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Abstract

In the two-type Richardson model on a graph G = (V, E), each vertex is at a given time in
state 0, 1 or 2. A 0 flips to a 1 (resp. 2) at rate λ1 (λ2) times the number of neighboring
1’s (2’s), while 1’s and 2’s never flip. When G is infinite, the main question is whether,
starting from a single 1 and a single 2, with positive probability we will see both types of
infection reach infinitely many sites. This has previously been studied on the d-dimensional
cubic lattice Zd, d ≥ 2, where the conjecture (on which a good deal of progress has been
made) is that such coexistence has positive probability if and only if λ1 = λ2. In the present
paper examples are given of other graphs where the set of points in the parameter space
which admit such coexistence has a more surprising form. In particular, there exist graphs
exhibiting coexistence at some value of λ1

λ2
6= 1 and non-coexistence when this ratio is brought

closer to 1.
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1 Introduction

The two-type Richardson model on a graph G = (V, E) is an interacting particle system where
at any time t, each vertex v ∈ V is in state 0, 1 or 2. Here 1 and 2 may be interpreted as two
mutually exclusive types of infection, while sites in state 0 are thought of as not being infected.
The dynamics is that a site v ∈ V in state 1 or 2 remains in this state forever, while a 0 flips to
a 1 (resp. 2) at rate λ1 (λ2) times the number of 1’s (2’s) among the neighbors of v, where two
sites are said to be neighbors if they share an edge in E . Here λ1, λ2 > 0 are the two infection
parameters of the model. The graph G will always be assumed to be countable and connected.

This model has previously been studied on the Zd lattice, that is, on the graph whose vertex
set is Zd and whose edge set consists of all pairs of sites at Euclidean distance 1 from each
other. The main question is whether, when we start from a single site in state 1, a single site
in state 2, and all others uninfected, we get positive probability for the event that both types
of infection succeed in reaching an infinite number of sites. This event will in the following be
referred to as infinite coexistence. Note that, given the initial configuration, the probability of
infinite coexistence depends on λ1 and λ2 only through their ratio λ = λ2

λ1
, as follows by a simple

time-scaling argument. For this reason, we may without loss of generality set λ1 = 1 and vary
only λ (= λ2). The following conjecture goes back to Häggström and Pemantle [4, 5].

Conjecture 1.1 Infinite coexistence in the two-type Richardson model on Zd, d ≥ 2, starting
from a single infected site of each type, has positive probability if and only if λ = 1.

A good deal of progress has been made on this conjecture. Häggström and Pemantle [4] showed
that for d = 2 and λ = 1, infinite coexistence has positive probability. This result was recently
extended to d ≥ 3 (as well as to more general models) by Garet and Marchand [3] and indepen-
dently by Hoffman [6]. As far as excluding infinite coexistence for λ 6= 1, the best result to date
is the following.

Theorem 1.1 For the two-type Richardson model on Zd, d ≥ 2, infinite coexistence has proba-
bility 0 for all but at most countably many values of λ.

An analogous result for a related continuum model was obtained by Deijfen et al. [2]. Also,
Deijfen and Häggström [1] showed that the initial configuration, as long as there is a finite
nonzero number of infected sites of each type and one infection has not already “strangled” the
other, does not matter for the issue of whether or not infinite coexistence has positive probability.
It is our experience from talking to colleagues about Theorem 1.1 (and its continuum analogue)
that they tend to react with surprise at how weak this result is, and suggest that it should
be easy to improve in such a way as to obtain the “only if” direction of Conjecture 1.1. Their
argument is invariably the following.

Suppose for contradiction that infinite coexistence has
positive probability for some λ > 1. Then we can, due
to Theorem 1.1, find some λ′ ∈ (1, λ) for which infinite
coexistence has probability 0. But this is absurd, since
surely it must be easier to get infinite coexistence if we
pick λ closer to the symmetry point 1.

(1)
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Although we do agree with this intuition (see also Lundin [7] for some numerical evidence in
support for it), we think on the other hand that the claimed monotonicity may not be easy to
prove. In particular, we do not believe that it is possible to establish using abstract arguments
that disregard the particular geometry of the Zd lattice.

