large enough. By (2.9), this implies tn → ∞. Let 0 < δ <
lim inf
n→∞

inf
t<tn

fn(t). For η ∈ (0, δ), we select N(η) > 0 such that

∀n ≥ N(η), sup
t>btn

fn(t) < η < δ < inf
t<atn

fn(t).

For n ≥ N(η), let rn, sn ∈ N be such that atn − 1 ≤ rn < atn and btn < sn ≤ btn + 1. Then the
monotonicity of fn implies

atn − 1 ≤ rn ≤ T (fn, δ) ≤ T (fn, η) ≤ sn ≤ btn + 1,

which gives (2.7) with C = b/a.

Next, we consider case (ii) of Proposition 2.4. Assume that (2.7) holds for 0 < η < δ < M with
C = 1. Set tn = T (fn, δ0/2). By assumption, we may choose, for each δ ∈ (0, M) and ǫ ∈ (0, 1),
an integer N(δ, ǫ) such that

(1 − ǫ)tn < T (fn, δ) < (1 + ǫ)tn ∀n ≥ N(δ, ǫ).

This implies, by the monotonicity of fn,

sup
t>(1+ǫ)tn

fn(t) ≤ δ ≤ inf
t<(1−ǫ)tn

fn(t) ∀n ≥ N(δ, ǫ).

The desired cutoff is proved by taking n → ∞ and then letting δ → 0 and δ → M respectively.

For the converse, assume that F presents a cutoff with cutoff sequence (tn)∞1 . By definition, we
may choose, for each δ ∈ (0, M) and ǫ ∈ (0, 1), an integer N(δ, ǫ) such that

sup
t>(1+ǫ)tn

fn(t) < δ < inf
t<(1−ǫ)tn

fn(t), ∀n ≥ N(δ, ǫ). (A.1)

As in the proof of case (i), the monotonicity of fn implies

(1 − ǫ)tn − 1 ≤ T (fn, δ) ≤ (1 + ǫ)tn + 1,

for n ≥ N(δ, ǫ) and ǫ ∈ (0, 1). Since (2.9) implies tn → ∞, we obtain T (fn, δ) ∼ tn for all
0 < δ < M , which is equivalent to the desired property.

Finally, consider case (iii) of Proposition 2.4]. Assume that (2.8) holds for δ ∈ (0, M). This is
equivalent to the existence of an integer N(δ, c1), depending on δ ∈ (0, M) and c1 > 0, such that

0 < tn − cbn ≤ T (fn, δ) ≤ tn + cbn ∀n ≥ N(δ, c1), c > c1.

The above inequalities imply that

sup
t>tn+cbn

fn(t) ≤ δ ≤ inf
t<tn−cbn

fn(t)

for all n ≥ N(δ, c1) and c > c1. Letting n → ∞, c → ∞ and then respectively δ → 0 and δ → M
proves the (tn, bn) cutoff for F
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For the converse, assume that F has a (tn, bn) cutoff. By definition, we may choose, for any
δ ∈ (0, M), a positive number c(δ) > 0 and an integer N(δ) such that

sup
t>tn+c(δ)bn

fn(t) < δ < inf
t<tn−c(δ)bn

fn(t)

for all n ≥ N(δ). As before, this implies

tn − c(δ)bn − 1 ≤ T (fn, δ) ≤ tn + c(δ)bn + 1 ∀n ≥ N(δ).

By (2.10), we may enlarge N(δ) so that infn≥N(δ) bn = b > 0. Then, the above inequalities
become |T (fn, δ) − tn| ≤ (c(δ) + 1/b)bn for n ≥ N(δ). This proves (2.8).

Proof of Corollary 2.7. The direction (i) implies (ii) follows immediately from Proposition 2.4.
For the other direction, assume that F has weakly optimal (T (fn, δ), bn) and (T (fn, δ) − 1, bn)
cutoffs. Obviously, for any subsequence (mk)

∞
1 , the subfamily F ′ = {fmk

: k = 1, 2, ...} ⊂ F
has weakly optimal (T (fmk

, δ), bmk
) and (T (fmk

, δ) − 1, bmk
) cutoffs. By the weak optimality

of the (T (fmk
, δ), bmk

) cutoff and the positiveness of lim inf
k→∞

bmk
, at least one of the following

inequalities must hold.

lim inf
k→∞

fmk
(T (fmk

, δ) − 1) < M, lim sup
k→∞

fmk
(T (fmk

, δ) + 1) > 0. (A.2)

Similarly, at least one of the following inequalities must hold.

lim inf
k→∞

fmk
(T (fmk

, δ) − 2) < M, lim sup
k→∞

fmk
(T (fmk

, δ)) > 0.

