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Abstract

We construct a stochastic process whose drift is a function of the process’s local time at a
reflecting barrier. The process arose as a model of the interactions of a Brownian particle
and an inert particle in [7]. We construct and give asymptotic results for two different
arrangements of inert particles and Brownian particles, and construct the analogous process
in Rd.
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1 Introduction

In this paper, we construct solutions (X,L) to the set of equations

X(t) = B(t) + L(t) +
∫ t

0
µ◦L(s) ds

X(t) ≥ 0

L(t) = lim
ε→0

1
2ε

∫ t

0
1[0,ε)X(s) ds

for certain monotone functions µ(l), where B(t) is a standard Brownian motion with B(0)=0.
The case when µ(l) = Kl, K > 0 was studied by Frank Knight in [7], which was the starting
point for this research.

The case when µ(l) = 0 is the classical reflected Brownian motion. There are at least two
approaches to constructing pathwise solutions in this case. The first is to let X(t) = |B(t)|,
define L(t) from X(t) as above, and define a new Brownian motion B̃(t) = X(t)−L(t). For the
second approach we define

L(t) = − inf
s<t

B(s),

and take X(t) = B(t) + L(t). The two approaches yield processes (X,L) with the same distri-
bution. The second approach has the advantages of being easier to work with, and of retaining
the original B(t).

For other µ(l), X(t) can be written as the difference of B(t)+L(t) and −
∫ t

0 µ◦L(s) ds. These two
pieces can be interpreted the path of a Brownian particle reflecting from the path −

∫ t
0 µ◦L(s) ds

of an inert particle. We call the second path inert because its derivative is constant when the two
particles are apart. With this model in mind, we consider two other configurations of Brownian
particles and inert particles. We also consider a generalization to Rd.

In Section 2, we consider the one-dimensional case. We also obtain an explicit formula for the
distribution of limt→∞ µ◦L(t) and for the excursion measure of the process with drift.

In Section 3, we consider the case when a Brownian particle and an inert particle are confined
to a one-dimensional ring. In other words, we have a process with drift confined to a closed
interval, with reflection at both endpoints. The velocity of the inert particle turns out to be
an interesting process. Indexed by local time, it is a piecewise linear process with Gaussian
stationary distribution, though it is not a Gaussian process. Some results from this section have
appeared in [3]. We show that under rescaling, the velocity process converges in distribution to
an Ornstein-Uhlenbeck process.

Section 4 discusses the configuration consisting of two independent Brownian particles with an
inert particle separating them. We would like to determine whether the process is recurrent or
transient; that is, whether all three particles can meet in finite time, or whether the inert particle
in the middle forces the distance between the Brownian particles to tend to infinity. In fact, this
configuration is a critical case between the two behaviors. We show that under rescaling the
distance between the two Brownian particles is a two-dimensional Bessel process. Dimension
two is exactly the critical case for the family of Bessel processes.

Section 5 partially extends the results in Section 2 to domains in Rd, d ≥ 2. This sections uses
results of Lions and Sznitman on the existence of reflected Brownian motion in domains in Rd.
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We show existence for the process with drift for the case when the velocity gained is proportional
to the local time.

Some results similar to those in Section 2 have been found by S. Ramasubramanian in [9]. He in
fact considers a slightly more general class of allowable µ, and extends the process to orthants
in Rd.

The author would like to thank the referees for their very helpful suggestions, and also Kavita
Ramanan and one of the referees for the reference to [9].

This paper is partly based on a Ph.D. thesis written at the University of Washington under the
guidance of Chris Burdzy.

2 Existence and Uniqueness in One Dimension

In this section, we prove the following version of the well-known Skorohod Lemma:

Theorem 2.1. Let f(t) be a continuous function with f(0) ≥ 0, and let µ(l) be a continuous
monotone function with

λ(l) = sup
a<b<l

|µ(b)− µ(a)|
b− a

<∞ (1)

for every l. If µ(l)→ −∞, then we further require that∑
n

(|µ(n)| ∨ 1)−1 =∞. (2)

There is a unique continuous L(t) satisfying

1. x(t) = f(t) + L(t) +
∫ t

0 µ◦L(s) ds ≥ 0,

2. L(0) = 0, L(t) is nondecreasing,

3. L(t) is flat off {t : x(t) = 0}; i.e.,
∫∞

0 1{x(s)>0}dL(s) = 0.

As a reminder to the reader, we quote the Skorohod Lemma. A proof can be found in, for
example, [6].

Theorem 2.2 (The Skorohod Lemma). Given a continuous function f(t) with f(0) ≥ 0, there
is a unique continuous function L(t) satisfying

1. x(t) ≡ f(t) + L(t) ≥ 0,

2. L(0) = 0, L(t) is nondecreasing, and

3. L(t) is flat off {t : x(t) = 0}; i.e.,
∫∞

0 1{x(s)>0}dL(s) = 0.

This function is given by

L(t) = max
[
0, max

0≤s≤t
(−f(s))

]
(3)
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We will denote the unique L(t) corresponding to f(t) in equation (3) by Lf(t).

A few lemmata and corollaries of the Skorohod equation will be used in the proof of Theorem
2.1. We begin with these.

Lemma 2.3. If f(t) and g(t) are two continuous functions with f(0) ≥ 0, and f(t) ≤ g(t) for
t ∈ [0,∞), then Lf(t) ≥ Lg(t), 0 ≤ t <∞. In particular, if φ(t) ≥ 0 then L(f + φ)(t) ≤ Lf(t).

Proof. This comes directly from equation (3).

Lemma 2.4. For continuous f(t), f(0) ≥ 0, and S < T , we have

Lf(T )− Lf(S) ≤ max
S≤r≤T

[f(S)− f(r)].

Proof. Using equation (3), we have

Lf(T )− Lf(S) = max
S≤r≤T

[−f(r)− Lf(S)] ∨ 0

≤ max
S≤r≤T

[f(S)− f(r)] ∨ 0

= max
S≤r≤T

[f(S)− f(r)].

and the claim follows.

Lemma 2.5. If f(t) and g(t) are two continuous functions with f(0) ≥ 0, and f(t) = g(t) for
0 ≤ t ≤ T , then Lf(t) = Lg(t) for 0 ≤ t ≤ T .

Proof. This also comes directly from (3).

Now we will prove Theorem 2.1.

Proof of Theorem 2.1. Uniqueness will be proved first. Assume that both L(t) and L̃(t) satisfy
conditions 1–3 of Theorem 2.1. Let Q = inf{t > 0 : L(t) 6= L̃(t)}, and suppose that Q < ∞.
Define the function M(t) = λ(L(t)∨ L̃(t))(t−Q). As the product of increasing functions, M(t)
is increasing, and M(Q) = 0. Choose R > Q so that M(R) < 1.

By the continuity of L(t) and L̃(t), there exist T with Q < T < R, and δ > 0, with the
property that |L(T ) − L̃(T )| = δ, while |L(t) − L̃(t)| < δ for t < T . We will show that the
case L(T ) − L̃(T ) = δ yields a contradiction; the same argument works for the other case,
L̃(T )− L(T ) = δ.

Suppose that L(T )− L̃(T ) = δ and L(t)− L̃(t) < δ for t < T . We have that

x(T )− x̃(T ) = (x(T )− x(Q))− (x̃(T )− x̃(Q))

= [L(T )− L(Q) +
∫ T

Q
µ◦L(r)dr]

− [L̃(T )− L̃(Q) +
∫ T

Q
µ◦L̃(r)dr]

= (L(T )− L̃(T )) +
∫ T

Q
(µ◦L(r)− µ◦L̃(r))dr,
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and that ∣∣∣∣∫ T

Q
(µ◦L(r)− µ◦L̃(r))dr

∣∣∣∣ ≤ (T −Q)λ(L(T ) ∨ L̃(T )) sup
Q≤t≤T

(L(t)− L̃(t))

= M(T )(L(T )− L̃(T )).

Combining these two equations we see that

x(T )− x̃(T ) ≥ (1−M(T ))(L(T )− L̃(T )) > 0.

Let S = sup{t < T : x(t) = x̃(t)}. Then for S < t ≤ T , x(t) > x̃(t) ≥ 0, and by condition
3 of the theorem, L(t) = L(S), and in particular, L(T ) = L(S). Then for S < t ≤ T , L(t) −
L̃(t) = L(T ) − L̃(t). Since L̃(t) is nondecreasing by condition 2 of the theorem, L(T ) − L̃(t) is
nonincreasing in t, and we see that L(S) − L̃(S) ≥ L(T ) − L̃(T ) = δ. This contradicts how T
was chosen. Therefore, L(t) = L̃(t) for all t ≥ 0.

Next we will construct the L(t) corresponding to f(t) and µ(t). First, we may assume that
µ(t) ≥ 0. Otherwise, set m = inf{µ(t), t ≥ 0}, f̃(t) = f(t) +mt and µ̃(t) = µ(t)−m, assuming
for the moment that m > −∞. It is easily checked that the L(t) satisfying the theorem for f̃(t)
and µ̃(t) also works for f(t) and µ(t).

For any ε > 0 we construct Lε(t) and Iε(t) so that Lε(t) = L(f + Iε)(t), and d
dtI

ε(t) =
µ(nε), nε ≤ Lε(t) ≤ (n + 1)ε. The construction is recursive. Let Iε0 = 0, Lε0(t) = Lf(t),
and T ε0 = inf{t > 0 : Lε0(t) = ε}. Now for each positive integer n, define

Iεn+1(t) =


Iεn(t), t < T εn,

Iεn(T εn) + µ(nε)(t− T εn), T εn ≤ t ≤ T εn+1,

Iεn+1(T εn+1), T εn+1 < t,

(4)

Lεn+1(t) = L(f +
n+1∑
j=1

Iεj )(t),

T εn+1 = inf{t > 0 : Lεn(t) = (n+ 1)ε}.

