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Abstract

In this paper, a generalized Itô’s formula for continuous functions of two-dimensional contin-
uous semimartingales is proved. The formula uses the local time of each coordinate process
of the semimartingale, the left space first derivatives and the second derivative ∇−

1
∇−

2
f , and

the stochastic Lebesgue-Stieltjes integrals of two parameters. The second derivative ∇−

1
∇−

2
f

is only assumed to be of locally bounded variation in certain variables. Integration by parts
formulae are asserted for the integrals of local times. The two-parameter integral is defined as
a natural generalization of both the Itô integral and the Lebesgue-Stieltjes integral through
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a type of Itô isometry formula.
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1 Introduction

The classical Itô’s formula for twice differentiable functions has been extended to less smooth
functions by many mathematicians. Progress has been made mainly in one-dimension beginning
with Tanaka’s pioneering work [30] for |Xt| to which the local time was beautifully linked.
Further extensions were made to a time independent convex function f(x) in [21] and [32] as
the following Tanaka-Meyer formula:

f(X(t)) = f(X(0)) +

∫ t

0
f ′
−(X(s))dX(s) +

∫ ∞

−∞
Lt(x)d(f ′

−(x)), (1)

where the left derivative f ′
− exists and is increasing due to the convexity assumption. This

can be generalized easily to include the case when f ′
− is of bounded variation where the integral∫ ∞

−∞ Lt(x)d(f ′
−(x)) is a Lebesgue-Stieltjes integral. The extension to the time dependent case was

given in [7]. Recently we proved that Lt(x) is of finite p-variation (in the classical sense of Young
and Lyons) for any p > 2 in [9]. This new result leads to the construction of

∫ ∞
−∞ Lt(x)d(f ′

−(x))
as a Young integral, so the Tanaka-Meyer formula still holds when f ′

− is of finite q-variation for
a constant 1 ≤ q < 2. Moreover in [10], we extended the above to the case when 2 ≤ q < 3 using
Lyons’ rough path integration theory.

The purpose of this paper is to extend formula (1) to two dimensions. This is a nontrivial
extension as the local time in two-dimensions does not exist. But formally by using the occupa-
tion times formula (see (4)), the property that

∫ ∞
0 1R\{a}(X1(s, ω))dsL1(s, ω) = 0 a.s. and the

“formal integration by parts formula”, we observe that for a smooth function f ,

1

2

∫ t

0
∆1f(X1(s), X2(s))d <X1>s

=

∫ +∞

−∞

∫ t

0
∆1f(X1(s), X2(s))dsL1(s, a)da

=

∫ +∞

−∞

∫ t

0
∆1f(a, X2(s))dsL1(s, a)da

=

∫ +∞

−∞
L1(t, a)da∇1f(a, X2(t)) −

∫ +∞

−∞

∫ t

0
L1(s, a)ds,a∇1f(a, X2(s)). (2)

Here the last step needs to be justified, and the final integral needs to be properly defined. It is
worth noting that the right hand side does not include any second order derivative of f explicitly.
Here ∇1f(a, X2(s)) is a semimartingale for any fixed a, following the Tanaka-Meyer formula.
We study the kind of integral

∫ +∞
−∞

∫ t

0 g(s, a)ds,ah(s, a) in Section 2. Here h(s, x) is a continuous
martingale with cross variation < h(·, a), h(·, b) >s of locally bounded variation in (s, a, b), and

E
[∫ t

0

∫
R2 |g(s, a)g(s, b)||da,b,s < h(·, a), h(·, b) >s |

]
< ∞. The integral is different from both the

Lebesgue-Stieltjes integral and Itô’s stochastic integral. But it is a natural extension to the two-
parameter stochastic case and is therefore called a stochastic Lebesgue-Stieltjes integral. To our
knowledge, this integral is new. It differs from integration with Brownian sheet defined by Walsh
([31]) and from integration with respect to a Poisson random measure (see [15]). A generalized
Itô’s formula in two dimensions is proved in Section 3. Moreover, we also prove the integration
by parts formula for the stochastic Lebesgue-Stieltjes integrals involving local times (Theorems
3.2 and 3.3). It is noted that Peskir recently gave a generalized Itô’s formula in multi-dimensions
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using local times on surfaces where the first order derivative might be discontinuous under the
condition that their second derivative has a limit from both sides of the surfaces in [24]. Our
formula does not need the condition on the existence of limits of second order derivatives when
x goes to the surface. There are numerous examples for which the classical Itô’s formula and
Peskir’s formula may not work immediately, but our formula can be used (see Examples 3.1 and
3.2).

Applications e.g. in the study of the asymptotics of the solutions of heat equations with caustics
in two dimensions, are not included in this paper. These results will be published in some future
work.

Other kinds of relevant results include work for absolutely continuous functions with the first
derivative being locally bounded in [26], and for W 1,2

loc functions of a Brownian motion for one
dimension in [12] and [13] for multi-dimensions. It was proved in [12] that f(Bt) = f(B0) +∫ t

0 f ′(Bs)dBs + 1
2 [f(B), B]t, where [f(B), B]t is the covariation of the processes f(B) and B,

and is equal to
∫ t

0 f(Bs)d
∗Bs −

∫ t

0 f(Bs)dBs as a difference of backward and forward integrals.
See [29] for the case of a continuous semimartingale. The multi-dimensional case was considered
in [13], [29] and [22]. An integral

∫ ∞
−∞ f ′(x)dxLt(x) was introduced in [3] through the existence

of the expression f(X(t)) − f(X(0)) −
∫ t

0
∂−

∂x
f(X(s))dX(s), where Lt(x) is the local time of

the semimartingale Xt. This work was extended further to define the local time space integral∫ t

0

∫ ∞
−∞

∂
∂x

f(s, X(s))ds,xLs(x) for a time dependent function f(s, x) using forward and backward
integrals for Brownian motion in [5] and to semimartingales other than Brownian motion in
[6]. This integral was also defined in [27] as a stochastic integral with excursion fields, and in
[14] through Itô’s formula without assuming the reversibility of the semimartingale which was
required in [5]. Other relevant references include [11] where it was also proved that, if X is an
one-dimensional Brownian motion, then f(X(t)) is a semimartingale if and only if f ∈ W 1,2

loc and
its weak derivative is of bounded variation using backward and forward integrals ([19]). But our
results are new.

2 The definition of stochastic Lebesgue-Stieltjes integrals and

the integration by parts formula

For a filtered probability space (Ω,F , {Ft}t≥0, P ), denote by M2 the Hilbert space of all pro-
cesses X = (Xt)0≤t≤T such that (Xt)0≤t≤T is a (Ft)0≤t≤T right continuous square integrable
martingale with inner product (X, Y ) = E(XT YT ). A three-variable function f(s, x, y) is called
left continuous iff it is left continuous in all three variables together i.e. for any sequence
(s1, x1, y1) ≤ (s2, x2, y2) ≤ · · · ≤ (sk, xk, yk) ≤ (s, x, y) and (sk, xk, yk) → (s, x, y), as k → ∞, we
have f(sk, xk, yk) → f(s, x, y) as k → ∞. Here (s1, x1, y1) ≤ (s2, x2, y2) means s1 ≤ s2, x1 ≤ x2

and y1 ≤ y2. Define

V1 :=
{

h : [0, t] × (−∞,∞) × Ω → R s.t. (s, x, ω) 7→ h(s, x, ω)

is B([0, s] × R) ×Fs−measurable, and h(s, x) is

Fs−adapted for any x ∈ R
}

,
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V2 :=
{

h : h ∈ V1 is a continuous (in s) M2 − martingale for each x,

and the crossvariation < h(·, x), h(·, y) >s is left continuous

and of locally bounded variation in (s, x, y)
}

.

In the following, we will always denote < h(·, x), h(·, y) >s by < h(x), h(y) >s.

We now recall some classical results (see [1] and [20]). A three-variable function f(s, x, y) is
called monotonically increasing if whenever (s2, x2, y2) ≥ (s1, x1, y1), then

f(s2, x2, y2) − f(s2, x1, y2) − f(s2, x2, y1) + f(s2, x1, y1)

−f(s1, x2, y2) + f(s1, x1, y2) + f(s1, x2, y1) − f(s1, x1, y1) ≥ 0.

For a left-continuous and monotonically increasing function f(s, x, y), one can define a Lebesgue-
Stieltjes measure by setting

ν([s1, s2) × [x1, x2) × [y1, y2))

= f(s2, x2, y2) − f(s2, x1, y2) − f(s2, x2, y1) + f(s2, x1, y1)

−f(s1, x2, y2) + f(s1, x1, y2) + f(s1, x2, y1) − f(s1, x1, y1).

For h ∈ V2, define

< h(x), h(y) >t2
t1

:=< h(x), h(y) >t2 − < h(x), h(y) >t1 , t2 ≥ t1.

Note that, since < h(x), h(y) >s is left continuous and of locally bounded variation in (s, x, y),
it can be decomposed to the difference of two increasing and left continuous functions f1(s, x, y)
and f2(s, x, y) (see McShane [20] or Proposition 2.2 in Elworthy, Truman and Zhao [7] which
also holds for multi-parameter functions). Note that each of f1 and f2 generates a measure so,
for any measurable function g(s, x, y), we can define

∫ t2

t1

∫ a2

a1

∫ b2

b1

g(s, x, y)dx,y,s < h(x), h(y) >s

=

∫ t2

t1

∫ a2

a1

∫ b2

b1

g(s, x, y)dx,y,sf1(s, x, y) −

∫ t2

t1

∫ a2

a1

∫ b2

b1

g(s, x, y)dx,y,sf2(s, x, y).