It is the purpose of this paper to support this point of view by giving examples of other graphs,
where the two-type Richardson model behaves in a way that conflicts with the intuition about
monotonicity in λ. These graphs differ from the Zd-lattice in that they are highly non-symmetric:
certain parts of the graph are designed specifically with propagation of type-1 infection in mind,
while other (different) parts are meant for type-2 infection.

For a graph G, write Coex(G) for the set of all λ ≥ 1 such that there exists an initial configuration
ξ ∈ {0, 1, 2}V which has only finitely many infected sites of each type and for which the two-type
Richardson model starting from ξ yields infinite coexistence with positive probability. (Note
that by time-scaling and interchange of 1’s and 2’s, coexistence is possible for λ if and only if it
is possible for λ−1; hence no information is lost by restricting to λ ≥ 1.) In Sections 2 and 3,
we will exhibit examples of graphs G that demonstrate that, among others, the following kinds
of coexistence sets Coex(G) are possible:

• For any positive integer k, Coex(G) may consist of exactly k points.

• Coex(G) may be countably infinite.

• Coex(G) may be an interval (a, b) with 1 < a < b.

Note that all three examples show that the monotonicity intuition suggested in (1) fails for
general graphs. However, as mentioned above, all examples will be highly non-symmetric. A
reasonable guess is that the intuition in (1) is in fact correct on transitive graphs.

As a complement to these examples, we will end the paper by giving a positive result (Theorem
4.1) ruling out a large class of more exotic coexistence regions, such as those that are uncountable
with zero Lebesgue measure.

Before moving on to the examples and results, let us say a few words about the construction
and the well-definedness of the two-type Richardson model on graphs. To this end, let S1

t and
S2

t denote the set of type 1 and 2 infected vertices respectively at time t, and, for a vertex set
A ∈ V, write ∂A for the set of edges with one endpoint in A and one endpoint in Ac. One way to
construct the model with parameters λ1, λ2 > 0 is to assign i.i.d. exponential random variables
{X(e)}e∈E with mean 1 to the edges of G and update the sets S1

t and S2
t inductively at discrete

time points {Tn} as follows:

1. Define T0 = 0 and pick two bounded initial sets S1
0 and S2

0 .

2. For n ≥ 1, given Tn−1, S1
Tn−1

and S2
Tn−1

, define Tn = min{T 1
n , T 2

n}, where

T i
n = inf{λiX(e); e ∈ ∂Si

Tn−1
\∂Sj

Tn−1
},

with i, j ∈ {1, 2} and i 6= j.
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3. Let Si
t = Si

Tn−1
for t ∈ [Tn−1, Tn) and i = 1, 2. Then, at time Tn, the sets are updated in

that infection is transferred through the edge defining Tn. More precisely, if Tn = T 1
n and

x is the uninfected end of the edge where the infimum in the definition of T 1
n is attained,

then S1
Tn

= S1
Tn−1

∪ {x} and S2
Tn

= S2
Tn−1

. Similarly, if Tn = T 2
n then S2

Tn−1
is updated

analogously, while S1
Tn−1

is left unchanged.

If G has bounded degree (as all our examples will) and if initially only finitely many vertices
are infected, then it is straightforward to see that almost surely no explosion will occur (where
explosion means that infinitely many transitions take place in finite time), and that the process
is Markovian with the desired infection intensities.

2 Basic examples

We begin with our simplest example: a graph G that admits infinite coexistence in the two-type
Richardson model if and only if λ is 1

2 or 2.

Proposition 2.1 There exists a graph G with Coex(G) = {2}.

Proof. The graph we use to prove this result will look a bit like a ladder: with two “spines”
linked by a number of bridges.

More specifically, let {v1,j}j≥0 and {v2,j}j≥0 be two sequences of vertices, each internally linked
by edges {e1,j}j≥0 := {〈v1,j , v1,j+1〉}j≥0 and {e2,j}j≥0 := {〈v2,j , v2,j+1〉}j≥0, respectively. These
two infinite paths will be linked to each other by finite paths, called bridges, where the n:th
such bridge emanates from v1,an and arrives at v2,2an . Here (a1, a2, . . .) is a rapidly increasing
sequence of positive integers (how rapidly will be indicated later). The n:th bridge will be called
Bn and have length

⌈
a

7/8
n

⌉
, where d·e denotes rounding up to the nearest integer.

