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Abstract

We consider models of directed polymers interacting with a one-dimensional defect line on
which random charges are placed. More abstractly, one starts from renewal sequence on Z
and gives a random (site-dependent) reward or penalty to the occurrence of a renewal at any
given point of Z. These models are known to undergo a delocalization-localization transi-
tion, and the free energy f vanishes when the critical point is approached from the localized
region. We prove that the quenched correlation length ξ, defined as the inverse of the rate of
exponential decay of the two-point function, does not diverge faster than 1/f. We prove also
an exponentially decaying upper bound for the disorder-averaged two-point function, with a
good control of the sub-exponential prefactor. We discuss how, in the particular case where
disorder is absent, this result can be seen as a refinement of the classical renewal theorem,
for a specific class of renewal sequences.
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1 Introduction and motivations

The present work is motivated by the following two problems:

• Critical behavior of the correlation lengths for directed polymers with (de-)pinning in-
teractions. Take a homogeneous Markov chain {Sn}n≥0 on some discrete state space Σ,
with S0 = 0 and law P. A trajectory of S is interpreted as the configuration of a di-
rected polymer in the space Σ × N. In typical examples, S is a simple random walk on
Σ = Zd or a simple random walk conditioned to be non-negative on Σ = Z+. Of par-
ticular interest is the case where the distribution of the first return time of S to zero,
K(n) := P(min{k > 0 : Sk = 0} = n), decays like a power of n for n large. This holds in
particular in the case of the simple random walks mentioned above. We want to model the
situation where the polymer gets a reward (or penalty) ωn each time it touches the line
S ≡ 0 (which is called defect line). In other words, we introduce a polymer-line interaction
energy of the form

−
N∑

n=1

ωn1{Sn=0},

where N will tend to infinity in the thermodynamic limit. The defect line is attractive at
points n where ωn > 0 and repulsive when ωn < 0. In particular, one is interested in the
situation where ωn are IID quenched random variables. There is a large physics literature
(cf. (9, Chapter 1) and references therein) related to this class of models, due to their
connection with, e.g., problems of (1+ 1)-dimensional wetting of a disordered wall or with
the DNA denaturation transition.

In the localized phase where the free energy (defined in next section) is positive and the
number of contacts between the polymer and the defect line, |{1 ≤ n ≤ N : Sn = 0}|,
grows proportionally to N , one knows (11) that the two-point correlation function

|P∞,ω(Sn+k = 0|Sn = 0) − P∞,ω(Sn+k = 0)| (1.1)

decays exponentially in k, for every n and for almost every disorder realization. Here,
P∞,ω(.) is the Gibbs measure for a given randomness realization and the index ∞ refers to
the fact that the thermodynamic limit has been taken. The exponential decay of correlation
functions has been applied, for instance, to prove sharp results on the maximal excursions
length in the localized phase (11, Theorem 2.5) and bounds on the finite-size correction to
the thermodynamic limit of the free energy (11, Theorem 2.8).

The inverse of the rate of decay is identified as a correlation length ξ. A natural question is
the relation between ξ and the free energy f, in particular in proximity of the delocalization-
localization critical point, where the free energy tends to zero (see next section) and the
correlation length is expected to tend to infinity. The disorder average of the two-point
function (1.1) is also known (11) to decay exponentially with k, possibly with a different
rate (19).

The important role played by the correlation length, and by its relation with the free energy,
in understanding the critical properties of disordered pinning models was emphasized in a
recent work by K. Alexander (2).
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• Geometric convergence rates for renewal sequences. Consider a renewal sequence τ :=
{τi}i=0,1,2,... of law P defined as follows: τ0 = 0, and τi − τi−1 are IID random variables
with values in N and probability distribution p(.), where p(n) ≥ 0 and

∑
n∈N

p(n) = 1.
The celebrated renewal theorem (4, Chap. I, Th. 2.2) states that

un := P(n ∈ τ)
n→∞→ u∞ :=

1∑
n∈N

np(n)
=

1

E (τ1)
, (1.2)

with the convention that 1/∞ = 0. It is natural (and quite useful in practice, especially in
queuing theory applications) to study the speed of convergence in (1.2). In this respect, it
is known (cf. for instance (4, Chapter VII.2), (18)) that, if

b := sup{s > 0 :
∑

n∈N

esnp(n) <∞} > 0, (1.3)

then there exist r > 0 and C <∞ such that

|un − u∞| ≤ Ce−rn. (1.4)

However, the relation between b and the largest possible r in Eq. (1.4), call it rmax, is not
known in general. A lot of effort has been put in investigating this point, and in various
special cases, where p(.) satisfies some structural ordering properties, it was proved that
rmax ≥ b (see for instance (5), where power series methods are employed and explicit
upper bounds on the prefactor C are given). In even more special cases, for instance when
τi are the return times of a Markov chain with some stochastic ordering properties, the
optimal result rmax = b is proved (for details, see (16; 19), which are based on coupling
techniques). However, the equality rmax = b cannot be expected in general. In particular,
if p(.) is a geometric distribution,

p(n) = (ec − 1)e−nc

with c > 0, then one sees that un = u∞ for every n ∈ N so that rmax = ∞, while b = c.
On the other hand, if for instance p(1) = p(2) = 1/2 and p(n) = 0 for n ≥ 3, then b = ∞
while rmax is finite. These and other nice counter-examples are discussed in (5).

The two problems are known to be strictly related: indeed, in the homogeneous situation (ωn ≡
const) the law of the collection {n : Sn = 0} of points of polymer-defect contact is given, in the
thermodynamic limit, by a renewal process of the type described above, with p(n) proportional
to K(n)e−nf (cf., for instance, (9, Chapter 2)). In this case, therefore, the free energy f plays
the role of b above.

With respect to the first problem listed above, the main result of this paper is that, in the limit
where f tends to zero (i.e., when the parameters of the model are varied in such a way that
the critical point is approached from the localized phase), the correlation length ξ is at most of
order 1/f, for almost every disorder realization. An exponentially decaying upper bound, with
a “good” control of the sub-exponential prefactor, is derived also for the disorder average of the
two-point function (1.1), cf. Equation (2.17) of Theorem 2.1 and the discussion in Remark 2.2.

As a corollary we obtain the following result for the second problem above: if the jump law p(.)
of the renewal sequence is of the form

p(n) = a(b)
L(n)

nα+1
e−bn, (1.5)
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with 0 ≤ α <∞,

a(b) =

(
∑

n

L(n)n−(α+1) exp(−bn)

)−1

and L(.) a slowly varying function (not depending on b), then for b small one has that rmax & b
and C . b−c for some positive constant c (see Theorem 2.1 and Remarks 2.2, 4.1 below for the
precise statements). In particular, this means that |un−u∞| starts decaying exponentially (with
rate at least of order b) as soon as n≫ 1/b.

Remark 1.1. After this work was completed, a much sharper result was obtained by G. Gi-
acomin (10) in the homogeneous case: if condition (1.5) holds for some α > 0, then for b
sufficiently small one has

un − u∞
n→∞∼ a(b)

(a(b) − 1)2
L(n)

nα+1
e−bn. (1.6)

The techniques employed in (10) are very different from ours, and do not extend to the situation
where disorder is present, i.e., to the study of (1.1) for ω 6≡ const.

2 Notations and main result

We will define our “directed polymer” model in an abstract way where the Markov chain S
mentioned in the introduction does not appear explicitly. In this way the intuitive picture of the
Markov chain trajectory as representing a directed polymer configuration is somewhat hidden,
but the advantage is that the connection with renewal theory becomes immediate. The link with
the polymer model discussed in the introduction is made by identifying the renewal sequence τ
below with the set of the return times of the Markov chain S to the site 0.

