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Abstract. In this paper we study asymptotic behavior of some mo-
ment spaces. We consider two different settings. In the first one, we work
with ordinary multi-dimensional moments on the standard m-simplex.
In the second one, we deal with the trigonometric moments on the unit
circle of the complex plane. We state large and moderate deviation
principles for uniformly distributed moments. In both cases the rate
function of the large deviation principle is related to the reversed Kull-
back information with respect to the uniform measure on the integration
space.

1. Introduction

In this paper we present asymptotic behavior analysis of some moment
spaces. We consider multi-dimensional power moments on the m-dimen-
sional standard simplex and trigonometric moments on the complex unit
circle. To begin with, let us introduce a general setting.

Let L be an infinite set of index and let {φt : t ∈ L} be a family of
continuous complex valued functions defined on a bounded set K ⊂ Ω (with
Ω = C

⏐
or IRd, d ∈ IN∗). Let (Ln : n ∈ IN∗) be an increasing sequence of

finite subsets of L such that
⋃

n Ln = L. For n ∈ IN∗, the n-th moment
space is the set

Mn :=
{∫

K
Φn dµ : µ ∈ P(K)

}
⊂ C
⏐ #(Ln)

where Φn := (φt : t ∈ Ln), #(A) stands for the cardinality of the set A and
P(K) denotes the set of all probability measures with support included in
K. It is well know that Mn is the convex hull of the curve {Φn(x) : x ∈ K}
[KN77, Theorem I.3.5]. A deeper knowledge of the shape and structure of
these spaces is one of the byproducts of our results. The set P(K) will be
endowed with the weak topology [Bil99].

For n, k ∈ IN∗ such that n ≥ k, let Πn,k : C
⏐ #(Ln) → C

⏐ #(Lk) be the
natural projection map. Let (M̃n : n ∈ IN) be a sequence of sets verifying

Mn ⊂ M̃n ⊂ C
⏐ #(Ln) (n ∈ IN∗), (1.1a)

Πn,kM̃n ⊂ Πn+1,kM̃n+1, (n, k ∈ IN∗, k ≤ n) (1.1b)⋂
n≥k

Πn,kM̃n = Mk (k ∈ IN∗). (1.1c)
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The sets M̃n could be seen as extended moment spaces. By (1.1c), these sets
provide good approximation of moment spaces. In general, is not possible to
have a tractable description of the moment spaces. Nevertheless, by means
of the approximating sets M̃n (easily describable) we will be able to deal
with the asymptotics of moment spaces.

Assuming that it is feasible, we endow M̃n with the uniform probability
measure Un, i.e. with the corresponding normalized Lebesgue measure. Let
k be a fixed integer, we focus on the asymptotic behavior of the first k-
dimensional marginal probability of Un. More precisely, let Xn be a random
vector of M̃n with distribution Un. We aim to find convergence rates (in the
sense of large deviations) for the sequence of random vectors

Xk
n := Πn,kXn.

Up to our knowledge, this problem was first studied in [CKS93]. Therein,
the authors deal with the ordinary power moments on [0, 1]. They consider
the moment spaces

Mn =
{∫ 1

0
Φn dµ : µ ∈ P([0, 1])

}
with Φn(x) = (x, x2, ..., xn). Endowing Mn with the corresponding uni-
form probability measure they show that (Xk

n : n ∈ IN) converges to c0 =
(c01, c02, ..., c0k), the k-dimensional moment vector of the arc-sine law on
[0, 1], i.e.

c0j =
∫ 1

0

xj

π
√

x(1 − x)
dx (j = 1, 2, ..., k).

Moreover, they obtain that the limit distribution of the fluctuations is nor-
mal. More precisely,

√
n(Xk

n − c0)
Law−−−→

n→∞ Nk(0,Σ),

where Σ is a matrix whose coefficients depend on the arc-sine law moments.
In the same framework the large and moderate deviations behavior are

studied in [GLC]. The main result is that, for any borelian set A of [0, 1],

IP
(
Xk

n ∈ A
)
≈ exp (−n inf{I(x) : x ∈ A})

where I is a convex function related to the reverse Kullback information with
respect to arc-sine law (See Section 2.2 for the definition of this functional).
Here, ≈ stands for large deviation equivalence (See Section 2.1 for right
formulation). The large deviation principle (LDP) is also stated for the
(random) upper representation probability measures of the random vectors
Xn, (n ∈ IN).

In this paper we focus on two different settings. The first one concerns
the m-dimensional power moments on S (with m positive integer). The
standard m-simplex is the set

S :=

{
(x1, x2, ..., xm) ∈ IRm

+ :
m∑

i=1

xi ≤ 1

}
.
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For β = (β1, β2, ..., βm) ∈ INm, define

φβ(x) = xβ1
1 xβ2

2 · · · xβm
m . (1.2)

Let

Ln :=

{
(β1, β2, ..., βm) ∈ INm : 0 <

n∑
i=1

βi ≤ n

}
(n ∈ IN)

and
ΦS

n =
(
φβ : β ∈ Ln

)
.

The n-th moment space (on S) is

MS
n :=

{∫
S

ΦS
n dµ : µ ∈ P(S)

}
.

The second setting involves the trigonometric moments on TT, the unit
circle of C

⏐
. The moment spaces are

MTT
n :=

{(∫
TT

zj dµ(z) : 1 ≤ j ≤ n

)
: µ ∈ P(TT)

}
(n ∈ IN).

Theorem 2.2 of [Gup99b] state that an infinite multi-sequence is a mo-
ment multi-sequence if and only if it is completely monotone. Taking for
all n ∈ IN∗, M̃n as the set of all partially monotone multi-sequence of
order n, denoted by Gn, the conditions (1.1) are fulfilled (See Definition
(3.1) and Theorem (3.2) for details). In [Gup00] a normal central limit for(
Xk

n : n ∈ IN
)

is shown. The central role played by the arc-sine law in
[CKS93] and [GLC], is in this case played by νS , the uniform probability
measure on S. In Section 4, in the context of the trigonometric moment, we
obtain the convergence of the random moment vector sequence (Xk

n) to the
moment vector of νTT, the uniform probability measure on TT, and its limit
distribution (after normalization).

One of our main results is the statement of the large deviation principle
(LDP) for (Xk

n : n ∈ IN) in both settings. Using the symbol K to represent
S or TT our result can be written as follows. For sake of simplicity we drop
the index K of Xk

n and Ln.

IP
(
Xk

n ∈ A
)
≈ exp (−#(Ln)I(A)) (A measurable set)

where

IK(A) = inf
µ∈P(K,A)

{∫
K

ln
(

dνK

dµ

)
dνK

}
, (1.3)

and

P(K, A) :=
{

µ ∈ P(K) :
∫
K

ΦK
k dµ ∈ A

}
.

Throughout the paper we follow the convention that the infimum over an
empty set is +∞.

We complete these large deviation results by establishing a LDP in infinite
dimension settings. In the multi-dimensional moment frame we state the
LDP on the space of infinite real multi-sequence (under a certain bound
constrain) equipped with a norm topology. In the trigonometric moment
frame we state the LDP for random measures representing Xn (n ∈ IN).
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This last result, as in [GLC], leads to obtain the useful expression for I(.)
as in (1.3).

The paper is organized as follows. To be self contained in next section we
recall some definitions and basic results on large deviation and Kullback in-
formation. In Section 3 and 4 we state our results for the multi-dimensional
and trigonometric moment setting respectively. Section 5 is devoted to com-
paring our result with the previous one in [GLC]. The proofs of all results
are deferred to the last sections.

2. Large Deviations and Kullback Information

2.1. Large Deviation Principle. Let us first recall what a LDP is (see for
example [DZ98]). Let (un) be a positive sequence of real numbers decreasing
to 0.

Definition 2.1. We say that a sequence (Rn) of probability measures on a
measurable Hausdorff space (U,B(U)) satisfies a LDP with rate function I
and speed (un) if:

i) I is lower semicontinuous, with values in IR+ ∪ {+∞}.
ii) For any measurable set A of U :

−I(int A) ≤ lim inf
n→∞ un log Rn(A) ≤ lim sup

n→∞
un log Rn(A) ≤ −I(clo A),

where I(A) = infξ∈A I(ξ) and intA (resp. clo A) is the interior (resp.
the closure) of A.