Now consider the two-type Richardson model on this graph with infection rates λ1 = 1 and
λ2 = λ > 0 starting with a single infected 1 at v1,0, and a single infected 2 at v2,0. It is easy to
see that if a site on the first spine {v1,j}j≥0 is ever infected by the type 2 infection, then type 1
is strangled (that is, it is cut off from the possibility of ever infecting more than a finite number
of sites). Hence, the event C1 of infinite growth of the type 1 infection happens if and only if
all sites on the first spine are eventually infected by type 1. Similarly, the event C2 of infinite
growth of the type 2 infection happens if and only if all sites on the second spine are eventually
infected by type 2.

With the edge representation indicated at the end of Section 1, let D1,n denote the event that

an−1∑
j=0

X(e1,j) >

2an−1∑
j=0

λ−1X(e2,j) +
∑
e∈Bn

λ−1X(e) . (2)

Note that, unless the type 1 infection has already managed to infect some site on the second
spine before reaching v1,an , the site v1,an gets type 1 infected if and only if D1,m does not happen
for any m ≤ n. Analogously, define D2,n as

2an−1∑
j=0

λ−1X(e2,j) >

an−1∑
j=0

X(e1,j) +
∑
e∈Bn

X(e) , (3)
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and note that, if type 2 has not already infected some site on the first spine before reaching
v2,2an , then v2,2an gets type 2 infected if and only if D2,n does not happen. Hence, the event
C = C1 ∩ C2 of infinite coexistence happens if and only if none of the events D1,1, D1,2, . . . and
D2,1, D2,2, . . . happen.

To get a grip on the probabilities of these events, it is useful to introduce the variables

T1,n =
2an−1∑
j=0

λ−1X(e2,j) +
∑
e∈Bn

λ−1X(e)−
an−1∑
j=0

X(e1,j)

and

T2,n =
an−1∑
j=0

X(e1,j) +
∑
e∈Bn

X(e)−
2an−1∑
j=0

λ−1X(e2,j)

and note that D1,n = {T1,n < 0} and D2,n = {T2,n < 0}. The expectation and variance of T1,n

are
E [T1,n] = (2λ−1 − 1)an + λ−1

⌈
a7/8

n

⌉
and

Var [T1,n] = (2λ−2 + 1)an + λ−2
⌈
a7/8

n

⌉
,

and for T2,n we get

E [T2,n] = (1− 2λ−1)an +
⌈
a7/8

n

⌉
and

Var [T2,n] = (1 + 2λ−2)an +
⌈
a7/8

n

⌉
.

There are now three cases to consider separately, namely λ > 2, λ = 2 and λ < 2.

We begin with the case λ > 2. We then have 2λ−1 − 1 < 0, meaning that E [T1,n] < 0 for an

large enough. Writing ¬ for set complement, Chebyshev’s inequality gives

P (¬D1,n) = P (T1,n ≥ 0)

≤ Var [T1,n]
(E [T1,n])2

=
(2λ−2 + 1)an + λ−2

⌈
a

7/8
n

⌉
(
(2λ−1 − 1)an + λ−1

⌈
a

7/8
n

⌉)2 , (4)

which tends to 0 as an →∞, and, since an tends to ∞ with n, it follows that limn→∞P [D1,n] =
1. Hence

P(C) ≤ P(C1)

= 1−P

( ∞⋃
n=1

D1,n

)
≤ 1− lim

n→∞
P (D1,n)

= 0 .
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In the case λ < 2, we have 1 − 2λ−1 < 0 and hence E [T2,n] < 0 for an large enough, whence
analogously to (4) we get

P (¬D2,n) ≤
(1 + 2λ−2)an +

⌈
a

7/8
n

⌉
(
(1− 2λ−1)an +

⌈
a

7/8
n

⌉)2 .