Let K(.) be a probability distribution on N := {1, 2, . . .}, i.e., K(n) ≥ 0 for n ∈ N and

∑

n∈N

K(n) = 1. (2.1)

We assume that

K(n) =
L(n)

nα+1
(2.2)

for some 0 ≤ α < ∞. Here, L(.) is a slowly varying function, i.e., a positive function L :
R+ ∋ x → L(x) ∈ (0,∞) such that limx→∞L(xr)/L(x) = 1 for every r > 0. Given x ∈ Z, we
construct a renewal process τ := {τi}i∈N∪{0} with law Px as follows: τ0 = x, and τi − τi−1 are
IID integer-valued random variables with law K(.). Px can be naturally seen as a law on the
set

Ωx := {τ : τ ⊂ (Z ∩ [x,∞)) and x ∈ τ}.
Note that, thanks to (2.1), τ is a recurrent renewal process (possibly, null-recurrent).

Now we modify the law of the renewal by switching on a random interaction as follows. We
let {ωn}n∈Z be a sequence of IID centered random variables with law P and Eω2

0 = 1. For
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simplicity, we require also ωn to be bounded. Then, given h ∈ R, β ≥ 0, x, y ∈ Z with x < y
and a realization of ω we let

dPx,y,ω

dPx
(τ) =

e
Py

n=x+1(βωn−h)1{n∈τ}

Zx,y,ω
1{y∈τ} (2.3)

where, of course,

Zx,y,ω = Ex

(
e

Py
n=x+1(βωn−h)1{n∈τ}1{y∈τ}

)
(2.4)

and Px,y,ω is still a law on Ωx. Note that the normalization condition (2.1) is by no means a
restriction: if we had Σ :=

∑
n∈N

K(n) < 1, we could perform the replacements K(.) → K(.)/Σ,
h→ h− log Σ in (2.3) and the measure Px,y,ω would be unchanged.

One defines the free energy as

f(β, h) = lim
N→∞

1

2N
logZ−N,N,ω. (2.5)

The convergence holds almost surely and in L1(P), and f(β, h) is P( dω)-a.s. constant (see (9,
Chap. 4) and (3)). It is known that f(β, h) ≥ 0: to realize this, it is sufficient to observe that

1

2N
logZ−N,N,ω ≥ 1

2N
log E−N

(
e

PN
n=−N+1(βωn−h)1{n∈τ}1{τ1=N}

)
(2.6)

=
βωN − h

2N
+

1

2N
logK(2N) (2.7)

which tends to zero for N → ∞. One then decomposes the phase diagram into localized and
delocalized regions defined as

L := {(β, h) : f(β, h) > 0} (2.8)

D := {(β, h) : f(β, h) = 0}, (2.9)

separated by the critical line

hc(β) := inf{h : f(β, h) = 0}. (2.10)

By convexity, the free energy is continuous in β and h and therefore tends to zero when the
critical line is approached from the localized region. It is known that typical configurations τ
are very different in the two regions. Roughly speaking, if (β, h) ∈ L then the typical τ has a
finite density of points in N, i.e., for N large

1

N
|τ ∩ {1, . . . ,N}| ∼ −∂hf(β, h) > 0. (2.11)

On the other hand, in D the density tends to zero with N :

1

N
|τ ∩ {1, . . . , N}|

{ ≤ (logN)/N if h > hc(β)

≤ N−1/3 logN if h = hc(β)
(2.12)
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(for precise statements see, respectively, (12, Theorem 1.4, part (2)) and (19, Theorem 3.1)).

Another quantity which will play an important role in the following is

µ(β, h) = − lim
N→∞

1

2N
log E

1

Z−N,N,ω
. (2.13)

As it is known (cf. (11, Theorem 2.5 and Appendix B)) for (β, h) ∈ L one has

0 < µ(β, h) < f(β, h), (2.14)

while f(β, h) = µ(β, h) = 0 in D. On the other hand, it is unknown whether the ratio
f(β, h)/µ(β, h) remains bounded for h → hc(β). µ(β, h) is related to the maximal excursion
length in the localized phase,

∆N := max
0<i<j<N :
{i,...,j}∩τ=∅

|j − i| ,

in the sense that essentially ∆N ≃ logN/µ(β, h), see (11, Theorem 2.5) (cf. also (1) for a proof
of the same fact in a related model, the heteropolymer at a selective interface).

As was proven in (11) (but see also (6) for the proof of the almost sure existence of the infinite-
volume Gibbs measure for the heteropolymer model in the localized phase), the limit

E∞,ω(f) := lim
x→−∞
y→∞

Ex,y,ω(f) (2.15)

exists, P( dω)−a.s., for every (β, h) ∈ L and for every bounded local observable f , and is inde-
pendent of the way the limits x → −∞, y → ∞ are performed. A bounded local observable is
a bounded function f : {τ : τ ⊂ Z} → R for which there exists I, finite subset of Z, such that

f(τ1) = f(τ2)

whenever τ1 ∩ I = τ2 ∩ I. The smallest possible I is called support of f . An example of local
observable is |{τ ∩ I}|, the number of points of τ which belong to I. On the other hand, τ1 is
not a local observable.

A useful identity is the following: let a ∈ Z and f, g be two local observables, whose supports
are contained in {. . . , a− 2, a− 1} and {a+ 1, a+ 2, . . .}, respectively. Then, if x < a < y,

Ex,y,ω(f g|a ∈ τ) = Ex,a,ω(f)Ea,y,ω(g). (2.16)

In other words, conditioning on the event that a belongs to τ makes the process to the left and
to the right of a independent. This is easily checked from the definition (2.3) of the Boltzmann-
Gibbs measure and from the IID character of τi − τi−1 under Px.

Our first result is an exponentially decaying upper bound on the disorder-averaged two-point
correlation function, in the localized phase:

Theorem 2.1. Let ǫ > 0 and (β, h) ∈ L. There exists C1 := C1(ǫ, β, h) > 0 such that, for every
k ∈ N,

E |P∞,ω(k ∈ τ |0 ∈ τ) − P∞,ω(k ∈ τ)| ≤ 1

C1µ(β, h)1/C1
exp

(
−k C1 µ(β, h)1+ǫ

)
. (2.17)

The constant C1(ǫ, β, h) does not vanish at the critical line: for every bounded subset B ⊂ L one
has inf(β,h)∈B C1(ǫ, β, h) ≥ C1(B, ǫ) > 0.
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Remark 2.2. Note that Theorem 2.1 is more than just a bound on the rate of exponential
decay of the disorder-averaged two-point correlation. Indeed, thanks to the explicit bound on
the prefactor in front of the exponential, Eq. (2.17) says that the exponential decay, with rate
at least of order µ1+ǫ, commences as soon as k ≫ µ−1−ǫ| log µ|. This observation reinforces
the meaning of Eq. (2.17) as an upper bound on the correlation length of disorder-averaged
correlations functions.

It would be possible, via the Borel-Cantelli Lemma, to extract from Eq. (2.17) the almost-sure
exponential decay of the disorder-dependent two-point function. However, from (19) one expects
the almost-sure exponential decay to be related to f(β, h) rather than to µ(β, h). Indeed, we
have the following:

Theorem 2.3. Let ǫ > 0 and (β, h) ∈ L. One has for every k ∈ N

|P∞,ω(k ∈ τ |0 ∈ τ) − P∞,ω(k ∈ τ)| ≤ C2(ω) exp
(
−k C1f(β, h)1+ǫ

)
, (2.18)

where C1 is as in Theorem 2.1, while C2(ω) := C2(ω, ǫ, β, h) is an almost surely finite random
variable.

Recalling that f > µ, it is clear that Theorem 2.3 cannot be deduced from Theorem 2.1.

