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Abstract

Let (Yn)n≥0 be a Mandelbrot’s martingale defined as sums of products of random
weights indexed by nodes of a Galton-Watson tree, and let Y be its limit. We show
a necessary and sufficient condition for the existence of weighted moments of Y of
the forms EY α`(Y ), where α > 1 and ` is a positive function slowly varying at ∞. We
also show a sufficient condition in the case of α = 1. Our results complete those of
Alsmeyer and Kuhlbusch (2010) for weighted branching processes by removing their
extra conditions on `.
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1 Introduction and results

We consider a generalized Mandelbrot’s martingale (Yn) defined as sums of products
of random weights indexed by nodes of a Galton-Watson tree. The study of this model is
interesting due to a large number of applications and to its close connections with many
problems arising in a variety of applied probability setting, such as branching random
walks, infinite particle systems, Quicksort algorithms, and random fractals. For recent
studies on the model, see for example Barral and Jin (2010, [3]), Barral and Peyrière
(2014, [4]), and the references therein. For closely related problems arising in branching
random walks, see for example the recent works by Hu and Shi (2009, [13]), Chen (2013,
[10]), Barral, Hu and Madaule (2014, [2]) and Hu (2014, [14]).

As usual, we write N = {0, 1, . . .}, N∗ = {1, 2, . . .}, R+ = [0,∞) and U =
⋃∞
n=0N

∗n be
the set of finite sequences composed by N∗, where N∗0 = {∅} contains the null sequence
∅. For u, v ∈ U , write |u| = n for the length of u, and uv for the sequence obtained by
juxtaposition. Let Tn be the set of sequences u ∈ U with length |u| = n.

Suppose that {(Nu, Au1, Au2, . . .) : u ∈ U} is a sequence of independent and identically
distributed random variables with values in N×RN∗+ , defined on some probability space
(Ω,F ,P); assume that for all u ∈ U and i > Nu, we have Aui = 0. For simplicity, we write
(N,A1, A2, . . .) for (N∅, A∅1, A∅2, . . .). Assume that the initial distribution is normalized
such that

E

N∑
i=1

Ai = 1.
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Weighted moments for Mandelbrot’s martingales

Set

X∅ = 1, Xu = Au1
Au1u2

· · ·Au1...un for u = u1u2 . . . un ∈ U with n ≥ 1,

Y0 = 1 and Yn =
∑
u∈Tn

Xu for n ≥ 1. (1.1)

Then the sequence (Yn)n≥0 forms a nonnegative martingale, which is called Mandelbrot’s
martingale, with respect to the natural filtration

E0 = {∅,Ω} and En = σ{(Nu, Au1, Au2, . . .) : |u| < n} for n ≥ 1.

It is also called Mandelbrot’s cascade, and weighted branching process. Let

Y = lim
n→∞

Yn and Y ∗ = sup
n≥0

Yn, (1.2)

where the limit exists a.s. by the martingale convergence theorem, and EY ≤ 1 by
Fatou’s lemma.

The existence of moments of Y has been studied by many authors, see for example
Bingham and Doney (1975), Kahane and Peyrière (1976), Durrett and Liggett (1983),
Liu (2000) and Alsmeyer and Kuhlbusch (2010). Of particular interest are comparison
theorems about weighted moments of Y1 and Y . Let

R0 =

{
` : R+ → R+, ` is measurable and lim

x→∞

`(λx)

`(x)
= 1 ∀λ > 0

}
be the set of functions slowly varying at∞, and let ` ∈ R0. By the representation theorem
(see [9, Theorem 1.3.1]), ` has the canonical representation of the form

`(x) = c(x) exp

(∫ x

a0

ε(t)

t
dt

)
for x > a0, (1.3)

where a0 > 0 is a constant, c(·) and ε(·) are measurable with c(x)→ c for some constant
c ∈ (0,∞) and ε(x) → 0 as x → ∞. For the Crump-Mode-Jirina process, Bingham and
Doney (1975) showed via Tauberian theorems that when α > 1 is not an integer,

EY α`(Y ) <∞ if and only if EY α1 `(Y1) <∞. (1.4)

For weighted branching processes, using convex inequalities on martingales, Alsmeyer
and Kuhlbusch (2010) showed the equivalence (1.4) under the extra condition that the
function ε(·) in the canonical representation (1.3) of ` is positive and decreasing (in the
wide sense) when α > 1 is not a dyadic power. In this paper, we will show that the
equivalence is always true whenever α > 1 without any additional assumption on `.