Suppose now that F has a (sn, cn) cutoff. It suffices to show that bn = O(cn). If lim infn→∞ cn >
0, then, by Proposition 2.4, F has a (T (fn, δ), cn) cutoff. In this case, the weak optimality of
the (T (fn, δ), bn) cutoff for F implies bn = O(cn). It remains to prove that lim infn→∞ cn > 0.
Assume the converse and let (nk)

∞
1 be a subsequence of N such that cnk

→ 0 as k → ∞. By the
definition of the (sn, cn) cutoff, we may choose C > 0 and N > 0 such that

sup
t>sn+Ccn

fn(t) < δ < inf
t<sn−Ccn

fn(t), ∀n ≥ N.

Since cnk
→ 0, we may select K > 0 such that Ccnk

< 1/2 and nk ≥ N for k ≥ K. The
monotonicity of fn then implies that

snk
+ Ccnk

≥ T (fnk
, δ) − 1, T (fnk

, δ) ≥ snk
− Ccnk

, ∀k ≥ K,

which gives
T (fnk

, δ) − 3/2 ≤ snk
≤ T (fnk

, δ) + 1/2 ∀k ≥ K. (A.3)

Since {fnk
: k ≥ 1} has a (snk

, cnk
) cutoff, we have

lim
k→∞

fnk
(T (fnk

, δ) − 2) = M, lim
k→∞

fnk
(T (fnk

, δ) + 1) = 0.

By (A.3), there is no loss of generality in choosing a further subsequence n′
k of nk such that

sn′
k
≥ T (fn′

k
, δ) − 1/2. Then lim

k→∞
fn′

k
(T (fn′

k
, δ) − 1) = M , which contradicts (A.2). Hence,

infn≥1 cn > 0.
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Proof of Lemma 2.8. For (i), we assume that F < M (the case F > 0 is similar). Fix δ ∈ (0, M)
and let sn = T (fn, δ) for n ≥ 1. By Corollary 2.6, it suffices to show that the (sn, bn) cutoff for
F is weakly optimal. Observe that, by Corollary 2.5, we may choose positive numbers C1, N1

such that |tn − sn| ≤ C1bn for n ≥ N1. Assume that F has a (sn, cn) cutoff. By Definition
2.1(c3), we may choose C2 > 0, N2 > N1 such that

inf
t<sn−C2cn

fn(t) > sup
t>tn−3C1bn

fn(t), ∀n ≥ N2.

Let (nk)
∞
1 be a subsequence of N such that bnk

> 0 for all k ≥ 1 and bi = 0 for i ∈ N\{nk : k ≥ 1}.
On this subsequence, we have, for k ≥ 1 such that nk ≥ N2,

inf
t<snk

−C2cnk

fnk
(t) > sup

t>tnk
−3C1bnk

fnk
(t)

≥ inf
t<tnk

−2C1bnk

fnk
(t) ≥ inf

t<snk
−C1bnk

fnk
(t).

This implies bnk
= O(cnk

) and then bn = O(cn). Hence, bn is an optimal window.

For (ii), we consider the case F < M and F (C) = 0 with C > 0 (the other case is similar).
Assume the converse, that is, F has a strongly optimal cutoff, say (rn, dn). By part (i), we know
that the (tn, bn) cutoff is optimal. Hence, we have dn = O(bn) and bn = O(dn). By Remark 2.5,
the strong optimality of the (rn, dn) cutoff implies that bn > 0 for n large enough. By Corollary
2.5, |tn − rn| = O(bn). Let N3 > 0, C3 > be such that C3 > |C|, tn ≤ rn + C3bn and bn ≤ C3dn

for n ≥ N3. By Lemma 2.1, we obtain

0 = F (C) = lim inf
n→∞

inf
t<tn+Cbn

fn(t) ≥ lim inf
n→∞

inf
t<rn+C3(C3+C)dn

fn(t) > 0,

a contradiction.

Proof of Proposition 2.9. Note that if the family in Proposition 2.4 has a strongly optimal
(tn, bn) cutoff, then lim infn→∞ bn > 0. By Corollary 2.5 and Definition 2.2(c3), the strong
optimality of the (tn, bn) cutoff and the assumption that |sn − tn| = O(bn) imply that F has a
strongly optimal (sn, bn) cutoff.