Remark 2.4. It is quite tempting to expect that, in analogy with Theorem 2.1, the (random)
prefactor C2(ω) is bounded above by

C5(ω, ǫ, β, h)

f(β, h)C5(ω,ǫ,β,h)
,

for some random variable C5 such that, say, EC5(ω, ǫ, β, h) ≤ c(B, ǫ) < ∞ for (β, h) belonging
to a bounded set B ⊂ L. This would mean that the almost sure exponential decay with decay
rate at least of order f

1+ǫ commences as soon as k ≫ n(ω)f−1−ǫ| log f|, with n(ω) random but
typically of order one even close to the critical point. However, this kind of result seems to be
out of reach with the present techniques.

Remark 2.5. As can be extracted from the proof of Theorems 2.1 and 2.3 (see in particular
Remark 7.3), if the slowly varying function L(n) in (2.2) tends to a constant for n → ∞, then
one can replace the right-hand side of Eqs. (2.17), (2.18) by

1

C3(β, h)µ(β, h)1/C3(β,h)
exp

(
−k C3(β, h)

µ(β, h)

| log µ(β, h)|

)

and

C4(ω, β, h) exp

(
−k C3(β, h)

f(β, h)

| log f(β, h)|

)

respectively, with inf(β,h)∈B C3(β, h) ≥ C3(B) > 0 and C4 almost surely finite.

Once the exponential decay of the two-point function is proven, it is not difficult to obtain similar
results for the correlation between any two given local observables (cf. Remark 5.1 below for
some more details):
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Theorem 2.6. Let A and B be two bounded local observables, with supports SA and SB, respec-
tively. Assume that SA is contained in Z ∩ (−∞, 0] and SB ⊂ Z ∩ [k,∞). Let (β, h) ∈ L, while
ǫ > 0. Then,

E |E∞,ω(AB) − E∞,ω(A)E∞,ω(B)| ≤ ||A||∞||B||∞
C1µ(β, h)1/C1

exp
(
−k C1 µ(β, h)1+ǫ

)
(2.19)

and

|E∞,ω(AB) − E∞,ω(A)E∞,ω(B)| ≤ ||A||∞||B||∞C2(ω) exp
(
−k C1 f(β, h)1+ǫ

)
, (2.20)

where C1 and C2 are as in Theorems 2.1 and 2.3.

3 Sketch of the idea: auxiliary Markov process and coupling

In this section, we give an informal sketch of the basic ideas underlying the proof of the upper
bounds for the two-point function. The actual proof is somewhat involved and takes Sections 4
to 7.

The basic trick is to associate to the renewal probability K(.) a Markov process {St}t≥x such
that, very roughly speaking, its trajectories are continuous “most of the time” and the random
set of integer times {t ∈ Z ∩ [x,∞) : St = 0} has the same distribution as the discrete renewal
process {τi}i∈N∪{0} associated to K(.), with law Px. This construction is done in Section 4,
where we see that S. is strictly related to the Bessel process (17) of dimension 2(α + 1). Once
we have S., we switch on the interaction

−
y∑

n=x+1

(βωn − h)1{Sn=0}

and in the thermodynamic limit x→ −∞, y → ∞ we obtain a new measure P̂∞,ω on the paths

{St}t∈R. An important point will be that the process S., under P̂∞,ω, is still Markovian, and
that the marginal distribution of τ := {t ∈ Z : St = 0} is just the measure P∞,ω defined in
Eq. (2.15). At that point, we take two copies (S1

. , S
2
. ) of the process, distributed according to

the product measure P̂⊗2
∞,ω, and we define the coupling time T (S1, S2) = inf{t ≥ 0 : S1

t = S2
t }.

From the Markov property it follows that

|P∞,ω(k ∈ τ |0 ∈ τ) − P∞,ω(k ∈ τ)| ≤ P̂⊗2
∞,ω(T (S1, S2) > k|S1

0 = 0). (3.1)

Indeed, if the two paths meet before time k, we can let them proceed together from then on and
they will either both touch zero at t = k, or both will not touch it. Note that at the left-hand side
of (3.1) we have just the quantity we wish to bound in Theorems 2.1 and 2.3. Finally, in order
to prove Eq. (2.18), we will show in Section 6 that, roughly speaking, in the time interval [0, k]
two typical (with respect to P̂⊗2

∞,ω) configurations of the paths S1
. , S

2
. come close to each other

at least approximately k f(β, h) times. The inequality (2.18) then follows by estimating what
is the probability that the two (independent!) paths actually succeed in avoiding each other
every time they are close: it is rather intuitive that this probability should decrease with k like
exp(−kf(β, h)). This explains result (2.18) (forget for the moment about ǫ and the constants).
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Inequality (2.17) is somewhat less intuitive and we do not try to give a heuristic justification
here. The technical difficulties one meets in turning this heuristics into a proof are reflected in
the necessity of taking ǫ > 0 in Theorem 2.1.

The most natural question left open by our result is whether lower bounds on the two-point
correlation function, complementary to the upper bounds of Eqs. (2.18), (2.17) hold. In Ref.
(19) a sharp result was proven in a specific case: if P is the law of the zeros of the one-
dimensional simple random walk conditioned to be non-negative (but that proof works also for
the unconditioned simple random walk), then the limit in (2.18) exists for (β, h) ∈ L and equal
exactly f(β, h). Similarly, for the disorder-averaged two-point function the analogous limit exists
and equals µ(β, h). The simplification that occurs in the situation considered in (19) is that two
trajectories of the Markov chain which is naturally associated to K(.), i.e., of the simple random
walk, must necessary meet whenever they cross each other. This avoids the construction of the
auxiliary Markov chain and makes the coupling argument much more efficient.

Let us emphasize that, in general, it is not even proven that the rate of exponential decay of
the (averaged or not) two-point correlation function tends to zero when the critical point is
approached (although this is very intuitive, and known for instance in the case considered in
(19), as already mentioned).

4 The Markov process

For δ ∈ (2,∞) let {ρ(s)
t }t≥s be the Bessel process of dimension δ and denote its law by P

(s)
ρ .

The Bessel process is actually well defined also for δ ≤ 2, but we will not need that here. For

the application we have in mind, we choose the initial condition ρ
(s)
s = 1. For general properties

of the Bessel process, we refer to (17, Sections VI.3 and XI.1). This is a diffusion on R+ with
infinitesimal generator

1

2

d2

dx2
+
δ − 1

2x

d

dx
. (4.1)

For every real δ > 2, ρ(s)
. is a transient Markov process with continuous trajectories (and, if

ρ
(s)
s = 0 were chosen as initial condition, for δ integer ρ(s)

. would have the same law as the
absolute value of the standard Brownian motion in Rδ started at the origin at time s). The
transition semi-group associated to ρ(s)

. , which gives the probability of being in y at time t0 + t
having started at x at time t0, is known explicitly (17): its density in y with respect to the
Lebesgue measure is given, for t, x > 0, by

pδ
t (x, y) :=

y

t

(y
x

)ν
e−(x2+y2)/(2t)Iν

(xy
t

)
(4.2)

where ν := (δ/2) − 1 and I.(.) is the modified Bessel function of first kind (7, Chapter 7.2.2).

Recall our choice ρ
(s)
s = 1 and define T (s) := inf{t > s : ρ

(s)
t = 1/2}. (As will be clear

from the proof, the values 1 and 1/2 could be replaced by any a, b with a > b > 0.) Then,

0 < P
(s)
ρ (T (s) < ∞) < 1, the upper bound being a consequence of transience. We let also

{ρ̂(s)
t }t≥s with law P̂

(s)
ρ be the process ρ(s)

. conditioned on T (s) < ∞. Finally, for n ∈ N we set
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K(δ)(n) := P̂
(0)
ρ (T (0) ∈ (n− 1, n]) so that

∑

n∈N

K(δ)(n) = 1. (4.3)

One can prove (cf. Appendix A; the proof is an immediate consequence of results in (14) and
(13)) that

lim
n→∞

nδ/2K(δ)(n) ∈ (0,∞), (4.4)

the existence of the limit being part of the statement.