We say that the rate function I is good if its level sets {x ∈ U : I(x) ≤ a}
are compact for any a ≥ 0. More generally, a sequence of U -valued random
variables is said to satisfy a LDP if their distributions satisfy a LDP.

To be self-contained let us recall some facts and tools on large deviations
which will be useful in the paper (we refer to [DZ98] for more on large
deviations).

• Contraction principle. Assume that (Rn) satisfies a LDP on
(U,B(U)) with good rate function I and speed (un). Let T be a
continuous mapping from U to another space V . Then, (Rn ◦ T−1)
satisfies a LDP on (V,B(V )) with good rate function

I ′(y) = inf
x:T (x)=y

I(x), (y ∈ V ),

and speed (un).
• Exponential approximation. Assume that U is a metric space

and let d denotes the distance on U . Let (Xn) be a U -valued random
sequence satisfying a LDP with good rate function I and speed (un).
Let (Yn) be another U -valued random sequence. If for any ξ > 0

lim sup
n→∞

un log IP(d(Xn, Yn) > ξ) = −∞,

then (Yn) satisfies the same LDP as (Xn).
Let (Xn) be a sequence of random variables on (U,B(U)), and X a fixed
point of U . If, for all sequence (vn) decreasing to 0 such that un/vn → 0, we
have a LDP for the sequence of random variables (

√
vn/un(Xn − X)) with
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speed (vn) we say that (Xn) satisfies a moderate deviation principle (MDP)
[DZ98].

2.2. Kullback and Reversed Kullback Information. Let µ and ν be
probabilities on certain measurable space U . The Kullback information or
cross entropy of µ with respect to ν is defined by

K(µ, ν) =

⎧⎨⎩
∫

U
ln

dµ

dν
dµ, if µ � ν and ln dµ

dν ∈ L1(µ)

+∞, otherwise.
(2.1)

Properties of K as a function of µ may be found in [Bre79]. K( · , ν) is the
rate function for Sanov large deviations theorem (see Section 6.2 of [DZ98])
where ν is a probability generating the random variables. In this paper,
the rate function involved is the reversed Kullback information. This means
that we will consider K in (2.1) as a function of ν. The role of µ will be
played by νS (resp. νTT) for the multi-dimensional (resp. trigonometric)
moment setting.

In order to identify the rate function that controls the LDP in the multi-
dimensional moment framework (Lemma 6.3) we exploit an optimization
result on measure space [BL93, Theorem 3.4]. Namely, this result establish
the duality relation between an optimization problem on measure space
and the corresponding dual optimization problem on continuous function
space. For the Kullback information (defined for general Borel measures),
this relation can be paraphrased as follows. For x ∈ IR#(Lk),

inf
{
K(ν, µ) + µ(U) : µ regular Borel finite measure,

∫
U

Φk dµ = x

}
= sup

{
〈Λ, x〉 +

∫
U

ln(1 − 〈Φk,Λ〉) dν : Λ ∈ IR#(Lk)

}
where 〈·, ·〉 denotes the usual scalar product in IR#(Lk). We refer the reader
to [BL93] for general statement and related results.

3. Multidimensional moment problem

We recall the multi-dimensional moment space of order n

MS
n :=

{(
cβ =

∫
S

xβ dµ(x) : β ∈ Ln

)
: µ ∈ P(S)

}
where xβ := xβ1

1 xβ2
2 ...xβm

m (with 00 = 1) for x = (x1, x2, ..., xm) ∈ IRm and
β = (β1, β2, ..., βm) ∈ INm. For β ∈ INm, let |β| :=

∑m
i=1 βi.

Definition 3.1. A multi-sequence (cβ : |β| ≥ 1) is called a completely
monotone multi-sequence if for all β0 ∈ IN and β ∈ INm

(−1)β0∆β0cβ ≥ 0 (3.1)

where, with c(0,0,...,0) = 1,

∆cβ = c(β1+1,β2,...,βm) + c(β1,β2+1,...,βm) + ...

+ c(β1,β2,...,βm+1) − cβ

(∆β0 stands for β0 iterates of the operator ∆). A finite multi-sequence
(cβ : β ∈ Ln) is called a partially monotone multi-sequence of order n if for
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all β0 ∈ IN and β ∈ INm such that β0 ≤ n−|β| (3.1) holds. Following [Gup00]
we will call the completely (resp. partially) monotone multi-sequences as G-
sequences (resp. partial G-sequences).

The G-sequences are the multi-dimensional version of the completely
monotone sequences on IR. These sequences are the solution of the Haus-
dorff moment problem, i.e. the power moment problem on [0, 1] [ST63]. The
following theorem, due to [Gup99a], solves the multi-dimensional moment
problem on S.

Let R∞ be the set of all infinite real multi-sequences. We recall that

L =
⋃
n

Ln = INm \ {(0, 0, ..., 0)}.

Theorem 3.2 (Theorem 2.2 [Gup99a]). Let c = (cβ : β ∈ L) ∈ R∞. There
exists µ ∈ P(S) such that

cβ =
∫
S

xβ dµ(x) (∀β ∈ L).

if and only if c is a G-sequence.

We denote by Rn the set of all multi-sequence of order n, i.e. Rn =
IR#(Ln). For n, k ∈ IN∗ with k < n, let ΠS

n,k : Rn → Rk (n ≥ k) be the
projection map defined as

(cβ : β ∈ Ln) �→ (cβ : β ∈ Lk).

Let Gn denote the set of all partial G-sequences of order n. Thus, by the
previous theorem MS

k ⊂ ΠS
n,k (Gn) ⊂ ΠS

n+1,k (Gn+1) for all n > k. Moreover,
MS

k =
⋂

n≥k ΠS
n,k (Gn).

The sets Gn are completely described in [Gup00]. In particular, they are
bounded with nonzero Lebesgue measure . So, we can endow them with the
corresponding uniform probability measure. Let XS

n be a random vector
of Gn having uniform distribution. We define the random multi-sequence
(XS,k

n : n ∈ IN∗) of Gk by

XS,k
n := ΠS

n,kX
S
n .

As we have said in the introduction νS , the uniform distribution on S
plays a major role in the asymptotic behavior of

(
XS,k

n : n ∈ IN
)
. Let

cS,k = (cSβ : β ∈ Lk) denotes the moment multi-sequence of order k of νS ,
i.e.

cSβ :=
∫
S

xβ dνS(x) =
m!
∏m

i=1 βi

(m + |β|)! (β ∈ Lk).

In [Gup00] it is established the following normal central limit for
(
XS,k

n

)
.

Theorem 3.3 (Theorema 3.4 [Gup00]).√(n+m
n

) (
XS,k

n − cS,k
)

Law−−−→
n→∞ Nk(0,ΣS

k ),

where
ΣS

k =
(
cSγ+β

)
γ,β∈Lk

.
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Our first result concerns the large deviation behavior of the sequences of
random multi-sequences

(
XS,k

n

)
.

Theorem 3.4. The random vector sequence
(
XS,k

n : n ∈ IN
)

satisfies a LDP

with speed
((n+m

n

)−1 : n ∈ IN
)

and good rate function

Ik
S(x) = inf

µ∈P(S,{x})
K(νS , µ), (x ∈ Rk).

Remark 1. Using the dual relation in Section 2.2 the rate function Ik
S could

be expressed as, for x ∈ MS
k ,

Ik
S(x) = sup

(Λ0,Λ)∈IR×Rk

⎧⎨⎩Λ0 − 1 + 〈x,Λ〉 +
∫
S

ln
(

1 − Λ0 −
∑

β∈Lk

Λβxβ

)
dνS(x)

⎫⎬⎭
The following result gives an estimation of convergence rate between those

of the Theorem 3.3 and Theorem 3.4.

Theorem 3.5. Let
(
Mn : n ∈ IN) be a sequence of positive real numbers

growing to +∞ such that Mn = o
((

n+m
n

))
. The sequence of random vectors

X̃S,k
n :=

√(n+m
n

)
M(n)

(
XS,k

n − cS,k
)

satisfies the LDP with speed (M(n)−1) and good rate function

HS(x) :=
1
2
xT
(
ΣS

k

)−1
x, (x ∈ Rk).