In particular, a signed product measure in the space [0, T ] × R2 can be defined as follows: for
any [t1, t2) × [x1, x2) × [y1, y2) ⊂ [0, T ] × R2

∫ t2

t1

∫ x2

x1

∫ y2

y1

dx,y,s < h(x), h(y) >s

=

∫ t2

t1

∫ x2

x1

∫ y2

y1

dx,y,sf1(s, x, y) −

∫ t2

t1

∫ x2

x1

∫ y2

y1

dx,y,sf2(s, x, y)

= < h(x2), h(y2) >t2
t1
− < h(x2), h(y1) >t2

t1

− < h(x1), h(y2) >t2
t1

+ < h(x1), h(y1) >t2
t1

= < h(x2) − h(x1), h(y2) − h(y1) >t2
t1

. (1)

Define

|dx,y,s < h(x), h(y) >s | = dx,y,sf1(s, x, y) + dx,y,sf2(s, x, y). (2)
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Moreover, for h ∈ V2, define:

V3(h) :=
{

g : g ∈ V1, and there exists N such that (−N, N) covers

the compact support of g(s, ·, ω) for a.a. ω, and s ∈ [0, T ] and

E

[∫ t

0

∫

R2

|g(s, x)g(s, y)||dx,y,s < h(x), h(y) >s |

]
< ∞

}
.

V4(h) :=
{

g : g ∈ V1 has a compact support in x for a.a. ω, and

E

[∫ t

0

∫

R2

|g(s, x)g(s, y)||dx,y,s < h(x), h(y) >s |

]
< ∞

}
.

Consider now a simple function in V3, and always assume that, for any s > 0, g(s,−N) =
g(s, N) = 0,

g(s, x, ω) =
n−1∑

i=0

e0,i1{0}(s)1(xi,xi+1](x) +
∞∑

j=0

n−1∑

i=0

ej,i1(tj ,tj+1](s)1(xi,xi+1](x) (3)

where {tn}
∞
m=0 with t0 = 0 and lim

m→∞
tm = ∞, −N = x0 < x1 < x2 < · · · < xn = N , ej,i are

Ftj -measurable. For h ∈ V2, define an integral as:

It(g) :=

∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x) (4)

=
∞∑

j=0

n−1∑

i=0

ej,i

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1) − h(tj+1 ∧ t, xi) + h(tj ∧ t, xi)

]
.

This integral is called the stochastic Lebesgue-Stieltjes integral of the simple function g. It is
easy to see for simple functions g1, g2 ∈ V3(h), that

It(αg1 + βg2) = αIt(g1) + βIt(g2), (5)

for any α, β ∈ R. The following lemma plays a key role in extending the integral of simple
functions to functions in V3(h). It is equivalent to the Itô’s isometry formula in the case of the
stochastic integral.

Lemma 2.1. If h ∈ V2, g ∈ V3(h) is simple, then It(g) is a continuous martingale with respect
to (Ft)0≤t≤T and

E
( ∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x)

)2
= E

∫ t

0

∫

R2

g(s, x)g(s, y)dx,y,s < h(x), h(y) >s . (6)

Proof: From the definition of
∫ t

0

∫ ∞
−∞ g(s, x)ds,xh(s, x), it is easy to see that It is a continuous

martingale with respect to (Ft)0≤t≤T . As h(s, x, ω) is a continuous martingale in M2, using a
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standard conditional expectation argument to remove the cross product parts, we get:

E

[(∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x)

)2
]

= E
∞∑

j=0

(
n−1∑

i=0

ej,i

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1) − h(tj+1 ∧ t, xi) + h(tj ∧ t, xi)

])2

= E

∞∑

j=0

(
n−1∑

i=0

n−1∑

k=0

ej,iej,k ·

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1) − h(tj+1 ∧ t, xi) + h(tj ∧ t, xi)

]
·

[
h(tj+1 ∧ t, xk+1) − h(tj ∧ t, xk+1) − h(tj+1 ∧ t, xk) + h(tj ∧ t, xk)

])

= E
∞∑

j=0

{
n−1∑

i=0

n−1∑

k=0

ej,iej,k ·

[(
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

)(
h(tj+1 ∧ t, xk+1) − h(tj ∧ t, xk+1)

)

−
(
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

)(
h(tj+1 ∧ t, xk) − h(tj ∧ t, xk)

)

−
(
h(tj+1 ∧ t, xi) − h(tj ∧ t, xi)

)(
h(tj+1 ∧ t, xk+1) − h(tj ∧ t, xk+1)

)

+
(
h(tj+1 ∧ t, xi) − h(tj ∧ t, xi)

)(
h(tj+1 ∧ t, xk) − h(tj ∧ t, xk)

)]
}

= E

∫ t

0

n−1∑

i=0

n−1∑

k=0

g(s, xi+1)g(s, xk+1)
[
ds < h(xi+1), h(xk+1) >s −ds < h(xi+1), h(xk) >s

−ds < h(xi), h(xk+1) >s +ds < h(xi), h(xk) >s

]

= E
∞∑

j=0

n−1∑

i=0

n−1∑

k=0

ej,iej,k

[
< h(xi+1), h(xk+1) >

tj+1∧t
tj∧t − < h(xi+1), h(xk) >

tj+1∧t
tj∧t

− < h(xi), h(xk+1) >
tj+1∧t
tj∧t + < h(xi), h(xk) >

tj+1∧t
tj∧t

]

= E

[∫ t

0

∫

R2

g(s, x)g(s, y)dx,y,s < h(x), h(y) >s

]
.

So the desired result is proved. ⋄

The idea now is to use (6) to extend the definition of the integrals of simple functions to integrals
of functions in V3(h) and finally in V4(h), for any h ∈ V2. We achieve this goal in several steps:

Lemma 2.2. Let h ∈ V2, f ∈ V3(h) be bounded uniformly in ω, f(·, ·, ω) be continuous for each
ω on its compact support. Then there exist a sequence of bounded simple functions ϕm,n ∈ V3(h)
such that

E

∫ t

0

∫

R2

| (f − ϕm,n)(s, x)(f − ϕm′,n′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0,
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as m, n, m′, n′ → ∞.

Proof: Let 0 = t0 < t1 < · · · < tm = t, and −N = x0 < x1 < · · · < xn = N be a partition
of [0, t] × [−N, N ]. Assume when n, m → ∞, max

0≤j≤m−1
(tj+1 − tj) → 0, max

0≤i≤n−1
(xi+1 − xi) → 0.

Define

ϕm,n(s, x) :=

n−1∑

i=0

f(0, xi)1{0}(s)1(xi,xi+1](x) +

m−1∑

j=0

n−1∑

i=0

f(tj , xi)1(tj ,tj+1](s)1(xi,xi+1](x). (7)

Then ϕm,n(s, x) are simple and ϕm,n(s, x) → f(s, x) a.s. as m, n → ∞. The result follows from
applying Lebesgue’s dominated convergence theorem. ⋄

Lemma 2.3. Let h ∈ V2 and k ∈ V3(h) be bounded uniformly in ω. Then there exist functions
fn ∈ V3(h) such that fn(·, ·, ω) are continuous for all ω and n, and

E

∫ t

0

∫

R2

| (k − fn)(s, x)(k − fn′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0,

as n, n′ → ∞.

Proof: Define

fn(s, x) = n2

∫ x

x− 1
n

∫ s

s− 1
n

k(τ, y)dτdy.

Then fn(s, x) is continuous in s, x, and when n → ∞, fn(s, x) → k(s, x) a.s.. So for sufficiently
large n, fn(s, x) also has compact support in (−N, N) for all s ∈ [0, T ]. The desired convergence
follows from applying Lebesgue’s dominated convergence theorem. ⋄

Lemma 2.4. Let h ∈ V2 and g ∈ V3(h). Then there exist functions kn ∈ V3(h), bounded
uniformly in ω for each n, and

E

∫ t

0

∫

R2

| (g − kn)(s, x)(g − kn′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0,

as n, n′ → ∞.

Proof: Define

kn(t, x, ω) :=






−n if g(t, x, ω) < −n
g(t, x, ω) if − n ≤ g(t, x, ω) ≤ n
n if g(t, x, ω) > n.