For case (i), Definition 2.1(c3) and Definition 2.2(w3) imply the existence of positive numbers
C, C ′, N such that

sup
t>sn+C′cn

gn(t) < sup
t>sn+Cbn

fn(t) ≤ sup
t>sn+Cbn

gn(t), ∀n ≥ N.

By the monotonicity of gn, we have C ′cn > Cbn for n ≥ N . This proves bn = O(cn).

For (ii), we let nk and n′
k be subsequences of N such that fnk

≥ gnk
and fn′

k
≤ gn′

k
for k ≥ 1.

By (i), we have bn′
k

= O(cn′
k
). For the subfamilies {fnk

: k ≥ 1} and {gnk
: k ≥ 1}, Definition

2.1(c3) and Definition 2.2(w3) imply the existence of positive numbers C, C ′, K such that

inf
t<snk

−Cbnk

gnk
(t) ≤ inf

t<snk
−Cbnk

fnk
(t) < inf

t<snk
−C′cnk

gnk
(t), ∀k ≥ K.

This gives Cbnk
≤ C ′cnk

for k ≥ K. Hence, bn = O(cn).

71



Proof of Proposition 3.5. We first consider the spectral gaps λd
n and λc

n. Note that, for t > 0,
P d

n,t = Kt
n and P c

n,t = e−t(I−Kn). In the discrete time case, let K∗
n be the adjoint of Kn. Then

the Markov kernel K∗
nKn is given by

K∗
nKn(x, y) =

{
1/2 if yi = xi for 1 ≤ i ≤ n − 1

0 otherwise

for all x = xn...x1, y = yn...y1 ∈ Ωn. This implies λd
n = 0. In the continuous time case, let f(x)

be the the number of 1’s in x. Then Varπn(f) = n/4 and

〈(I − Kn)f, f〉 =
1

2

∑

x,y∈Ωn

|f(x) − f(y)|2Kn(x, y)πn(x) =
1

4
.

This implies λc
n ≤ 1/n.

To prove the desired cutoff, let fd
n,p(t) = Dd

n,p(0, t)(resp. f c
n,p(t) = Dc

n,p(0, t)), where

Dd
n,p(0, t)(resp. Dc

n,p(0, t)) is the Lp distance between δ0 and δ0P
d
n,t(resp. δ0P

c
n,t). We first

consider (i). Obviously,

fd
n,p(t) =

{
2−n/p

(
(2n−t − 1)p + 2n − 2t

)1/p
1[0,n](t) for 1 ≤ p < ∞

(2n−t − 1)1[0,n](t) for p = ∞

Let F and F be functions in (2.2) w.r.t. (tn, bn) = (n, 1). A few computations show that

F (c) = F (c) =

{
[(2−c − 1)p2c + 1 − 2c]1/p1[0,∞)(c) for 1 ≤ p < ∞
(2−c − 1)1[0,∞)(c) for p = ∞

This proves the Lp (n, 1)-cutoff for 1 ≤ p ≤ ∞. The optimality of the window follows immediately
from Lemma 2.8.

For (ii), observe that the transition function pc
n(t, ·, ·) can be expressed as follows.

pc
n(t, 0, y) = e−t

n∑

j=i

tj

j!
2−j + e−t

∑

j>n

tj

j!
2−n

where y = yn · · · y1 satisfies yn = yn−1 = · · · = yi+1 = 0 and yi = 1 for 0 ≤ i ≤ n. This implies,
for 1 ≤ p < ∞,

(
f c

n,p(t)
)p

= e−pt2−n

{
n∑

i=1

∣∣∣∣∣

n∑

j=i

tj

j!
(2n−j − 1) −

i−1∑

j=0

tj

j!