The case where α = 1 will also be condidered: we will show a sufficient condition for
the existence of EY `(Y ), which was found by Bingham and Doney (1975) and Alsmeyer
and Kuhlbusch (2010) under some extra conditions on `.

For any x > 0, write

ρ(x) = E

N∑
i=1

Axi and ρ′(x) = E

N∑
i=1

Axi lnAi (1.5)

if the expectations exist in R̄ = R ∪ {∞}. Notice that ρ′(x) is the usual derivative of ρ at
x if ρ is derivable at x. It is well -known (see [20]) that Y is non-degenerate if and only if

ρ′(1) < 0 and EY1 log+ Y1 <∞, (1.6)

where log+ x = max(log x, 0) is the positive part of log x, and that EY = 1 while (1.6)
holds.

Our main result is the following comparison theorem about the weighted moments of
Y and Y1. As usual, for a set A, we write IntA for its interior.
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Weighted moments for Mandelbrot’s martingales

Theorem 1.1. Let α ∈ Int{a > 1 : ρ(a) < 1} and ` ∈ R0. Then the following assertions
are equivalent:

(a) EY α1 `(Y1) <∞;

(b) EY ∗α`(Y ∗) <∞;

(c) EY = 1 and EY α`(Y ) <∞.

Notice that, by the monotone convergence theorem and the dominated convergence
theorem, the assumption that α ∈ Int{a > 1 : ρ(a) < 1} is equivalent to the condition that

ρ(α) < 1 and ρ(α+ ε) <∞ for some ε > 0.

For the Crump-Mode-Jirina process (where Ai ≤ 1 for all i), the equivalence between
(a) and (c) was shown by Bingham and Doney (1975) when α > 1 is not an integer; when
α > 1 is an integer, they also showed that the equivalence remains true under the extra
condition that the function ε(·) in the canonical representation form (1.3) of ` is positive
and slowly varying at∞.

For the weighted branching process, Alsmeyer and Kuhlbusch (2010) showed the
equivalence between (a) and (c) under the condition that ε(·) is positive and decreasing
(and vanishes at ∞) when α > 1 is not a dyadic power; when α ∈ {2n : n ≥ 1} is a
dyadic power, they also showed the equivalence between (a) and (c) under the additional
assumption that ε(·) is (positive and) slowly varying at ∞. Our result extends the
corresponding ones of Alsmeyer and Kuhlbusch (2010) to the whole class R0 of slowly
varying functions (without any additional assumptions on `) for α ∈ Int{a > 1 : ρ(a) < 1}.

The situation for the case where α = 1 is different. For ` ∈ R0, define

ˆ̀(x) =

{∫ x
1
`(t)
t dt, if x > 1;

0, if x ≤ 1.
(1.7)

Then ˆ̀∈ R0 and lim
x→∞

ˆ̀(x)
`(x) =∞. Notice that if `(x) = logβ(x), then ˆ̀(x) = 1

β+1 logβ+1(x),

where β ≥ 0 and x > 1.

Theorem 1.2. Let ` ∈ R0 be given in (1.3) with ε(·) positive and slowly varying at ∞,
and let ˆ̀ be defined by (1.7). Assume (1.6) and that there exists some δ > 0 such that
ρ(1 + δ) <∞. Then EY1 ˆ̀(Y1) <∞ implies

EY ∗`(Y ∗) <∞ and EY `(Y ) <∞.

Remark. In Theorem 1.2, the condition that ε(·) is positive and slowly varying at∞ can
be relaxed to the condition that `(x) is concave. This will be seen in the proof.

In the context of weighted branching processes, Theorem 1.2 was first proved by
Alsmeyer and Kuhlbusch (2010) under the extra conditions that ε(·) is positive and
decreasing and ` is not bounded; moreover, under these extra conditions, they also
showed the converse, that is, EY `(Y ) <∞ implies EY1 ˆ̀(Y1) <∞.