(8)

Then as n → ∞, kn(t, x, ω) → g(t, x, ω) for each (t, x, ω). Note |kn(t, x, ω)| ≤ |g(t, x, ω)| and
kn ∈ V3(h). So applying Lebesgue’s dominated convergence theorem, we obtain the desired
result. ⋄

Lemma 2.5. Let h ∈ V2 and g ∈ V4(h). Then there exist functions gN ∈ V3(h) such that

E

∫ t

0

∫

R2

| (g − gN )(s, x)(g − gN ′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0, (9)

as N, N ′ → ∞.
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Proof: Define

gN (s, x, ω) := g(s, x, ω)1[−N+1,N−1](x). (10)

Then |gN | ≤ |g| and gN → g a.s., as N → ∞. So applying Lebesgue’s dominated convergence
theorem, we obtain the desired result. ⋄

From Lemmas 2.4, 2.3, 2.2, for each h ∈ V2, g ∈ V3(h), we can construct a sequence of simple
functions {ϕm,n} in V3(h) such that,

E

∫ t

0

∫

R2

| (g − ϕm,n)(s, x)(g − ϕm′,n′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0,

as m, n, m′, n′ → ∞. For ϕm,n and ϕm′,n′ , we can define stochastic Lebesgue-Stieltjes integrals
It(ϕm,n) and It(ϕm′,n′). From Lemma 2.1 and (5), it is easy to see that

E
[
IT (ϕm,n) − IT (ϕm′,n′)

]2

= E
[
IT (ϕm,n − ϕm′,n′)

]2

= E

∫ T

0

∫

R2

(ϕm,n − ϕm′,n′)(s, x)(ϕm,n − ϕm′,n′)(s, y)dx,y,s < h(x), h(y) >s

= E

∫ T

0

∫

R2

[(ϕm,n − g) − (ϕm′,n′ − g)](s, x) ·

[(ϕm,n − g) − (ϕm′,n′ − g)](s, y)dx,y,s < h(x), h(y) >s

= E

∫ T

0

∫

R2

(ϕm,n − g)(s, x)(ϕm,n − g)(s, y)dx,y,s < h(x), h(y) >s

−E

∫ T

0

∫

R2

(ϕm,n − g)(s, x)(ϕm′,n′ − g)(s, y)dx,y,s < h(x), h(y) >s

−E

∫ T

0

∫

R2

(ϕm′,n′ − g)(s, x)(ϕm,n − g)(s, y)dx,y,s < h(x), h(y) >s

+E

∫ T

0

∫

R2

(ϕm′,n′ − g)(s, x)(ϕm′,n′ − g)(s, y)dx,y,s < h(x), h(y) >s

≤ E

∫ T

0

∫

R2

| (ϕm,n − g)(s, x)(ϕm,n − g)(s, y) || dx,y,s < h(x), h(y) >s|

+E

∫ T

0

∫

R2

| (ϕm,n − g)(s, x)(ϕm′,n′ − g)(s, y) || dx,y,s < h(x), h(y) >s|

+E

∫ T

0

∫

R2

| (ϕm′,n′ − g)(s, x)(ϕm,n − g)(s, y) || dx,y,s < h(x), h(y) >s|

+E

∫ T

0

∫

R2

| (ϕm′,n′ − g)(s, x)(ϕm′,n′ − g)(s, y) || dx,y,s < h(x), h(y) >s|

→ 0,

as m, n, m′, n′ → ∞. Therefore {I.(ϕm,n)}∞m,n=1 is a Cauchy sequence in M2 whose norm is
denoted by ‖ · ‖. So there exists a process I(g) = {It(g), 0 ≤ t ≤ T} in M2, defined modulo
indistinguishability, such that

‖ I(ϕm,n) − I(g) ‖→ 0, as m, n → ∞.
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By the same argument as for the stochastic integral, one can easily prove that I(g) is well-defined
(independent of the choice of the simple functions), and (6) is true for I(g). We now can have
the following definition.

Definition 2.1. Let h ∈ V2, g ∈ V3(h).Then the integral of g with respect to h can be defined
in M2 as:

∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x) = lim

m,n→∞

∫ t

0

∫ ∞

−∞
ϕm,n(s, x)ds,xh(s, x).

Here {ϕm,n} is a sequence of simple functions in V3(h), s.t.

E

∫ t

0

∫

R2

| (g − ϕm,n)(s, x)(g − ϕm′,n′)(s, y)| | dx,y,s < h(x), h(y) >s | → 0,

as m, n, m′, n′ → ∞. Note ϕm,n may be constructed by combining the three approximation
procedures in Lemmas 2.4, 2.3, 2.2. For g ∈ V4(h), we can then define the integral in M2 as:

∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x) = lim

N→∞

∫ t

0

∫ ∞

−∞
g(s, x)1[−N+1,N−1](x)ds,xh(s, x).

It is a continuous martingale with respect to (Ft)0≤t≤T and for each 0 ≤ t ≤ T ,

E
( ∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x)

)2
= E

∫ t

0

∫

R2

g(s, x)g(s, y)dx,y,s < h(x), h(y) >s . (11)

The following results will be useful in the proof of our main theorem in the next section.

Proposition 2.1. If h ∈ V2, g ∈ V4(h), and g(t, x) is C2 in x, ∆g(t, x) is bounded uniformly
in t, then a.s.

−

∫ +∞

−∞

∫ t

0
∇g(s, x)dsh(s, x)dx =

∫ t

0

∫ +∞

−∞
g(s, x)ds,xh(s, x). (12)

Moreover, for any g ∈ V4(h), h ∈ V2 and C1 in x, ∇h ∈ M2,
∫ +∞

−∞

∫ t

0
g(s, x)ds∇h(s, x)dx =

∫ t

0

∫ +∞

−∞
g(s, x)ds,xh(s, x). (13)

Proof: If g is a simple function in V3(h) as given in (3), and note that ej,0 = ej,n = 0, we have
∫ t

0

∫ ∞

−∞
g(s, x)ds,xh(s, x)

=
n−1∑

i=0

∞∑

j=0

ej,i

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1) − h(tj+1 ∧ t, xi) + h(tj ∧ t, xi)

]

= −
n−1∑

i=0

∞∑

j=0

ej,i+1

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

]

+
n−1∑

i=0

∞∑

j=0

ej,i

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

]

= −

n−1∑

i=0

∞∑

j=0

[
ej,i+1 − ej,i

][
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

]
.
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If g(t, x) is C2 in x, let

ϕm,n(s, x) :=
n−1∑

i=0

g(0, xi)1{0}(s)1(xi,xi+1](x) +
m−1∑

j=0

n−1∑

i=0

g(tj , xi)1(tj ,tj+1](s)1(xi,xi+1](x),

then
ϕm,n(s, x) → g(s, x) a.s. as m, n → ∞.

Moreover, by the intermediate value theorem,

∫ +∞

−∞

∫ t

0
g(s, x)ds,xh(s, x)

= − lim
δt,δx→0

n−1∑

i=0

∞∑

j=0

[
g(tj ∧ t, xi+1) − g(tj ∧ t, xi)

]

[
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

]
(limit in M2)

= − lim
δt,δx→0

n−1∑

i=0

∞∑

j=0

[ ∫ 1

0
∇g(tj ∧ t, xi + α(xi+1 − xi))dα

][
h(tj+1 ∧ t, xi+1) − h(tj ∧ t, xi+1)

]
·

(xi+1 − xi)

= − lim
δx→0

n−1∑

i=0

∫ t

0

[ ∫ 1

0
∇g(s, xi + α(xi+1 − xi))dα

]
dsh(s, xi+1)(xi+1 − xi) (limit in M2)

= − lim
δx→0

n−1∑

i=0

∫ t

0
∇g(s, xi+1)dsh(s, xi+1)(xi+1 − xi)

− lim
δx→0

n−1∑

i=0

∫ t

0

[ ∫ 1

0

(
∇g(s, xi + α(xi+1 − xi)) −∇g(s, xi+1)

)
dα

]
dsh(s, xi+1)(xi+1 − xi).

Here δt = max
1≤j≤m

|tj+1 − tj |, δx = max
1≤i≤m

|xi+1 − xi|. To prove (12), first notice that

lim
δx→0

n−1∑

i=0

∫ t

0
∇g(s, xi+1)dsh(s, xi+1)(xi+1 − xi) =

∫ +∞

−∞

∫ t

0
∇g(s, x)dsh(s, x)dx.

Second, by the intermediate value theorem again, and from the assumption that ∆g(s, x) is
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bounded uniformly in s, the second term can be estimated as:

E

[
n−1∑

i=0

∫ t

0

[ ∫ 1

0

(
∇g(s, xi + α(xi+1 − xi)) −∇g(s, xi+1)

)
dα

]
dsh(s, xi+1)(xi+1 − xi)

]2

= E
n−1∑

i=0

n−1∑

k=0

[ ∫ t

0

[ ∫ 1

0

(
∇g(s, xi + α(xi+1 − xi)) −∇g(s, xi+1)

)
dα

]
dsh(s, xi+1)(xi+1 − xi) ·

∫ t

0

[ ∫ 1

0

(
∇g(s, xk + α(xk+1 − xk)) −∇g(s, xk+1)

)
dα

]
dsh(s, xk+1)(xk+1 − xk)

]

=
n−1∑

i=0

n−1∑

k=0

E

∫ t

0

[ ∫ 1

0

(
∇g(s, xi + α(xi+1 − xi)) −∇g(s, xi+1)

)
dα

]
·

[ ∫ 1

0

(
∇g(s, xk + α(xk+1 − xk)) −∇g(s, xk+1)

)
dα

]

ds < h(xi+1), h(xk+1) >s (xi+1 − xi)(xk+1 − xk)

≤ E
[
(sup

i
sup

s

η∈(xi,xi+1)

|∆g(s, η)|)|xi+1 − xi| · (sup
k

sup
s

η∈(xk,xk+1)

|∆g(s, η)|)|xk+1 − xk|

·| < h(xi+1) >t< h(xk+1) >t |
1
2

]
·

(
n−1∑

i=0

n−1∑

k=0

(xi+1 − xi)(xk+1 − xk)

)

→ 0, as δx → 0.

So (12) is proved.

To prove (13), first consider g ∈ V3(h) to be sufficiently smooth jointly in (s, x). Then (12) and
the integration by parts formula give

∫ t

0

∫ +∞

−∞
g(s, x)ds,xh(s, x)

= −

∫ +∞

−∞

∫ t

0
∇g(s, x)dsh(s, x)dx

= −

∫ +∞

−∞
[∇g(s, x)h(s, x)]t0dx +

∫ +∞

−∞

∫ t

0

(
∂

∂s
∇g(s, x)

)
h(s, x)dsdx. (14)

But by the integration by parts formula and the Fubini theorem,

∫ +∞

−∞

∫ t

0

(
∂

∂s
∇g(s, x)

)
h(s, x)dsdx

= −

∫ t

0

∫ +∞

−∞

∂

∂s
g(s, x)∇h(s, x)dxds

= −

∫ +∞

−∞

∫ t

0

∂

∂s
g(s, x)∇h(s, x)dsdx

= −

∫ +∞

−∞
[g(s, x)∇h(s, x)]t0dx +

∫ +∞

−∞

∫ t

0
g(s, x)ds∇h(s, x)dx. (15)
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By (14), (15) and the integration by parts formula, it follows that for g being sufficiently smooth

∫ t

0

∫ +∞

−∞
g(s, x)ds,xh(s, x) =

∫ +∞

−∞

∫ t

0
g(s, x)ds∇h(s, x)dx.