Note that ρ̂(s)
. is not a Markov process. Indeed, for instance,

P̂ (0)
ρ (∃t > 1 : ρ̂

(0)
t = 1/2|ρ̂(0)

1 = 2,∃0 < s < 1 : ρ̂(0)
s = 1/2) (4.5)

= P (0)
ρ (∃t > 1 : ρ

(0)
t = 1/2|ρ(0)

1 = 2) < 1

by transience of ρ(0)
. , while

P̂ (0)
ρ (∃t > 1 : ρ̂

(0)
t = 1/2|ρ̂(0)

1 = 2,∄0 < s < 1 : ρ̂(0)
s = 1/2) = 1

since T (0) < ∞ almost surely for ρ̂(0)
. . However, it is immediately checked that the stopped

process which equals ρ̂
(s)
t for s ≤ t < T (s) and, say, 0 for t ≥ T (s) is again Markovian. This will

play a role later.

We choose the parameter of the Bessel process as δ = 2(1 + α+ ǫ), with ǫ > 0 (this is the same
ǫ which appears in the statement of Theorem 2.1). Then, from Eqs. (4.3), (4.4) and (2.2) it is
immediate to realize that there exists p = p(ǫ) with 0 < p < 1 such that, for every n ∈ N,

K(n) = pK(2(1+α+ǫ))(n) + (1 − p)K̂(n) (4.6)

where K̂(n) ≥ 0 and, of course,
∑

n∈N
K̂(n) = 1. The important point here is the non-negativity

of K̂(n), which implies that both K(2(1+α+ǫ))(.) and K̂(.) are probabilities on N, to which renewal
processes are naturally associated.

Note for later convenience that, as a consequence of (B.2),

K(2(1+α+ǫ))(n)

K(n)
≥ d3(ǫ)

n2ǫ
. (4.7)

Remark 4.1. Note that, if the slowly varying function L(n) in (2.2) tends to a positive constant
for n→ ∞, one can choose ǫ = 0 and in that case (4.7) can be improved into

inf
n∈N

K(2(1+α))(n)

K(n)
> 0. (4.8)

Now, given x ∈ Z we construct a continuous-time Markov process {S(x)
t }t≥x = {(φ(x)

t , ψ
(x)
t )}t≥x,

with φ
(x)
t ≥ 0, ψ

(x)
t ∈ {0, 1} and initial condition S

(x)
x = (0, 0). The process will satisfy the

following two properties:
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• Let t ∈ Z. Conditionally on φ
(x)
t = 0, {Su}u>t is independent of {Su}u<t.

• Let t1 < t2 ∈ Z. The process {Su}u>t1 , conditioned on φ
(x)
t1 = 0, has the same law as

{Su}u>t2 conditioned on φ
(x)
t2 = 0 and time-shifted to the left of t2 − t1.

Therefore, we need to construct the trajectories only between two successive integer times where

φ
(x)
t = 0. The construction proceeds as follows: whenever the condition

t ∈ Z, φ
(x)
t = 0 (4.9)

is realized, we extract (independently of {S(x)
u }u≤t) a random variable Ψ which takes value 0

with probability (1− p), and 1 with probability p (p being the one which appears in Eq. (4.6)).
At that point (see Figure 1):

• If Ψ = 0, then we extract a random variable m ∈ N with probability law K̂(.) and we

let φ
(x)
u = m + t − u for u ∈ (t, t + m]. In the same time interval, we let ψ

(x)
u = Ψ = 0.

At time t +m, we are back to condition (4.9) and we start again the procedure with an
independent extraction of Ψ.

• If Ψ = 1, then we let φ
(x)
u evolve like the process ρ̂

(t)
u for u ∈ (t, t + T (t)) where, we

recall, T (t) is the (random, but almost surely finite) first time u > t such that ρ̂
(t)
u = 1/2.

In particular, φ
(x)
t+

= 1. Let T̃ (t) = inf{j ∈ Z : j ≥ T (t)}. Then, we let φ
(x)
u = 0 for

u ∈ [T (t), T̃ (t)] and ψ
(x)
u = Ψ = 1 for u ∈ (t, T̃ (t)]. At time T̃ (t) we are back to condition

(4.9) and we start again with an independent extraction of Ψ.

The process S(x)
. so constructed (whose law will be denoted by P̂x), satisfies the following

properties which are easily checked:

A If τ (x) := {Z ∋ t ≥ x : φ
(x)
t = 0}, then the marginal distribution of τ (x) is the law Px of

Section 2 (the original renewal process associated to K(.) with τ0 = x). This is obvious
from (4.6) and from the construction of S(x)

. .

B Let

dP̂x,y,ω

dP̂x

(S(x)
. ) =

e
Py

n=x+1(βωn−h)1
{n∈τ(x)}

Zx,y,ω
1{y∈τ (x)}. (4.10)

Then, the marginal distribution of τ (x) is the law Px,y,ω introduced in Eq. (2.3).

C For (β, h) ∈ L, the limit P̂∞,ω(f) obtained as x → −∞, y → ∞ exists for every bounded

local observable f (i.e., bounded function of {S(x)
u }u∈I , I bounded subset of R.) This

is a consequence of the fact that in the localized region τ has a non-zero density in Z
and that the limit exists for functions depending only on τ , as discussed in Section 2.
We will call simply S. = (φ., ψ.) the limit process obtained as x → −∞, y → ∞, and
τ = {t ∈ Z : φt = 0}.
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φ
(x)
t

0

0

0

1

1

t

ψ
(x)
t

1/2

τ1 τ2 τ3
T (0) T (τ2)

Figure 1. An example of trajectory of S
(x)
t = (φ

(x)
t , ψ

(x)
t ). In this picture the starting time

x equals 0. The top curve represents φ
(x)
t , the bottom one ψ

(x)
t . In this example, ψ

(x)
t = 1 in

(0, τ1]. At the same time, φ
(x)
t performs a Bessel excursion starting from the value 1, up to the

time T (0) when it reaches the value 1/2. Then it equals 0 up to τ1 = eT (0). In the time interval

(τ1, τ2], on the other hand, ψ
(x)
t equals 0 and φ

(x)
t decreases linearly. In the third time interval,

one has again a Bessel excursion for φ(x) and the value 1 for ψ(x), and so on. The stretches of
the trajectory (φ

(x)
t , ψ

(x)
t ) between τi and τi+1 are independent.

D The process S. is Markovian. More precisely: if A is a local event supported on [u,∞)
then

P̂∞,ω(A|{St}t≤u) = P̂∞,ω(A|Su). (4.11)

(This property is easily checked for x, y finite, and then passes to the thermodynamic
limit).