In the special case where Ai ≤ 1 for all i ≥ 1, Theorem 1.2 was first proved by
Bingham and Doney (1975) in the context of Crump-Mode-Jirina processes, under the
extra conditions that ε(·) is positive and slowly varying at∞ and lim supn→∞ `(bn)/`(an) <

∞ for all 1 < a < b <∞; the last condition on the superior limit was removed by Iksanov
and Rösler (2006). In fact, Iksanov and Rösler (2006) considered the slightly more
general case where ` is increasing (in the wide sense) and concave on (0,∞), in the
context of branching random walks with Ai ≤ 1 for all i ≥ 1. We will consider this case
in a more general setting, without assuming Ai ≤ 1 for all i ≥ 1.
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Weighted moments for Mandelbrot’s martingales

By the argument used in the proof of Theorem 1.2, we can give a new proof of the
non-degeneration of Y , which we will show in Section 5.

This work is an extension of [17] where the Galton-Watson process (for which all
the Ai are the same constant less than 1) was considered. Although the basic idea
of the approach is the same, the technical treatment is much more delicate due to
the appearance of random weights, as can be seen by the long paper (with 48 pages)
of Alsmeyer and Kuhlbusch (2010, [1]) on the same topic. Our approach simplifies
significantly the arguments in [1]; it leads to an uniform treatment for all α > 1, and
enables us to remove the extra conditions on ` used in [1].

2 Auxiliary lemma

The proofs of Theorems 1.1 and 1.2 are mainly based on the double martingale
structure and convex inequalities for martingales, by a refinement of the martingale
argument of Alsmeyer and Kuhlbusch (2010).

For n ≥ 1, define

Dn = Yn − Yn−1 =
∑

u∈Tn−1

XuBu where Bu =

Nu∑
i=1

Aui − 1 for u ∈ Tn−1. (2.1)

Then (Dn, En)n≥1 forms a sequence of martingale differences, and

Y ∗ − 1 = sup
n≥1

(D1 + · · ·+Dn). (2.2)

For convenience, we write Pn for the conditional probability of P given En, and En for
the corresponding expectation. Let {uk : k = 1, . . . , card Tn−1} be an enumeration of
Tn−1, where card Tn−1 denotes the cardinality of Tn−1. Since Buk are independent of
each other under Pn−1, with En−1Buk = 0, we see that {Buk : k = 1, . . . , card Tn−1}
forms a sequence of martingale differences under Pn−1, with respect to the filtration

Fn−1,k = σ{(Nu, Au1, Au2, . . .) : |u| < n− 1;Bu1 , . . . , Buk} for k ≥ 0

with the convention that (for k = 0)

Fn−1,0 = σ{(Nu, Au1, Au2, . . .) : |u| < n− 1} = En−1.

As Xuk are En−1 -measurable and En−1 ⊂ Fn−1,k (|uk| = n − 1), the random sequence
(XukBuk)uk∈Tn−1

is also a martingale difference sequence with respect to (Fn−1,k)k≥0.
Hence under Pn−1, the random variable Dn can be considered as the sum of martingale
differences. Therefore Yn and Dn constitute a double martingale structure, which has
been used in [1].

For β ∈ (1, 2], write

Y (β)
n =

∑
u∈Tn

Xβ
u , Mn = sup

u∈Tn
Xβ−1
u and M =

∞∑
n=1

Mn. (2.3)

Using the Burkholder-Davis-Gundy (BDG) inequalities (see [11], Chap. 11, Theorems 1
and 2) to (Yn) and (Dn), we obtain the following lemma:

Lemma 2.1. Let φ be a convex and increasing function on R+ with φ(0) = 0, and
φ(2x) ≤ cφ(x) for some constant c ∈ (0,∞) and all x > 0. Let β ∈ (1, 2] and define
φ1/β(x) = φ(x1/β).
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Weighted moments for Mandelbrot’s martingales

(a) If the function φ1/β is convex, EY β1 < ∞ and ρ(α) < 1 for some α > 1, then

E(M
α
β−1 ) <∞ and

Eφ(|Y ∗− 1|) ≤ C
∞∑
n=1

E
Mn−1

M
φ1/β(MYn−1) +C

∞∑
n=1

E
∑

u∈Tn−1

Xβ
u

Y
(β)
n−1

φ1/β

(
Y

(β)
n−1|Bu|β

)
,

(2.4)
where C > 0 is a constant depending on φ and β.