This tends to 0 as an →∞, so that limn→∞P(D2,n) = 1, implying that

P(C) ≤ P(C2)

= 1−P

( ∞⋃
n=1

D2,n

)
≤ 1− lim

n→∞
P (D2,n)

= 0 .

The final case λ = 2 is slightly more subtle. Both E[T1,n] and E[T2,n] are then positive for any
n, and another application of Chebyshev’s inequality gives

P (D1,n) = P (T1,n < 0)

≤ Var [T1,n]
(E [T1,n])2

=
(2−1 + 1)an + 2−2

⌈
a

7/8
n

⌉
(
2−1

⌈
a

7/8
n

⌉)2

which tends to 0 as an →∞. Similarly, P (D2,n) → 0 as an →∞. So far we have not specified
how quickly the numbers an tends to ∞ with n. We are therefore free to choose (a1, a2, . . .) in
such a way that

∞∑
n=1

(P(D1,n) + P(D2,n)) < 1 .

With such a choice of (a1, a2, . . .), we get

P(C) = 1−P(¬C1 ∪ ¬C2)

= 1−P

( ∞⋃
n=1

D1,n ∪
∞⋃

n=1

D2,n

)

≥ 1−
∞∑

n=1

(P(D1,n) + P(D2,n))

> 0 .

Having worked through the three cases λ > 2, λ = 2 and λ < 2, we have now shown that with
the given initial condition (infection 1 at v1,0 and infection 2 at v2,0), infinite coexistence has
positive probability if and only if λ = 2. In order to prove Proposition 2.1, it remains to show
that no other finite initial condition can yield infinite coexistence for any other λ ≥ 1.

336



Of course, if infections 1 and 2 switch places in the above initial condition, then infinite coexis-
tence has positive probability if and only if λ = 1

2 . For other initial conditions, note that infinite
coexistence implies that either

(i) infection 1 finds a path to ∞ which from some point onwards belongs to the first spine, and
infection 2 similarly reaches ∞ along the second spine, or

(ii) vice versa.

But the above analysis shows that scenario (i) requires λ = 2, and similarly scenario (ii) requires
λ = 1

2 , so Coex(G) = {2} as desired. 2

The reason we get a different behavior for the competition process here as compared to on Zd is
related to the lack of symmetry of the above graph. The two infinite spines provide two separate
paths to infinity on which the infection types can keep in step with each other if their intensities
are chosen to match the density of vertices on the spines. Note also that, on the above graph, the
initial configuration is indeed important for the possibility of infinite coexistence. For instance,
as pointed out by the end of the proof of Proposition 2.1, switching two single sources might
change the coexistence probability. Again, this is related to the lack of symmetry of the graph
and contrasts with the Zd case (on Zd, switching two sources located at x and y respectively
does not affect the coexistence probability, since there exists an automorphism of the graph Zd

that exchanges x and y).
Of course, for any α ≥ 1, we can modify the above construction by letting bridges connect v1,an

and v2,dαane rather than v1,an and v2,2an , thereby obtaining a graph G with Coex(G) = {α}. See
Theorem 3.1 for a more general result.
Next, we show how to turn Coex(G) into an entire interval.

Proposition 2.2 There exists a graph G for which Coex(G) equals the interval [2, 5].

Proof. As in the proof of Proposition 2.1, we take G to consist of two spines {v1,j}j≥0 and
{v2,j}j≥0, together with a sequence of bridges between them. This time, we take the n’th bridge

Bn to begin at v1,an and end at v2,4an , and to have length an +
⌈
a

7/8
n

⌉
.

Note that (i) and (ii) in the proof of Proposition 2.1 are the only two possible scenarios for
infinite coexistence, and that it is therefore sufficient to consider the initial condition with a
single 1 at v1,0 and a single 2 at v2,0. With this initial condition, the same kind of applications
of Chebyshev’s inequality as in the proof of Proposition 2.1 show that P(∩∞n=1D

c
1,n) = 0 for

λ > 5, that P(∩∞n=1D
c
2,n) = 0 for λ < 2, and that P(C) > 0 for λ ∈ [2, 5] provided the sequence

(a1, a2, . . .) grows sufficiently fast. Thus, Coex(G) = [2, 5]. 2

Several variations of Proposition 2.2 are easily obtained, such as the following (and combinations
thereof):