Finally, we present LDP in an infinite dimensional setup. Let MS∞ be the
set of all moment multi-sequences, i.e. in view of Theorem 3.2, the set of all
G-sequences. Take on R∞ the norm defined by

‖c‖ :=
∑
β∈L

1(|β|+m
m

)
|β|2

|cβ|,
(
c = (cβ : β ∈ L)

)
. (3.2)

Equip R∞ with the corresponding borelian σ-field. Endow MS∞ with the
induced topology and σ-field. Further, let C∞ ⊂ R∞ defined as

C∞ := {c ∈ R∞ : ∀β 0 ≤ cβ ≤ 1} .

Obviously, MS∞ ⊂ C∞. It is well known that the moment problem on S
is determined [ST63, Corollary 1.1]. In others words, given c ∈ MS∞ there
exists an unique probability measure µc verifying

cβ =
∫
S

xβ dµc(x) (∀β ∈ L).

For n ∈ IN∗, let ΠS∞,n : R∞ → Rn be the projection map.

Theorem 3.6. Let (µn) be a sequence of probability measures defined on
C∞ such that

µn ◦ (ΠS
∞,n)−1
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is the uniform probability measure on Gn. Then, (µn) verifies the LDP on
R∞ endowed with the topology induced by the norm (3.2). The good rate
function is

IG(c) =

{
K(νS , µc), if c ∈ MS∞,

+∞, otherwise
(3.3)

and the speed is
((

n+m
n

)−1 : n ∈ IN
)
.

Remark 2. As can be seen in the proof of this theorem, it remains valid if
we consider as C∞ any bounded set (in the infinity norm) containing MS∞.
Furthermore, the theorem holds for the family of norms

‖c‖l :=
∑
β∈L

1(|β|+m
m

)
|β|l

|cβ|,
(
c = (cβ : β ∈ L)

)
with l > 1. (3.2) corresponds to the case l = 2.

4. Trigonometric moment problem

For µ ∈ P(TT) the trigonometric moments on TT are given by

tk(µ) =
∫

TT
zk dµ(z), k ∈ ZZ.

Since tk(·) = t−k(·) it suffices to consider k ≥ 0 in order to study the
corresponding moment spaces. We recall that the (n-th) moment space is

MTT
n =

{
tn :=

(
t1(µ), t2(µ), ..., tn(µ)

)
: µ ∈ P(TT)

}
.

For z = (z1, z2, ..., zn) ∈ C
⏐ n, let

Tn(z) :=

⎛⎜⎜⎜⎝
1 z1 z2 . . . zn

z̄1 1 z1 . . . zn−1
...

...
...

...
z̄n z̄n−1 z̄n−2 . . . 1

⎞⎟⎟⎟⎠ .

We denote by ∆n(z) the determinant of Tn(z). For µ ∈ P(TT), the matrices
Tn(µ) := Tn(tn(µ)), n ∈ IN∗ are called Toeplitz matrices. They play a major
role in the theory of moments on TT.

Let XTT
n be a random vector of MTT

n uniformly distributed. Let ΠTT
n,k

denotes the projection map from C
⏐ n to C

⏐ k (k ≤ n). Let XTT,k
n be random

vector of MTT
k defined as

XTT,k
n := ΠTT

n,k XTT
n .

Our first result give the limit distribution of
(√

nXTT,k
n : n ∈ IN∗). Conse-

quently, we obtain a weak law of large numbers for
(
XTT,k

n

)
. Namely,

XTT,k
n

IP−→
n

(0, 0, ..., 0) ∈ C
⏐ k.

Note that, for all j ∈ IN∗, tj(νTT) = 0.
For n ∈ IN∗, we denote by ρn the measure the Lebesgue on C

⏐ n.
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Theorem 4.1. For any measurable set A of C
⏐ k,

lim
n→∞ IP(

√
nXTT,k

n ∈ A) =
1
πk

∫
A

exp
(
−‖z‖2

)
dρ1(z)

where ‖ · ‖ denotes the Euclidean norm on C
⏐ k.

Remark 3. In others words, the limiting distribution of
(√

n XTT,k
n : n ∈ IN

)
is

a k-dimensional complex normal distribution. Each component are pairwise
independent with independent real and imaginary part following normal
distribution of expectation zero and variance 1/2. As we see in previous
section (and in [CKS93]) the variance of the limiting distribution are very
related with the moments of the limit probability. In fact, in this case, as
the variance is the identity matrix it is hidden its relation with νTT. A more
descriptive formulation of the previous theorem could be

√
nXTT,k

n
Law−−−→

n→∞ N C

k (0,Tk(νTT))

where N C

k (·, ·) denotes the k-dimensional complex normal distribution.
An interesting byproduct of the proof of this theorem is the “asymptotic”

volume of n-th moment space. Similar results are given in [CKS93] and
[Gup00]. Here, we will obtain that

V olumeIR2n

(
MTT

n

)
=

πn

n!
. (4.1)

Since the Stirling’s expression n! =
√

2πn exp(−n)nn+1/2(1+ o(1)), we have

V olumeIR2n

(
MTT

n

)
= exp(−n lnn[1 + o(1)]).

Our next results concern the large and moderate deviation behavior of
the sequence

(
XTT,k

n : n ∈ IN
)
.

Theorem 4.2.
(
XTT,k

n : n ∈ IN
)

satisfies the LDP with speed
(
n−1
)

and
good rate function

Ik
TT(z) =

{
− ln ∆k(z)

∆k−1(z) if z ∈ intMTT
k ,

+∞ otherwise.
(4.2)

Theorem 4.3. Let (un) be a given decreasing sequence to 0 such that n−1 =
o(un). Then

(√
nun XTT,k

n : n ∈ IN
)

satisfies a LDP on C
⏐ k with speed

(
un

)
and good rate function

HTT(z) :=
k∑

j=1

z2
j .

Finally we give a LDP for random probability measures. This result
follows from Theorem 4.2 and make possible to understand the rate function
in (4.2). For every n, let Q

⏐
n be a probability measure defined on P(TT) such

that if µn has distribution Q
⏐

n then the random vector tn(µn) has distribution
IPn.

Theorem 4.4. (µn) satisfies a LDP on P(TT) with good rate function
ITT(·) = K(νTT, ·).
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Remark 4. There is a natural way to obtain such Q
⏐

n. For n ∈ IN∗ and
z ∈ MTT

n , let Wz
n be a probability distribution on P(TT, {z}). The mixture

probability measure defined as

Q
⏐

n(·) =
∫

MTT
n

Wz
n(·) dIPn(z)

verifies our constraint. In [GLC], in the frame of the power moment problem
on [0, 1], the authors considered for Wz

n the probability measure concen-
trated on the upper canonical representation of the moment vector z. See
[KN77] for definition. Applying the contraction principle, we obtain

Corollary 4.5.
Ik
TT(z) = inf

µ∈P(TT,{z})
K(νTT, µ).

5. Related LDPs.

The results on LDP obtained in previous sections can be seen in a com-
mon frame: the interval [0, 1]. We will compare each of these LDP with the
previous one obtained in [GLC]. This analysis will give a first approach to a
slight generalization of our formulation of the asymptotics analysis on mo-
ment spaces. In particular, endowing M̃n (or Mn) with general probability
measures instead of the uniform one.

5.1. The general [a, b]-moment spaces. We recall briefly certain aspects
developed in [CKS93] and [GLC]. First, we want to remark that the all
results obtained there are valid if one consider any real bounded interval of
the real line. Moreover, the results are valid if one consider the moments
associated to a given sequence of polynomial P = (Pn) with deg Pn = n,
n ∈ IN∗ instead of the ordinary power moments. For any interval [a, b]
(a < b) of the real line and n ∈ IN∗, the n-th moment space is

M
[a,b]
k (P) =

{
(ĉ1(µ), ĉ2(µ), ..., ĉk(µ)) ∈ IRk : µ ∈ P([a, b])

}
.

where, for µ ∈ P([a, b]) and j ∈ IN∗,

ĉj(µ) =
∫ b

a
Pj(x) dµ(x).