But any bounded function g ∈ V3(h) can be approximated by a sequence of smooth functions
gn ∈ V3(h). The desired result for g ∈ V3(h) follows from (11) and

E|

∫ +∞

−∞

∫ t

0
(gn(s, x) − g(s, x))ds∇h(s, x)dx|2

≤ 2N

∫ +∞

−∞
E|

∫ t

0
(gn(s, x) − g(s, x))ds∇h(s, x)|2dx

= 2N

∫ +∞

−∞
E

∫ t

0
|gn(s, x) − g(s, x)|2ds < ∇h(x) >s dx

→ 0,

when n → ∞. From Lemmas 2.4, 2.5, we can obtain that (12) and (13) also hold for g ∈ V4(h).
⋄

3 The generalized Itô’s formula in two-dimensional space

Let X(s) = (X1(s), X2(s)) be a two-dimensional continuous semimartingale with Xi(s) =
Xi(0)+Mi(s)+Vi(s)(i = 1, 2) on a probability space (Ω,F , {Ft}t≥0, P ). Here Mi(s) is a contin-
uous local martingale and Vi(s) is an adapted continuous process of locally bounded variation
(in s). Let Li(t, a) be the local time of Xi(t) (i=1,2)

Li(t, a) = lim
ǫ↓0

1

2ǫ

∫ t

0
1[a,a+ǫ)(Xi(s))d <Mi>s a.s. i = 1, 2 (1)

for each t and a ∈ R. Then it is well known that, for each fixed a ∈ R, Li(t, a, ω) is continuous,
increasing in t, and right continuous with left limit (càdlàg) with respect to a ([16], [26]).
Therefore we can define a Lebesgue-Stieltjes integral

∫ ∞
0 φ(s)dsLi(s, a, ω) for each a for any

Borel-measurable function φ. In particular

∫ ∞

0
1R\{a}(Xi(s))dsLi(s, a, ω) = 0 a.s. i = 1, 2. (2)

Furthermore if φ is differentiable, then we have the following integration by parts formula

∫ t

0
φ(s)dsLi(s, a, ω) = φ(t)Li(t, a, ω) −

∫ t

0
φ′(s)Li(s, a, ω)ds a.s.. (3)

Moreover, if g(s, xi, ω) is measurable and bounded, by the occupation times formula (e.g. see
[16], [26])),

∫ t

0
g(s, Xi(s))d <Mi>s= 2

∫ ∞

−∞

∫ t

0
g(s, a)dsLi(s, a, ω)da a.s. i = 1, 2. (4)
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If g(·, x) is absolutely continuous for each x, ∂
∂s

g(s, x) is locally bounded and measurable in
[0, t] × R, then using the integration by parts formula, we have

∫ t

0
g(s, Xi(s))d <Mi>s

= 2

∫ ∞

−∞

∫ t

0
g(s, a)dsLi(s, a, ω)da

= 2

∫ ∞

−∞
g(t, a)Li(t, a, ω)da − 2

∫ ∞

−∞

∫ t

0

∂

∂s
g(s, a)Li(s, a, ω)dsda a.s.,

for i = 1, 2. On the other hand, by the Tanaka formula

L1(t, a) = (X1(t) − a)+ − (X1(0) − a)+ − M̂1(t, a) − V̂1(t, a),

where Ẑ1(t, a) =
∫ t

0 1{X1(s)>a}dZ1(s), Z1 = M1, V1, X1. By a standard localizing argument, we
may assume without loss of generality that there is a constant N for which

sup
0≤s≤t

|X1(s)| ≤ N, <M1>t≤ N, V artV1 ≤ N,

where V artV1 is the total variation of V1 on [0, t]. From the property of local time (see Chapter
3 in [16]), for any γ ≥ 1,

E|M̂1(t, a) − M̂1(t, b)|
2γ = E|

∫ t

0
1{a<Xs≤b}d <M1>s |

γ ≤ C(b − a)γ , a < b

where the constant C depends on γ and on the bound N . From Kolmogorov’s tightness criterion
(see [17]), we know that the sequence Yn(a) := 1

n
M̂1(t, a), n = 1, 2, · · · , is tight. Moreover for

any a1, a2, · · · , ak,

P (sup
ai

|
1

n
M̂1(t, ai)| ≤ 1)

= P (|
1

n
M̂1(t, a1)| ≤ 1, |

1

n
M̂1(t, a2)| ≤ 1, · · · , |

1

n
M̂1(t, ak)| ≤ 1|)

≥ 1 −
k∑

i=1

P (|
1

n
M̂1(t, ai)| > 1)

≥ 1 −
1

n2

k∑

i=1

E[M̂2
1 (t, ai)]

≥ 1 −
k

n2
C(N − a),

so by the weak convergence theorem of random fields (see Theorem 1.4.5 in [17]), we have

lim
n→∞

P (sup
a

|M̂1(t, a)| ≤ n) = 1.

Furthermore it is easy to see that

1

n
V̂1(t, a) ≤

1

n
V artV1(t, a) → 0, when n → ∞,
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so it follows that,

lim
n→∞

P (sup
a

|L1(t, a)| ≤ n) = 1.

Therefore in our localization argument, we can also assume that L1(t, a) and L2(t, a) are bounded
uniformly in a.

We now assume the following conditions on f : R × R → R:

Condition (i) the function f(·, ·) : R × R → R is jointly continuous and absolutely continuous
in x1, x2 respectively;

Condition (ii) the left derivative ∇−
i f(x1, x2) is locally bounded, jointly left continuous, and of

locally bounded variation in xi (i = 1, 2);

Condition (iii) the left derivaties ∇−
1 f(x1, x2) is absolutely continuous in x2, and ∇−

2 f(x1, x2)
is absolutely continuous in x1;

Condition (iv) the derivatives ∇−
1 ∇

−
2 f(x1, x2) is jointly left continuous, and of locally bounded

variation in x1, x2 respectively and also in (x1, x2).

From the assumption of ∇−
1 f , we can use the Tanaka-Meyer formula to have,

∇−
1 f(a, X2(t)) − ∇−

1 f(a, X2(0)) =

∫ t

0
∇−

1 ∇
−
2 f(a, X2(s))dX2(s)

+

∫ ∞

−∞
L2(t, x2)dx2∇

−
1 ∇

−
2 f(a, x2) a.s..

Therefore ∇−
1 f(a, X2(t)) is a continuous semimartingale, which can be decomposed as

∇−
1 f(a, X2(t)) = ∇−

1 f(a, X2(0)) + h(t, a) + v(t, a), (5)

where h is a continuous local martingale and v is a continuous process of locally bounded
variation (in t). In fact h(t, a) =

∫ t

0 ∇
−
1 ∇

−
2 f(a, X2(s))dM2(s). Define

Fs(a, b) := < h(a), h(b) >s = < ∇−
1 f(a, X2(·)),∇

−
1 f(b, X2(·)) >s

=

∫ s

0
∇−

1 ∇
−
2 f(a, X2(r))∇

−
1 ∇

−
2 f(b, X2(r))d <M2>r, (6)

F (a, b)
sk+1
sk

:= < h(a), h(b) >
sk+1
sk

= < ∇−
1 f(a, X2(·)),∇

−
1 f(b, X2(·)) >

sk+1
sk

=

∫ sk+1

sk

∇−
1 ∇

−
2 f(a, X2(r))∇

−
1 ∇

−
2 f(b, X2(r))d <M2>r . (7)

We need to prove h ∈ V2. To see this, as ∇−
1 ∇

−
2 f(x1, x2) is of locally bounded variation in x1,

so for any compact set [−N, N ], ∇−
1 ∇

−
2 f(x1, x2) is of bounded variation in x1 for x1 ∈ [−N, N ].

Let P be the partition on [−N, N ]2 × [0, t], Pi be a partition on [−N, N ] (i = 1, 2), P3 be a
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partition on [0, t] such that P = P1 × P2 × P3. Then we have:

Vars,a,b(Fs(a, b))

= sup
P

∑

k

∑

i

∑

j

∣∣∣F (ai+1, bj+1)
sk+1
sk

− F (ai+1, bj)
sk+1
sk

− F (ai, bj+1)
sk+1
sk

+F (ai, bj)
sk+1
sk

∣∣∣

= sup
P

∑

k

∑

i

∑

j

∣∣∣
∫ sk+1

sk

∇−
1 ∇

−
2 f(ai+1, X2(r))∇

−
1 ∇

−
2 f(bj+1, X2(r))d <M2>r

−

∫ sk+1

sk

∇−
1 ∇

−
2 f(ai+1, X2(r))∇

−
1 ∇

−
2 f(bj , X2(r))d <M2>r

−

∫ sk+1

sk

∇−
1 ∇

−
2 f(ai, X2(r))∇

−
1 ∇

−
2 f(bj+1, X2(r))d <M2>r

+

∫ sk+1

sk

∇−
1 ∇

−
2 f(ai, X2(r))∇

−
1 ∇

−
2 f(bj , X2(r))d <M2>r

∣∣∣∣

= sup
P

∑

k

∑

i

∑

j

∣∣∣∣
∫ sk+1

sk

(
∇−

1 ∇
−
2 f(ai+1, X2(r)) −∇−

1 ∇
−
2 f(ai, X2(r))

)

(
∇−

1 ∇
−
2 f(bj+1, X2(r)) −∇−

1 ∇
−
2 f(bj , X2(r))

)
d <M2>r

∣∣∣∣

≤

∫ s

0
sup
P1

∑

i

∣∣∣∇−
1 ∇

−
2 f(ai+1, X2(r)) −∇−

1 ∇
−
2 f(ai, X2(r))

∣∣∣

sup
P2

∑

j

∣∣∣∇−
1 ∇

−
2 f(bj+1, X2(r)) −∇−

1 ∇
−
2 f(bj , X2(r))

∣∣∣d <M2>r

=

∫ s

0

(
Vara(∇

−
1 ∇

−
2 f(a, X2(r)))

)2

d <M2>r< ∞.