1. For any 1 ≤ α < α′, the coexistence region [2, 5] can be replaced by Coex(G) = [α, α′] by
noting that, if the bridge Bn is taken to begin at v1,an and end at v2,dγane and to have

length
⌈
βan + a

7/8
n

⌉
, then infinite coexistence is possible for λ ∈ [γ/(1 + β), γ + β]. The

interval [α, α′] is hence obtained by letting Bn end at

v
2,

l
α(1+α′)an

1+α

m ,
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and have length
⌈

(α′−α)an

1+α

⌉
+
⌈
a

7/8
n

⌉
.

2. If the Bn’s are taken to have length an−
⌈
a

7/8
n

⌉
rather than an+

⌈
a

7/8
n

⌉
, then the coexistence

region [2, 5] is replaced by the open interval (2, 5).

3. If the lengths of the Bn’s are taken to be an (with no lower order correction), start from
v1,an and end at

v
2,3an+

l
a
7/8
n

m ,

then we get Coex(G) = (2, 5]. The other half-open interval [2, 5) can be obtained analo-
gously.

3 Further examples

The following result generalizes Proposition 2.1.

Theorem 3.1 For any k and any α1, . . . , αk ∈ [1,∞), there exists a graph G with Coex(G) =
{α1, . . . , αk}.

Intuitively, it is not hard to figure out what kind of modification of the example in Proposition
2.1 that would lead to Theorem 3.1. Let G contain k + 1 spines, whose respective vertex sets
we may denote {vmain,j}j≥0 and {v1,j}j≥0, . . . , {vk,j}j≥0. As before, (a1, a2, . . .) will be a rapidly

increasing sequence, and for each n there will be bridges B1,n, . . . , Bk,n, each with length
⌈
a

7/8
n

⌉
,

bridge Bm,n starting at vmain,an and ending at vm,dαmane.

Infinite coexistence should now be possible for λ = αm by means of infection 1 taking over the
main spine {vmain,j}j≥0, and infection 2 taking over the m’th auxiliary spine {vm,j}j≥0 (while all
other spines are conquered by infection 1). On the other hand, no such scenario seems possible
when λ ≥ 1 is not an element of {α1, . . . , αk}.
Proving this turns out to be a technically somewhat more challenging task compared to what
we did in Section 2, the reason being that there is no slick decription of the possible ways of
infinite coexistence like (i) and (ii) in the proof of Proposition 2.1. On the contrary, for k ≥ 2
we may (in principle) imagine an infinite coexistence scenario where each infection “zig-zags”
between the main spine and the other spines in a more or less complicated manner. For this
reason, we choose to construct the graph in a more iterative fashion, and to base our arguments
on the following lemma. For the two-type Richardson model on a graph G = (V, E) and a vertex
v ∈ V, write Tv for the time at which v becomes infected.

Lemma 3.1 Consider the two-type Richardson model with infection rates λ1 = 1 and λ2 =
λ ≥ 1 on a graph G constructed as follows: Let G′ = (V ′, E ′) be an arbitrary finite graph with
k ≥ 1 distinguished vertices v1, . . . , vk ∈ V ′, and obtain G by, for i = 1, . . . , k, attaching to vi an
infinite path with vertex set {vi,j}j≥1.

Fix ε > 0. Then, for all sufficiently large N (depending on ε but not on λ), we have that for
any ξ ∈ {1, 2}{v1,...,vk} and any initial condition such that

(a) only vertices in G′ are initially infected, and
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(b) the event Aξ that the infection proceeds in such a way that for each i ∈ {1, . . . , k}, vertex
vi eventually gets infection ξ(vi), has positive probability,

the following holds for each i = {1, . . . , k}:

P
(
Tvi,N ∈

(
λ1−ξ(vi)N −N3/4, λ1−ξ(vi)N + N3/4

) ∣∣∣Aξ

)
≥ 1− ε .

