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Abstract
In 1971, Yamada and Watanabe showed that pathwise uniqueness holds for the SDE dX =
σ(X)dB when σ takes values in the n×mmatrices and satisfies |σ(x)−σ(y)| ≤ |x−y| log(1/|x−
y|)1/2. When n = m = 2 and σ is of the form σij(x) = δijs(x), they showed that this condition
can be relaxed to |σ(x) − σ(y)| ≤ |x − y| log(1/|x − y|), leaving open the question whether
this is true for general 2 ×m matrices. We construct a 2 × 1 matrix-valued function which
negatively answers this question. The construction demonstrates an unexpected effect, namely,
that fluctuations in the radial direction may stabilize a particle in the origin.

1 Introduction

In 1971, Yamada and Watanabe [5] showed that pathwise uniqueness holds for the SDE dXt =
σ(Xt)dBt where B ism-dimensional Brownian motion and σ is an n×mmatrix-valued function
satisfying

|σ(x) − σ(y)| ≤ ρ(|x − y|) (|x− y| < ε), (1)

where ρ is a continuous nondecreasing function on some nonzero interval [0, ε) such that
ρ(0) = 0 and

(i)
∫
0+ ρ

−2(r)r dr = ∞
(ii) r 7→ ρ2(r)r−1 is concave.

(2)

For example, we may take ρ(r) = r log(1/r)1/2. (In (1), | · | denotes any norm on the space of
real n×m matrices; all such norms are equivalent.)
Moreover, they show by example that in dimensions n ≥ 3, the conditions (2) are in some sense
as far as one can go. To be precise, if

∫
0+
ρ−2(r)r dr < ∞ and ρ is subadditive, then there

exists an isotropic n × n coefficient σ (i.e., σ of the form σij(x) = δijs(x) with s some real-
valued function), such that σ(0) = 0, (1) holds, and such that the equation dXt = σ(Xt)dBt
with initial condition X0 = 0 has, apart from the zero solution, other non-zero solutions.
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For isotropic 2 × 2 coefficients, they show that the conditions (2) can be relaxed to
∫
0+ ρ

−2(r)r log(1/r)dr = ∞
q 7→ q3e2/qρ2(e−1/q) is concave on some interval [0, ε′).

(3)

For example, the function ρ(r) = r log(1/r) satisfies (3) but not (2). For such isotropic 2 × 2
coefficients, they show that the conditions (3) are in some sense optimal.
Thus, they leave unanswered the question whether the conditions (2) can be improved for
general 2 × m matrices. (The 1-dimensional case was treated in [4].) We will see that this
is not the case, and that for general 2×mmatrices, the conditions (2) are in some sense optimal.

2 A SDE whose solutions are not unique

Let | · | denote the Euclidean norm on R2 and let Bε := {x = (x1, x2) ∈ R
2 : |x| < ε} (ε > 0).

Proposition Let ε > 0 and let σ : Bε → R
2 be given by σ(0) = 0 and

σ(x) := ρ(|x|)|x|−1(x2,−x1) (x 6= 0), (4)

where ρ is a continuous function on [0, ε) such that ρ(0) = 0, ρ > 0 on (0, ε), and
∫

0+

ρ−2(r)r dr <∞. (5)

Then, on some probability space equipped with a one-dimensional Brownian motion B and for
some T > 0, there exists a nonzero solution (Xt)t∈[0,T ) of the SDE

dXt = σ(Xt)dBt with initial condition X(0) = 0. (6)

Remark In the example above |σ(x)| = ρ(|x|). If ρ is additionally nondecreasing and concave,
then

|σ(x) − σ(y)| ≤ 4ρ(1
2 |x− y|) (|x− y| ≤ 2ε). (7)

To see this, without loss of generality assume that |x| ≤ |y| and |y| > 0. Define z := |x|
|y|y and

estimate
|σ(x) − σ(y)| ≤ |σ(x) − σ(z)| + |σ(z) − σ(y)|. (8)

Set h := 1
2 |x− z| and t := 1

2 |x+ z|, and note that |x| =
√
t2 + h2. Then the first term in (8)

can be estimated as

|σ(x) − σ(z)| = ρ(|x|)|x|−1|x− z| =
ρ(
√
t2 + h2)√
t2 + h2

2h ≤ 2ρ(1
2 |x− z|), (9)

where we used that, since ρ is concave and ρ(0) = 0, the function r 7→ ρ(r)r−1 is nonincreasing.
The second term in (8) can be estimated as

|σ(z) − σ(y)| = ρ(|y|) − ρ(|x|) ≤ ρ(|x− y|) ≤ 2ρ(1
2 |x− y|). (10)

Combining (9) and (10) and using that ρ is nondecreasing, we arrive at (7).
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Proof of the Proposition Let (B′
t)t∈R a stationary Brownian motion on the unit circle [0, 2π)

(in particular, B′
t is uniformly distributed on [0, 2π) for every t ∈ R). Then the Bε-valued

process
X ′
t := (sin(B′

t)e
t/2, cos(B′

t)e
t/2) (t < 2 log ε) (11)

solves the SDE
dX ′

t = σ′(X ′
t)dB

′
t with σ′(x) := (x2,−x1). (12)