For m ≥ n, we have that Iεm(t) ≥ Iεn(t), so by Lemma 2.3, Lεm(t) ≤ Lεn(t), and from equation
(3), Lεm(t) = Lεn(t) for t < T εm∧n. Let Lε(t) = limn→∞ L

ε
n(t), and Iε(t) = limn→∞ I

ε
n(t).

By Lemma 2.4, we see that

Lε(t)− Lε(s) = L(f + Iε)(t)− L(f + Iε)(s)
≤ max

s≤r≤t
{(f + Iε)(s)− (f + Iε)(r)}

≤ max
s≤r≤t

{f(s)− f(r)},

that is, the family {Lε(t)}ε>0 is equicontinuous. Since Iε(t) ≥ 0, by Lemma 2.3 {Lε(t)}ε>0 is
bounded for each t. Ascoli–Arzelà [10] then applies. For any sequence ε(n)→ 0, Lε(n)(t)→ L(t),
uniformly on compact subsets of [0,∞). We will check that this L(t) satisfies the conditions
of the theorem. That x(t) ≥ 0 follows from the definition of Lεn(t) and equation (3), as does
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the second condition. That Iεn(t) →
∫ t

0 µ◦L(s) ds follows from uniform convergence and the
inequality ∫ t

0
µ◦Lε(t) ds− Iε(t) ≤ ελ(t).

For condition 3, notice that {t : x(t) > δ} ⊂ {t : xε(n)(t) > δ/2} for large enough n. The
uniqueness of L(t) proved above shows that L(t) is independent of the ε(n) chosen.

For the case where m = inf{µ(l), l ≥ 0} = −∞, repeat the above construction with µj(s) =
µ(s) ∨ (−j), and denote the results as Lj(t) and xj(t). By Lemma 2.5, Lj(t) will agree with
L(t) for 0 ≤ T j , where T j = inf{t : µ◦L(t) = −j}. To complete the proof, it is only necessary
to show that T j → ∞. Suppose that T j → T . There are then Tn ↑ T so that L(Tn) = n and
x(Tn) = 0. We compute that

f(Tn)− f(Tn+1) = 1 +
∫ Tn+1

Tn

µ◦L(s) ds.

By the continuity of f(t), the LHS approaches 0, so that∣∣∣∣∫ Tn+1

Tn

µ◦L(s) ds
∣∣∣∣→ 1.

However, ∣∣∣∣∫ Tn+1

Tn

µ◦L(s) ds
∣∣∣∣ ≤ (Tn+1 − Tn) sup

n≤l≤n+1
|µ(l)|,

so that

Tn+1 − Tn ≥
0.9

|µ(n+ 1)|

for sufficiently large n. Then T = T1 +
∑

(Tn+1 − Tn) ≥ ∞ by (2), a contradiction. Hence
T j →∞, and the proof is complete.

The following corollary restates Theorem 2.1 to be similar to Knight’s original result [7, Theorem
1.1]. Theorem 2.1 yields a process with drift reflected at 0, this version yields a process reflected
from a second curve v(t).

Corollary 2.6. Let f(t) be a continuous function with f(0) ≥ 0, and let µ(l) be a continuous
increasing function with

λ(l) = sup
a<b<l

|µ(b)− µ(a)|
b− a

<∞

for every l ≥ 0. Then there is a unique continuous L(t) satisfying

1. x̃(t) = f(t) + L(t),

2. L(0) = 0, L(t) is nondecreasing,
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3. L(t) is flat off {t : x̃(t) = v(t)}, and

4. v(0) = 0, d
dtv(t) = −µ◦L(t).

Proof. This is just a restatement of Theorem 2.1. To see this, let

v(t) = −
∫ t

0
µ◦L(s) ds

and
x̃(t) = x(t) + v(t).

τ∞(?)

τ∞(?)

Figure 1: Two equivalent versions of the process, corresponding to Theorem 2.1 and Corollary
2.6, resp. Note that τ∞ cannot be determined from the pictured portion of the graph, so the
best candidate is what is labeled.

The remarks that follow demonstrate the necessity of the restrictions (1) and (2) on µ(t) in
Theorem 2.1, at least for the deterministic version of the theorem.

Remark 1 (Non-uniqueness of L(t)). In the context of Theorem 2.1, if we let f(t) = −t,
µ(l) = 1 −

√
l, L(t) = 0, and L̃(t) = t2/4, then x(t) = x̃(t) = 0, which shows that the theorem

cannot be extended to general f(t) and µ(l).
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Remark 2 (Blow–up of L(t)). Again, in the context of Theorem 2.1, we let f(t) = −t, µ(l) =
−l2, and L(t) = tan t. Then

x(t) = −t+ tan t−
∫ t

0
tan2 s ds = 0,

so L(t) satisfies the conditions of the theorem, but blows up at t = π/2.

The results so far do not rely on probability. We will now remedy that by applying the results to
Brownian paths. For the rest of the section, we will need a standard Brownian motion {Bt,Ft},
with B0 = 0 a.s., and some fixed µ(t) satisfying (1). In the statements below, L(t) will be a
random function, L(ω, t) = LB(ω, t).

Theorem 2.7. If f(t) in Theorem 2.1 is replaced with a Brownian motion Bt, then the corre-
sponding L(t) is the semimartingale local time at zero, Λt(0), [6, p. 218] of Xt ≡ Bt + L(t) +∫ t

0 µ◦L(s)ds, a.s.

Further, we get that, a.s.,

2L(t) = lim
ε→0

ε−1

∫ t

0
1[0,ε)

(
Bs + L(s) +

∫ s

0
µ◦L(r)dr

)
ds.

Proof. To see that L(t) = Λt(0), use a version of Itô-Tanaka’s formula (e.g. (7.4) on p. 218 of
[6]), with the identifications Mt = Bt, Vt = L(t) +

∫ t
0 µ◦L(s)ds, and f(x) = |x|, and get that

|Xt| = X0 −
∫ t

0
1{0}(Xs)dBs +

∫ t

0
1(0,∞)(Xs)dBs −

∫ t

0
1{0}(Xs)dL(s)

+
∫ t

0
µ◦L(s)ds+ 2Λt(0)

= Bt − L(t) +
∫ t

0
µ◦L(s)ds+ 2Λt(0).

On the other hand, if f(t) is replaced by Bt in Theorem 2.1, we get since Xt ≥ 0

|Xt| = Bt + L(t) +
∫ t

0
µ◦L(s)ds.

Therefore, L(t) = Λt(0), a.s.

Having established the previous fact, a standard argument shows the other assertion. By [6,
Theorem 7.1] we get

lim
ε→0

ε−1

∫ t

0
1[0,ε)

(
Bs + L(s) +

∫ s

0
µ◦L(r)dr

)
ds = lim

ε→0

2
ε

∫ ε

0
Λt(a)da

= 2Λt(0) = 2L(t).
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Corollary 2.8. For the case µ ≡ λ, that is, Brownian motion with drift λ, reflected at 0,
Xt ≡ Bt + L(t) + λt,

LX(t) ≡ L(t) = max
0≤s≤t

(−Bt − λt).

Proof. This follows directly from the previous theorem and equation (3) on page 1511. By the
notation LX(t) we will mean the semimartingale local time at 0 of the reflected process X(t)
(not just for the specific case of constant drift). Note that in the stochastic case, unlike the
deterministic case, the LX(t) can be recovered almost surely from X(t).

We now fix λ, and define X(t) ≡ B(t) + LX(t) + λt as above. Let φ be the right-continuous
inverse of LX(t); that is,

φ(b) = inf{t : LX(t) = b}.

By Corollary 2.8, we have that
φ(b) d= Tb,

where Tb = inf{t : −Bt − λt = b}. From [6, p. 196] we have that

P [Tb − Ta ∈ dt] =
b− a√

2πt3
exp

[
−(b− a)2

2t

]
dt,

and a computation shows that for µ ≡ λ,

lim
ε→0

1
ε
P [Tb+ε − Tb ∈ dt] =

dt√
2πt3

exp
[
−λ

2t

2

]
.

Additionally, we have for b > 0 that

P{Tb <∞} =

{
1, λ ≥ 0,
e−2|λ|b, λ < 0,

= e−2|λ∧0|b. (5)

Theorem 2.9. Let τ∞ = inf{s : φ(s) =∞}. Then

P{τ∞ > τ} = exp(−2
∫ τ

0
|µ(s) ∧ 0|ds),

with µ(l) as in Theorem 2.1.

Proof. An equivalent definition of τ∞ is τ∞ = sup{LX(t) : t ≥ 0}. Recall from the proof of
Theorem 2.1 the definition of Lε(t), and let τ ε∞ = sup{Lε(t) : t ≥ 0}. It is clear from the
uniform convergence Lε(t) to LX(t) that τ∞ = lim

ε→0
τ ε∞.

For notational convenience, define τ = sup{jε : jε ≤ τ, j an integer}, where the value of ε should
be apparent from the context. From (4) and (5) we see that

P (τ ε∞ > τ |τ ε∞ > τ) = e−2|µ(τ)∧0|(τ−τ).
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Using this, compute

d

dτ
P (τ ε∞ > τ) = lim

δ→0
δ−1[P (τ ε∞ > τ + δ)− P (τ ε∞ > τ)]

= lim
δ→0

δ−1[P (τ ε∞ > τ)P (τ ε∞ > τ + δ|τ ε∞ > τ)− P (τ ε∞ > τ)]

= lim
δ→0

P (τ ε∞ > τ)δ−1(e−2|µ(τ)∧0|δ − 1)

= P (τ ε∞ > τ)(−2|µ(τ) ∧ 0|).

Solving this separable differential equation gives

P (τ ε∞ > τ) = exp(−2
∫ τ

0
|µ(s) ∧ 0| ds),

and taking the limit as ε→ 0 gives the result.

For calculations, it is useful to consider the process we have constructed as a point process of
excursions from the origin, indexed by local time. Here we derive some of the formulas that will
be used in later sections.