E Recall that τ = {t ∈ Z : φt = 0} and let Aa,b be the event {a ∈ τ, b ∈ τ, {a + 1, . . . , b −
1} ∩ τ = ∅}, for a, b ∈ Z with x < a < b < y. Under the law P̂x,y,ω, conditionally on Aa,b,
the variable ψa+(= ψu for every u ∈ (a, b], from our construction of S.) is independent of
{St}t∈(−∞,a)∪(b,∞) and is a Bernoulli variable which equals 0 with probability

(1 − p)
K̂(b− a)

K(b− a)

and 1 with probability

p
K(2(1+α+ǫ))(b− a)

K(b− a)
≥ d4(ǫ)

(b− a)2ǫ
,

where the lower bound follows from (4.7). As for {φu}u∈(a,b], conditionally on Aa,b it is also
independent of {St}t∈(−∞,a)∪(b,∞). If in addition we condition on ψa+ = 0, then φu = b−u,
while if we condition on ψa+ = 1 then {φu}u∈(a,b] has the same law as a trajectory of ρ

(a)
u

conditioned on T (a) ∈ (b − 1, b] up to (and excluding) time T (a), and φu = 0 in [T (a), b].
This property survives in the limit x→ −∞, y → ∞.
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5 The coupling inequality

Consider two independent copies S1
. , S

2
. of the process S., distributed according to the product

measure P̂⊗2
∞,ω(.). As a consequence of property C of Section 4, we can rewrite

P∞,ω(k ∈ τ |0 ∈ τ) −P∞,ω(k ∈ τ) = Ê⊗2
∞,ω

(
1{φ1

k
=0} − 1{φ2

k
=0}

∣∣∣φ1
0 = 0

)
. (5.1)

Given two trajectories of S., define their first coupling time after time zero as

T (S1, S2) := inf{t ≥ 0 : S1
t = S2

t }. (5.2)

It is important to remark that we are not requiring T (S1, S2) to be an integer. Then, from the
Markov property of S it is clear that the right-hand side of (5.1) equals

Ê⊗2
∞,ω

((
1{φ1

k
=0} − 1{φ2

k
=0}

)
1{T (S1,S2)>k}

∣∣∣φ1
0 = 0

)
. (5.3)

Therefore, we conclude that

|P∞,ω(k ∈ τ |0 ∈ τ) − P∞,ω(k ∈ τ)| ≤ P̂⊗2
∞,ω

(
T (S1, S2) > k

∣∣φ1
0 = 0

)
. (5.4)

Remark 5.1. In analogy with Eqs. (5.1)-(5.4), under the assumptions of Theorem 2.6 on the
local observables A,B, one has

|E∞,ω(AB) − E∞,ω(A)E∞,ω(B)| =
∣∣∣Ê⊗2

∞,ω

[
(A(τ1)B(τ1) −A(τ1)B(τ2))1{T (S1,S2)≥k}

]∣∣∣

≤ 2||A||∞||B||∞P̂⊗2
∞,ω

(
T (S1, S2) ≥ k

)
. (5.5)

The upper bounds of Section 7 on the probability of large coupling times imply therefore Theorem
2.6 (indeed, the proof of Eqs. (7.1) and (7.6) can be easily repeated in absence of the conditioning
on the event φ1

0 = 0.)

To proceed with the proof of Theorems 2.1 and 2.3 we are left with the task of giving upper
bounds for the probability that the coupling time is large. This will be done in Section 7, but
first we need results on the geometry of the set {t ∈ Z : φt = 0} ∩ {1, . . . , k}, for k large and
close to the critical line.

6 Estimates on the distribution of returns in a long time interval

Ideas similar to those employed in this section have been already used in Ref. (11) and, more
recently, in (2).

To simplify notations, we will from now on set v := (β, h), µ := µ(v) and f := f(v). Also,
in the following whenever a constant c(v) is such that for every bounded B ⊂ L one has
0 < c−(B) ≤ infv∈B c(v) ≤ supv∈B c(v) ≤ c+(B) < ∞, we will say with some abuse of language
that it is independent of v. In particular, this means that c(v) cannot vanish or diverge when
the critical line is approached.

In this section we prove, roughly speaking, that if the interval {1, . . . , k} is large there are
sufficiently many points of τ in it, and that these points are rather uniformly distributed. More
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precisely: take the interval {1, . . . , k} and divide it into disjoint blocks Bℓ := {(ℓ − 1)R +
1, . . . , ℓR}, ℓ = 1, . . . ,M of size

R :=
c| log µ|

µ
, (6.1)

where c is a large (but independent of v) positive constant to be chosen later and

M = k
µ

c| log µ| . (6.2)

In order to avoid a plethora of ⌊.⌋, we are assuming that R and M are integers. Let η be a
positive constant, which will be chosen small (independently of v) later. Now we want to say
that, with probability at least ≃ (1 − exp(−µk)), a finite fraction of the blocks contain at least
a point of τ :

Proposition 6.1. There exists c5 <∞ such that

EP∞,ω(∃I ⊂ {1, . . . ,M} : |I| ≥ ηM and Bℓ ∩ τ = ∅ for every ℓ ∈ I) ≤ c5µ
−c5e−kη µ/c5 . (6.3)

We will need also an analogous P( dω)-almost sure result. However, in this case the strategy has
to be modified and {1, . . . , k} has to be divided into blocks whose lengths depend on ω: namely,
let i0(ω) = 0,

ij(ω) = inf{r > ij−1(ω) : Zij−1(ω),ij(ω),ω ≥ 1

fc
}

and M(ω) = sup{j : ij(ω) < k}. Again, we define blocks Bω
ℓ := {iℓ−1(ω) + 1, . . . , iℓ(ω)}, ℓ =

1, . . . ,M(ω), while Bω
M(ω)+1 := {iM(ω)(ω) + 1, . . . , k}. Then, one has:

Proposition 6.2. There exists a P( dω)-almost surely finite random variable k0(ω, v) and a
constant c6(v) > 0 such that for every k ≥ k0(ω, v):

A

M(ω) ≥ k
f

2c| log f| . (6.4)

B

P∞,ω (∃I ⊂ {1, . . . ,M(ω) + 1} : |I| ≥ ηM(ω) and Bω
ℓ ∩ τ = ∅ for every ℓ ∈ I)

≤ c6(v)e
−kη f/8. (6.5)

Proof of Proposition 6.1 Define the event

A := {∃I ⊂ {1, . . . ,M} : |I| ≥ ηM and Bℓ ∩ τ = ∅ for every ℓ ∈ I}.

Write

EP∞,ω(A) =
∑

I⊂{1,...,M}:
|I|≥ηM

EP∞,ω(AI) (6.6)
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where AI is the event

AI := {Bℓ ∩ τ = ∅ for every ℓ ∈ I} ∩ {Bℓ ∩ τ 6= ∅ for every ℓ /∈ I} (6.7)

We can rewrite (in a unique way) BI := ∪ℓ∈IBℓ as a disjoint union of intervals,

BI = ∪m(I)
r=1 {ir, . . . , jr}, (6.8)

with ir ≥ jr−1 +R. In other words, any two adjacent blocks Bℓ, Bℓ+1 with ℓ, ℓ+1 belonging to I
will be regrouped in the same interval. Of course, 1 ≤ m(I) ≤ |I| if I is not empty. Conditioning
on the location xr of the first point of τ at the left of ir and on the location yr of the first point
of τ at the right of jr one has

P∞,ω(AI) ≤ em(I)(|h|+βωmax)
∑

x1≤i1
j1≤y1≤(j1+R)

∑

(im(I)−R)≤xm(I)≤im(I)

ym(I)≥jm(I)

∑

(ir−R)≤xr≤ir
jr≤yr≤(jr+R)

1<r<m(I)

m(I)∏

r=1

1

Zxr,yr,ω
. (6.9)

(If m(I) = 1, the formula is slightly modified in that the sum is only on x1 ≤ i1 and y1 ≥ j1;
the estimates which follow hold also in this case). Here we are using the fact that the disorder
variables are bounded, say, |ωn| ≤ ωmax. To obtain (6.9) observe that, if i−r := max{τi : τi ≤ ir}
and j+r := min{τi : τi ≥ jr},

P∞,ω(AI ; i
−
r = xr, j

+
r = yr ∀r = 1, . . . ,m(I)) (6.10)