∣∣∣∣∣

p

2i−1 +

(
n∑

j=0

tj

j!
(2n−j − 1)

)p}

and

f c
n,∞(t) = 2npc

n(t, 0, 0) − 1 = e−t
n∑

j=0

tj

j!
(2n−j − 1). (A.4)

In the case of 1 < p < ∞, the fact that

n1/p−1
n∑

i=1

ci ≤
(

n∑

i=1

cp
i

)1/p

≤
n∑

i=1

ci, ∀ci ≥ 0, 1 ≤ i ≤ n,
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implies that, for t > 0,

2
−1
p (n + 1)

1−p
p [Gp(n, t) − Hp(n, t)] ≤ ‖h0

n,t − 1‖p ≤ Gp(n, t) + Hp(n, t) (A.5)

where

Gp(n, t) = e−t2−n/p




n∑

i=1

n∑

j=i

tj

j!
(2n−j − 1)2i/p +

n∑

j=0

tj

j!
(2n−j − 1)




= e−t2n(1−1/p)
n−1∑

j=0

1

j!
(t2(1−p)/p)j (1 − 2j−n)(1 − 2−(j+1)/p)

1 − 2−1/p

and

Hp(n, t) = e−t2−n/p




n∑

i=1

i−1∑

j=0

tj

j!
2i/p


 ≤ 2e−t

n∑

j=0

tj

j
.

Fix 1 < p < ∞ and let tn = tn(p) and bn = log n. Note that for s > 1, the map s 7→ log s
1−s−1 is

increasing and has limit 1 as s ↓ 1. Using this observation, we may choose δ > 0 and N > 0
such that tn(1 − δ) > n for n ≥ N and hence, Lemma A.1 implies

lim
n→∞

Hp(n, tn + cbn) ≤ lim
n→∞

Hp(n, tn(1 − δ/2)) = 0 ∀c ∈ R. (A.6)

Hence it suffices to consider only the function Gp. Moreover, as

1/2 ≤ (1 − 2j−n)(1 − 2−(j+1)/p)

1 − 2−1/p
≤ 1

1 − 2−1/p
, ∀0 ≤ j ≤ n − 1,

we can consider the function

gp(n, t) = e−t2n(1−1/p)
n−1∑

j=0

1

j!
(t21/p−1)j

instead of Gp(n, t). A simple computation shows that

gp(n, tn + cbn) = exp{−cbn(1 − 21/p−1)}e−sn

n−1∑

j=0

sj
n

j!
(A.7)

where sn = (tn + cbn)21/p−1. Observe that, for fixed c ∈ R,

n − sn = n

(
1 − log(21−1/p)

21−1/p − 1

)
(1 + o(1)) as n → ∞.

Since the map s 7→ log s
s−1 for s > 1 is strictly decreasing and has limit 1 as s ↓ 1, we may choose,

for each c ∈ R, positive numbers δ, N such that

n − sn ≥ δn ∀n ≥ N.
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By Lemma A.1, this implies

lim
n→∞

e−sn

n−1∑

j=0

sj
n

j!
= 1 ∀c ∈ R. (A.8)

Now combining (A.5), (A.6), (A.7) and (A.8), we get

∀c > 0, F (c) = lim sup
n→∞

f c
n,p(tn + cbn) ≤ lim

n→∞
n−c(1−21/p−1) = 0

and
∀c < 0, F (c) = lim inf

n→∞
f c

n,p(tn + cbn) ≥ lim
n→∞

2−1/pn−c(1−21/p−1)+1/p−1.

This proves the desired Lp-cutoff for 1 < p < ∞.

For the case p = ∞, we have, by using the identity in (A.4),

f c
n,∞(t)

{
≤ 2ne−t

∑n−1
j=0

(t/2)j

j!

≥ 2n−1e−t
∑n−1

j=0
(t/2)j

j!

.

Fix c ∈ R. Observe that tn + c − (log 2)n = tn+c
2 + c

2 . This implies

1

2
e−c/2cn ≤ f c

n,∞(tn + c) ≤ e−c/2cn,

where cn = e−(tn+c)/2
∑n−1

j=0
((tn+c)/2)j

j! . Since tn/2 = (log 2)n < n, by Lemma A.1, one has
cn → 1 as n → ∞. Hence, we have

e−c/2

2
≤ F (c) ≤ F (c) ≤ e−c/2 ∀c ∈ R.

This proves the strong optimality of the ((2 log 2)n, 1) L∞-cutoff, which is somewhat stronger
than the statement in Proposition 3.5.

For the case p = 1, note that the triangular inequality implies that

f c
n,1(t) ≤ e−t

n∑

i=0

ti

i!
fd

n,1(t) ≤ 2e−t
n∑

i=0

ti

i!
.