Notation. For a process Xt and a subset C of [0,∞)× [0,∞], we define

ν(X;C) = # {(τ, λ) ∈ C : φ(τ)− φ(τ−) = λ} .

We also define the measure
n(·) = Eν(X; ·).

Theorem 2.10. The measure n(·) has density function

1√
2πλ3

exp
(
−µ2(τ)λ

2

)
exp

(
−2
∫ τ

0
|µ(s) ∧ 0|ds

)
,

with µ(l) as in Theorem 2.1.

Proof. For a fixed τ and λ, this decomposes as the product of the probability that an excursion
of Brownian motion with drift µ(τ) has time duration λ given that τ∞ > τ , times the probability
that τ∞ > τ (from Theorem 2.9). If τ∞ < τ , no more excursions occur.

Finally, we calculate the probability that an excursion of Brownian motion with constant drift
µ reaches height l. We will need this in the sections that follow.

Lemma 2.11. For Brownian motion with constant drift µ, the intensity measure of excursions
that reach level l before returning to the origin is given by

lim
ε→0

1
ε
P (µ)
ε (Tl < T0) =

µeµl

sinh(µl)
.
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Proof. Apply the Girsanov transform to get that

P (µ)
ε (Tl < T0 ∧ t) = E[1{Tl<T0∧t}Zt],

where Zt = exp(µ(Bt −B0)− µ2t/2). By the Optional Sampling theorem, this is

= E[1{Tl<T0∧t}ZTl∧t]

= E[1{Tl<T0∧t}ZTl ]

= exp(µ(l − ε))Eε[exp(−µ2Tl/2)1{Tl<T0}]

= exp(µ(l − ε))sinh(εµ)
sinh(lµ)

.

The last formula comes from [6, 2.8.28].

3 A Process with Inert Drift in an Interval

The construction method in Section 2 for one inert particle and one Brownian particle can be
extended to other configurations of particles. In this section we construct a process X(t), which
is a Brownian motion confined to the interval [0, l], with drift V (t) = K(L0(t) − Ll(t)), where
L0(t) and Ll(t) are the local times at 0 and l, resp., accumulated before time t.

Another way to look at this process is to allow the interval to move, that is, construct processes
Y0(t) ≤ X(t) ≤ Yl(t), where Y0(t) and Yl(t) describe the paths of inert particles with drift
V (t) = K(L0(t)− L1(t)), with Yl(t) = Y0(t) + l, and with X(t) the path of a Brownian particle
reflected from Y0(t) and Yl(t). If we look at these processes modulo l, then Y0(t) and Yl(t) can
be seen as two sides of a single inert particle, on the boundary of a disc. If we let l = 2π, then
exp(iX(t)) and exp(iY0(t)) trace out the paths of one Brownian particle and one inert particle
on the boundary of the unit disc.

Theorem 3.1. Given constants l,K > 0, v ∈ R, and a Brownian motion B(t) with B(0) = 0,
there exist unique processes L0(t) and Ll(t) satisfying

1. Y0(t) ≤ X(t) ≤ Yl(t), where

(a) X(t) ≡ B(t) + L0(t)− Ll(t)
(b) V (t) ≡ v −K(L0(t)− Ll(t))
(c) Y0(t) ≡

∫ t
0 V (s) ds

(d) Yl(t) ≡ Y0(t) + l

2. L0(t) and Ll(t) are continuous, nondecreasing functions, with L0(0) = Ll(0) = 0, and

3. L0(t) and Ll(t) are flat off the sets {t : Y0(t) = X(t)} and {t : Yl(t) = X(t)} , resp.

Proof. In Section 2 we constructed a similar process for just one Brownian and one inert particle.
Because the two inert particles in this theorem are always distance l apart, we can carry out
the construction piecewise; that is, do the construction for one inert particle and one Brownian
particle as in the previous section until the distance between these two particles reaches l, then
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continue the construction with the Brownian particle and the other inert particle, until the
distance between these two reaches l, and continue switching between them.

Using Corollary 2.6, with the identifications µ(τ) = Kτ , f(t) = B(t), we first construct unique
processes Y0(t), X(t), and L0(t) having the properties stated in the theorem, for 0 ≤ t <
T0 ≡ inf{t : X(t) − Y0(t) = l}. Applying Corollary 2.6 again, but changing the order of the
Brownian and inert paths, we can extend Y0(t), X(t), and Ll(t) to the time interval 0 ≤ t <
T1 ≡ inf{t > T0 : Yl(t) − X(t) = l}. Repeat this process to extend Y0(t) and X(t) until
T2 ≡ inf{t > T1 : X(t)− Y0(t) = l}. Then we are in the initial situation of the inert particle in
contact with the upper inert particle Yl(t), and we can repeat the steps of the construction.

X(t)

Yl(t)

Y0(t)

T0 T1 T2 T3 T4

Figure 2: A process with drift in an interval

3.1 Density of the velocity process

The function L(t) ≡ L0(t) + Ll(t) is the total semimartingale local time that the Brownian
particle X(t) spends at the endpoints of the interval [0, l]. Since the velocity process V (t)
changes only at these endpoints, we will reparametrize V in terms of the local time. We define
Ṽτ ≡ V (L−1(τ)).

The process Ṽτ is a piecewise linear process consisting of segments with slope ±K. The slope
of the process at a particular time τ depends on which endpoint X has most recently visited.
For this reason, Ṽτ is not Markov. We therefore introduce a second process Jτ , taking values
0 or 1, with value 0 indicating that X has most recently visited endpoint 0 and the velocity is
increasing, and value 1 indicating that X has most recently visited endpoint l and the velocity
is decreasing. This technique of introducing an additional state process is similar to that used
in [1].

For convenience, we will define

D = C2(R× {K,−K}) ∩ {f : lim
|v|→∞

f(v, j) = 0}, (6)

that is, continuous, twice-differentiable functions on our state space that vanish at ∞.
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Lemma 3.2. The infinitesimal generator, A, of the process (Ṽτ , Jτ ) is given by

Af(v, 1) = −K ∂

∂v
f(v, 1) +

ve−vl

sinh(vl)
[f(v, 0)− f(v, 1)],

Af(v, 0) = K
∂

∂v
f(v, 0) +

vevl

sinh(vl)
[f(v, 1)− f(v, 0)].

Proof. We will prove the lemma using the definition of the generator (see [4]) and Lemma 2.11.
Assume f ∈ D.

Af(v, j) = lim
τ→0

E(v,j)[f(Ṽτ , Jτ )− f(v, j)]
τ

.

We will assume that f ∈ C2
b (R) ∩ {f : lim|x|→∞ f(x) = 0}.

By Lemma 2.11, excursions from 0 reach l with Poisson rate vevl/ sinh(vl), and by symmetry,
excursions from l that reach 0 occur with rate ve−vl/ sinh(vl). Let σ be the time of the first
crossing. We can rewrite the previous equation for j = 0 as

Af(v, 0) = lim
τ→0
{1
τ
P (v,0)(σ > τ)[f(v +Kτ, 0)− f(v, 0)]

+
1
τ
P (v,0)(σ < τ)[f(v +Kσ −K(τ − σ), 1)− f(v, 0)]}

= lim
τ→0
{P (v,0)(σ > τ)

1
τ

[f(v +Kτ, 0)− f(v, 0)]

+
1
τ
P (v,0)(σ < τ)[f(v +K(2σ − τ), 1)− f(v, 0)]}.

Because the limit of P (v,0)(σ < τ)/τ is exactly the Poisson rate given above, Af(v, 0) is as stated
in the lemma. A similar calculation gives Af(v, 1).

Lemma 3.3. The (formal) adjoint, A∗ of the generator A is given by

A∗g(v, 1) = K
∂

∂v
g(v, 1) +

vevl

sinh(vl)
g(v, 0)− ve−vl

sinh(vl)
g(v, 1),

A∗g(v, 0) = −K ∂

∂v
g(v, 0)− vevl

sinh(vl)
g(v, 0) +

ve−vl

sinh(vl)
g(v, 1).

Proof. The (formal) adjoint A∗ of A is the operator satisfying, for all suitable f, g (including
f, g ∈ D), ∫

(Af)gdv =
∫
f(A∗g)dv. (7)

Let us assume that A is of the somewhat more general form

Af(v, 1) = −K ∂

∂v
f(v, 1) + a(v)[f(v, 0)− f(v, 1)],

Af(v, 0) = K
∂

∂v
f(v, 0) + b(v)[f(v, 1)− f(v, 0)].
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Then we have that∫
(Af)g =

∫
−K ∂

∂v
f(v, 1)g(v, 1) +

∫
a(v)[f(v, 0)g(v, 1)− f(v, 1)g(v, 1)]

+
∫
K
∂

∂v
f(v, 0)g(v, 0) +

∫
b(v)[f(v, 1)g(v, 0)− f(v, 0)g(v, 0)].

Integrating by parts,∫
(Af)g =

∫
{Kf(v, 1)

∂

∂v
g(v, 1) + f(v, 1)[b(v)g(v, 0)− a(v)g(v, 1)]}

+
∫
{−Kf(v, 0)

∂

∂v
g(v, 0) + f(v, 0)[−b(v)g(v, 0) + a(v)g(v, 1)]}.

Factoring out f(v, j) leaves

A∗g(v, 1) = K
∂

∂v
g(v, 1) + b(v)g(v, 0)− a(v)g(v, 1),

A∗g(v, 0) = −K ∂

∂v
g(v, 0)− b(v)g(v, 0) + a(v)g(v, 1).