The reason of the extensibility of the result on [0, 1] to any interval [a, b] and
any family {Pn} is explained by the canonical moments which are defined
as follows. Given ĉj = (ĉ1, ĉ2, ..., ĉj) ∈ int M

[a,b]
j (P) we define, for j ∈ IN,

c+
j+1(ĉ

j) = max
{

c ∈ IR : ((ĉ1, ĉ2, ..., ĉj , c) ∈ M
[a,b]
j+1 (P)

}
c−j+1(ĉ

j) = min
{
c ∈ IR : ((ĉ1, ĉ2, ..., ĉj , c) ∈ M

[a,b]
j+1 (P)

}
.

For i ∈ IN∗, the i-th canonical moment is defined as

p̂i(ĉk) = p̂i(ĉi)

=
ĉi − c−i (ĉi−1)

c+
i (ĉi−1) − c−i (ĉi−1)

.
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The canonical moments are independent of the particular choice of the se-
quence P [CKS93]. Furthermore, they are invariant by linear transformation
(with positive slope) of the support interval. Namely, if µ ∈ P([0, 1]) is lin-
early transformed measure with positive slope to µ′ ∈ P([a, b]), then their
corresponding canonical moments are the same [Ski69, Theorem 5]. These
properties make very attractive the study of the canonical moments. We
refers the reader to [DS97], a very complete monograph about the subject.
The results of [CKS93] and [GLC] were based on the knowledge of the exact
distribution of the canonical moments. Theorem 1.3 of [CKS93] establish
that the uniform probability measure on M

[a,b]
n (P) (n ∈ IN∗) is equivalent

to the first n canonical moment are independent and p̂j has β(n− j, n− j)-
distribution, j = 1, 2, ..., n.

5.2. Deriving LDPs on IR from LDP of Section 4. We denoted by
F : TT → [−1, 1] the map defined as z �→ �z. For µ ∈ P(TT), let

µF := µ ◦ F−1 ∈ P([−1, 1]). (5.1)

For k ∈ IN∗, let F̂k be the application from MTT
k to Mk([−1, 1]) defined by

(5.1). More precisely, for z ∈ MTT
k ,

F̂ (z) = ĉk(µF ) := (ĉ1(µF ), ĉ2(µF ), ..., ĉk(µF )) ∈ Mk([0, 1]),

where µ is any measure on P(TT) representing z. We will see in the following
that this application is independent of the selection of µ. Hence, it is well-
defined. For j = 0, 1, ..., k

�tj(µ) = �
(∫

TT
zj dµ(z)

)
=
∫

TT
cos(j arccos F (z)) dµ(z)

=
∫ 1

−1
Tj(x) dµF (x)

where Tj = cos(j arccos x) is the j-th Tchebycheff polynomial of the first
kind. These polynomials can be expressed as Tj(x) =

∑m
j=0 amjx

j where

amj =

⎧⎨⎩
m

2
2j(−1)

m−j
2

(
m + j

j + 1

)
if m − j is even,

0, otherwise .

Therefore, for µ ∈ P([−1, 1]) and for s = (s0, s1, ..., sk) with

sj = sj(µ) :=
∫ 1

−1
Tj dµ, j = 0, 1, ..., k,

and c = (1, ĉ1(µ), ĉ2(µ), ..., ĉk(µ)) we have c = A−1s with A = (amj : m, j =
1, 2, ..., k). Thus, the relation (1, F̂ (z)) = A−1(1,�z) define F̂ (·) indepen-
dently of the measure representing z.

By the contraction principle and the δ-method can be derived from the
results of Section 4 the asymptotic behavior of sequences of random vectors

Ẑ(k)
n := F̂ (XTT,k

n ) = ΠS
n,kF̂ (Ẑ(k)

n ).

Surprisingly, we obtain the same asymptotic behavior (after obvious transla-
tion to [0, 1]) of the random moment vector described in [CKS93] and [GLC].
The explanation is given by the behavior of canonical moments. It is no hard
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to prove that the uniform probability measure on MTT
n yields that the first n

(random) canonical moments p̂j (related to F̂ (XTT,n
n )) are independent with

β(n − j + 1/2, n − j + 1/2)-distribution, j = 1, 2, ..., n. Compare this result
with the corresponding one in previous section.

We can use the asymptotics results to study a moment space on an interval
of the real line in different way. Actually, this is an equivalent form of
the same study. Consider in the interval [−π, π) the system of continuous
functions

Φ[−π,π)
n :=

(
cos θ, sin θ, cos 2θ, sin 2θ, ..., cos nθ, sinnθ

)
, (n ∈ IN∗).

For µ ∈ P([−π, π)) the corresponding real trigonometric moments are de-
fined as α0 = 1,

αk(µ) =
∫ π

−π
cos kθ dµ(θ), βk(µ) =

∫ π

−π
sin kθ dµ(θ), (k ∈ IN).

The moment space M
[−π,π)
n is defined as

M [−π,π)
n =

{
(α1(µ), β1(µ), ..., αn(µ), βn(µ))T ∈ IR2n : µ ∈ P([−π, π))

}
.

We may identify the set P(TT) with P([−π, π)) by the relation z =
exp(iθ), for z ∈ TT and θ = [−π, π). Using the convention dµ(θ) := dµ(eiθ),
we have

tk(µ) =
∫ π

−π
eikθ dµ(θ), k ∈ IN.

The power moments tk are related with the trigonometric moments in the
following way:

tk(µ) = αk(µ) + iβk(µ).

for µ ∈ P(TT) and k ∈ IN. Taking IPn on MTT
n is equivalent to endow the set

M
[−π,π)
n with the corresponding uniform probability measure. Therefore,

this problem is into the general setting described in the introduction of
papers. Moreover, all the results for the random power moment problem on
TT can easily translate for the random real trigonometric moments problem
on [−π, π). The normal limit can be translate using a δ-method [VdV98]
and the large deviations by the contraction principle. In particular, we can
formulate the following result.

Let T̂n be a random vector of M
[−π,π)
n uniformly distributed. Let T̂ k

n be
the random vector of M

[−π,π)
k formed as projection of T̂n on M

[−π,π)
k .

Corollary 5.1. The sequence of random vectors
(
T̂ k

n

)
satisfies a LDP with

speed
(
(2n)−1

)
and good rate function

Ik
[−π,π)(x) = inf

µ∈P([−π,π),{x})
K
(
ν [−π,π), µ

)
,

where ν [−π,π) denotes the uniform probability measure on [−π, π).
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1

0 1c1

c2

cu

ca

M2

1

Figure 1. The moment space M2, region limited by the
solid line and the approximating spaces G2, ΠS

8,2G8 limited by
the segment with extreme points (0, 0) and (1, 1) (represented
in solid line) and the dotted polygonal and dashed polygonal
respectively. ca and cu the 2-dimensional moments of arcsine
and uniform distribution respectively.

5.3. LDP for one-dimensional G-sequences. Considering m = 1, in the
Section 3 we have an LDP involving ordinary power moments on [0, 1].

In [Gup00] the description of the sets Gn, (n ∈ IN∗) is given. In particular,
for m = 1, the set Gn is the convex hull of the finite set of n + 1 points

ci
n = (ci

n,1, c
i
n,2, ..., c

i
n,n), i = 0, 1, ..., n,

with

ci
n,j =

⎧⎪⎨⎪⎩
(j

i

)(n
i

) if i ≤ j

0 otherwise,
(j = 0, 1, ..., n).

In Figure 1 we sketch the moment space M2 and the sets ΠS
n,2Gn, n = 2, 8.

We highlight the points ΠS
8,2c

i
8, i = 0, 1, ..., 8. As can be seen in the figure

the “enlargement” of the extended moment spaces under the curve {x, x2 :
x ∈ [0, 1]} yields that the point limit cu be “underneath” to the point ca.

5.4. LDP on canonical moment spaces. The arguments used to proofs
the results in [CKS93], [GLC] and the robust properties of the canonical
moment suggest to study the asymptotics related to random moment vector
endowing with probability measures the canonical moment spaces instead
of the ordinary moments space. We present in the following a very simple
construction of a probability measure on canonical moment spaces. Let
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(µn) ⊂ P([0, 1]) satisfying the LDP with rate function IC . Equip [0, 1]n (the
n-th canonical moment space) with

µn := µn ⊗ µn−1 ⊗ · · · ⊗ µ1 ∈ P([0, 1]n).