Therefore under the localization assumption,
∫ ∞
−∞

∫ t

0 L1(s, a)ds,ah(s, a) can be defined by Def-
inition 2.1, i.e. it is a stochastic Lebesgue-Stieltjes integral. On the other hand, under the
localization assumption and condition (iii) and (iv), let’s prove that

v(s, a) =

∫ s

0
∇−

1 ∇
−
2 f(a, X2(r))dV2(r) +

∫ ∞

−∞
L2(s, x2)dx2∇

−
1 ∇

−
2 f(a, x2) := v1(s, a) + v2(s, a)

is of bounded variation in (s, a) for s ∈ [0, t], a ∈ [−N, N ]. In fact,

V ars,av1(s, a) = sup
P1×P3

∑

k

∑

i

|v1(sk+1, ai+1) − v1(sk, ai+1) − v1(sk+1, ai) + v1(sk, ai)|

= sup
P1×P3

∑

k

∑

i

|

∫ sk

sk+1

[
∇−

1 ∇
−
2 f(ai+1, X2(r)) −∇−

1 ∇
−
2 f(ai, X2(r))

]
dV2(r)|

≤

∫ t

0
sup
P1

∑

i

|∇−
1 ∇

−
2 f(ai+1, X2(r)) −∇−

1 ∇
−
2 f(ai, X2(r))||dV2(r)|

< ∞,
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as ∇−
1 ∇

−
2 f(x1, x2) is locally bounded and of bounded variation in x1. Moreover, in the case

when ∇−
1 ∇

−
2 f(x1, x2) is increasing in (x1, x2),

V ars,av2(s, a) = sup
P1×P3

∑

k

∑

i

|v2(sk+1, ai+1) − v2(sk, ai+1) − v2(sk+1, ai) + v2(sk, ai)|

= sup
P1×P3

∑

k

∑

i

∫ ∞

−∞

(
L2(sk+1, x2) − L2(sk, x2)

)

dx2

(
∇−

1 ∇
−
2 f(ai+1, x2) −∇−

1 ∇
−
2 f(ai, x2)

)

≤
∑

i

∫ ∞

−∞
L2(t, x2)dx2

(
∇−

1 ∇
−
2 f(ai+1, x2) −∇−

1 ∇
−
2 f(ai, x2)

)

≤ max
x2

L2(t, x2)(∇
−
1 ∇

−
2 f(N, N) −∇−

1 ∇
−
2 f(N,−N)

−∇−
1 ∇

−
2 f(−N, N) + ∇−

1 ∇
−
2 f(−N,−N))

< ∞.

In the general case when ∇−
1 ∇

−
2 f(x1, x2) is of bounded variation in (x1, x2), we can assert that

v2(s, a) is also of bounded variation in (s, a) by applying the above result to the difference of
two increasing functions. So

∫ t

0

∫ ∞
−∞ L1(s, a)ds,av(s, a) is a Lebesgue-Stieltjes integral. Hence,∫ t

0

∫ ∞
−∞ L1(s, a)ds,a∇

−
1 f(a, X2(s)) can be well defined. A localization argument implies that it is

a semimartingale. Now we recall that the local time L1(s, a) can be decomposed as in [9],

L1(s, a) = L̃1(s, a) +
∑

x∗

k
≤a

L̂1(s, x
∗
k) := L̃1(s, a) + L̄1(s, a),

where L̃1(s, a) is jointly continuous in s, a, and {x∗
k} are the discontinuous points of L1(s, a).

From [26],

L̂1(t, x) = L1(t, x) − L1(t, x−) =

∫ t

0
1{x}(Xs)dVs. (8)

Again we use the localization argument and assume that the support of the local time is included
in (−N, N). Let g1(s, a) := ∇−

1 f(a, X2(s)), by a computation in (4.5) in [9], for any partition
{0 = t0 < t1 < · · · < tm = t,−N = a0 < a1 < a2 < · · · < al = N},

l−1∑

i=0

m−1∑

j=0

g1(tj+1, ai+1)
[
L̃1(tj+1, ai+1) − L̃1(tj , ai+1) − L̃1(tj+1, ai) + L̃1(tj , ai)

]

=
l−1∑

i=0

m−1∑

j=0

L̃1(tj , ai)
[
g1(tj+1, ai+1) − g1(tj , ai+1) − g1(tj+1, ai) + g1(sj , ai)

]

−

l−1∑

i=0

L̃1(t, ai)
[
g1(t, ai+1) − g1(t, ai)

]
. (9)

Note that the first Riemann sum of the right hand side tends to
∫ t

0

∫ N

−N
L̃1(s, a)ds,ag1(s, a),

and the second Riemann sum of the right hand side has the limit
∫ N

−N
L̃1(s, a)dag1(s, a), when
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δt = max
j

(tj+1 − tj) → 0 and δx = max
i

(xi+1 − xi) → 0. Therefore the left hand side con-

verges as well when δt → 0, δx → 0. Denote the limit by
∫ t

0

∫ N

−N
g1(s, a)ds,aL̃1(s, a) on {ω:

L1(t, a) has support which is included in (−N, N)}. Taking the limit as N → ∞ we can define∫ t

0

∫ ∞
−∞ g1(s, a)ds,aL̃1(s, a) for almost all ω ∈ Ω and it is easy to see that

∫ t

0

∫ ∞

−∞
∇−

1 f(a, X2(s))ds,aL̃1(s, a) =

∫ t

0

∫ ∞

−∞
L̃1(s, a)ds,a∇

−
1 f(a, X2(s))

−

∫ ∞

−∞
L̃1(t, a)da∇

−
1 f(a, X2(t)). (10)

From Lemma 2.2 in [9], we know that L̄1(t, a) is of bounded variation in (t, a) for almost every
ω ∈ Ω. So

∫ t

0

∫ ∞
−∞∇−

1 f(a, X2(s))ds,aL̄1(s, a) is a Lebesgue-Stieltjes integral. Therefore the
integral

∫ t

0

∫ ∞

−∞
∇−

1 f(a, X2(s))ds,aL1(s, a) =

∫ t

0

∫ ∞

−∞
∇−

1 f(a, X2(s))ds,aL̃1(s, a)

+

∫ t

0

∫ ∞

−∞
∇−

1 f(a, X2(s))ds,aL̄1(s, a)

can be well defined.

We will prove the following generalized Itô’s formula in two-dimensional space.

Theorem 3.1. Under conditions (i)-(iv), for any continuous two-dimensional semimartingale
X(t) = (X1(t), X2(t)), we have almost surely

f(X(t)) − f(X(0))

=

2∑

i=1

∫ t

0
∇−

i f(X(s))dXi(s) −

∫ +∞

−∞

∫ t

0
∇−

1 f(a, X2(s))ds,aL1(s, a) (11)

−

∫ +∞

−∞

∫ t

0
∇−

2 f(X1(s), a)ds,aL2(s, a) +

∫ t

0
∇−

1 ∇
−
2 f(X(s))d <M1, M2>s .

Proof: By a standard localization argument, we can assume X1(t), X2(t), their quadratic varia-
tions <X1>t, <X2>t, <X1, X2>t and the local times L1, L2 are bounded processes and f , ∇−

i f ,
V arxi

∇−
i f , ∇−

1 ∇
−
2 f , V arxi

∇−
1 ∇

−
2 f , V ar(x1,x2)∇

−
1 ∇

−
2 f (i = 1, 2) are bounded.

We divide the proof into several steps:

(A)Define

ρ(x) =

{
ce

1
(x−1)2−1 if x ∈ (0, 2),

0, otherwise.
(12)

Here c is chosen such that
∫ 2
0 ρ(x)dx = 1. Take ρn(x) = nρ(nx) as mollifiers. Define

fn(x1, x2) =

∫ +∞

−∞

∫ +∞

−∞
ρn(x1 − y)ρn(x2 − z)f(y, z)dydz. n ≥ 1,
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Then fn(x1, x2) are smooth and

fn(x1, x2) =

∫ 2

0

∫ 2

0
ρ(y)ρ(z)f(x1 −

y

n
, x2 −

z

n
)dydz, n ≥ 1. (13)

Because of the absolute continuity assumption, we can differentiate under the integral (13) to
see f , ∇ifn, V arxi

∇ifn, ∇1∇2fn, V arxi
∇1∇2fn, V ar(x1,x2)∇1∇2fn (i = 1, 2) are bounded.

Furthermore using Lebesgue’s dominated convergence theorem, one can prove that as n → ∞,

fn(x1, x2) → f(x1, x2), (14)

∇1fn(x1, x2) → ∇−
1 f(x1, x2), (15)

∇2fn(x1, x2) → ∇−
2 f(x1, x2), (16)

∇1∇2fn(x1, x2) → ∇−
1 ∇

−
2 f(x1, x2), (17)

and each (x1, x2) ∈ R2.