Lemma 3.4. The process (Ṽτ , Jτ ) has stationary normal density

g(v, j) =
1

2
√
πK

e−v
2/K dv (8)

Proof. The stationary distribution, µ, of a process is the probability measure satisfying∫
Af dµ = 0 (9)

for all f in the domain of A. If we assume that dµ is of the form g(v, j)dv, then this is equivalent
to ∫

fA∗g dv = 0, (10)

so that it is sufficient to find g(v, j) satisfying A∗g(v, j) = 0. By Lemma 3.3,

A∗g(v, 1) +A∗g(v, 0) = K

(
∂

∂v
g(v, 1)− ∂

∂v
g(v, 0)

)
,

so that g(v, 0) and g(v, 1) differ by a constant. Note that this does not depend on the jump
intensities a(v) and b(v). Since

∫
(g(v, 1) + g(v, 0))dv = 1, g(v, 0) = g(v, 1). Using this fact and

Lemma 3.3, we get

A∗g(v, 1) = K
∂

∂v
g(v, 1) +

v(evl − e−vl)
sinh(vl)

g(v, 1)

= K
∂

∂v
g(v, 1) + 2vg(v, 1).

This gives the separable differential equation

0 = K
∂

∂v
g(v, 1) + 2vg(v, 1),

which has solutions of the form g(v, 1) = C exp(−v2/K).
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3.2 Behavior as l→ 0

In this section we will let Ṽ l(τ) denote the process Ṽτ constructed in the previous section, with
the constant K = 1. We will show that the sawtooth process Ṽ l(τ) converges weakly to the
Ornstein-Uhlenbeck process, under appropriate rescaling, as l→ 0. The proof uses results from
section 11.2 of [11].

We first consider the sawtooth process Ṽ l(τ) only at those times when it switches from decreasing
to increasing, call them τ l0 = 0, τ l1, τ

l
2, . . . We will also refer to those times when the process

switches from increasing to decreasing, call them σl1, σ
l
2, . . . Let pln = σln−σln−1, and qln = τ ln−σln.

Next, we construct the piecewise linear processes V̂ l(t) and T l(t). We define V̂ l(t) so that
V̂ l(nl2) = Ṽ l(τ ln), and T l(nl2) = lτ ln.

As in the previous section, we will let a(v, l) = vevl/ sinh(vl) and b(v, l) = ve−vl/ sinh(vl). We
will use the following properties of a and b in our proof:

0 ≤ ∂

∂v
a(v, l) ≤ 2

−2 ≤ ∂

∂v
b(v, l) ≤ 0,

so that a(v, l) and b(v, l) are monotone functions. We also use the property that la(v, l) → 1
and lb(v, l)→ 1 as l→ 0:

lim
l→0

la(v, l) = lim
l→0

lvevl

sinh vl
= lim

l→0

v(vl + 1)evl

v cosh vl
= 1.

Let P lv,t be the probability measure corresponding to 〈V̂ l(t), T l(t)〉 starting from (v, t). Let Pv,t
be the unique solution of the martingale problem (see [6] or [11]) for

L =
∂2

∂v2
− 2v

∂

∂v
+ 2

∂

∂T

starting from (v, t).

Lemma 3.5. P lv,t → Pv,t as l→ 0 uniformly on compact subsets of R2.

The proof of Lemma 3.5 depends on and will follow a number of technical lemmas. We begin
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with some definitions. The notation P (v,t)(dr, ds) denotes the transition density of (pl, ql).

El = {(u, d)|(u− d)2 + l2(u+ d)2 ≤ 1},

aV Vl (v, t) =
1
l2

∫
El

(r − s)2P (v,t)(pl1 ∈ dr, ql1 ∈ ds),

aV Tl (v, t) =
1
l2

∫
El

l(r + s)(r − s)P (v,t)(pl1 ∈ dr, ql1 ∈ ds),

aTTl (v, t) =
1
l2

∫
El

l2(r + s)2P (v,t)(pl1 ∈ dr, ql1 ∈ ds),

bVl (v, t) =
1
l2

∫
El

(r − s)P (v,t)(pl1 ∈ dr, ql1 ∈ ds),

bTl (v, t) =
1
l2

∫
El

l(r + s)P (v,t)(pl1 ∈ dr, ql1 ∈ ds),

∆ε
l (x) =

1
l2
P (v,t)((vl1, lτ

l
1) > ε).

To prove the lemma, we need to show that the quantities |aV Vl (v, t)− 2|, |aV Tl (v, t)|, |aTTl (v, t)|,
|bVl (v, t)+2v|, |bTl (v, t)−2| and |∆ε

l (v, t)| converge to zero as l→ 0, uniformly for |v| ≤ R. When
this is done, Lemma 11.2.1 of [11] completes the proof.

Because the density P (v,t)(dr, ds) is a bit unwieldy for direct computation, we introduce p̃l

and q̃l, which are exponential random variables with rate a(v, l) and b(v, l), respectively. Define
ãV Vl (v, t) . . . b̃Tl (v, t) for p̃l and q̃l as above, using P̃ (v,t)(dr, ds) for the transition density of (p̃l, q̃l).

Remark 3. We will need to compare P (v,t)(dr, ds) and P̃ (v,t)(dr, ds) in the calculations that
follow. If the process V̂ l(t) stays between v −∆ and v + ∆ for 0 ≤ t ≤ l2, then the rate of the
process pl is bounded by a(v, l) and a(v, l) + 2∆, and the rate of the process ql is bounded by
b(v, l)− 2∆ and b(v, l) + 2∆. Then the densities satisfy

a(v, l)(b(v, l)− 2∆))e(a(v,l)+2∆)re(b(v,l)+2∆)s

≤ P (v,t)(dr, ds) ≤ (a(v, l) + 2∆)(b(v, l) + 2∆))e(a(v,l)−2∆)re(b(v,l)−2∆)s.

Combining the RHS and LHS with the density for P̃ (v,t)(dr, ds), we arrive at the inequality

|P̃ (v,t)(dr, ds)− P (v,t)(dr, ds)|

≤
(

1− e−2∆r +
2∆
a(v, l)

)(
e2∆s − e−2∆s +

2∆(e2∆s + e−2∆s)
b(v, l)

)
P̃ (v,t)(dr, ds).

Define C(v, l,∆) =

sup
r,s<∆

(
1− e−2∆r +

2∆
a(v, l)

)(
e2∆s − e−2∆s +

2∆e2∆s + 2∆e−2∆s

b(v, l)

)
(11)

≤
(

1− e−2∆2
+

2∆
a(−R, l)

)(
e2∆2 − e−2∆2

+
2∆e2∆2

+ 2∆
b(R, l)

)
. (12)

It is clear that
lim

∆,l→0
sup
|v|≤R

C(v, l,∆)→ 0.
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Lemma 3.6.
|aV Vl (v, t)− 2| → 0.

Proof. We first need to show that

1
l2

∫
Ecl

(r − s)2P̃ (v,t)(dr, ds)→ 0. (13)

Note that if 0 ≤ r ≤ 1/2 and 0 ≤ s ≤ 1/2, then (r, s) ∈ El for l <
√

3/2. Then

1
l2

∫
Ecl

r2P̃ (v,t)(dr, ds) ≤ 1
l2

∫
r>1/2

r2P̃ (v,t)(dr, ds) +
1
l2

∫
s>1/2

r2P̃ (v,t)(dr, ds)

=
1
l2

(∫ ∞
1/2

r2a(v, l)e−a(v,l)r dr + E(p̃l)2P (q̃l > 1/2)

)

=
1
l2

(
2 + a(v, l) + a2(v, l)/4

a2(v, l)
e−a(v,l)/2 +

2
a2(v, l)

e−b(v,l)/2
)

≤ 1
l2

(
2 + a(R, l) + a2(R, l)/4

a2(−R, l)
e−a(−R,l)/2) +

2
a2(−R, l)

e−b(R,l)/2
)
.

Since la(v, l) → 1 as l → 0, we can show that this last term will converge to 0 if we can show
that a2(R, l) exp(−a(−R, l)/2)→ 0:

a2(R, l)e−a(−R,l)/2 ≤ (1/l + 2R)2e−1/l+2R,

and we know that l−me−1/l → 0 as l→ 0 for all m.

The same procedure shows that

1
l2

∫
Ecl

s2P̃ (v,t)(dr, ds)→ 0. (14)

and these calculations (noting that (r − s)2 ≤ r2 + s2) give (13).

Since p̃l and q̃l are independent exponential random variables,

ãV Vl (v, t) =
1
l2

∫
El

(r − s)2P̃ (v,t)(dr, ds)

=
1
l2
E(p̃l − q̃l)2 − 1

l2

∫
Ecl

(r − s)2P̃ (v,t)(dr, ds)

=
1
l2

(
2

a2(v, l)
− 2
a(v, l)b(v, l)

+
2

b2(v, l)

)
− I.

Since a(v, l) and b(v, l) are monotone, and la(v, l) and lb(v, l) converge to 1 for all v, and I → 0,
the RHS of the last equation converges to 2 uniformly for |v| ≤ R. Combining this with equation
(13) shows that

|ãV Vl − 2| → 0.
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Next we compare aV Vl and ãV Vl .

aV Vl − ãV Vl =
1
l2

∫
El

(r − s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

=
1
l2

∫
El∩{r+s<

√
l}

(r − s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

+
1
l2

∫
El∩{r+s>

√
l}

(r − s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

= II + III.

Since (r − s)2 ≤ 1 on El, the second term III can be bounded as follows:

III ≤ 1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)]

+
1
l2

[P (p̃l >
√
l/2) + P (q̃l >

√
l/2)]

(15)

≤ 1
l2

[e−
√
la(v,l)/2 + e−

√
l(b(v,l)−2K

√
l)/2 + e−

√
la(v,l)/2 + e−

√
lb(v,l)/2] (16)

since if pl <
√
l, the rate of ql < b(v, l) + 2K

√
l. We can compute that

1
l2
e−
√
la(v,l)/2 <

1
l2
e−
√
l(1/l−2R)

=
1
l2
e−1/

√
le2R

√
l.

The term exp(−1/
√
l)/l2 → 0 and exp(2R

√
l)→ 1.