For n ≥ 1, let tn = n and bn =
√

n. By Lemma A.1, the above inequality implies that
F (c) ≤ 2Φ(−c) for all c ∈ R, where Φ(t) = 1√

2π

∫ t
−∞ e−s2/2ds. For the lower, we set, for ǫ > 0,

An(ǫ) = {y = yn · · · y1 ∈ Ωn : yn = yn−1 = · · · = yn−[ǫ
√

n]+1 = 0}.

Obviously, we have

fn,1(t) ≥ 2(pc
n(t, 0, An(ǫ)) − πn(An(ǫ))) ≥ G(t) − H(t),

where

G(t) = 2e−t

n−[ǫ
√

n]∑

j=0

tj

j!
, H(t) = 2e−t

n−[ǫ
√

n]∑

j=0

(t/2)j

j!
+ 21−[ǫ

√
n].
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Fix c ∈ R. By Lemma A.1, we have

lim
n→∞

H(n + [c
√

n]) = 0, lim
n→∞

G(n + [c
√

n]) = 2Φ(−ǫ − c), ∀ǫ > 0.

This implies F (c) ≥ 2Φ(−c) for all c ∈ R. Combining all above, we get the strong optimality of
the (n,

√
n) L1-cutoff.

Lemma A.1. For n > 0, let an ∈ R
+, bn ∈ Z

+, cn = bn−an√
an

and dn = e−an
∑bn

i=0
ai

n
i! . Assume

that an + bn → ∞. Then

lim sup
n→∞

dn = Φ

(
lim sup

n→∞
cn

)
, lim inf

n→∞
dn = Φ

(
lim inf
n→∞

cn

)
, (A.9)

where Φ(x) = 1√
2π

∫ x
−∞ e−t2/2dt.

In particular, if cn converges(the limit can be +∞ and −∞), then lim
n→∞

dn = Φ
(

lim
n→∞

cn

)
.

Proof of Lemma A.1. We prove the first identity in (A.9). The proof of the second identity is
similar. Note that if (A.9) fails, one can always find a subsequence of (an)∞1 which is either
bounded or tending to infinity such that

lim sup
n→∞

dn < Φ

(
lim sup

n→∞
cn

)
.

Hence it suffices to prove Lemma A.1 under the assumption that the sequence (an)∞1 either is
bounded or tends to infinity. In the former case, one can easily prove it by Taylor expansion of
the exponential function and the boundedness of an.

Now assume that an tends to infinity. We first deal with the case an ∈ Z
+ for all n ≥ 1. Let

Y1, Y2, ... be i.i.d. Poisson(1) random variables and Fn the distribution function of a
−1/2
n (Y1 +

Y2 + ...+Yan −an). Then dn = Fn(cn) and, by the central limit theorem, Fn converges uniformly
to the distribution function Φ of the standard normal random variable.

Set L = lim supn→∞ cn. We first assume that |L| < ∞. For all ǫ > 0, if k is large enough, one
has

sup
n≥k

Fn(L − ǫ) ≤ sup
n≥k

Fn(cn) ≤ sup
n≥k

Fn(L + ǫ).

Letting k → ∞ and then ǫ → 0 implies the desired identity.

In the case |L| = ∞, observe that, for l ∈ R, if k is large enough, one has

sup
n≥k

Fn(cn)

{
≥ supn≥k Fn(l) if L = ∞
≤ supn≥k Fn(l) if L = −∞

.

Then the first identity with integer an is proved by letting k → ∞ and l → ±∞.

For an ∈ R
+, we consider these two sequences, (⌊an⌋)∞n=1 and (⌈an⌉)∞n=1. Note that, for fixed

k, l > 0, both l−t√
t

and e−t
∑k

i=0
ti

i! are strictly decreasing for t ∈ R
+, which implies

bn − ⌈an⌉√
⌈an⌉

≤ cn ≤ bn − ⌊an⌋√
⌊an⌋

,
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and

e−⌈an⌉
bn∑

i=0

⌈an⌉i

i!
≤ dn ≤ e−⌊an⌋

bn∑

i=0

⌊an⌋i

i!
. (A.10)

Note also that for [·] ∈ {⌊·⌋, ⌈·⌉},

bn − [an]√
[an]

=
bn − an√

an
×

√
an

[an]
+

an − [an]√
[an]

.

One then has lim sup
n→∞

bn−[an]√
[an]

= lim sup
n→∞

cn. Hence, the first identity for nonnegative real-valued

an is proved by applying (A.10) and the result in the case an ∈ Z+ for n ≥ 1.
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