(b) If the function φ1/β is concave, then

Eφ(|Y ∗ − 1|) ≤ C
∞∑
n=1

E
∑

u∈Tn−1

φ(Xu|Bu|), (2.5)

where C > 0 is a constant depending on φ and β.

Proof. (a) It follows from (2.2) that Y ∗ − 1 can be considered as the supremum of sum of
the martingale differences (Dn). Hence by the BDG inequality (cf. [11], Chap. 11, p.427,
Theorem 2), we have

Eφ(|Y ∗ − 1|) ≤ BEφ1/β
( ∞∑
n=1

En−1|Dn|β
)

+B

∞∑
n=1

Eφ(|Dn|), (2.6)

where B > 0 is a constant depending on φ and β.

Recall that under Pn−1, the random variable Dn is the sum of the martingale differ-
ence sequence (XuBu)u∈Tn−1

. Since E|Bu|β = E|B∅|β ≤ 2βEY β1 < ∞ for all u ∈ U , by
another BDG inequality (cf. [11], Chap. 11, p.425, Theorem 1) or the Marcinkiewicz-
Zygmund inequality to (XuBu)u∈Tn−1

, together with the subadditivity of the function
x 7→ xβ/2, we have

En−1|Dn|β ≤ BEn−1

[ ∑
u∈Tn−1

|XuBu|2
] β

2

≤ BEn−1
∑

u∈Tn−1

Xβ
u |Bu|β ≤ C1Mn−1 · Yn−1, (2.7)

where C1 = BE|Y1 − 1|β. To obtain the last inequality we have also used the fact that
Xβ
u ≤MnXu and that Bu is independent of Xu under En−1, for each sequence u of length

n. Notice that α > β− 1, for the L
α
β−1 norm ‖ · ‖ α

β−1
(as usual for p ∈ [1,∞) and a random

variable X we denote by ‖X‖p = [E|X|p]1/p the Lp norm of X), we have

‖Mn−1‖ α
β−1

=
[
E
(

sup
u∈Tn−1

Xβ−1
u

) α
β−1
] β−1

α ≤
[
E

∑
u∈Tn−1

Xα
u

] β−1
α

= [ρ(α)]
(β−1)(n−1)

α .

As ρ(α) < 1, by the triangular inequality for the norm ‖ · ‖ α
β−1

, we see that

‖M‖ α
β−1
≤
∞∑
n=1

‖Mn−1‖ α
β−1
≤
∞∑
n=1

[ρ(α)]
(β−1)(n−1)

α <∞.

In particular, this implies that M < ∞ almost surely. Since
∑∞
n=1

Mn−1

M = 1, by the
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Weighted moments for Mandelbrot’s martingales

convexity of the function φ1/β , we obtain that

φ1/β

( ∞∑
n=1

En−1|Dn|β
)
≤ φ1/β

( ∞∑
n=1

Mn−1

M
· C1MYn−1

)
≤

∞∑
n=1

Mn−1

M
φ1/β(C1MYn−1)

≤ C2

∞∑
n=1

Mn−1

M
φ1/β(MYn−1), (2.8)

where C2 > 0 is a constant depending on C1 and c.
For the second part of (2.6), as both φ and φ1/β are convex, using BDG inequality to

{XuBu}u∈Tn−1
, we have

En−1φ(|Dn|) ≤ BEn−1φ1/β

( ∑
u∈Tn−1

Xβ
u |Bu|β

)
≤ BEn−1

∑
u∈Tn−1

Xβ
u

Y
(β)
n−1

φ1/β

(
Y

(β)
n−1|Bu|β

)
. (2.9)

Taking expectation on both sides, together with the inequalities (2.6) and (2.8), we get
(2.4).