≤ P∞,ω(AI |i−r = xr, j
+
r = yr ∀r = 1, . . . ,m(I)) ≤

m(I)∏

r=1

K(yr − xr)e
βωyr−h

Zxr ,yr,ω
(6.11)

where we used (2.16) in the last step. It is clear that, on the event AI , i
−
r ≥ ir − R if r > 1

(otherwise the block {ir −R, . . . , ir − 1} would be contained in BI , which is not possible due to
ir ≥ jr−1 + R) and similarly j+r ≤ jr + R if r < m(I). Then, (6.9) immediately follows. Note
that by the first inequality in (B.3) one can bound Zxr,yr ,ω ≥ Zxr,ir ,ωZir,jr,ωZjr,yr ,ω. Therefore,
using Eqs. (B.1), (B.2) and (B.4), we get that

EP∞,ω(AI) ≤ µ−c7

m(I)∏

r=1

c7R
c7E

1

Zir,jr,ω
≤ µ−c7

m(I)∏

r=1

c7R
c7e−µ(jr−ir)(jr − ir)

c8 (6.12)

for some positive c7, c8. The factor µ−c7 comes, through (B.4), from the sum

∑

x1:x1≤i1

E
1

Zx1,i1,ω


=

∑

ym(I):ym(I)≥jm(I)

E
1

Zjm(I),ym(I),ω


 .

Since m(I) ≤ |I|, one finds then

EP∞,ω(AI) ≤ µ−c7e−|I|(µR−c7 log R−log c7)ec8
Pm(I)

r=1 log(jr−ir). (6.13)

Now we use Jensen’s inequality for the logarithm and the monotonicity of x → x log(1/x) for
x > 0 small to bound

ec8
Pm(I)

r=1 log(jr−ir) ≤ e
c8|I| log

“

k
|I|

”

.
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From the definition of R one sees then that, for c sufficiently large (independently of v)

EP∞,ω(AI) ≤ c9µ
−c7 exp

(
−c|I|| log µ|

2

)
e
c8|I| log

“

k
|I|

”

(6.14)

uniformly in I. Finally we can go back to the decomposition (6.6) which, together with elemen-
tary combinatorial considerations, gives

EP∞,ω(A) ≤ c9µ
−c7

∑

j≥ηM

(
M
j

)
e−jc| log µ|/2e

c8j log
“

c| log µ|
ηµ

”

(6.15)

≤ c10µ
−c7

(
M
M/2

)
e−ηkµ/4 ≤ c11µ

−c7e−
ηkµ
8

if c is large enough.
Proposition 6.1

2

Proof of Proposition 6.2 Observe first of all that, thanks to (B.3) and to the boundedness of
disorder, for every ω and x < y

1

c12
≤ Zx,y,ω

Zx,y+1,ω
≤ c12 (6.16)

so that, say,

1

fc
≤ Zij(ω),ij+1(ω),ω ≤ c

fc
(6.17)

if c is sufficiently large (the lower bound holds by definition of ij(ω), while the upper bound
simply says that, since by definition Zij(ω),ij+1(ω)−1,ω < f

−c, then Zij(ω),ij+1(ω),ω cannot be much
larger than f

−c). Therefore, denoting (with some abuse of notation) iM(ω)+1 := k and using
repeatedly Eq. (B.3), we find

Z0,k,ω ≤
( c
fc

)M(ω)+1
c
M(ω)
1

M(ω)+1∏

r=1

(ij(ω) − ij−1(ω))c1 (6.18)

and, applying Jensen’s inequality to the concave function x→ log x,

1

k
logZ0,k,ω ≤ c

M(ω) + 1

k
| log f| + (log c1 + log c)

M(ω)

k
+ c1

M(ω) + 1

k
log

(
k

M(ω) + 1

)
.(6.19)

Now assume that

M(ω) + 1

k
≤ f

2c| log f| . (6.20)

Since the function x→ x log(1/x) is increasing for x > 0 small, one deduces from (6.19)

1

k
logZ0,k,ω ≤ 3

4
f (6.21)

if c is chosen sufficiently large. But we know that (1/k) logZ0,k,ω converges to f almost surely,
and therefore the event (6.20) does not happen for k larger than some random but finite k0(ω).
Equation (6.4) is then proven.
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As for (6.5), in view of Lemma B.3 it is sufficient to prove that

P∞,ω (A; {0, k + 1} ⊂ τ) ≤ c6(v)e
−kη f/8 (6.22)

for k ≥ k0(ω), where

Aω = {∃I ⊂ {1, . . . ,M(ω) + 1} : |I| ≥ ηM(ω) and Bω
ℓ ∩ τ = ∅ for every ℓ ∈ I}.

In analogy with Eqs. (6.7), (6.8) define for I ⊂ {1, . . . ,M(ω) + 1}

Aω
I := {Bω

ℓ ∩ τ = ∅ for every ℓ ∈ I} ∩ {Bω
ℓ ∩ τ 6= ∅ for every ℓ /∈ I} (6.23)

and rewrite BI := ∪ℓ∈IB
ω
ℓ as

BI = ∪m(I)
r=1 {ixr(ω) + 1, . . . , iyr (ω)}

where the indices xr, yr are chosen so that ixr(ω) ≥ iyr−1(ω) + 2. Then, with a conditioning
argument similar to the one which led to Eq. (6.12), one finds for c sufficiently large

P∞,ω(Aω
I ; {0, k + 1} ⊂ τ) ≤ P∞,ω(Aω

I |{0, k + 1} ⊂ τ) = P0,k+1,ω(Aω
I )

≤ f
c|I|

m(I)∏

r=1

c13[(ixr (ω) − ixr−1(ω))(iyr+1(ω) − iyr(ω))]c13 (6.24)

≤ c
|I|
14e

−c|I|| log f| exp

(
c14m(I) log

(
k

m(I)

))
≤ c15(v)e

− c
2
|I|| log f|.

In the third inequality we used, once more, Jensen’s inequality for the logarithm function and
in the fourth one the monotonicity of x → x log(1/x) for x > 0 small, plus Eq. (6.4) and the
assumption that |I| ≥ ηM(ω). Considering all possible sets I of cardinality not smaller than
ηM(ω), we see that the left-hand side of (6.5) is bounded above by

c15(v)
∑

j≥ηM(ω)

(
M(ω) + 1

j

)
e−cj| log f|/2 (6.25)

and recalling (6.4), the desired result Eq. (6.5) holds.
Proposition 6.2

2

7 Upper bounds on the probability of large coupling times

Finally, we can go back to the problem of estimating from above the P̂⊗2
∞,ω-probability that the

coupling time is larger than k, cf. Section 5. This will conclude the proof of Theorems 2.1, 2.3
and 2.6.