To bound the term II, we observe that on the set El ∩ {r+ s <
√
l}, V̂ l must lie in the interval

(v −K
√
l, v +K

√
l). Then

II ≤ C(v, l,
√
l)

1
l2

∫
El∩{r+s<

√
l}

(r − s)2P̃ (v,t)(dr, ds)

≤ C(v, l,
√
l)

1
l2

∫
r,s>0

(r − s)2P̃ (v,t)(dr, ds)

= C(v, l,
√
l)

1
l2

(
2

a2(v, l)
− 2
a(v, l)b(v, l)

+
2

b2(v, l)

)
.

As before, (2/a2 − 2/ab + 2/b)/l2 → 2, and as shown above, C(v, l,
√
l) → 0 uniformly on

compact sets as l → 0, so we conclude that |aV Vl (v, t) − ãV Vl (v, t)| → 0. Finally, we use the
triangle inequality to conclude that |aV Vl (v, t)− 2| → 0.

Lemma 3.7.
|bTl (v, t)− 2| → 0.

Proof. We will first show that

1
l

∫
Ecl

(r + s)P̃ (v,t)(dr, ds)→ 0. (17)
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As in the previous case,

1
l

∫
Ecl

rP̃ (v,t)(dr, ds) ≤ 1
l

∫
r>1/2

rP̃ (v,t)(dr, ds) +
1
l

∫
s>1/2

rP̃ (v,t)(dr, ds)

=
1
l

(∫ ∞
1/2

ra(v, l)e−a(v,l)r dr + E(p̃l)P (q̃l > 1/2)

)

=
1
l

(
1 + a(v, l)/2

a(v, l)
e−a(v,l)/2 +

1
a(v, l)

e−b(v,l)/2
)

≤ 1
l

(
1 + a(R, l)/2
a(−R, l)

e−a(−R,l)/2 +
1

a(R, l)
e−b(R,l)/2

)
.

Since la(v, l)→ 1 as l → 0, we can show that this last term will converge to 0 by showing that
a(R, l) exp(−a(−R, l)/2)→ 0:

a(R, l)e−a(−R,l)/2 ≤ (1/l + 2R)e−1/l+2R,

and we know that l−me−1/l → 0 as l→ 0 for all m.

The same procedure shows that

1
l

∫
Ecl

sP̃ (v,t)(dr, ds)→ 0.

and combining them gives (17).

Since p̃l and q̃l are independent exponential random variables,

b̃Tl (v, t) =
1
l

∫
El

(r + s)P̃ (v,t)(dr, ds)

=
1
l
E(p̃l + q̃l)− 1

l

∫
Ecl

(r + s)P̃ (v,t)(dr, ds)

=
1
l

(
1

a(v, l)
+

1
b(v, l)

)
− I.

Since a(v, l) and b(v, l) are monotone, and la(v, l) and lb(v, l) converge to 1 for all v, and I → 0,
this quantity converges to 2 uniformly for |v| ≤ R.

Next we compare bTl and b̃Tl .

bTl − b̃Tl =
1
l

∫
El

(r + s)(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

=
1
l

∫
El∩{r+s<

√
l}

(r + s)(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

+
1
l

∫
El∩{r+s>

√
l}

(r + s)(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

= II + III.
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Since r + s ≤ 1/l on El, the second term III can be bounded as follows:

III ≤ 1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)]

+
1
l2

[P (p̃l >
√
l/2) + P (q̃l >

√
l/2)]

which we know converges to 0, since it is exactly the same as (15) on page 1526.

To bound the term II, we observe that on the set El ∩ {r+ s <
√
l}, V̂ l must lie in the interval

(v −K
√
l, v +K

√
l). Then

II ≤ C(v, l,
√
l)

1
l

∫
El∩{r+s<

√
l}

(r + s)P̃ (v,t)(dr, ds)

≤ C(v, l,
√
l)

1
l

∫
r,s>0

(r + s)P̃ (v,t)(dr, ds)

= C(v, l,
√
l)

1
l

(
1

a(v, l)
+

1
b(v, l)

)
.

As before, (1/a + 1/b)/l → 2, and as shown above, C(v, l,
√
l) → 0 uniformly on compact sets

as l→ 0, so we conclude that |bTl (v, t)− b̃Tl (v, t)| → 0. Finally, we use the triangle inequality to
conclude that |bTl (v, t)− 2| → 0.

Lemma 3.8.
|bVl (v, t) + 2v| → 0

Proof. We first show that

1
l2

∫
Ecl

(r − s)P̃ (v,t)(dr, ds)→ 0. (18)

As in the previous case,

1
l2

∫
Ecl

rP̃ (v,t)(dr, ds) ≤ 1
l2

∫
r>1/2

rP̃ (v,t)(dr, ds) +
1
l2

∫
s>1/2

rP̃ (v,t)(dr, ds)

≤ 1
l2

(
1 + a(R, l)/2
a(−R, l)

e−a(−R,l)/2 +
1

a(R, l)
e−b(R,l)/2

)
.

Because la(v, l) → 1 as l → 0, this last term will converge to 0 if we can show that
(1/l)a(R, l) exp(−a(−R, l)/2)→ 0:

(1/l)a(R, l)e−a(−R,l)/2 ≤ (1/l2 + 2R/l)e−1/l+2R,

and we know that l−me−1/l → 0 as l→ 0 for all m.

The same procedure shows that

1
l2

∫
Ecl

sP̃ (v,t)(dr, ds)→ 0.
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and combining them gives (18).

Since p̃l and q̃l are independent exponential random variables,

b̃Vl (v, t) =
1
l2

∫
El

(r − s)P̃ (v,t)(dr, ds)

=
1
l2
E(p̃l − q̃l)− 1

l2

∫
Ecl

(r − s)P̃ (v,t)(dr, ds)

=
1
l2

(
1

a(v, l)
− 1
b(v, l)

)
− I

=
1
l2

1
a(v, l)b(v, l)

(b(v, l)− a(v, l))− I

=
1
l2

1
a(v, l)b(v, l)

v(e−vl − evl)
sinh(vl)

− I

=
1
l2

1
a(v, l)b(v, l)

(−2v)− I.

Since a(v, l) and b(v, l) are monotone, and la(v, l) and lb(v, l) converge to 1 for all v, and I → 0,
the last equation converges to −2v uniformly for |v| ≤ R.

Next we compare bVl and b̃Vl .

|bVl − b̃Vl | ≤
1
l2

∫
El

|r − s|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

=
1
l2

∫
El∩{r+s<

√
l}
|r − s|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

+
1
l2

∫
El∩{r+s>

√
l}

|r − s|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

= II + III.

Since |r − s| ≤ 1 on El, the second term III can be bounded as follows:

III ≤ 1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)]

+
1
l2

[P (p̃l >
√
l/2) + P (q̃l >

√
l/2)]

which converges to 0, as (15) on page 1526.

To bound the term II, we observe that on the set El ∩ {r+ s <
√
l}, V̂ l must lie in the interval

(v −K
√
l, v +K

√
l). Then

II ≤ 1
l
C(v, l,

√
l)

1
l

∫
El∩{r+s<

√
l}

(r + s)P̃ (v,t)(dr, ds)

≤ 1
l
C(v, l,

√
l)

1
l

∫
r,s>0

(r + s)P̃ (v,t)(dr, ds)

=
1
l
C(v, l,

√
l)

1
l

(
1

a(v, l)
+

1
b(v, l)

)
.
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As before, (1/a + 1/b)/l → 2. For this case, we need to show that C(v, l,
√
l)/l → 0 uniformly

on compact sets as l→ 0. From (12), it is enough to show that

1
l

(
1− e−2l +

2
√
l

a(−R, l)

)
→ 2

(in fact, any finite limit will do), and this is an application of l’Hôpital’s rule. We conclude that
|bVl (v, t)− b̃Vl (v, t)| → 0. Finally, we use the triangle inequality to conclude that |bVl (v, t)+2v| →
0.

Lemma 3.9.
|aTTl (v, t)| → 0.

Proof. Since p̃l and q̃l are independent exponential random variables,

ãTTl (v, t) =
∫
El

(r + s)2P̃ (v,t)(dr, ds)

≤ E(p̃l + q̃l)2

=
2

a2(v, l)
+

2
a(v, l)b(v, l)

+
2

b2(v, l)
.

Since a(v, l) and b(v, l) are monotone, and a(v, l) and b(v, l) converge to ∞ for all v, the last
equation converges to 0 uniformly for |v| ≤ R.

Next we compare aTTl and ãTTl .

|aTTl − ãTTl | ≤
∫
El

(r + s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

=
∫
El∩{r+s<

√
l}

(r + s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

+
∫

El∩{r+s>
√
l}

(r + s)2(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

= I + II.

Since (r + s)2 ≤ 1/l2 on El, the second term II can be bounded as follows:

II ≤ 1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)]

+
1
l2

[P (p̃l >
√
l/2) + P (q̃l >

√
l/2)]

which converges to 0, since it is the same as (15) on page 1526.

To bound the term I, we observe that on the set El ∩ {r + s <
√
l}, V̂ l must lie in the interval
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(v −K
√
l, v +K

√
l). Then

I ≤ C(v, l,
√
l)
∫
El∩{r+s<

√
l}

(r + s)2P̃ (v,t)(dr, ds)

≤ C(v, l,
√
l)
∫
r,s>0

(r + s)2P̃ (v,t)(dr, ds)

= C(v, l,
√
l)
(

2
a2(v, l)

+
2

a(v, l)b(v, l)
+

2
b2(v, l)

)
.

In this case, both terms converge to 0 as l → 0. We conclude that |aTTl (v, t) − ãTTl (v, t)| → 0.
Finally, we conclude that |aTTl (v, t)| → 0.

Lemma 3.10.
|aV Tl (v, t)| → 0.

Proof. Since p̃l and q̃l are independent exponential random variables,

ãV Tl (v, t) =
1
l

∫
El

(r + s)(r − s)P̃ (v,t)(dr, ds)

≤ 1
l
E[(p̃l)2 + (q̃l)2]

=
1
l

(
2

a2(v, l)
+

2
b2(v, l)

)
.