Let Π̃n,k denote the projection map from [0, 1]n to [0, 1]k , taking the first n
components. Following similar arguments to those of [GLC] (and Section 7
in the context of complex moments) we have that

(
µk

n := µn ◦ (Π̃n,k)−1 : n ∈
IN
)

verify the LDP with good rate function Ik
C(p1, p2, ..., pk) =

∑k
i=1 IC(pi).

Let pn denote the application that transforms the n-dimensional ordinary
moment vector on the corresponding n-dimensional canonical moment vec-
tor. Let Ûn := µn ◦ p−1

n . The sequence (µ̂(k)
n := Ûn ◦ (Π̃n,k)−1) ⊂ P(M [a,b]

n )
satisfy the LDP with I

k(c) = Ik
C(pk(c)), where c ∈ M

[a,b]
k .

Similar constructions could be make in the complex canonical moment
spaces. In a forthcoming paper we will develop these ideas.

6. Proofs of Results of Section 3

6.1. Notation and previous results. We will use the notation of [Gup00].
For β = (β1, β2, ..., βm) ∈ INm and α = (α1, α2, ..., αm) ∈ INm,

β! :=
m∏

i=1

βi!,(
n

β

)
:=

n!
β!(n − |β|)! ,(

α

β

)
:=

m∏
i=1

(
αi

βi

)
,

Nn := #(Ln) =
(

n + m

m

)
− 1.

For n ∈ IN,
Ln := Ln ∪ {(0, 0, ..., 0)}

and Rn = IR#(Ln), i.e, Rn is the set of the multi-sequences of order n with
an additional component indexed by (0, 0, ..., 0). In this section, for sake of
simplify of notation Xk

n stands for XS,k
n .

Proposition 3.3 of [Gup00] gives a useful expression for the distribution
of Xk

n. This result is the core of all the proofs. Let (Eα : α ∈ Ln) be a
multi-sequence of i.i.d. standard exponential random variables on a certain
probability space.

Lemma 6.1. The law of Xk
n is same as law of

Yn,β :=

∑
δ∈Ln−|β|

(
β + δ

δ

)
Eβ+δ

(
n

β

) ∑
δ∈Ln

Eα

(β ∈ Lk).
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6.2. Proof of Theorem 3.4. Let
(
Ŷn : n ∈ IN

)
be the random finite multi-

sequence of Rk defined by

Ŷn,β :=
1

N(n)

∑
α∈Ln

(
1
n

α

)β

Eα (β ∈ Lk).

The proof of theorem is based on the LDP for the sum of weighted random
variables. In this case, it is not possible to derive it directly from the LDP
for weighted empirical means obtained in [GG97], but we may use the result
of [Naj02].

From Theorem 2.2 of [Naj02] we have the LDP for the sequence (Xn)
with good rate function

Ik
1 (x) = sup

Λ∈Rk

{
〈Λ, x〉 +

∫
S

ln(1 − PΛ) dνS
}

, (x ∈ Rk),

where, for Λ ∈ Rk, PΛ is the polynomial on S
PΛ(x) =

∑
β∈Lk

Λβxβ.

Define the random finite multi-sequence (Ỹn)

Ỹn,β :=

∑
α∈Ln:α≥β

(
α

β

)
Eα(

n

β

)
Nn

(β ∈ Lk). (6.1)

Consider on Rk the following metric

d(x,y) :=
∑

β∈Lk

|xβ − yβ|, (x,y ∈ Rk)

compatible with the topology on it.

Lemma 6.2. The sequences (Ŷn) and (Ỹn) are exponentially equivalent on
(Rk, d).

Proof. Let ε > 0. Set

Lε,n = {α ∈ Ln : ∀ i αi ≥ �εn�},
where �w� denotes the biggest integer lower than w. For n big enough such
that k < εn and for α ∈ Lε,n(α

β

)(n
β

) ≥ m∏
i=1

(
αi − βi

n

)βi

≥
(

1
n

α

)β(
1 − k

εn

)k

and (α
β

)(n
β

) ≤
m∏

i=1

(
αi

n − |β|

)βi

≤
(

1
n

α

)β(
1 +

k

n − k

)k

. (6.2)

These two inequalities leads to(
1 − k

εn

)k

− 1 ≤
(α

β

)(n
β

) − ( 1
n

α

)β

≤
(

1 +
k

n − k

)k

− 1. (6.3)
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If we set

Q0(ε, n) := max

(
1 −
(

1 − k

εn

)k

,

(
1 +

k

n − k

)k

− 1

)
(6.4)

then ∣∣∣∣∣
(
α
β

)(
n
β

) − ( 1
n

α

)β
∣∣∣∣∣ ≤ Q0(ε, n) → 0 when n → ∞.

On the other hand, we have

#(Lε,n) = #
{
(�εn�, �εn�, ..., �εn�) + δ : δ ∈ Ln−[εn]

}
= N(n − �εn�).

By straightforward calculations(
1 − ε

1 + m/n

)m

≤ #(Lε,n)
N(n)

≤
(
1 − ε +

m

n

)m
. (6.5)

For n big enough, by (6.2), (6.3) and (6.4) we have the bound

d
(
Ŷn, Ỹn

)
≤ 1

N(n)

⎛⎝2
∑

α∈Ln\Lε,n

Eα + Q0(ε, n)
∑

α∈Lε,n

Eα

⎞⎠
Using (6.5) and the fact that #(Ln \ Lε,n) = N(n) − #(Lε,n),

d
(
Ŷn, Ỹn

)
≤ 2
(

1 −
(

1 − ε

1 + m/n

)m) 1
#(Ln \ Lε,n)

∑
α∈Ln\Lε,n

Eα

+ Q0(ε, n) (1 − ε + m/n)m 1
#(Lε,n)

∑
α∈Lε,n

Eα.

For all Q1 > 0, there exists ε > 0 such that for all n big enough

2
(

1 −
(

1 − ε

1 + m/n

)m)
<

t

2Q1

and
Q0(ε, n)

(
1 − ε +

m

n

)m
<

t

2Q1
.

Therefore

IP
(

d
(
Ŷn, Ỹn

)
> t
)
≤ IP

⎛⎝ 1
#(Ln \ Lε,n)

∑
α∈Ln\Lε,n

Eα > Q1

⎞⎠
+ IP

⎛⎝ 1
#(Lε,n)

∑
α∈Lε,n

Eα > Q1

⎞⎠ .

(6.6)

By the LDP for empirical mean of independent standard exponentially
distributed random variables (particular application of Cramér’s Theorem
[DZ98, Theorem 2.2.3]), follows

lim
n

1
n

ln IP

(
1
n

n∑
i=1

Zi ≥ Q1

)
≤ −Q1 + 1 + ln Q1.
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Hence, by Lemma 1.2.15 of [DZ98], (6.5) and (6.6)

lim sup
1

N(n)
ln IP

(
d
(
Ŷn, Ỹn

)
> t
)

≤ max
(
ε(1 + ln Q1 − Q1), (1 − ε)(1 + ln Q1 − Q1)

)
≤ 1 + lnQ1 − Q1

The exponentially equivalence is then consequence of the arbitrariness of t
and Q1. �

By the previous lemma
(
Ỹn

)
verifies the same LDP as

(
Ŷn

)
. The con-

traction principle with the continuous application from Rk to Rk defined by
(xβ : β ∈ Lk) �→

(
xβ/x(0,0,...,0) : β ∈ Lk

)
yields the LDP for

Yn,β =
Ỹn,β

Ỹn,(0,0,...,0)

, (β ∈ Lk).

Therefore, in view of Lemma 6.1,
(
Xk

n

)
verifies a LDP with good rate func-

tion

Ik
2 (x) := inf

y∈Rk

{
Ik
1 (y) :

yβ

y(0,0,...,0)
= xβ, β ∈ Lk

}
.

It remains to proof that Ik
S ≡ Ik

2 .

Lemma 6.3. Ik
S ≡ Ik

2 .

Proof. The core of the proof is a particular application of a duality theorem
concerning optimization on measure spaces. Let M(S) (resp. M+(S))
be the space of all Borel finite (resp. finite positive) measures on S. By
Theorem 7.1.3 of [Dud89] the set M(S) coincide with the set of all regular
Borel finite measures on S. For µ ∈ M(S), let µ = µa +µσ be the Lebesgue
decomposition of µ respect to νS . Let

Υ1(µ) := −
∫
S

ln
(

dµa

dν

)
dνS + ∞ · µ−

σ (S), µ ∈ Mr(S),

Υ2(Λ) :=
∫
S

ln (1 − PΛ) dνS − 1, Λ ∈ Rk.