Proof. If the initial condition is such that v1, . . . , vk are all initially infected, then the lemma
is immediate from the Central Limit Theorem applied to the sum

X(〈vi, vi,1〉) +
N−1∑
j=1

X(〈vi,j , vi,j+1〉)

for each i ∈ {1, . . . , k}. For other initial conditions, note that, since G′ is finite and connected,
the time Tvi when the vertex vi is infected is almost surely finite, implying that

P
(
Tvi ≤ N1/8

∣∣∣Aξ

)
≥ 1− ε/2 (5)

for large N . On Aξ, the vertex vi is infected by the type ξ(vi) infection and the Central Limit
Theorem applied to the same sum as above hence gives that

P
(
Tvi,N − Tvi ∈

(
λ1−ξ(vi)N −N3/4, λ1−ξ(vi)N + N5/8

) ∣∣∣Aξ

)
≥ 1− ε/2 . (6)

The desired estimate now follows by taking N large enough to ensure that both (5) and (6) hold
for all i ∈ {1, . . . , k}. 2

Proof of Theorem 3.1. Fix the coexistence set {α1, . . . αk} that we are trying to obtain, and
define α0 = 1 and αmax = max{α1, . . . , αk}. The graph G = (V, E) that will serve as an example,
will be obtained from a sequence of graphs {Gn = (Vn, En)}n≥0 which is increasing in the sense
that

V0 ⊆ V1 ⊆ · · ·

and
E0 ⊆ E1 ⊆ · · · .

The ”limiting” graph G = (V, E) is then given by V =
⋃∞

n=0 Vn and E =
⋃∞

n=0 En. The graphs
Gn are defined inductively as follows.

Let (b1, b2, . . .) be a rapidly growing sequence of positive integers; how rapidly bn → ∞ with
n will be specified later. The construction begins with taking G0 to be the complete graph on
k+1 vertices x0,0, x0,1, . . . , x0,k. For the induction step, suppose that we have the graph Gn with
k + 1 distinguished vertices xn,0, , xn,1, . . . , xn,k, and let Gn+1 be the graph obtained from Gn by
the following amendments:

(a) for i = 0, . . . , k, attach to xn,i a path of length dαibn+1e, denoting the last vertex of this
path by xn+1,i, and

339



(b) for i = 1, . . . , k, link xn+1,0 and xn+1,i by a path (called a bridge and denoted Bn+1,i) of

length
⌈
b
7/8
n+1

⌉
.

This defines (G0,G1, . . .) and G, apart from that the sequence (b1, b2, . . .) has not been specified.
In order to make that choice, begin by specifying two decreasing sequences (δ1, δ2, . . .) and
(ε1, ε2, . . .) of positive numbers tending to 0, with the second sequence having the additional
property that

∞∑
n=1

εn <
1

k + 2
. (7)

Given b1, . . . , bn (and, thus, G1, . . . ,Gn), pick bn+1 large enough so that the following conditions
hold:

(i) For ξ ∈ {1, 2}{xn,0,...,xn,k}, let An,ξ denote the event that xn,0, . . . , xn,k are infected by type
ξ(xn,0), . . . , ξ(xn,k), respectively. For an arbitrary such ξ and arbitrary initial conditions
that are confined to Gn and that makes it possible for An,ξ to happen before any vertices
outside Gn are infected, we have for i = 0, . . . , k and any λ ≥ 1 that

P
(
Txn+1,i ∈

(
λ1−ξ(xn,i)αibn+1 − αib

3/4
n+1, λ

1−ξ(xn,i)αibn+1 + αib
3/4
n+1

) ∣∣∣An,ξ

)
≥ 1− εn+1

(note that this holds for bn+1 large enough, due to Lemma 3.1).

(ii)

2αmaxb
3/4
n+1 <

δn+1bn+1

2

(iii)

P

 ∑
e∈Bn+1,i

X(e) ∈
(

2αmaxb
3/4
n+1,

δn+1bn+1

2

)
for i = 1, . . . , k

 ≥ 1− εn+1

(note that this holds for bn+1 large enough, since by the Weak Law of Large Numbers the
sum

∑
e∈Bn+1,i

X(e) is concentrated around b
7/8
n+1 for large values of bn+1).