Since a(v, l) and b(v, l) are monotone, la(v, l) and lb(b, l) converge to 1, and a(v, l) and b(v, l)
converge to ∞ for all v, the last equation converges to 0 uniformly for |v| ≤ R.

Next we compare aV Tl and ãV Tl .

|aV Tl − ãV Tl | ≤
1
l

∫
El

|r2 − s2|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

=
1
l

∫
El∩{r+s<

√
l}

|r2 − s2|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

+
1
l

∫
El∩{r+s>

√
l}

|r2 − s2|(P (v,t)(pl ∈ dr, ql ∈ ds)− P (v,t)(p̃l ∈ dr, q̃l ∈ ds))

= I + II.

Since |r2 − s2| ≤ 1/l on El, the second term II can be bounded as follows:

II ≤ 1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)]

+
1
l2

[P (p̃l >
√
l/2) + P (q̃l >

√
l/2)]

which we know converges to 0, since it is exactly the same as (15) on page 1526.
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To bound the term I, we observe that on the set El ∩ {r + s <
√
l}, V̂ l must lie in the interval

(v −K
√
l, v +K

√
l). Then

I ≤ C(v, l,
√
l)
∫
El∩{r+s<

√
l}

(r + s)2P̃ (v,t)(dr, ds)

≤ C(v, l,
√
l)
∫
r,s>0

(r + s)2P̃ (v,t)(dr, ds)

= C(v, l,
√
l)
(

2
a2(v, l)

+
2

a(v, l)b(v, l)
+

2
b2(v, l)

)
.

In this case, both terms converge to 0 as l → 0, so |aV Tl (v, t) − ãV Tl (v, t)| → 0. Finally, we
conclude by the triangle inequality that |aV Tl (v, t)| → 0.

Lemma 3.11.
1
l2

∆ε
l (v, t)→ 0

uniformly for |v| < R.

Proof. In fact, we need only observe that for l < 1/2, the set {(u, v) : u+ v <
√
l} ⊂ El. Then

∆ε
l (v, t) ≤

1
l2

[P (pl >
√
l/2) + P (ql >

√
l/2, pl <

√
l/2)],

which we have shown to converge above (again, (15) on page 1526).

Proof of Lemma 3.5. We need to show that the martingale problem for

L =
∂2

∂v2
− 2v

∂

∂v
+ 2

∂

∂T

has a unique solution. Since the coefficients are either bounded or linear, we can use Theorem
5.2.9 of [6]. Once uniqueness of the solution of the martingale problem for L is established,
Lemma 3.5 follows directly from Theorem 11.2.3 of [11] and Lemmas 3.6–3.11.

An issue with Lemma 3.5 is that the measures P lv,t are associated with V̂ l(t) rather than with
the original Ṽ l(τ). In fact, the convergence holds for Ṽ l(τ) as well.

Theorem 3.12. The process Ṽ l(τ) converges weakly to the Ornstein-Uhlenbeck process.

Proof. By the symmetry of a and b, the process interpolated on the other side (along σj ’s) has
the same limit as V̂ l(t). Since the processes interpolated along the top and the bottom of the
sawtooth process converge to the same process, the whole sawtooth process must converge if we
show that the distance between them is 0, or equivalently, that the distance between the two
processes converges to 0 uniformly on finite time intervals. This follows from Lemmas 3.7 and
3.9.

The construction of V̂ l(t) involved a time change because we forced each switch of the process
to have duration l2. The term 2 ∂

∂T of the generator L indicates that in the limit, this is twice
the duration of the actual time between switches. We can restore the original clock by dividing
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the generator by two. When we do so, we find that the spatial component of the process has
generator corresponding to solutions of the SDE

dXt = dBt −Xt dt.

This is an Ornstein-Uhlenbeck process.

4 A Pair of Brownian Motions Separated by an Inert Particle

In this section, we consider an arrangement of two Brownian particles X1 and X2 separated by
an inert particle Y in R. More precisely, we construct processes X1(t) ≤ Y (t) ≤ X2(t), where
the interactions between X1(t) and Y (t) and between Y (t) and X2(t) are as described in Section
2.

Figure 3: Two Brownian particles separated by an inert particle

A method of construction different from that in Section 2 is needed if the two Brownian particles
ever meet. Instead we introduce a random variable T∞ to represent the first meeting of the two
Brownian particles X1(t) and X2(t). In fact, we will show that with probability one, T∞ =∞.

Theorem 4.1. Given independent Brownian motions B1 and B2, with Bj(0) = 0, constants
x > 0, 0 ≤ y ≤ x, v ∈ R, and K > 0, there exist unique processes L1(t) and L2(t), and a
random time T∞, satisfying the following conditions:

1. X1(t) ≤ Y (t) ≤ X2(t), 0 ≤ t ≤ T∞, where

(a) X1(t) ≡ B1(t)− L1(t),

(b) X2(t) ≡ x+B2(t) + L2(t),

(c) V (t) ≡ v +K(L1(t)− L2(t)), and

(d) Y (t) ≡ y +
∫ t

0
V (s) ds,

2. L1(t) and L2(t) are continuous, nondecreasing functions with L1(0) = L2(0) = 0,

3. L1(t) and L2(t) are flat off the sets {t : X1(t) = Y (t)} and {t : X2(t) = Y (t)}, resp.
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4. T∞ = inf{t : X1(t) = X2(t)}.

Proof. The construction method in the Section 2 and a sequence of stopping times can be used
to construct this process up to the stopping time T∞, the limit of the stopping times used
in the construction. After time T∞ the process is not well-defined, but we show below that
P (T∞ =∞) = 1.

We define XKx (t) ≡ (X1(t), X2(t), Y (t), V (t)) for the processes constructed with initial state
y = 0, v = 0, and constant K. The following lemma describes the scaling law of the process.

Lemma 4.2. εXKx (t/ε2) d= XK/εεx (t).

Proof. By Brownian scaling, the X1 and X2 components remain Brownian motions, and by
uniqueness of local time, L1 and L2 have the same scaling. However, by the chain rule, the slope
of the Y component has been multiplied by 1/ε for each t.

The rest of the section concerns the proof that T∞ =∞ a.s.

Theorem 4.3. Define a process Xρ,T (t) for T > 0 and ρ ∈ (0, 1) as follows. Let

∆(t) =

{
0 t < T

−ρL(T )(t− T ) t ≥ T

By previous results, there are unique Lρ,T (t) and L(t) such that

Xρ,T (t) = [B(t) + ∆(t)] + Lρ,T (t) +
∫ t

0
Lρ,T (s) ds ≥ 0,

X(t) = B(t) + L(t) +
∫ t

0
L(s) ds ≥ 0,

where Lρ,T (t) and L(t) are the local times of Xρ,T (t) and X(t), respectively, at zero. Define
Lρ,T∞ = lim

t→∞
Lρ,T (t) and L∞ = lim

t→∞
L(t). Then

P (Lρ,T∞ > l) ≤ P (L∞ > l) = exp(−l2).

Proof. First note that X(t) = Xρ,T (t) and L(t) = Lρ,T (t) for t ≤ T . Also note that the drift of
term of Xρ,T (t) at time T is (1− ρ)L(T ) > 0. After time T , Xρ,T (t) may or may not return to
the origin. If not, then X(t) also would not have returned to the origin (B(t) ≥ B(t) + ∆(t)),
so Lρ,T∞ = (1− ρ)L∞.

Otherwise, Xρ,T returns to the origin at some time τρ,T . Define

S = inf{t | L(t) = (1− ρ)L(T )}

Notice that X(S) = 0 with probability 1. Construct a Brownian motion B̃ by deleting the time
interval (S, τρ,T ) from B(t):

B̃(t) =

{
B(t) t ≤ S
B(t− S + τρ,T )−B(τρ,T ) +B(S) t ≥ S

,
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and an associated local time:

L̃(t) =

{
L(t) t ≤ S
Lρ,T (t− S + τρ,T )− ρL(T ) t ≥ S

and the associated reflected process with drift:

X̃(t) =

{
X(t) t ≤ S
Xρ,T (t− S + τρ,T ) t ≥ S

.

Note that B̃(t) is a Brownian motion because τρ,T is a stopping time and S is depends only on
B[S, T ] and so is independent of B[0, S].

We will show that X̃(t) = B̃(t) + L̃(t) +
∫ t

0 L̃(s) ds. In fact, because of the pathwise uniqueness
of solutions L(t), we only need to check that B̃, X̃, and L̃ are continuous at S.

L̃(S−) = L(S) = (1− ρ)L(S)

L̃(S+) = Lρ,T (τρ,T )− ρL(T )

= Lρ,T (T )− ρL(T )
= L(T )− ρL(T )
= L(S−)

The limit of L̃(t) as t → ∞ is Lρ,T∞ (pathwise). But the limit of L̃(t) will have the same
distribution as L∞ because B̃(t) is a Brownian motion. Since we have either decreased L∞ by a
factor of ρ or replaced it with a new copy with identical distribution, the inequality holds.

Theorem 4.4. For the process constructed in Theorem 4.1, P (T =∞) = 1.

Proof. By the previous lemma, we may assume that K = 1. We also assume that v = 0. We
use slightly simplified versions of the process X1 and X2 below, which incorporate the drift term
(Y (t) in the definiton), and which otherwise agree until time T with the definitions in Theorem
4.1.

X1(t) = B1(t) + L1(t) +
∫ t

0
V (s) ds ≥ 0

X2(t) = B2(t)− L2(t) +
∫ t

0
V (s) ds ≤ 0,

where L1(t), L2(t) are the local times of X1(t) and X2(t) at the origin, B1(0) > 0 and B2(0) = 0,
and

V (t) =

{
L1(t)− L2(t) t < T

0 t ≥ T
,

with T a stopping time defined below.