(B) It turns out for any g(t, x1) being continuous in t and C1 in x1 and having a compact support,
using the integration by parts formula and Lebesgue’s dominated convergence theorem, we see
that

lim
n→+∞

∫ +∞

−∞
g(t, x1)dx1∇1fn(x1, X2(t)) = − lim

n→+∞

∫ ∞

−∞
∇g(t, x1)∇1fn(x1, X2(t))dx1

= −

∫ ∞

−∞
∇g(t, x1)∇

−
1 f(x1, X2(t))dx1 a.s.. (18)

Note ∇−
1 f(x1, x2) is of locally bounded variation in x1 and g(t, x1) has a compact support in x1

and Riemann-Stieltjes integrable with respect to ∇−f , so

−

∫ +∞

−∞
∇g(t, x1)∇

−
1 f(x1, X2(t))dx1 =

∫ +∞

−∞
g(t, x1)dx1∇

−
1 f(x1, X2(t)).

Thus

lim
n→+∞

∫ +∞

−∞
g(t, x1)dx1∇1fn(x1, X2(t)) =

∫ ∞

−∞
g(t, x1)dx1∇

−
1 f(x1, X2(t)). (19)

(C) If g(s, x1) is C2 in x1, ∆g(s, x1) is bounded uniformly in s, ∂
∂s
∇g(s, x1) is continuous in

s and has a compact support in x1, and E
[∫ t

0

∫
R2 |g(s, x)g(s, y)||dx,y,s < h(x), h(y) >s |

]
< ∞,

where h ∈ V2, then applying Lebesgue’s dominated convergence theorem and Proposition 2.1
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and the integration by parts formula,

lim
n→+∞

∫ +∞

−∞

∫ t

0
g(s, x1)ds,x1∇1fn(x1, X2(s))

= − lim
n→+∞

∫ ∞

−∞

∫ t

0
∇g(s, x1)ds∇1fn(x1, X2(s))dx1

= − lim
n→+∞

( ∫ ∞

−∞
∇g(s, x1)∇1fn(x1, X2(s))

∣∣∣
t

0
dx1

−

∫ t

0

∫ +∞

−∞

∂

∂s
∇g(s, x1)∇1fn(x1, X2(s))dx1ds

)

= −

∫ ∞

−∞
∇g(s, x1)∇

−
1 f(x1, X2(s))

∣∣∣
t

0
dx1

+

∫ t

0

∫ +∞

−∞

∂

∂s
∇g(s, x1)∇

−
1 f(x1, X2(s))dx1ds

= −

∫ +∞

−∞

∫ t

0
∇g(s, x1)ds∇

−
1 f(x1, X2(s))dx1

=

∫ t

0

∫ +∞

−∞
g(s, x1)ds,x1∇

−
1 f(x1, X2(s)) a.s.,

i.e.

lim
n→+∞

∫ +∞

−∞

∫ t

0
g(s, x1)ds,x1∇1fn(x1, X2(s))

=

∫ t

0

∫ +∞

−∞
g(s, x1)ds,x1∇

−
1 f(x1, X2(s)) a.s.. (20)

(D) In the following we will prove that (19) also holds for any continuous function g(t, x1) with
a compact support in x1. Moreover, if g ∈ V3 and continuous, (20) also holds.

To see (19), first note any continuous function with a compact support can be approximated
by smooth functions with a compact support uniformly by the following standard smoothing
procedure

gm(t, x1) =

∫ ∞

−∞
ρm(y − x1)g(t, y)dy =

∫ 2

0
ρ(z)g(t, x1 +

z

m
)dz.

Note that there is a compact set G ⊂ R1 such that

max
x1∈G

|gm(t, x1) − g(t, x1)| → 0 as m → +∞,

gm(t, x1) = g(t, x1) = 0 for x1 /∈ G.

Note
∫ +∞

−∞
g(t, x1)dx1∇1fn(x1, X2(t)) =

∫ +∞

−∞
gm(t, x1)dx1∇1fn(x1, X2(t)) (21)

+

∫ +∞

−∞
(g(t, x1) − gm(t, x1))dx1∇1fn(x1, X2(t)).
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It is easy to see from (19) and Lebesgue’s dominated convergence theorem, that

lim
m→∞

lim
n→∞

∫ +∞

−∞
gm(t, x1)dx1∇1fn(x1, X2(t))

= lim
m→∞

∫ ∞

−∞
gm(t, x1)dx1∇

−
1 f(x1, X2(t))

=

∫ ∞

−∞
g(t, x1)dx1∇

−
1 f(x1, X2(t)) a.s.. (22)

Moreover,

|

∫ +∞

−∞

(
g(t, x1) − gm(t, x1)

)
dx1∇1fn(x1, X2(t))|

≤
(

max
x1∈G

|g(t, x1) − gm(t, x1)|
)
V arx1∈G∇1fn(x1, X2(t)). (23)

But,

lim
m→∞

lim sup
n→∞

(
max
x1∈G

|g(t, x1) − gm(t, x1)|
)
V arx1∈G∇1fn(x1, X2(t)) = 0 a.s..

So inequality (23) leads to

lim
m→∞

lim sup
n→∞

|

∫ +∞

−∞

(
g(t, x1) − gm(t, x1)

)
dx1∇1fn(x1, X2(t))| = 0 a.s.. (24)

Now we use (21), (22) and (24)

lim sup
n→∞

∫ +∞

−∞
g(t, x1)dx1∇1fn(x1, X2(t))

= lim
m→∞

lim sup
n→∞

∫ +∞

−∞
gm(t, x1)dx1∇1fn(x1, X2(t))

+ lim
m→∞

lim sup
n→∞

∫ +∞

−∞

(
g(t, x1) − gm(t, x1)

)
dx1∇1fn(x1, X2(t))

=

∫ ∞

−∞
g(t, x1)dx1∇

−
1 f(x1, X2(t)) a.s..

Similarly we also have

lim inf
n→∞

∫ +∞

−∞
g(t, x1)dx1∇1fn(x1, X2(t)) =

∫ ∞

−∞
g(t, x1)dx1∇

−
1 f(x1, X2(t)) a.s.. (25)

So (19) holds for a continuous function g with a compact support in x1.

Now we prove that (20) also holds for a continuous function g ∈ V3. Define

gm(s, x1) =

∫ ∞

−∞

∫ ∞

−∞
ρm(y − x1)ρm(τ − s)g(τ, y)dτdy.
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Then there is a compact G ⊂ R1 such that

max
0≤s≤t,x1∈G

|gm(s, x1) − g(s, x1)| → 0 as m → +∞,

gm(s, x1) = g(s, x1) = 0 for x1 /∈ G.

Then it is trivial to see
∫ t

0

∫ +∞

−∞
g(s, x1)ds,x1∇1fn(x1, X2(s))

=

∫ t

0

∫ +∞

−∞
gm(s, x1)ds,x1∇1fn(x1, X2(s))

+

∫ t

0

∫ +∞

−∞
(g(s, x1) − gm(s, x1))ds,x1∇1fn(x1, X2(s)).

But from (20), we can see that

lim
m→∞

lim
n→∞

∫ t

0

∫ +∞

−∞
gm(s, x1)ds,x1∇1fn(x1, X2(s))

= lim
m→∞

∫ t

0

∫ +∞

−∞
gm(s, x1)ds,x1∇

−
1 f(x1, X2(s)) a.s.

=

∫ t

0

∫ +∞

−∞
g(s, x1)ds,x1∇1f(x1, X2(s)). (limit in M2) (26)

The last limit holds because of the following:

E
[ ∫ t

0

∫ +∞

−∞
(gm(s, x1) − g(s, x1))ds,x1∇

−
1 f(x1, X2(s))

]2

= E
[ ∫ t

0

∫ ∞

−∞

∫ ∞

−∞
(gm − g)(s, a)(gm − g)(s, b)da,b,s < ∇−

1 f(a, X2(·)),∇
−
1 f(b, X2(·)) >s

]

= E
[ ∫ t

0

∫ +∞

−∞

∫ ∞

−∞
(gm − g)(s, a)(gm − g)(s, b)

da,b∇
−
1 ∇

−
2 f(a, X2(s))∇

−
1 ∇

−
2 f(b, X2(s))d <M2>s

]

= E
[ ∫ t

0

( ∫ +∞

−∞
(gm − g)(s, a)da∇

−
1 ∇

−
2 f(a, X2(s))

)2
d <M2>s

]

→ 0,

as m → ∞. Here we used (11) and (6) to obtain the first equality. On the other hand, in M2

lim
m→∞

lim
n→∞

∫ t

0

∫ +∞

−∞
(g(s, x1) − gm(s, x1))ds,x1∇1fn(x1, X2(s)) = 0. (27)

In fact,

E
[ ∫ t

0

∫ +∞

−∞
(g(s, x1) − gm(s, x1))ds,x1∇1fn(x1, X2(s))

]2

= E

∫ t

0

[ ∫ +∞

−∞
(g − gm)(s, a)da∇1∇2fn(a, X2(s))

]2
d <M2>s .
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Noting that ∇1∇2fn(a, X2(s)) is of bounded variation in a, we can use an argument similar to
the one in the proof of (24) and (25) to prove (27).