From Theorem 3.4 of [BL93], for x ∈ Rk,

inf
µ∈M(S,x)

{Υ1(µ) + µ(S)} = sup
Λ∈Rk

{〈x,Λ〉 + Υ2(Λ)} , (6.7)

where, for x ∈ Rk,

M(S, x) :=
{

µ ∈ M(S) :
∫
S

yβ dµ(y) = xβ, β ∈ Lk

}
.

If µ /∈ M+(S), then either µ−
σ (S) > 0 or νS

({
dµa

dνS > 0
})

> 0. Hence,
Υ1(µ) = +∞ for all µ /∈ M+(S). For µ ∈ M+(S), straightforward calcula-
tions yield

−
∫
S

ln
(

dµa

dνS (s)
)

dνS = K(νS , µ) (6.8)

where K is the corresponding Kullback information for positive measures.
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Then, by (6.7) and (6.2)

Ik
1 (x) = inf

µ∈M+(S,x)
K(νS , µ) + x(0,0,...,0) − 1, (6.9)

where M+(S, x) = M(S, x) ∩M+(S). Let z ∈ Rk define ẑ ∈ Rk as

ẑ(0,0,...,0) = 1,

ẑβ = zβ, (β ∈ Lk).

Then, by (6.9)

Ik
2 (z) = inf

r∈IR+

{
Ik
1 (rẑ)

}
= inf

r∈IR+

{
inf

µ∈P(S,{z})
K(νS , µ) − ln r + r − 1

}
.

The fact that the minimum value of the real function r → r− ln r is 1 yields

Ik
2 (z) = inf

µ∈P(S,{z})
K(νS , µ).

�

6.3. Proof of Theorem 3.5. Throughout this section (Mn : n ∈ IN) is a
sequence of positive real numbers increasing to +∞ such that Mn = o(Nn).
For make a shorter notation we write M (resp. N) instead of Mn (resp.
Nn).

Define the sequence of random multi-sequences
(
Ẑn : n ∈ IN

)
as

Ẑn,(0,...,0) = Ỹn,(0,...,0),

Ẑn,β =

√
N(n)
M(n)

(
Ỹn,β − cSβ

)
, (β ∈ Lk)

where Ỹn is as (6.1). The proof is based on the Gärtner-Ellis theorem [DZ98,
Theorem 2.3.6] which involves the limit of the logarithmic moment generat-
ing function. Hence, for all Λ̃ ∈ Rk, we have to calculate

Θ̃(Λ̃) := lim
n

1
M

ln IE
[
exp(M〈Λ̃, Ẑn〉)

]
.

Given Λ̃ ∈ Rk, we denote by Λ the multi-sequence Λ =
(
Λ̃β : β ∈ Lk

)
.

For n big enough,

IE
[
exp(M〈Λ̃, Ẑn〉)

]
= exp

⎛⎝−
√

MN
∑

β∈Lk

ΛβcSβ

⎞⎠
×
∫

IRN
+

exp
( ∑

α∈Ln

xα

[√
M

N
(B(Λ, n,α)) +

M

N
Λ̃(0,0,...,0) − 1

])∏
α∈Ln

dxα

= exp

⎛⎝−
√

MN
∑

β∈Lk

ΛβcSβ

⎞⎠ ∏
α∈Ln

(
1 −
√

M

N
(B(Λ, n,α)) − M

N
Λ̃(0,0,...,0)

)−1

,
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where

B(Λ, n,α) =
∑

β∈Lk

Λβ

(
α
β

)(
n
β

)1I{β≤α}.

Using the Taylor expansion ln(1 + r) = r + 1/2r2 + o(r2) valid in a neigh-
borhood of 0

1
M

ln IE
[
exp(M〈Λ̃, Ẑn〉)

]
= −
√

N

M

∑
β∈Lk

ΛβcSβ − 1
M

∑
α∈Ln

ln

(
1 −
√

M

N
(B(Λ, n,α)) − M

N
Λ̃(0,0,...,0)

)

= −
√

N

M

∑
β∈Lk

Λ̃βcSβ + Λ̃(0,0,...,0) +
1√
NM

∑
α∈Ln

(B(Λ, n,α))

+
1

2N

∑
α∈Ln

(B(Λ, n,α))2 + o

((M

N

) 3
2

)
.

In [Gup00, p. 427], using combinatorial calculations, it is proved that∑
α∈Ln

(
α
β

)
N
(
n
β

)1I{β≤α} = cSβ.

Consequently,
1√
NM

∑
α∈Ln

(B(Λ, n,α)) =
√

MN
∑

β∈Lk

ΛβcSβ

and
1
M

ln IE
[
exp(M〈Λ̃, Ẑn〉)

]
= Λ̃(0,0,...,0) +

1
2N

∑
α∈Ln

(B(Λ, n,α))2

Let Fn : S → IR defined as

Fn(x) = B(Λ, n,α) if
αi − 1

n
≤ xi <

αi

n

and, for x with x1 + x2 + ... + xk = 1, Fn(x) is defined by continuity. Using
inequality (6.3) we obtain the uniform convergence, when n → +∞, of (Fn)
to the polynomial PΛ. Therefore,

Θ̃(Λ̃) = Λ̃(0,0,...,0) +
1
2

∫
S

(
PΛ(x)

)2
dx.

We may write

Θ̃(Λ̃) = Λ̃(0,0,...,0) +
1
2
ΛT DΛ

where D is the matrix defined as

D(α,β) := cSα+β (α,β ∈ Lk).

From Gärtner-Ellis theorem we have the LDP for (Ẑn) with good rate
function

H̃(x̃) = sup
Λ̃∈Rk

{
〈Λ̃, x̃〉 − Θ̃(Λ̃)

}
, (x̃ ∈ Rk).
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By straightforward calculations

H̃(x̃) =

{
+∞ if x̃(0,0,...,0) �= 1,
1
2xT D−1x if x̃(0,0,...,0) = 1,

(x̃ ∈ Rk)

where x = (x̃β, β ∈ Lk) ∈ Rk. Now, by the contraction principle it follows
a LDP for

(
Z̃n

)
with good rate function defined as, for y ∈ Rk,

HS(y) = inf
{

H̃(x̃) : yβ =
x̃β

x̃(0,0,...,0)
, β ∈ Lk

}
=

1
2
yT D−1y

and speed
(
M−1

)
.

6.4. Proof of Theorem 3.6.

Lemma 6.4. (µn) verifies a LDP on R∞ endowed with the topology in-
duced by pointwise convergence with the good rate function IG and the speed((

n+m
n

)−1
)
.

Proof. For k < n define µ
(k)
n := µn ◦ (ΠS

∞,k)
−1 ∈ P(Rk). The fact that

ΠS
∞,k = ΠS

n,k ◦ ΠS∞,n implies that µ
(k)
n = Un ◦ (ΠS

n,k)
−1, the law of Xk

n. Con-

sequently
(
µ

(k)
n

)
verifies the LDP with good rate function Ik

S . By Dawson-
Gärtner theorem we have the LDP for

(
µn

)
on the projective limit of Rk,

that is R∞ (equip with the pointwise convergence topology) with good rate
function

c �→ sup
k∈IN

Ik
S(ΠS

∞,kc), (c ∈ R∞). (6.10)

By definition of IG , for all k ∈ IN∗,

Ik
S(x) = inf

{
IG(c) : ΠS

∞,kc = x
}

, (∀x ∈ MS
k ).

Therefore, in view of Lemma 4.6.5 of [DZ98] we have that the function in
(6.10) is exactly IG . �

In view of Corollary 4.2.6 of [DZ98] it is sufficient to prove that C∞ is
compact in the topology induced by the norm.

Lemma 6.5. The set C∞ is compact.

Proof. The proof follows elemental arguments. Since C∞ is a closed set it
is sufficient to proof that it is totally bounded, i.e. for all ξ > 0 there is a
finite set {yi : i ∈ I} ⊂ C∞ such that

∀c ∈ C∞∃i ∈ I : ‖c − yi‖ ≤ ξ.