7.1 The average case

We wish first of all to prove that

E P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣φ1
0 = 0

)
≤ 1

C1(ǫ)µ1/C1(ǫ)
e−k C1(ǫ)µ1+ǫ

. (7.1)
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To this purpose observe that, if τa = {t ∈ Z : φa
t = 0}, a = 1, 2,

E P̂⊗2
∞,ω

(
∃I ⊂ {1, . . . ,M} : |I| ≥ ηM, Bℓ ∩ τ1 = ∅ or Bℓ ∩ τ2 = ∅ ∀ℓ ∈ I

∣∣φ1
0 = 0

)

=: E P̂⊗2
∞,ω(U |φ1

0 = 0) ≤ 2c5µ
−c5e−kηµ/c5 . (7.2)

This would be an immediate consequence of Proposition 6.1 if the conditioning on 0 ∈ τ1

were absent. However, the proof of Proposition 6.1 can be repeated exactly in presence of
conditioning, i.e., when the measure P∞,ω(.) is replaced by P0,∞,ω(.) := limy→∞ P0,y,ω(.) in Eq.
(6.3). Therefore,

E P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣φ1
0 = 0

)
≤ 2c5µ

−c5e−kηµ/c5 (7.3)

+E P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣U c, φ1
0 = 0

)
,

where U c is the complementary of the event U . On the other hand, provided that η is chosen
sufficiently small (but independent of v) it is obvious that if the event U c occurs there exist at
least, say, M/10 integers 1 < ℓi < M such that ℓi > ℓi−1 +2 and Br∩τa 6= ∅, for every a ∈ {1, 2}
and r ∈ {ℓi −1, ℓi, ℓi +1}. The condition ℓi > ℓi−1 +2 simply guarantees that any two triplets of
blocks of the kind {Bℓi−1, Bℓi

, Bℓi+1} are disjoint for different i, a condition we will need later
in this section. We need to introduce the following definition:

x ∈ τ1 y ∈ τ2j k

φa
t

1

1/2

tm
t

Figure 2. An example of goodness. The thin line represents φ1
t and the thick one represents

φ2
t . The important thing is what happens between x ∈ τ 1 and y ∈ τ 2. Both paths perform a

Bessel excursion in the time interval under consideration, which means that ψ1
t = ψ2

t = 1 there.
Since in this example φ2

x > 1, there exists necessarily at least a time tm ∈ [x, y] where the two
paths meet.

Definition 7.1. A configuration of (τ1, τ2) is called good in the interval {j, . . . , k} if there exist
x, y ∈ {j, . . . , k}, with x ≤ y, such that the following three conditions are satisfied:

• either {x ∈ τ1 and y ∈ τ2} or {x ∈ τ2 and y ∈ τ1}

• {x+ 1, . . . , y − 1} ∩ τa = ∅ for a = 1, 2

• ψa
t = 1 for a = 1, 2 and t ∈ (x, y].

Roughly speaking (see Figure 2), this means that (assuming for definiteness x ∈ τ1) the point x
is overcome by a Bessel excursion of φ2

t which ends at y, while at x starts a Bessel excursion of φ1
t

which overcomes y and ends at some later time. Such a configuration is called good in {i, . . . , j}
because the paths S1

t , S
2
t have a good chance of meeting there, as the next result shows:
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Lemma 7.2. Conditionally on (τ1, τ2) being good in the interval {j, . . . , k} and on the configu-
ration of {Sa

u}a=1,2
u/∈[j,k], the P̂⊗2

∞,ω-probability that there exists t ∈ [j, k] such that S1
t = S2

t is bounded

below by a positive constant c0, independent of ω, j, k and of {Sa
u}a=1,2

u/∈[j,k].

Lemma 7.2 is proven in Appendix A. Now recall property E, Section 4, of P̂∞,ω and the
discussion following Eq. (7.2) above, to conclude that, conditionally on the event U c, the
configuration (τ1, τ2) is good in each of the blocks Bℓi

defined above, with probability at least

(
d4(ǫ)

R2ǫ

)2

.

This holds independently of what happens in Bℓj
, j 6= i, thanks to Markovian property (2.16)

and the fact that there are points of τ1 and τ2 in both Bℓi−1 and Bℓi+1.

Using also Lemma 7.2 one has then that, conditionally on U c, the P̂⊗2
∞,ω-probability that

T (S1, S2) > k does not exceed

[
1 − c0

(
d4(ǫ)

R2ǫ

)2
]M/10

. (7.4)

Recalling the definitions (6.1) and (6.2) of R and M , one can bound this probability from above
with

exp
(
−d5(ǫ)kµ

1+5ǫ/| log µ|2
)
. (7.5)

Together with Eq. (7.3), this concludes the proof of Eq. (2.17).
Theorem 2.1, Eq. (2.17)

2

Remark 7.3. A look at Remark 4.1 shows that, if the slowly varying function L(n) in (2.2)
tends to a positive constant for n→ ∞, the upper bound (7.4) can be improved into exp(−d̃5M)
with d̃5 > 0. From this and Eq. (7.3) the claim of Remark 2.5 follows immediately.

7.2 The almost-sure case

Let us finally prove that, almost surely,

P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣φ1
0 = 0

)
≤ C2(ω)e−C1f

1+ǫ

. (7.6)

The proof is quite similar to that of the average case, so we will be a bit sketchy. Define (with
the notations of Section 6) the event

W (ω) :=

{
∃I ⊂ {1, . . . ,M(ω)} : |I| ≥ ηk

f

2c| log f| , B
ω
ℓ ∩ τ1 = ∅ or Bω

ℓ ∩ τ2 = ∅ ∀ℓ ∈ I

}
(7.7)

so that

P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣φ1
0 = 0

)
≤ 2c6(v)e

−kη f/16 (7.8)

+P̂⊗2
∞,ω

(
T (S1, S2) > k + 1

∣∣W (ω)c, φ1
0 = 0

)

631



P( dω)-almost surely, for k > k0(ω). If the event W (ω)c occurs, one can find G(ω) ≥
kf/(20c| log f|) integers 1 < ℓi < M(ω) such that ℓi > ℓi−1 + 2 and Bω

r ∩ τa 6= ∅, for every
a ∈ {1, 2} and r ∈ {ℓi − 1, ℓi, ℓi + 1}. (τ1, τ2) is good in each of the blocks Bω

ℓj
with probability

at least (
d4(ǫ)

(iℓj
(ω) − iℓj−1(ω))2ǫ

)2

.

Therefore, conditionally on W (ω)c, the P̂⊗2
∞,ω-probability that T (S1, S2) > k does not exceed

G(ω)∏

j=1

[
1 − c0

(
d4(ǫ)

(iℓj
(ω) − iℓj−1(ω))2ǫ

)2
]
≤ exp


−d6(ǫ)

G(ω)∑

j=1

(iℓj
(ω) − iℓj−1(ω))−4ǫ


 (7.9)

≤ exp


−d6(ǫ)G(ω)

(
G(ω)

∑G(ω)
j=1 (iℓj

(ω) − iℓj−1(ω))

)4ǫ

 ≤ exp

[
−d6(ǫ)k

(
G(ω)

k

)1+4ǫ
]
,

where we used Jensen’s inequality for the convex function x→ x−4ǫ. The lower bound G(ω) ≥
kf/(20c| log f|), together with Eq. (7.8) are then enough to obtain the desired estimate (7.6).

Theorem 2.1, Eq. (2.18)

2

A Some technical facts on Bessel processes

Take 0 < b < a < ∞ and consider a Bessel process ρ
(0)
t , t ≥ 0 of dimension δ starting from

ρ
(0)
0 = a at time 0. Let Ta,b be the first hitting time of b, i.e., Ta,b = inf{t ≥ 0 : ρ

(0)
t = b}. Then,

it follows from (14, Theorem 3.1) plus (13, Theorem 2.5) that, conditionally on Ta,b < ∞, the
density of the probability distribution of Ta,b with respect to the Lebesgue measure on R+ is
proportional to

p(t) :=

∫ ∞

0
B(z)e−tz/2dz :=

∫ ∞

0

Jν(b
√
z)Yν(a

√
z) − Jν(a

√
z)Yν(b

√
z)

J2
ν (b

√
z) + Y 2

ν (b
√
z)

e−tz/2dz (A.1)

where Jν(z) and Yν(z) are Bessel function of the first and second kind, respectively (7, Chapter
7.2.1), and ν = (δ/2) − 1. From (7, Chap. 7.2.1, Eqs. (3)-(4)) one deduces that B(z)z−ν →
cν(a, b) for z → 0+, where cν(a, b) is a finite and positive constant whose precise value is not
needed for our purposes. Therefore, the Abelian Theorem (20, Chapter 5, Corollary 1a) gives

p(t)tν+1 = p(t)tδ/2 t→+∞−→ cν(a, b)Γ(ν + 2)2ν+1

ν + 1
. (A.2)

From Eq. (A.2), the asymptotic behavior (4.4) immediately follows taking a = 1, b = 1/2 (of
course, any other values 0 < b < a <∞ would be equally good).