(E) Now we use the multi-dimensional Itô’s formula to the function fn(X(s)), then a.s.

fn(X(t)) − fn(X(0))

=
2∑

i=1

∫ t

0
∇ifn(X(s))dXi(s) +

1

2

∫ t

0
∆1fn(X(s))d <M1>s

+
1

2

∫ t

0
∆2fn(X(s))d <M2>s +

∫ t

0
∇1∇2fn(X(s))d <M1, M2>s . (28)

As n → ∞, it is easy to see from Lebesgue’s dominated convergence theorem and (14), (15),
(16), (17) that, (i = 1, 2)

fn(X(t)) − fn(X(0)) → f(X(t)) − f(X(0)) a.s.,
∫ t

0
∇ifn(X(s))dVi(s) →

∫ t

0
∇−

i f(X(s))dVi(s) a.s.,

∫ t

0
∇1∇2fn(X(s))d <M1, M2>s →

∫ t

0
∇−

1 ∇
−
2 f(X(s))d <M1, M2>s a.s.

and

E

∫ t

0
(∇ifn(X(s)))2d <Mi>s→ E

∫ t

0
(∇−

i f(X(s))2d <Mi>s .

Therefore in M2,

∫ t

0
∇ifn(X(s))dMi(s) →

∫ t

0
∇−

i f(X(s))dMi(s), (i = 1, 2).

To see the convergence of 1
2

∫ t

0 ∆1fn(X(s))d <M1>s, first from integration by parts formula and
(13), we have

1

2

∫ t

0
∆1fn(X(s))d <M1>s =

∫ +∞

−∞

∫ t

0
∆1fn(a, X2(s))dsL1(s, a)da

=

∫ +∞

−∞
L1(t, a)da∇1fn(a, X2(t))

−

∫ +∞

−∞

∫ t

0
L1(s, a)ds,a∇1fn(a, X2(s)).

But local time L1(s, a) can be decomposed as

L1(s, a) = L̃1(s, a) +
∑

x∗

k
≤a

L̂1(s, x
∗
k) := L̃1(s, a) + L̄1(s, a), (29)
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where L̃1(s, a) is jointly continuous in s, a, and {x∗
k} are the discontinuous points of L1(s, a).

From (D) and (10), we have as n → ∞,

∫ +∞

−∞
L̃1(t, a)da∇1fn(a, X2(t)) −

∫ +∞

−∞

∫ t

0
L̃1(s, a)ds,a∇1fn(a, X2(s))

→

∫ ∞

−∞
L̃1(t, a)da∇

−
1 f(a, X2(t)) −

∫ +∞

−∞

∫ t

0
L̃1(s, a)ds,a∇

−
1 f(a, X2(s)) (limit in M2)

= −

∫ ∞

−∞

∫ t

0
∇−

1 f(a, X2(s))ds,aL̃1(s, a). (30)

On the other hand, from Lemma 2.2 in [9], we know that L̄1(s, a) is of bounded variation in
a for each s and of bounded variation in (s, a) for almost every ω ∈ Ω. And also because
∇1fn(a, X2(s)) is continuous in (s, a),

∫ t

0

∫ ∞
−∞∇1fn(a, X2(s))ds,aL̄1(s, a) is Riemann-Stieltjes

integral. Hence in (9), replacing L̃1(s, a) by L̄1(s, a), g1(s, a) by ∇1fn(a, X2(s)), we still can
obtain an integration by parts formula as follows

∫ t

0

∫ ∞

−∞
L̄1(s, a)ds,a∇1fn(a, X2(s))

=

∫ t

0

∫ ∞

−∞
∇1fn(a, X2(s))ds,aL̄1(s, a) +

∫ ∞

−∞
L̄1(t, a)da∇1fn(a, X2(t))

Note here the integral
∫ t

0

∫ ∞
−∞ L̄1(s, a)ds,a∇1fn(a, X2(s)) is also a Riemann-Stieltjes integral

though it is stochastic. Therefore

∫ ∞

−∞
L̄1(t, a)da∇1fn(a, X2(t)) −

∫ t

0

∫ ∞

−∞
L̄1(s, a)ds,a∇1fn(a, X2(s))

= −

∫ t

0

∫ ∞

−∞
∇1fn(a, X2(s))ds,aL̄1(s, a)

→ −

∫ t

0

∫ ∞

−∞
∇−

1 f(a, X2(s))ds,aL̄1(s, a) (31)

as n → ∞ by Lebesgue’s dominated convergence theorem. So by (30) and (31),

1

2

∫ t

0
∆1fn(X(s))d <M1>s→ −

∫ ∞

−∞

∫ t

0
∇−

1 f(x1, X2(t))ds,x1L1(s, x1),

as n → ∞. The term 1
2

∫ t

0 ∆2fn(s, X(s))d <M2>s can be treated similarly. So we proved the
desired formula. ⋄

The following theorem gives the new representation of f(Xt), which leads to integration by parts
formula for integrations of local times.

Theorem 3.2. Under conditions (i)-(iv), for any continuous two-dimensional semimartingale
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X(t) = (X1(t), X2(t)), we have almost surely

f(X(t)) = f(X(0)) +
2∑

i=1

∫ t

0
∇−

i f(X(s))dXi(s)

+

∫ ∞

−∞
L1(t, a)da∇

−
1 f(a, X2(t)) −

∫ +∞

−∞

∫ t

0
L1(s, a)ds,a∇

−
1 f(a, X2(s))

+

∫ ∞

−∞
L2(t, a)da∇

−
2 f(X1(t), a) −

∫ +∞

−∞

∫ t

0
L2(s, a)ds,a∇

−
2 f(X1(s), a)

+

∫ t

0
∇−

1 ∇
−
2 f(X(s))d <M1, M2>s . (32)

In particular, from (10), (11), we have the integration by parts formulae
∫ ∞

−∞
g(t, a)da∇

−
1 f(a, X2(t)) −

∫ +∞

−∞

∫ t

0
g(s, a)ds,a∇

−
1 f(a, X2(s))

= −

∫ +∞

−∞

∫ t

0
∇−

1 f(a, X2(s))ds,ag(s, a),

for g(s, a) = L1(s, a), L̃1(s, a), L̄1(s, a) respectively.

Proof: For (32), we only need to prove the convergence in (30) holds for L̄1(s, x). First let’s
prove, when n → ∞, in M2,

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,a∇1fn(a, X2(s)) →

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,a∇

−
1 f(a, X2(s)).

From the assumption of ∇−
1 f and the definition of fn, recall (5) and from Itô’s formula we

have ∇1fn(a, X2(t)) = ∇1fn(a, X2(0)) + hn(t, a) + vn(t, a), where hn, h are continuous local
martingales and vn, v are continuous processes with locally bounded variation (in t). From
previous computations, we know that hn, h ∈ V2, i.e. < (hn−h)(a), (hn−h)(b) >s is of bounded
variation in (s, a, b) and vn(s, a), v(s, a) are of bounded variation in (s, a). So

E|

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,ahn(s, a) −

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,ah(s, a)|2

= E

∫ t

0

∫

R2

L̄1(s, a)L̄1(s, b)da,b,s < hn(a) − h(a), hn(b) − h(b) >s .

Let (−N, N) cover the compact support of local time L1(t, ·), N is fixed for each ω, and

G(s, a, b) := L̄1(s, a)L̄1(s, b)

G(a, b)
sk+1
sk

:= L̄1(sk+1, a)L̄1(sk+1, b) − L̄1(sk, a)L̄1(sk, b)

Hn(s, a, b) :=< hn(a) − h(a), hn(b) − h(b) >s .

We can show that G(s, a, b) is of bounded variation in (s, a, b). In fact, let P be a partition on
[−N, N ]2 × [0, t], where Pi is a partition on [−N, N ] (i = 1, 2), P3 is a partition on [0, t] such
that P = P1 × P2 × P3. Then from (8) and standard computations we can show

Vars,a,bG(s, a, b) ≤ 2
( ∑

−N<x∗

m≤N

∫ t

0
1{x∗

m}(Xs)|dVs|
)2

≤ 2
( ∫ t

0
1(−N,N ](Xs)|dVs|

)2
< ∞.
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Therefore, G can be decomposed as differences of increasing (in all three variables) functions.
But we can prove more results that will be used. Define

G̃1(s, a, b) := VG([0, s] × [−N, a] × [−N, b]) + G(s, a, b),

G̃2(s, a, b) := VG([0, s] × [−N, a] × [−N, b]) − G(s, a, b),

where VG([0, s]× [−N, a]× [−N, b]) denotes the total variation of G on [0, s]× [−N, a]× [−N, b].
Then it is easy to see that G(s, a, b) = 1

2 [G̃1(s, a, b) − G̃2(s, a, b)], and G̃1, G̃2 are increasing in
(s, a, b). Moreover, by additivity of variation, one can see that for s2 ≥ s1,

G̃1(s2, a, b) − G̃1(s1, a, b)

= VG([s1, s2] × [−N, x] × [−N, y]) + G(s2, a, b) − G(s1, a, b) − G(s2, a,−N)

+G(s1, a,−N) − G(s2,−N, b) + G(s1, a,−N) − G(s2,−N,−N) + G(s1,−N,−N)

≥ 0.

That is to say, G̃1(s2, a, b) is increasing in s for each a and b. In the same way, we can show
G̃1(s, a, b) is increasing in a for each s and b, and in b for each s and a. Therefore G̃1(s, a, b) is
increasing in s, a, b respectively. Similarly, G̃2(s, a, b) is also increasing in s, a, b respectively.
Define

G1(s, a, b) = lim
s′↓s,a′↓a,b′↓b

G̃1(s
′, a′, b′),

G2(s, a, b) = lim
s′↓s,a′↓a,b′↓b

G̃2(s
′, a′, b′).