This specifies G. Now fix i ∈ {1, . . . , k}, and consider the two-type Richardson model with λ1 = 1
and λ = λ2 = αi, starting with vertex x0,i in state 2, vertices x0,0, x0,1, . . . , x0,i−1, x0,i+1, . . . , x0,k

in state 1, and all other vertices uninfected.

For n = 1, 2, . . ., let Dn,i denote the event that xn,0 eventually gets type 1 infected, that xn,i

eventually gets type 2 infected and that, at the time when the last one (in time) of xn,0 and xn,i

is infected, there is no type 2 infection on any of the spines j 6= i. We have that

P(D1,i) ≥ 1− (k + 2)ε1 ,

because the choice of b1 implies that with probability at least 1− (k + 2)ε1, the type 1 infection
reaches xn,0 before the type 2 infection has crossed the bridge B1,i and the type 2 infection
reaches xn,i before the type 1 infection has crossed B1,i.
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More generally, for any n, it follows from the choice of bn+1 that

P(Dn+1,i |Dn,i) ≥ 1− (k + 2)εn+1 .

Hence, using (7), we get

P(C) ≥ P(lim inf
n→∞

Dn,i)

≥ lim inf
n→∞

P(Dn,i)

≥
∞∏

n=1

(1− (k + 2)εn)

≥ 1−
∞∑

n=1

(k + 2)εn

> 0.

We have thus shown that αi ∈ Coex(G) for each i ∈ {1, . . . , k}.
What remains is to show that for any λ ≥ 1 such that λ 6∈ {α1, . . . , αk}, and any finite initial
condition, we have that P(C) = 0. We will assume for the moment that λ > 1; fix such a
λ 6∈ {α1, . . . , αk} and an arbitrary initial condition, and pick n large enough so that

(a) the set of infected sites in the initial condition is confined to Gn

(b) |λ− αi| > δn+1 for all i ∈ {0, . . . , k}, and

(c) |λ−αi|−δn+1

λ bn+1 > (αi + 1)b3/4
n+1 for all i ∈ {0, . . . , k}.

We now claim that

P(both types of infection reach {xn+1,0, . . . , xn+1,k}) ≤ (k + 2)εn+1 . (8)

Once this is established we are done, because P(C) is bounded by the left-hand side of (8) while
the right-hand side can be made arbitrarily small by picking n even larger.

To show that (8) holds, it suffices to show that it holds even if we condition on the types of
infection ξ = (ξ(xn,0), . . . , ξ(xn,k)) that reach xn,0, . . . , xn,k. Given such a ξ (with both types of
infection appearing), define

αξ = min{αi : i ∈ {0, 1, . . . , k}, ξ(xn,i) = 2}

and then fix i in such a way that αξ = αi. By the choice of n we have that |λ − αξ| > δn+1.
There are now two cases to consider: λ > αξ and λ < αξ. In the former case λ > αξ, we have by
the choice of bn+1 that with conditional probability at least 1− (k + 2)εn+1, infection 2 claims
all of xn+1,0, . . . , xn+1,k (by rushing from xn,i to xn+1,i, then across the bridge Bn+1,i, and then
across the k − 1 other bridges emanating from xn+1,0, all of this before infection 1 arrives at
any of the xn+1,j ’s). Similarly, in the latter case λ < αξ, we get by the choice of bn+1 that with
conditional probability at least 1 − (k + 2)εn+1, infection 1 claims all of xn+1,0, . . . , xn+1,k (by
rushing from xn,0 to xn+1,0 and then across all bridges emanating from xn+1,0). Thus, (8) is
established when λ > 1.
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It only remains to deal with the case λ = 1 6∈ {α1, . . . , αk}. This follows by a similar argument:
given ξ = (ξ(xn,0), . . . , ξ(xn,k)), the infection that has captured xn,0 will, with probability at
least 1− (k + 2)εn+1, capture all of xn+1,0, . . . , xn+1,k. 2

It now only takes a minor extension of the above construction to get a graph that can be used
to establish the following result.

Theorem 3.2 There exists a graph G for which Coex(G) is countably infinite.