(b) Using the BDG inequality (cf. [11], Chap. 11, p.425, Theorem 1) to the martingale
difference sequence {Dn} and by the subadditivity of the function φ1/β (which is implied
by the concavity of φ1/β and the condition that φ1/β(0) = 0), we have

Eφ(|Y ∗ − 1|) ≤ BEφ1/β
( ∞∑
n=1

|Dn|β
)
≤ B

∞∑
n=1

Eφ(|Dn|), (2.10)

where B > 0 is a constant depending on φ and β. Similarly, by the BDG inequality and
the subadditivity of the function φ1/β , we see that

En−1φ(|Dn|) ≤ BEn−1φ1/β
( ∑
u∈Tn−1

Xβ
u |Bu|β

)
≤ BEn−1

∑
u∈Tn−1

φ(Xu|Bu|). (2.11)

Taking expectation on both sides, and from the inequality (2.10), we get (2.5).

3 Proof of Theorem 1.1

To give the proof of Theorem 1.1, we shall need the following result on the existence
of α-th moments of Y :

Lemma 3.1. Let α > 1. Then the following assertions are equivalence: (a) ρ(α) < 1 and
EY α1 <∞; (b) EY α <∞; (c) EY ∗α <∞.

The equivalence between (a) and (b) was shown by Liu (see [19], Theorem 2.1), and
the equivalence between (b) and (c) can be obtained from the inequality

P(Y ∗ ≥ x) ≤ CP(Y ≥ ax) ∀x ≥ 0 (3.1)

for some constants a,C > 0, valid when Y is not degenerate (see [6], Lemma 2).

Proof of Theorem 1.1. Let β ∈ (1, 2] with β < α. Write φ(x) = xα`(x). We can assume
that both the functions φ and φ1/β are convex on R+, and `(x) > 0 for all x ≥ 0 (see [18]).
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Weighted moments for Mandelbrot’s martingales

(i) We first show the implication from (a) to (b). By Lemma 2.1, to show the finiteness
of EY ∗α`(Y ∗), it is enough to show the convergence of the two series in (2.4).

It follows from Potter’s theorem (see [9], Theorem 1.5.6) that for any ε > 0, there
exists some constant A = A(`, ε) > 0 such that `(x) ≤ Amax(xε, x−ε) for all x > 0. Hence
we obtain

E
Mn−1

M
φ1/β(MYn−1) ≤ C

[
EMn−1M

α+ε
β −1Y

α+ε
β

n−1 + EMn−1M
α−ε
β −1Y

α−ε
β

n−1

]
:= C[I+(n) + I−(n)]. (3.2)

Using Hölder’s inequality twice to I+(n), we see that

I+(n) ≤
[
EMpq

n−1
]1/pq · [EM (α+ε

β −1)pq
∗
]1/pq∗

·
[
EY

α+ε
β p∗

n−1

]1/p∗
, (3.3)

where p∗ = β(α−ε)
α+ε , q = α+ε

β and

1

p
+

1

p∗
=

1

q
+

1

q∗
= 1.

Since α ∈ Int{a : ρ(a) < 1}, there exists some γ > 0 such that

ρ(α+ γ) < 1.

As ρ(x) is convex with ρ(1) = 1, we have ρ(x) < 1 for all x ∈ (1, α + γ]; in particular,
ρ(α−ε) < 1 for 0 < ε < α−1. Hence by Lemma 3.1 (noting that EY α−ε1 ≤ C(Eφ(Y1)+1) <

∞),

sup
n≥1

EY
α+ε
β p∗

n−1 = sup
n≥1

EY α−εn−1 ≤ E(Y ∗)
α−ε

<∞ . (3.4)

Let ε > 0 be small enough such that

(β − 1)pq ∈ (1, α+ γ], so that ρ((β − 1)pq) < 1.