Let ξ > 0 and Nξ such that ∑
n>Nξ

1
n2

<
ξ

2
. (6.11)

For n ∈ IN, let

Cn :=
{(

cβ : 0 ≤ cβ ≤ 1, β ∈ Ln

)}
⊂ Rn.
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The set CNξ
is a compact set in RNξ

equipped with the norm

‖a‖Nξ
:=
∑

β∈LNξ

1(|β|+m
m

)
|β|2

|cβ| for a ∈ RNξ
.

Consequently, CNξ
is totally bounded. Thus, there is a finite subset {xi : i ∈

I} of CNξ
such that for all a ∈ CNξ

, there is xi with

‖a − xi‖Nξ
≤ ξ

2
. (6.12)

For all i ∈ I, define yi ∈ C∞ by

yi,β :=

{
xi,β if β ∈ LNξ

,

0 otherwise.

Let c ∈ C∞. There exists i ∈ I such that (6.12) holds with a = ΠS
∞,Nξ

c.
Hence,

‖c − yi‖ =
∑

β∈LNξ

|cβ − yi,β|(|β|+m
m

)
|β|2

+
∑

|β|>Nξ

|cβ − yi,β|(|β|+m
m

)
|β|2

≤
∥∥∥ΠS

∞,Nξ
c − xi

∥∥∥
Nξ

+
∑

|β|>Nξ

1(|β|+m
m

)
|β|2

.

(6.13)

Since #({β : |β| = n}) ≤ #(Ln) =
(n+m

m

)
, (6.11) yields the bound∑

|β|>Nξ

1(|β|+m
m

)
|β|2

=
∑

n>Nξ

∑
|β|=n

1(n+m
m

)
n2

<
ξ

2
.

This bound, (6.13) and (6.12) imply

‖c − yi‖ ≤ ξ.

�

7. Proofs of results of Section 4

Throughout this section Xk
n stands for XTT,k

n .

7.1. Trigonometric and canonical moments. We consecrate this sub-
section to the canonical moments. These, like in [CKS93] and [GLC], are the
principal tool to proof the results. This time, in the trigonometric moment
context. The notation and preliminary results follows Chapter 9 of [DS97].
Throughout this subsection consider µ ∈ P(TT) fixed. Further, for n ∈ IN∗,
tn := tn(µ) = (t1, t2, ..., tn) and ∆n := ∆n(tn).

For w ∈ C
⏐

, let

Rn(w) :=

∣∣∣∣∣∣∣∣∣
t1 t2 . . . tn w
t0 t1 . . . tn−1 tn
...

...
...

...
t−n+1 t−n+2 . . . t0 t1

∣∣∣∣∣∣∣∣∣
For tn ∈ MTT

n , the range of the (n + 1)-th moment is the circle

{|z − sn+1| ≤ rn+1}
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where sn+1 = (−1)n+1Rn(0)/∆n−1 and rn+1 = ∆n/∆n+1.
Let tn ∈ int MTT

n the first n canonical moments of the measure µ are
defined by

pk =
tk − sk

rk
∈ ID, k = 1, 2, ..., n, (7.1)

where ID = {z ∈ C
⏐

: |z| ≤ 1}. They can be alternatively expressed as

pk =
(−1)k−1

∆k−1
Rk−1(tk), k = 1, 2, ..., n.

We will denote by pn the map from int MTT
n to IDn representing (7.1).

Consequently
∂pi

∂tj
=

{
0, if i < j,

(−1)j−1 ∆j−2

∆j−1
, if i = j;

and ∣∣∣∣∂pi

∂tj

∣∣∣∣
i,j=1...n

=
n−1∏
k=1

(−1)j
∆j−1

∆j
=

(−1)
n(n−1)

2

∆n−1
. (7.2)

We have then the following lemma:

Lemma 7.1 ( Lemma 10.7.1 of [DS97]). The first-order Taylor expansion
of the inverse of (7.1) around (0, 0, ..., 0) is given by

tn(p1, p2, ..., pn) = pn + O

(
n∑

i=1

|pi|2
)

.

Lemma 7.2 ([DS97, Lemma 9.3.4, Corollary 9.3.5]).

∆n−1

∆n
=

n∏
j=1

(1 − |pj |2), (7.3)

∆n =
n∏

j=1

(1 − |pj|2)n−j+1. (7.4)

7.2. Proof of Theorem 4.1. Let ηn denote the probability measure on ID
defined by

dηn(z) =
n + 1

π

(
1 − |z|2

)n dρ1(z).

Recall that ρn denotes the Lebesgue measure on C
⏐ n.

Lemma 7.3. Endowing MTT
n with the uniform probability measure is equiv-

alent to the n first canonical coordinates pj, j = 1, 2, ..., n being independent
random variables in such a way that pj has distribution law ηn−j.

Proof. Let f an arbitrary function on MTT
n , then

IE nf = Cn

∫
MTT

n

f(tn) dρn(tn)

with Cn := 1/ρn(MTT
n ). Writing the integral in the variables pi (using (7.2)

and (7.4)) we have that

IE nf = Cn

∫
IDn

f(p1, ..., pn)
n−1∏
j=1

(1 − |pj|2)n−j dρ1(p1)...dρ1(pn).
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The proof is completed calculating
∫
ID(1 − |z|2)n dρ1(z) = π/(n + 1). �

The relation (4.1) follows from

V olumeIR2n(MTT
n ) = ρn(MTT

n ) =
[ n−1∏

j=1

∫
ID

(1 − |z|2)j dρ1(z)
]−1

.

Lemma 7.4. Let Yn be a random variable following law ηn. The sequence
(
√

nYn) converges in distribution to a normal complex distribution with real
and imaginary parts independent with expectation 0 and variance 2.

Proof. By previous lemma, for any 1 ≤ j ≤ k the distribution of Yn,j has
density

dj
n(z) :=

n − j + 1
nπ

(
1 − |z|2

n

)n

1I{z≤√
n}.

In view of the dominated convergence Lebesgue’s Theorem, the bound dj
n(z) ≤

2 exp(−|z|2)/π and the pointwise limit dj
n(z) −→

n
e−|z|2/π (for all z ∈ C

⏐
and

j = 1, 2, ..., k) imply, for A borelian set of C
⏐ k,

lim
n

IP(
√

nYn ∈ A) =
1
πk

∫
A

e−‖z‖ dρk(z).

�
By Lemma 7.3 and 7.4 we have the asymptotic complex normal distri-

bution of
(
pk(Xk

n) : n ∈ IN
)
. The asymptotic normality of (Xk

n : n ∈ IN)
follows from Lemma 7.1 and the δ-method [VdV98, Theorem 3.1].

7.3. Proof of Theorem 4.2.

Lemma 7.5. The distribution family (ηn) satisfies the LDP with good rate
function

J1(z) = − ln(1 − |z|2) (z ∈ C
⏐
).

Proof. Define, for z0 ∈ ID \ {0}, r0 > 0 and 0 < θ0 ≤ π,

V (z0, r0, θ0) = {z ∈ ID :
∣∣|z| − |z0|

∣∣ < r0, |Arg(z) − Arg(z0)| < θ0}.
Let z0 ∈ ID \ {0}, then for 0 < r0 < |z0| and 0 < θ0 ≤ π, we have

ηn(V (z0, r0, θ0)) :=
∫

V (z0,r0,θ0)

n + 1
π

(
1 − |z|2

)n dν(z)

≤ 2θ0(n + 1)
π

(
1 − (|z0| − r)2

)n
.

This leads to the bound

inf
U∈V(z0)

{
lim sup

n

1
n

ln ηn(U)
}

≤ 1 − |z0|2. (7.5)

This last inequality is obviously also true for z0 = 0. Now, for z0 ∈ ID \ {0}
and U ∈ V(z0) with U ⊂ ID, there exists r0 > 0 and 0 < θ0 ≤ π such that
V (z0, r0, θ0) ⊂ U . Then

ηn(U) ≥ ηn(V (z0, r0, θ0))

≥ θ0(n + 1)
π

(
1 − (|z0| + r)2

)n
.
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Consequently

inf
U∈V(z0)

{
lim inf

n

1
n

ln ηn(U)
}

≥ 1 − |z0|2 (7.6)

for z0 �= 0. For U ∈ V(0) there exists r0 > 0 such that {|z| < r0} ⊂ U then,
for r < r0,

ηn(U) ≥ ηn({|z| < r}) ≥ (n + 1)r2(1 − r2)n.