We will use a time transformation to transformX ′ into a nonzero solution of (6). Let a′ denote

the 2 × 2 matrix a′(x) :=
(

x2
2 −x1x2

−x1x2 x2
1

)
and let A′, A be the differential operators

A′f(x) :=
2∑

i,j=1

a′ij(x)
∂2

∂xi∂xj
f(x) and Af(x) := ρ2(|x|)|x|−2A′f(x). (13)

Then X ′ solves the martingale problem for A′, i.e., for every u ∈ (−∞, 2 log ε) and f ∈ C2(R2 )
the process (M ′u,f

t )t∈[u,2 log ε) given by

M ′u,f
t := f(X ′

t) −
∫ t

u

A′f(X ′
s)ds (t ∈ [u, 2 log ε)) (14)

is a martingale with respect to the filtration generated by X ′. To complete the proof, it suffices
to show that there exists a nonzero process (Xt)t∈[0,T ) with continuous sample paths, starting
in X0 = 0, such that for each f ∈ C2(R2 ), the process (M0,f

t )t∈[0,T ) is a martingale with
respect to the filtration generated by X , where we define, for u ∈ [0, T ),

Mu,f
t := f(Xt) −

∫ t

u

Af(Xs)ds (t ∈ [u, T )). (15)

Standard results (see [2], Chapter 5), then show that there exists a weak solution of (6) that
is equal in distribution to X .
Define a strictly increasing function ψ : (−∞, 2 log ε) → (0,∞) by

ψ(s) :=
∫ es/2

0

2ρ−2(r)r dr, (16)

put T := lims→2 log ε ψ(s), and let ψ−1 : (0, T ) → (−∞, 2 log ε) denote the inverse of ψ. Set
X0 := 0 and

Xt := X ′
ψ−1(t) (t ∈ (0, T )). (17)

The substitution of variables

s = ψ(s′) ds = 2ρ−2(es
′/2)es

′/2 · 1
2e
s′/2ds′ (18)

shows that for every u ∈ (0, T ), t ∈ [u, T ) and f ∈ C2(R2 )

Mu,f
t = f(Xt) −

∫ ψ−1(t)

ψ−1(u)

Af(Xψ(s′))ρ−2(es
′/2)es

′
ds′

= f(X ′
ψ−1(t)) −

∫ ψ−1(t)

ψ−1(u)

Af(X ′
s′)ρ

−2(|X ′
s′ |)|X ′

s′ |2ds′

= f(X ′
ψ−1(t)) −

∫ ψ−1(t)

ψ−1(u)

A′f(X ′
s′)ds

′ = M
′ψ−1(u),f
ψ−1(t) ,

(19)
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where we have used that |X ′
s′ | = es

′/2. The filtration generated by X ′ is just a time trans-
form of the filtration generated by X , and thus we see that for every u ∈ (0, T ), the process
(Mu,f

t )t∈[u,T ) is a martingale with respect to the filtration generated by X . A simple approx-
imation argument shows that (M0,f

t )t∈[0,T ) is also a martingale. �

Remark Also for SDE’s with a drift term, both in dimensions n = 1 and n ≥ 2, Yamada
and Watanabe [4, 5] give conditions on the smoothness of the coefficients that are sufficient to
guarantee pathwise uniqueness. Their examples and the one above show that their conditions
are, in some sense, the best possible in every dimension n ≥ 1. Of course, this does not exclude
the possibility that distribution uniqueness or even pathwise uniqueness may hold for some
SDE’s with less smooth coefficients; see for example [1, 3].

3 Stabilization by radial fluctuations

Define σ1, σ2 : Be−1 → R
2 by

σ1(x) := log(1/|x|)(x2,−x1) and σ2(x) := log(1/|x|)(x1, x2). (20)

Then, according to the Proposition above, there exists a nonzero solution of the SDE

dXt = σ1(Xt)dB1
t with initial condition X(0) = 0. (21)

On the other hand, as we will see shortly, there exist no nonzero solutions of the SDE

dXt = σ1(Xt)dB1
t + σ2(Xt)dB2

t with initial condition X(0) = 0, (22)

where B1 and B2 are two independent Brownian motions. Indeed, this follows from the already
mentioned result of Yamada and Watanabe for isotropic 2×2 coefficients. Recall that the func-
tion ρ(r) = r log(1/r) satisfies (3) but not (2). Since

∑2
k=1 σ

k
i (x)σ

k
j (x) = δij |x|2 log(1/|x|)2,

solutions to (22) are equal in distribution to solutions of the SDE

dX i
t =

2∑
j=1

δij |Xt| log(1/|Xt|)dBjt with initial condition X(0) = 0, (23)

to which the result of Yamada and Watanabe is applicable. Thus, we see that adding fluctu-
ations in the radial direction to the SDE (21) may prevent solutions from escaping from the
origin in finite time.
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