A.1 Proof of Lemma 7.2

Let x, y be any pair of sites which satisfies the conditions required by Definition 7.1. Assume
for definiteness that x ∈ τ1 and y ∈ τ2. We assume also that x < y, otherwise the lemma is
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trivial. For technical reasons, it is also convenient to treat apart the case x = y−1. In this case,
the lemma follows immediately from (B.3). Indeed, from this is easily deduced in particular
that, conditionally on y ∈ τ2, the probability that also y − 1 ∈ τ2 is greater than some positive
constant, independent of ω.

As for the more difficult case where x < y − 1, it is clear that there exists x ≤ t ≤ y such that
φ1

t = φ2
t whenever φ2

x ≥ 1 (we assume that x /∈ τ2, otherwise the existence of t such that φ1
t = φ2

t

is trivial). This follows (see also Figure 2) from the observation that φ1
x+ = 1, φ1

y ≥ 1/2 and
that there exists y − 1 < s ≤ y with φ2

s = 1/2, together with the fact that the trajectories of
the Bessel process are continuous almost surely. Therefore, the Lemma follows if we can prove
that the probability that φ2

x ≥ 1 is bounded below by a positive constant. This is the content
of (A.4) below.

In order to state (A.4), we need to introduce the Bessel Bridge process of dimension δ (17,
Chapter XI.3). Given u ≥ 0 and a, v > 0, the Bessel Bridge is a continuous process {Xt}t∈[0,a]

(whose law is denoted by P a,δ
u,v ) which starts from u at time 0, ends at v at time a and such that,

given 0 < s1 < . . . < sk < a, the law of (Xs1 , . . . ,Xsk
) has density

pδ
s1

(u, x1)p
δ
s2−s1

(x1, x2) . . . p
δ
a−sk

(xk, v)/p
δ
a(u, v). (A.3)

Then, what we need is

inf
u,v≥1/2

P 2,δ
u,v (X1 ≥ 1|Xs > 1/2 ∀ s ∈ [0, 2]) > 0. (A.4)

Of course, u, v correspond to the values φ2
x−1, φ

2
x+1, respectively. It is immediate to realize that

(A.4) concludes the proof of Lemma 7.2.

Inequality (A.4) is easily proven: indeed, via FKG inequalities (8) (15) one has (see details
below)

P 2,δ
u,v (X1 ≥ 1|Xs > 1/2 ∀ s ∈ [0, 2]) ≥ P 2,δ

u,v(X1 ≥ 1). (A.5)

Using formula (A.3), the right-hand side of (A.5) equals

∫∞
1 pδ

1(u,w)pδ
1(w, v) dw

pδ
2(u, v)

=
e−(u2+v2)/4

Iν(uv/2)

∫ ∞

1
w e−w2

Iν(uw)Iν(vw) dw. (A.6)

Since Iν(w) > 0 for w > 0 and

lim
w→∞

e−w√wIν(w) ∈ (0,∞) (A.7)

(this can be extracted from (7, Chap. 7.13.1, Eq. (5); cf. Chap. 7.2.6 for the definition of the
Hankel symbol (ν,m))), one has

0 < c−ν := inf
z≥1/2

e−z√zIν(z) ≤ sup
z≥1/2

e−z√zIν(z) =: c+ν <∞. (A.8)

Therefore, the left-hand side of (A.5) is bounded below by

(c−ν )2√
2c+ν

∫ ∞

1
e−(w−u+v

2 )
2

dw, (A.9)
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which tends to a positive constant if u→ +∞ or v → +∞ (or both), thus yielding Eq. (A.4).

Finally, we show how (A.5) follows from the FKG inequalities. Due to the continuity of the
trajectories of the Bessel Bridge, the probability in the left-hand side of (A.4) equals

lim
n→∞

P 2,γ
u,v (X1 ≥ 1|Xi/n > 1/2, i = 1, . . . , 2n− 1). (A.10)

Let p(x1, . . . , x2n−1) be the probability density of (X1/n, . . . ,X(2n−1)/n). Given xa :=
(xa

1, . . . , x
a
2n−1), x

a
j > 0, a = 1, 2, define x1 ∨ x2 := ((x1

1 ∨ x2
1), . . . , (x

1
2n−1 ∨ x2

2n−1)) and analo-

gously x1∧x2. Then, from the continuity and Markov property of the Bessel Bridge process (17,
Chapter XI.3) it is clear that p(x1∨x2)p(x1∧x2) ≥ p(x1)p(x2). This is just the FKG inequality,
which implies in particular that the probability in (A.10), for any given n, is not smaller than

P 2,δ
u,v (X1 ≥ 1).

Lemma 7.2
2

B Technical estimates on Zx,y,ω and P∞,ω

In this section we collect some technical estimates, which in very similar form have been already
used in the previous literature. Let us notice at first that, for every x < y and uniformly in ω,

Zx,y,ω ≥ eβωy−hK(y − x). (B.1)

Also, Eq. (2.2) and the property of slow variation imply that for every ǫ > 0 there exist positive
constants d1(ǫ), d2(ǫ) such that, for every n ∈ N,

d1(ǫ)

n1+α+ǫ
≤ K(n) ≤ d2(ǫ)

n1+α−ǫ
. (B.2)

In Lemma A.1 of (11) it was proven that there exists c1, which in the case of bounded disorder
can be chosen independent of ω, such that for every x < z < y

Zx,z,ωZz,y,ω ≤ Zx,y,ω ≤ c1((z − x) ∧ (y − z))c1Zx,z,ωZz,y,ω. (B.3)

As it was shown in (11, Proposition 2.7), this immediately implies that there exists c′1 > 0 such
that, for every y > x, ∣∣∣∣

1

|y − x|E logZx,y,ω − f(v)

∣∣∣∣ ≤ c′1
log |y − x|
|y − x| .

Similarly, one can see that
∣∣∣∣−

1

|y − x| log E
1

Zx,y,ω
− µ(v)

∣∣∣∣ ≤ c′1
log |y − x|
|y − x| : (B.4)

this follows immediately observing that (B.3) implies

1

c1(2N)c1

(
E

1

Z−N,N,ω

)2

≤ E
1

Z−2N,2N,ω
≤
(

E
1

Z−N,N,ω

)2

. (B.5)

A minor modification of the proof of (11, Lemma A.1) gives also
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Lemma B.1. Let A be a local event supported in {1, . . . , a}. Then,

P∞,ω(A; {−k, . . . , 0} ∩ τ 6= ∅) ≤ c1(ak)
c1P∞,ω(A; {0, a + 1} ∈ τ). (B.6)

We will also need the following result, which follows from (11, Lemma 3.1):

Lemma B.2. For every v ∈ L there exist positive constants c2(ω; v), c3(v) (with c2(ω; v) finite
P( dω)−almost surely) such that, for every k ∈ N,

P∞,ω(τ ∩ {−k2, . . . , 0} = ∅) ≤ c2(ω; v)e−c3(v)k2
. (B.7)

As a consequence of Lemmas B.2 and B.1, we have finally

Lemma B.3. Let A be a local event supported in {1, . . . , k}. Then,

P∞,ω(A) ≤ c1k
c1P∞,ω(A; {0, k + 1} ⊂ τ) + c2(ω; v)e−c3(v)k2

. (B.8)
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