So the inequality (7.6) is also true for z0 = 0. In view of Theorem 4.1.11 of
[DZ98], (7.5) and (7.6) we have the weak LDP. The full LDP follows from
the fact that the distributions ηn are supported in the compact set ID. �

Exercise 4.2.7 of [DZ98], Lemma 7.3 and Lemma 7.5 imply that the se-
quence of random variables

(
pk(Xk

n) : n ∈ IN
)

satisfies the LDP on IDk with
the good rate function

Jk
2 (z) =

{
−
∑k

i=1 ln(1 − |zi|2) if z ∈ int IDk,

+∞ otherwise;

where z = (z1, z2, ..., zk) ∈ C
⏐ k.

Now, in view of the contraction principle (write Xk
n as p−1

k (pk(Xk
n)) and

use that p−1
k (·) is a continuous bijection), we have the LDP for (Xk

n) with
the good rate function

Ik
TT(t) =

{
− ln
∏k

i=1(1 − |zi|2) if t ∈ int MTT
k ,

+∞ otherwise,

for t = p−1
k (z). The expression (4.2) for Ik

TT follows from the relation (7.3).

7.4. Proof of Theorem 4.3.

Lemma 7.6. Let Yn be a random variable having distribution ηn−k (k ≤ n).
Let

Ỹn :=
√

nun Yn.

Then (Ỹn) satisfies a LDP on C
⏐

with good rate function

J1(z) = |z|2

and speed (un).

Proof. Let z0 ∈ C
⏐ \ {0}, 0 < r0 < |z0| and 0 < θ0 ≤ π then we have

IP(Ỹn ∈ V (z0, r0, θ0)) =IP
(

Yn ∈ V

(
z0√
nun

,
r0√
nun

, θ0

))
=

θ0(n − k + 1)
π

∫ (nun)−1(|z0|+r0)2

(nun)−1(|z0|−r0)2
(1 − ρ)n−k dρ.

Consequently

IP(Ỹn ∈ V (z0, r0, θ0)) ≤
θ0(n − k + 1)

πnun
r0|z0|

(
1 − (|z0| − r0)2

nun

)n−k

.

Then

lim sup
n

un ln IP(Ỹn ∈ V (z0, r0, θ0)) ≤ −(|z0| − r0)2.



ASYMPTOTICS OF MOMENT SEQUENCES 25

This leads to

inf
U∈V(z0)

{
lim sup

n
un ln IP(Ỹn ∈ U)

}
≤ −|z0|2, z0 ∈ C

⏐
. (7.7)

In the other hand, using similar arguments, we obtain

inf
U∈V(z0)

{
lim inf

n
un ln IP(Ỹn ∈ U)

}
≥ −|z0|2, z0 ∈ C

⏐
. (7.8)

In view of Theorem 4.1.11 of [DZ98], (7.7) and (7.8) we have the weak LDP.
In order to have the full LDP it suffices to show that the distributions of
Ỹn, (n ∈ IN) are exponentially tight. Let 0 < r <

√
nun, then

IP(|Ỹn| ≤ r) =1 −
(

1 − r2

nun

)n−k+1

and consequently

lim sup
n

un ln IP(Ỹn > r) ≤− r2.

The arbitrariness of r implies the exponential tightness. �

For all n > k, let

Ẑk
n :=

√
nunpk

(
Xk

n

)
,

Zk
n :=

√
nun Xk

n.

By Exercise 4.2.7 of [DZ98] and Lemma 7.6 we have a LDP for the se-
quence of random vectors

(
Ẑk

n : n ∈ IN
)

with rate function

Hk
TT(p) =

k∑
i=1

J1(pi) =
k∑

i=1

p2
i , (p = (p1, p2, ..., pk) ∈ C

⏐ k).

A LDP for
(
Zk

n : n ∈ IN∗) follows from the following Lemma.

Lemma 7.7. The random vector sequence
(
Ẑk

n

)
and
(
Zk

n

)
are exponentially

equivalent.

Proof. By Lemma 7.1 there are constants ε,Q > 0 such that ‖Xk
n−pk

(
Xk

n

)
‖ ≤

Q‖pk

(
Xk

n

)
‖2 whenever ‖pk

(
Xk

n

)
‖ ≤ ε. Therefore, for any ξ > 0,

IP
(
‖Ẑk

n − Zk
n‖ > ξ

)
=IP
(
‖Ẑk

n − Zk
n‖ > ξ, ‖pk

(
Xk

n

)
‖ ≤ ε

)
+ IP
(
‖Ẑk

n − Zk
n‖ > ξ, ‖pk

(
Xk

n

)
‖ > ε

)
≤IP
(
‖Ẑk

n‖2 >
√

nunξQ−1
)

+ IP
(
‖Ẑk

n‖ >
√

nunε
)
.

Let Q0 > 0. For n big enough we have
√

nun > Q0 and consequently

IP
(
‖Ẑk

n‖ >
√

nunξQ−1
)
≤ IP
(
‖Ẑk

n‖2 >
(ξQ0

Q

)1/2)
IP
(
‖Ẑk

n‖ >
√

nunε
)
≤ IP
(
‖Ẑk

n‖ > Q0ε
)
.
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Let q(Q0) := min{Q0ε,
√

ξQ0Q−1}. By the LDP for
(
Ẑk

n

)
with function Jk

2
we have

lim sup
n

un ln IP
(
‖Ẑk

n − Zk
n‖ > ξ

)
≤ lim sup

n
un ln(‖Ẑk

n‖ > q(Q0))

≤ −q(Q0).

From the fact that Q0 → ∞ yields q(Q0) → ∞ follows the exponential
tightness. �

7.5. Proof of Theorem 4.4. Let MTT∞ denote the space of infinite moment
sequences defined as

MTT
∞ =

{
t = (t1, t2, ...) : (t1, t2, ..., tn) ∈ MTT

n , for all n ∈ IN∗}.
It is well-know the bijection that exists between this space and P(TT). More
exactly, given t = (t1, t2, ...) ∈ MTT∞ there exists a unique measure µt in
P(TT) such that tj(µt) = tj for all j [ST63]. Moreover, it can be easily
proved that the map t �→ µt is continuous.

Equip MTT∞ with the product algebra. For n ∈ IN∗, let Q̃
⏐

n ∈ P(MTT∞)
be the measure image of Q⏐ n by the bijection t �→ µt . Let ΠTT

∞,k denote

the projection map from MTT∞ to MTT
k . We have that Q̃⏐ n ◦

(
ΠTT

∞,k

)−1
is

exactly the law of Xk
n. Then

(
Q̃
⏐

n ◦
(
ΠTT

∞,k

)−1
: n ∈ IN∗

)
satisfies the LDP

(Theorem 4.2) with good rate function Ik
TT. By Dawson-Gärtner’s Theorem

we have a LDP for
(
Q̃
⏐

n

)
on MTT∞ with good rate function

I∞TT (t) = sup
k∈IN

Ik
TT(ΠTT

∞,k t∞)

=

⎧⎪⎨⎪⎩sup
k∈IN

− ln

(
∆k(ΠTT

∞,k t)

∆k−1(ΠTT
∞,k−1 t)

)
if t ∈ int MTT∞,

+∞ otherwise.

From (7.3) we have that

sup
k

− ln
∆k(ΠTT

∞,k t)

∆k−1(ΠTT
∞,k−1 t)

= lim
k

− ln
∆k(ΠTT

∞,k t)

∆k−1(ΠTT
∞,k−1 t)

.

Now, by the Grenander-Szegö’s Theorem [GS58, §5.2] we have

lim
k

− ln
∆k(ΠTT

∞,k t)

∆k−1(ΠTT
∞,k−1 t)

=
∫

TT
ln

dνTT

dµt
dνTT.

In view of the contraction principle with the continuous map t �→ µt we
have a LDP for

(
Q
⏐

n

)
.

The proof of the Corollary 4.5 follows from the LDP for (Q
⏐

n) using the
last expression for the rate function and the contraction principle on other
sense.
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