Proof. Take (α1, α2, . . .) to be an unbounded and strictly increasing sequence with α1 ≥ 1.
We will construct a graph with Coex(G) = {α1, α2, . . .}. As in the proof of Theorem 3.1, take
(b1, b2, . . .) to be a rapidly growing sequence of positive integers, and construct G = (V, E) as a
limit of an increasing sequence {Gn = (En,Vn)}n≥0 of finite graphs.

Take G0 to consist of a single vertex x0,0, and proceed inductively: Given Gn, with n + 1
distinguished vertices xn,0, xn,1, . . . , xn,n, obtain Gn+1 by decorating Gn as follows.

(a) For i = 0, 1, . . . , n, attach to xn,i a path of length dαibn+1e and denote the last vertex of
this path by xn+1,i,

(b) to the vertex xn,n, attach an additional path of length dαn+1bn+1e, and denote the last
vertex of this path by xn+1,n+1,

(c) for i = 1, . . . , n, link xn+1,0 and xn+1,i by a path of length
⌈
b
7/8
n+1

⌉
.

To show that if bn → ∞ sufficiently fast as n → ∞, the graph G gets coexistence region
{α1, α2, . . .}, is now a completely straightforward modification of the proof of Theorem 3.1. 2

4 A positive result

In the proof of Theorem 3.2, we required that the candidate coexistence set {α1, α2, . . .} could
be written as an increasing unbounded sequence, which is tantamount to saying that it has no
accumulation points. This condition is certainly not necessary for a countable set to arise as a
coexistence region for some graph, but we do not know whether it can simply be removed.

One could ask for graphs with more exotic coexistence regions, such as for instance examples
whose coexistence regions are uncountable with zero Lebesgue measure. That kind of behavior
is, however, ruled out by the following result. For a set A ⊆ R, write Ac for its complement and
∂A for its boundary.

Theorem 4.1 For any graph G, the coexistence region Coex(G) contains at most countably
many points in its boundary ∂Coex(G).

Proof. For a given finite initial condition ξ, write Coexξ(G) for the set of λ’s such that infinite
coexistence has positive probability with initial condition ξ. Since G is countable, there are only
countably many finite initial conditions ξ, and in order to prove the theorem it therefore suffices
to show for any ξ that Coexξ(G) ∩ ∂Coexξ(G) is countable.
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Fix ξ. For the two-type Richardson model on G with parameters λ1 = 1 and λ2 = λ, and initial
condition ξ, let θ1(λ) denote the probability that infection 1 reaches only finitely many sites,
and let θ2(λ) denote the probability that infection 2 reaches infinitely many. We may assume
that G is infinite (otherwise the statement of the theorem is trivial), in which case we have
θ1(λ) ≤ θ2(λ), with {

θ1(λ) = θ2(λ) if λ 6∈ Coexξ(G)
θ1(λ) < θ2(λ) if λ ∈ Coexξ(G) .

The standard monotone coupling of the two-type Richardson model for different λ’s (see, e.g.,
[5]) shows that θ1(λ) and θ2(λ) are increasing functions of λ, whence they can have at most
countably many discontinuities.

Now define sets A−, A+ ⊆ R as

A− = {λ ∈ Coexξ(G) : (λ− ε, λ) 6⊆ Coexξ(G) for all ε > 0}

and
A+ = {λ ∈ Coexξ(G) : (λ, λ + ε) 6⊆ Coexξ(G) for all ε > 0} .

For λ∗ ∈ A−, we see that
lim

λ↗λ∗
θ1(λ) = lim

λ↗λ∗
θ2(λ)

by considering a subsequence of λ’s beloning to ¬Coexξ(G). Hence,

lim
λ↗λ∗

θ2(λ) = lim
λ↗λ∗

θ1(λ)

≤ θ1(λ∗)
< θ2(λ∗) ,

so that θ2(λ) has a discontinuity at λ = λ∗, and it follows that A− is countable.

We similarly get for any λ∗ ∈ A+ that θ1(λ) has a discontinuity at λ = λ∗, so that A+ is
countable as well. Note finally that

Coexξ(G) ∩ ∂Coexξ(G) = A− ∪A+ ,

which gives the desired conclusion that Coexξ(G) ∩ ∂Coexξ(G) is countable. 2
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