Define T0 = 0, Tj+1 = inf{t > Tj | V (t) = 0}, and define T∞ = limTj . On any of the intervals
[Tj , Tj+1] (say that X1(Tj) = 0), the term V (t) behaves exactly as in the case of one Brownian
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particle and one inert particle, except that V (t) may decrease when X2(t) = 0. So V (t) is
dominated in distribution by L∞.

Using the previous theorem, we can check Novikov’s condition and then apply the Girsanov
theorem to (X1, X2):

E exp
(

1
2

∫ j+1

j
(V (t))2dt

)
≤ E exp

(
1
2

∫ j+1

j
(L∞)2dt

)
≤ E exp

(
1
2

(L∞)2dt

)
=
∫ ∞

0
exp

(
1
2
s2

)
P (L∞ ∈ ds)

=
∫ ∞

0

[∫ s

0
exp

(
1
2
r2

)
r dr + 1

]
P (L∞ ∈ ds)

=
∫ ∞

0
exp

(
1
2
r2

)
r

∫ ∞
r

P (L∞ ∈ ds) dr + 1

=
∫ ∞

0
exp

(
1
2
r2

)
r exp(−r2)dr + 1

<∞.

We can now apply Girsanov to see that under some measure, (X1, X2) is a standard reflected
Brownian motion in the quadrant {(x, y) | x > 0, y > 0}. Observe that if X1(Tj) = 0, then
X2(Tj+1) = 0 and X1(Tj+2) = 0. Then T∞ < ∞ implies that the reflected Brownian motion
hits the origin, an event with probability zero. Therefore, P (T∞ =∞) = 1.

4.1 The limiting process is Bess(2)

In this section, we wish to determine the law of X2(t) − X1(t) for the process described in
Theorem 4.1, as the constant K → ∞. Heuristically, one can see that if we apply regular
Brownian rescaling to the process, the paths of the inert particle will get steeper, which is
equivalent to increasing K. We can therefore get a picture of the long-term behavior of the
process by letting K →∞.

As in the previous section, we approach the limit distribution through a Markov chain. We
introduce the stopping times Tj defined by

T0 = 0, Tj+1 = inf{t > Tj : V (t) = 0},

and a two-dimensional Markov chain {YK(j)}∞j=0 defined by

YK(j) = (X2(Tj)−X1(Tj), Tj).

We denote the transition probabilities of YK(j) by

ΠK(x, dy, dt) = P
(
YK(j + 1) ∈ (dy, dt) | YK(j) = (x, 0)

)
,

noting that Tj+1 − Tj is independent of the value of Tj .
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Now that our processes are defined, we focus on the transition probabilities of {YKj }j . The
following definitions correspond to those in [11, section 11.2], with h = 1/

√
K.

bXK(x) =
√
K

∫
|(y−x,t)|<1

(y − x) ΠK(x, dy, dt),

bTK(x) =
√
K

∫
|(y−x,t)|<1

t ΠK(x, dy, dt),

aXXK (x) =
√
K

∫
|(y−x,t)|<1

(y − x)2 ΠK(x, dy, dt),

aXTK (x) =
√
K

∫
|(y−x,t)|<1

(y − x)t ΠK(x, dy, dt),

aTTK (x) =
√
K

∫
|(y−x,t)|<1

t2 ΠK(x, dy, dt),

∆ε
K(x) =

√
K

∫
|(y−x,t)|>ε

ΠK(x, dy, dt).

In the calculations that follow, we focus on the first step in our Markov chain. We introduce
two more random times between 0 and T1, defined by

S1 = sup{t < T1 : Y (t) = X1(t)},

S2 = inf{t > 0 : Y (t) = X2(t)}.

The typical case will be that 0 < S1 < S2 < T1. Lemma 4.8 below makes this precise.

We also introduce the set B(1) = {ω : |YK(1)−YK(0)| < 1}, which is the domain of the integrals
above.

We define τK∞ as defined in the second section, to be the limit of L1(t) as t→∞ in the absence
of the process X2(t). Applying Theorem 2.9, we compute

P (τK∞ > t) = exp(−Kt2).

Lemma 4.5.
lim
K→∞

√
KP (L1(S1) > K−1/2+δ) = 0,

uniformly in x.

Proof. This follows from the inequality L1(S1) ≤ τK∞ and the explicit distribution for τK∞ (from
Theorem 2.9): √

KP (τK∞ > K−1/2+δ) =
√
K exp(−K2δ).

Next we need to show that SK1 is sufficiently small. We do this first by examining the duration
of excursions X1 makes from the path of the inert particle. The measures are from Theorem
2.10.
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Lemma 4.6. Define AKε to be the number of excursions, of duration ε or larger, that X1 makes
from Y before time T1.

lim
K→∞

√
KP (AKε > 0;L1(S1) < K−1/2+δ) = 0.

Proof. AKε = #{(l, t) ∈ (ε,∞) × [0, L1(S1))}. If we condition the process X1 not to make an
infinite duration excursion from Y , then AKε is a Poisson random variable with rate bounded
above by ∫ K−1/2+δ

τ=0

∫ ∞
l=ε

e−K
2τ2l/2

√
2πl3

dl dτ.

By a change of variables, we get

=
∫ ∞
l=ε

1
Kl2
√
π

∫ K1/2+δ
√
l/2

u=0
e−u

2
du dl

<
1

K
√
π

∫ ∞
l=ε

1
l2

∫ ∞
u=0

e−u
2
du dl

=
2
Kε

.

Then √
KP (AKε > 0;L1(S1) < K−1/2+δ) ≤

√
K(1− e−2/Kε),

which converges to 0 as K →∞. In fact, this will converge to 0 for ε(K) = K−1/2+δ, a fact we
will use for the next lemma.

Lemma 4.7. √
KE(SK1 1B(1))→ 0

Proof. By the previous lemma, we need only consider excursions of length less than K−1/2+δ on
the set where L1(S1) < K−1/2+δ. Then

√
KE(SK1 1B(1)) ≤

√
K

∫ K−1/2+δ

l=0

∫ K−1/2+δ

σ=0

le−K
2σ2l/2

√
2πl3

dσ dl

≤
√
K

2π

∫ K−1/2+δ

l=0

∫ K−1/2+δ

σ=0
l−1/2 dσ dl

=
√

2√
π
K−

1
4

+ 3δ
2 → 0.

The next lemma allows us to work with the much nicer density of τK∞ instead of L1(S1).

Lemma 4.8.
lim
K→∞

√
KP (L1(S1) < τK∞) = 0
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Proof. For L1(S1) < τK∞ , the inert particle must cross the gap between X1
t and X2

t before SK1 ,
the last meeting time of X1

t and the inert particle. Since the particle is in contact with X1
t at

the instant SK1 , it is sufficient to show that

lim
K→∞

√
KP

(
sup

s,t<K−1/2+δ

(|X1(s)|+ |X2(t)− x|) > x

)
= 0.

This is equivalent to showing that

lim
K→∞

√
KP

(
sup

s,t<K−1/2+δ

(|B1(s)|+ |B2(t)|+ L1(S1)) > x

)
= 0.

We bound the LHS by

lim
K→∞

3
√
KP

(
sup

t<K−1/2+δ

|B1(t)| > x

)
≤ lim

K→∞
12
√
KP

(
B1(K−1/2+δ) > x

)
,

which is 0 by a standard computation.

We will also need a lower bound for L1(S1), because the time it takes for the inert particle to
cross the gap between the Brownian particles, S2 − S1, is approximately x/KL1(S1).

Lemma 4.9.
lim
K→∞

√
KP (L1(S1) < K−(3/4+δ)) = 0

Proof. By the previous lemma, we need only show this for τK∞ .

lim
K→∞

√
KP (L1(S1) < K−(3/4+δ)) = lim

K→∞

√
K(1− exp(−K−1/2−2δ))

= lim
K→∞

(1 + 4δ) exp(−K−1/2−2δ)

= 0.

Lemma 4.10.
lim
K→∞

√
KE(L1(S1))2 → 0.

Proof. Because L1(S1) < τK∞ , it is enough to compute the expectation of (τK∞)2:

E(τK∞)2 =
∫ ∞

0
2se−Ks

2
ds =

1
K
.

Multiplying by
√
K and taking the limit yields the result.

Lemma 4.11.

lim
K→∞

√
KE

(
L1(S1)−

√
π

2

)
= 0.
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Proof. By Lemma 4.8, it is enough to compute the expectation of τK∞ :

EτK∞ =
∫ ∞

0
e−Ks

2
ds =

√
π

2
√
K
.

Multiplying by
√
K, and taking the limit yields the result.

Lemma 4.12. For all R > 0,

lim
K→∞

sup
1
R
<|x|<R

(
bTK(x)−

√
πx
)

= 0.

Proof. Using Lemma 4.7 we disregard the contribution of SK1 and TK1 − SK2 .

By [6, p. 196], we have that a Brownian motion with drift µ, starting at x, has hitting time
density at zero

Pµ(T ∈ dt) =
x√
2πt3

exp
(
−(x− µt)2

2t

)
dt.

A table of integrals (e.g. [5, p. 353]) will reveal that∫ ∞
0

tPµ(T ∈ dt) =
x

µ
.

In our case, assuming X1(SK1 ) is small, that is, the two Brownian particles remain close to
distance x apart, we have

√
KESK2 =

√
K

∫ K(−1/2+δ)

τ=K−(3/4+δ)

∫ ∞
t=0

tPKτ (SK2 ∈ dt)P (τKx ∈ dτ)

→ x
√
π.

The assumption that X1(SK1 ) is small can be justified by noting that X1(SK1 ) will have mean
L1(S1) and variance S1, and then applying Lemmas 4.5 and 4.7.

Lemma 4.13. For all R > 0,
lim
K→∞

sup
1
R
<|x|<R

aTTK (x) = 0.

Proof. Using the same densities as in the previous lemma, we compute

√
KE(SK2 )2 =

√
K

∫ K(−1/2+δ)

τ=K−(3/4+δ)

∫ ∞
t=0

t2PKτ (SK2 ∈ dt)P (L1(S1) ∈ dτ)

→ 0.