Then G1 and G2 are right continuous in (s, a, b), and increasing in s, a, b separately, and
G(s, a, b) = 1

2 [G1(s, a, b) − G2(s, a, b)]. Now we claim for any c > 0, A = {(s, a, b) : G1(s, a, b) <
c} is an open set. To see this, for any (s, a, b) ∈ A, take ε = 1

2(c − G1(s, a, b)) > 0. First as
G(s, a, b) is right continuous in (s, a, b), so there exists δ > 0 such that

|G1(s
′, a′, b′) − G1(s, a, b)| < ε,

when s ≤ s′ < s+δ, a ≤ a′ < a+δ, b ≤ b′ < b+δ. That is to say, [s, s+δ)×[a, a+δ)×[b, b+δ) ⊂ A.
But for any s′ ≤ s, a′ ≤ a, b′ ≤ b, by the monotonicity of G1 in each variable separately,

G1(s
′, a′, b′) ≤ G1(s, a

′, b′) ≤ G1(s, a, b′) ≤ G1(s, a, b) < c.

Therefore, (−∞, s + δ) × (−∞, a + δ) × (−∞, b + δ) ∈ A. This implies that A is an open set.
Thus for any c ≥ 0, {(s, a, b) : G1(s, a, b) ≥ c} is a closed set (when c = 0, {(s, a, b) : G1(s, a, b) ≥
c} = [0, t] × [−N, N ]2).

From the assumption, we know Hn(s, a, b) is of bounded variation in (s, a, b) and when n → ∞,
Hn → 0. We only consider the increasing part of Hn, still denote it by Hn. As Hn(s, a, b) is left
continuous and increasing, so it generates Lebesgue-Stieltjes measure, denote it by µn. It is easy
to see that µn([s1, s2) × [a1, a2) × [b1, b2)) → 0, as n → ∞, for any [s1, s2) × [a1, a2) × [b1, b2) ⊂

[0, t] × [−N, N ]2. So µn
W
−→ 0, as n → ∞. Let P be a probability measure on [0, t] × [−N, N ]2

and

Pn([s1, s2) × [a1, a2) × [b1, b2)) =
(P + µn)([s1, s2) × [a1, a2) × [b1, b2))

(P + µn)([0, t] × [−N, N ] × [−N, N ])
.
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Then Pn
W
−→ P . Therefore, by the equivalent condition of weak convergence (cf. Proposition

1.2.4 in [15]), for any closed set E, lim sup
n→∞

Pn(E) ≤ P (E). Now without losing generality, we

assume 0 ≤ G1(s, a, b) ≤ 1. Using the method in the proof of Proposition 1.2.4 in [15], we have
for either Q = Pn or P ,

k∑

i=1

i − 1

k
Q{(s, a, b) :

i − 1

k
≤ G1(s, a, b) <

i

k
} ≤

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)Q(dsdadb)

≤
k∑

i=1

i

k
Q{(s, a, b) :

i − 1

k
≤ G1(s, a, b) <

i

k
},

and

k∑

i=1

i

k
Q{(s, a, b) :

i − 1

k
≤ G1(s, a, b) <

i

k
} =

k−1∑

i=0

1

k
Q{(s, a, b) : G1(s, a, b) ≥

i

k
}.

But Ei := {(s, a, b) : G1(s, a, b) ≥ i
k
} is closed, so lim sup

n→∞
Pn(Ei) ≤ P (Ei), i = 0, 1, · · · , k − 1.

Thus,

lim sup
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)Pn(dsdadb) ≤ lim sup
n→∞

k−1∑

i=0

1

k
Pn{(s, a, b) : G1(s, a, b) ≥

i

k
}

≤
k−1∑

i=0

1

k
P{(s, a, b) : G1(s, a, b) ≥

i

k
}

≤
1

k
+

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)P (dsdadb).

As k is arbitrary, so

lim sup
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)Pn(dsdadb) ≤

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)P (dsdadb).

Applying above to 1 − G1(s, a, b), we can prove

lim inf
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)Pn(dsdadb) ≥

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)P (dsdadb).

Therefore,

lim
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)Pn(dsdadb) =

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)P (dsdadb).

It turns out that,

lim
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G1(s, a, b)µn(dsdadb) = 0.
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The same result also holds for G2(s, a, b). Thus,

lim
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G(s, a, b)µn(dsdadb) = 0.

But when Hn(s, a, b) is of bounded variation in (s, a, b), it can be decomposed to two increasing
functions. Therefore, we have

lim
n→∞

∫ t

0

∫ N

−N

∫ N

−N

G(s, a, b)da,b,sHn(s, a, b) = 0.

Hence, when n → ∞, in M2

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,ahn(s, a) →

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,ah(s, a).

We can also easily prove that

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,avn(s, a) →

∫ +∞

−∞

∫ t

0
L̄1(s, a)ds,av(s, a),

∫ +∞

−∞
L̄1(t, a)da∇1fn(a, X2(t)) →

∫ +∞

−∞
L̄1(t, a)da∇

−
1 f(a, X2(t)).

Similarly we can deal with the terms with L̄2(s, a). So (32) is proved and the integration by
parts formulae follow easily. ⋄

The smoothing procedure in Theorem 3.1 can be used to prove that if f : R×R → R is C1,1, and
the left derivatives ∂2−

∂xi∂xj
f(x1, x2), (i, j = 1, 2) exist and are locally bounded and left continuous,

then

f(X(t)) − f(X(0)) =

2∑

i=1

∫ t

0
∇if(X(s))dXi(s) +

1

2

2∑

i,j=1

∫ t

0

∂2−

∂xi∂xj
f(X(s))d <Xi, Xj>s .

This can be seen from the convergence in the proof of Theorem 3.1 and the fact that
∂2

∂xi∂xj
fn(x1, x2)

→ ∂2−

∂xi∂xj
f(x1, x2) under the stronger condition on ∂2−

∂xi∂xj
f .

The next theorem is an easy consequence of the methods of the proofs of Theorem 3.1 and (33).

Theorem 3.3. Let f : R×R → R satisfy conditions (i) and f(x1, x2) = fh(x1, x2)+ fv(x1, x2).

Assume fh is C1,1 and the left derivatives ∂2−

∂xi∂xj
fh(x1, x2)(i, j = 1, 2) exist and are left contin-
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uous and locally bounded; fv satisfies conditions (ii)-(iv). Then

f(X(t)) − f(X(0))

=
2∑

i=1

∫ t

0
∇−

i f(X(s))dXi(s) +
1

2

2∑

i=1

∫ t

0
∆−

i fh(X(s))d <Xi>s

−

∫ +∞

−∞

∫ t

0
∇−

1 fv(a, X2(s))ds,aL1(s, a) −

∫ +∞

−∞

∫ t

0
∇−

2 fv(X1(s), a)ds,aL2(s, a)

+

∫ t

0
∇−

1 ∇
−
2 f(X(s))d <M1, M2>s

=
2∑

i=1

∫ t

0
∇−

i f(X(s))dXi(s) +
1

2

2∑

i=1

∫ t

0
∆−

i fh(X(s))d <Xi>s

+

∫ ∞

−∞
L1(t, a)da∇

−
1 fv(a, X2(t)) −

∫ +∞

−∞

∫ t

0
L1(s, a)ds,a∇

−
1 fv(a, X2(s))

+

∫ ∞

−∞
L2(t, a)da∇

−
2 fv(X1(t), a) −

∫ +∞

−∞

∫ t

0
L2(s, a)ds,a∇

−
2 fv(X1(s), a)

+

∫ t

0
∇−

1 ∇
−
2 f(X(s))d <M1, M2>s a.s.. (33)

Example 3.1. Consider

f(x1, x2) = (x1x2)
+.

It is easy to see that

∇−
1 f(x1, x2) = x21{x1x2>0}1{x2>0} + x21{x1x2≤0}1{x2≤0}

= x21{x1>0}1{x2>0} + x21{x1≤0}1{x2≤0}

= x+
2 1{x1>0} − x−

2 1{x1≤0},

so ∆−
1 f(0, x2) = ∞, which means that the classical Itô’s formula doesn’t work. But

∇−
1 ∇

−
2 f(x1, x2) = 1{x1>0}1{x2>0} + 1{x1≤0}1{x2≤0}.

This suggests that our generalized Itô’s formula can be used.

Example 3.2. Consider

f(x1, x2) = x
1
3
2 (x1x2)

+.
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It is easy to see that

∇−
1 f(x1, x2) = x

1
3
2 x+

2 1{x1>0} − x
1
3
2 x−

2 1{x1≤0},

∇−
2 f(x1, x2) =

1

3
x
− 2

3
2 (x1x2)

+ + x
1
3
2 x+

1 1{x2>0} − x
1
3
2 x−

1 1{x2≤0}

=
4

3
x
− 2

3
2 (x+

1 x+
2 + x−

1 x−
2 ),

∆−
2 f(x1, x2) = −

8

9
x
− 2

3
2 (x+

1 1{x2>0} − x−
1 1{x2<0})

+
4

3
x
− 2

3
2 (x+

1 1{x2>0} − x−
1 1{x2≤0}),

∇−
1 ∇

−
2 f(x1, x2) =

4

3
x

1
3
2 1{x1x2>0} +

4

3
x

1
3
2 1{x1=0}1{x2<0}.

So ∆−
2 f(x1, 0) = −∞ when x1 < 0, and lim

x2→0−
∆−

2 f(x1, x2) = −∞ when x1 < 0,

lim
x2→0+

∆−
2 f(x1, x2) = ∞ when x1 > 0. These calculations suggest that neither the classical

Itô’s formula, nor the formula in [24] can be applied immediately. But our generalized Itô’s
formula can be used here.
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