Lemma 4.14. For all R > 0,

lim
K→∞

sup
1
R
<|x|<R

(
bXK(x)−

√
π
)

= 0.
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Proof. The change in X2 −X1 can be expressed as

X2 −X1 − x = B2(T1)−B1(T1) + 2L1(S1).

Taking the expectation leaves

E(X2 −X1 − x) = 2EL1(S1),

and the result follows from Lemma 4.11.

Lemma 4.15. For all R > 0,

lim
K→∞

sup
1
R
<|x|<R

(
aXXK (x)− 2x

√
π
)

= 0.

Proof. Following the proof of the previous lemma,

(X2 −X1 − x)2 = B2(T1)2 +B1(T1)2 + 4(L1(S1))2 + 2B2(T1)B1(T1)
+ 4L1(S1)(B2(T1)−B1(T1)).

Taking the expectation leaves

E(X2 −X1 − x)2 = 2ET1 + 4E(L1(S1))2 + 0 + 0,

and the result follows from Lemma 4.10 and Lemma 4.12.

Lemma 4.16. For all R > 0,

lim
K→∞

sup
1
R
<|x|<R

(
aXTh (x)

)
= 0.

Proof. As in the preceding lemmas,

(X2 −X1 − x)T1 = (B2(T1)−B1(T1) + 2L1(S1))T1.

Taking the expectation leaves

E(X2 −X1 − x)T1 = 2EL1(S1)T1.

As in the previous lemmas, we discard the contribution from T1 − S2. Using the probability
densities from Lemma 4.12, it is easy to see that∫ ∞

0

∫ ∞
0

tτPKτ (SK2 ∈ dt)P (τKx ∈ dτ) =
x

K
,

and the result follows.

We define the process ŶK(t) to be a piecewise linear process derived from the Markov chain
YK(j) so that ŶK(j/

√
K) = YK(j).

We can take the domain of L to be C2((0,∞)× [0,∞)) in the following theorems.
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Theorem 4.17. The limiting process lim
K→∞

ŶK(t) has infinitesimal generator

L = X
√
π
∂2

∂X2
+
√
π
∂

∂X
+X
√
π
∂

∂T
.

Proof. Apply [11, Thm. 11.2.3] with the preceding lemmas.

From the X
√
π(∂/∂T ) term above, we can see that the space-time process ŶK(t) runs at a

different rate than do the original Brownian motions which defined our process. We can perform
a change of time to restore the original clock, by dividing the generator by X

√
π.

Theorem 4.18. The limit of the process (X2(t/2)−X1(t/2)) as K →∞ is the 2-dimensional
Bessel process.

Proof. We actually change the clock by the factor 2X
√
π to get the correct Brownian motion

term, because the original process is the difference of two Brownian motions. The generator of
the space-time process, after the change of time, is

L =
1
2
∂2

∂X2
+

1
2X

∂

∂X
+

1
2
∂

∂T
.

Since the process now has a linear clock rate, the first coordinate of the process will be the
original (X2(t/2)−X1(t/2)), with the generator L with the T term omitted. This is exactly the
generator of the two-dimensional Bessel process.

5 A Process with Inert Drift in Rd

The Brownian motion with inert drift constructed in Section 2, considered as a process on
the domain [0,∞), can be generalized to higher dimensional domains. In this section, we will
construct such a process in C2 domains. Unfortunately, an error was found in the original proof
of uniqueness for this process. A correct proof for bounded C2 domains will appear in [2].

We would like to point out that S. Ramasubramanian has previously extended a more general
version of the process to orthants; see [9].

We will rely on some results by P. Lions and A. Sznitman from [8]. Let D be an open set in Rd,
with a unit inward vector field n on ∂D satisfying (19) and (20) below. We make the following
assumptions as in [8]:

∃C0,∀x ∈ ∂D, ∀x′ ∈ D̄,∀L ∈ n(x), (x− x′, L) + C0|x− x′|2 ≥ 0 (19)

∀x ∈ ∂D, if ∃C ≥ 0, ∃L ∈ Rd : ∀x′ ∈ D̄, (x− x′, L) + C|x− x′|2 ≥ 0,
then L = θn(x) for some θ ≥ 0

(20)

A domain D is called admissible if there is a sequence {Dm} of bounded smooth open sets in
Rd such that

1. D and Dm satisfy (19) and (20),

2. if xm ∈ D̄m, xm → x, then x ∈ D̄, and
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3. if K ⊂ D is compact, then K ⊂ Dm for m large enough.

Note that C2 domains are admissible by this definition.

We will call a pair (xt, Lt) a solution of the Skorohod problem (w,D, n) if the following hold:

1. xt ∈ C([0,∞), D̄),

2. Lt ∈ C([0,∞),Rd), and Lt has bounded variation on every interval (0, T ) for all T <∞,

3. |L|t =
∫ t

0
1{xs∈∂D} d|L|s,

4. Lt =
∫ t

0
n(xs) d|L|s,

5. xt = wt + Lt for t ≥ 0.

Notationally, xj or (x)j will denote the j-th component of x when x is a vector or vector function.

We will call a function xt a solution to the extended Skorohod problem if condition 5 above is
replaced by

xt = wt +
∫ t

0
Ls ds+ Lt. (21)

5.1 Existence when D lies above the graph of a function

The results in this section will be very similar to the one-dimensional case. We assume that
D = {x ∈ Rd : xd > f(x1, · · · , xd−1)} is admissible, with f(0, · · · , 0) = 0, and that there is an
0 < α < 1 so that |f(x)| < 1 − α and n(x)d > α for all x. Again note that f ∈ C2 will satisfy
this in a neighborhood of any point with an appropriate choice of coordinates.

Lemma 5.1. If xt = wt + Lt is a solution to the Skorohod problem in D, then

α|L|t < Ldt < |L|t < |L|t/α. (22)

Proof. From [8] we have that

Lt =
∫ t

0
n(xs) d|L|s

so that

Ldt =
∫ t

0
(n(xs))d d|L|s > α|L|t.

Clearly, Ldt is an nondecreasing function. Since L0 = 0, we also have that |Lt| < |L|t. Combining
these, we get (22).

Details of uniqueness will appear in [2].
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Lemma 5.2. If xt = (wt + It) +Lt solves the Skorohod problem in D for (wt + It) and Idt is an
increasing function with Id0 = 0, then

Ldt ≤ sup
0≤s≤t

(−wds ∧ 0) + (1− α) (23)

Proof. The proof is by contradiction. Let T be a time such that (23) does not hold, and let S
be the largest time less than T such that (23) does hold. Then for S < t ≤ T ,

(wt + It + Lt)d > xdt + Idt + sup
0≤s≤t

(−wds ∧ 0) + (1− α) > 1− α ≥ f(x̃t).

This implies that Ldt is constant on the interval [S, T ], a contradiction.

Theorem 5.3. Given a continuous wt with w0 ∈ D, with D satisfying the conditions at the
beginning of the section, there is an xt satisfying (21).

Proof. We will construct a solution as in the one-dimensional case.

We combine the results of Lions and Sznitman with Lemma 5.2 to construct, for any ε > 0, xεt ,
Lεt , and Iεt satisfying

xεt = wt + Iεt + Lεt ,

where Lεt is the local time of wt + Iεt , and where

Iεt = LεT εn(t− T εn), T εn < t < T εn+1,

T εn = inf{t > 0 : |Lε|t = nε}.

By Lemma 5.2 and (22), the family {Lεt}ε>0 is bounded for each t, and by Lemma 5.4 below, is
equicontinuous in t. We can therefore apply the Ascoli–Arzelà Theorem and find a subsequence
converging uniformly on any [0, T ] to some Lt and xt. The uniform convergence gives that xt is
a solution to (21).

5.2 Existence when D is a bounded domain

Lemma 5.4. Let xt = wt+Lt be a solution to the Skorohod problem in D, and let ε > 0. There
is a δ > 0 so that |L|T − |L|S < ε whenever diam(w[S,T ]) < δ.

Proof. Let x ∈ ∂D, and choose coordinates where x is the origin and n(x) = 〈0, · · · , 0, 1〉.
Because D is C1, we can find a 0 < ρ < ε so that for y ∈ ∂D and |y − x| < 3ρ, we have
n(y)d > 2/3, and |yd| < ρ/3. Let δ = ρ/3. Suppose that ρ < |L|T − |L|S < 2ρ. Then
|xT −xS | < 2ρ+ |wT −wS | < 3ρ, and xdT −xdS > wdT −wdS +

∫ T
S n(xs)d|L|s > 2ρ/3− ρ/3, so that

xT 6∈ ∂D, a contradiction.

It is left to show that for a more general domain solutions to (21) exist. We can do this by
piecing together graphs of functions.

Theorem 5.5. Solutions to (21) exist for D an admissible, bounded, piecewise C2 domain.
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Proof. The construction is standard. Divide D into neighborhoods N1, . . . , Nm which are nice,
in the sense that, under an appropriate rotation of the standard coordinate system, each Nj∩∂D
is a section of the graph of a function fj satisfying the conditions at the beginning of the previous
section. Assume that wt first encounters N1. Construct the domain which lies above the graph
of f1 and construct x(1)

t satisfying (21) on this new domain. Let T1 = inf{t : x(1)
t 6∈ N1}.

Repeat the process starting at T1 for the function wt = wt + LT1 + LT1(t− T1). Continue that
construction, so that the limit xt satisfies (21) on [0, lim

n→∞
Tn].

We wish to show that lim
n→∞

Tn =∞. If not, say Tn → T , then by Lemma 5.4 we must have that

lim
t→T
|Lt| =∞. Then there is some 1 ≤ j ≤ d, R,S < T so that 0 < LjR < Ljt for R < t < S, and

LjS ≥ L
j
R + diam(∂D) + diam(w[0, T ]). But this contradicts that xR, xS ∈ D.
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