Notice that Mn−1 = supu∈Tn−1
Xβ−1
u ≤

∑
u∈Tn−1

Xβ−1
u , we see that

‖Mn−1‖pq =
[
E
(

sup
u∈Tn−1

Xβ−1
u

)pq] 1
pq ≤

[
E

∑
u∈Tn−1

X(β−1)pq
u

] 1
pq

= [ρ((β − 1)pq)]
n−1
pq . (3.5)

Moreover, by the triangular inequality for the norm ‖ · ‖pq, as ρ((β − 1)pq) < 1, we have

‖M‖pq ≤
∞∑
n=1

‖Mn−1‖pq ≤
∞∑
n=1

[ρ((β − 1)pq)]
n−1
pq <∞ . (3.6)

It follows from (3.3), (3.4), (3.5) and (3.6) that

∞∑
n=1

I+(n) ≤
∞∑
n=1

[ρ((β − 1)pq)]
(n−1)/pq · ‖M‖q/q

∗

pq ·
[
E(Y ∗)

α−ε
]1/p∗

<∞ .

Similarly we can prove that I−(n) is also summable on n. Hence we show from (3.2) that
the first series in (2.4) converges.

We now consider the second series in (2.4). Again by Potter’s theorem, for all ε > 0,
there exists C > 0 such that `(xy) ≤ C`(x) · max(yε, y−ε) for all x, y > 0. Since Bu is
independent of Xu and has the same distribution as B∅ = Y1 − 1, we have

E
∑

u∈Tn−1

Xβ
u

Y
(β)
n−1

φ1/β(Y
(β)
n−1|Bu|β) ≤ CE

∑
u∈Tn−1

Xβ
u

Y
(β)
n−1

· |Bu|α`(|Bu|)
[
(Y

(β)
n−1)

α+ε
β + (Y

(β)
n−1)

α−ε
β

]
= CEφ(|B∅|)

[
E(Y

(β)
n−1)(α+ε)/β + E(Y

(β)
n−1)(α−ε)/β

]
. (3.7)
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By Hölder’s inequality,

E(Y
(β)
n−1)(α+ε)/β ≤ E(Mn−1Yn−1)(α+ε)/β ≤

[
EM

p(α+ε)/β
n−1

]1/p
·
[
EY

p∗(α+ε)/β
n−1

]1/p∗
, (3.8)

where p∗ and p are now defined by p∗ = β(α−ε)
(α+ε) > 1 and 1

p + 1
p∗ = 1. Let ε > 0 be small

enough such that

a := (β − 1)p(α+ ε)/β ∈ (1, α+ γ), so that ρ(a) < 1.

As Mp(α+ε)/β
n−1 ≤

∑
u∈Tn−1

X
(β−1)p(α+ε)/β
u =

∑
u∈Tn−1

Xa
u , it follows that

EM
p(α+ε)/β
n−1 ≤ [ρ(a)]n−1. (3.9)

Recalling that ρ(α− ε) < 1, by the definition of p∗ and Lemma 3.1, we have

EY
p∗(α+ε)/β
n−1 = EY α−εn−1 ≤ E(Y ∗)

α−ε
<∞.

Therefore it follows from (3.8) and (3.9) that

∞∑
n=1

E(Y
(β)
n−1)(α+ε)/β ≤

∞∑
n=1

[ρ(a)]
n−1
p ·

[
E(Y ∗)

α−ε
] 1
p∗
<∞ .

Similarly, we can prove that E(Y
(β)
n−1)(α−ε)/β is summable on n. Together with (3.7) and

the fact that Eφ(|B∅|) ≤ C[Eφ(Y1) + φ(1)] < ∞, we see that the second series in (2.4)
converges.

Therefore, we have Eφ(|Y ∗ − 1|) <∞, which is equivalent to Eφ(Y ∗) <∞.
ii) We now show the implication from (b) to (c). It is evident that Eφ(Y ) ≤ Eφ(Y ∗) <

∞; by the dominated convergence theorem, Yn convergence to Y in L1, so that EY = 1.
Thus (c) holds true.

iii) We finally show the implication from (c) to (a). Notice that Y satisfies the
distributional equation

Y =

N∑
i=1

AiY
(i), (3.10)

where (Y (i)) are independent of each other and are independent of (N,A1, A2, . . .), each
has the same law as Y . By Jensen’s inequality, we have

Eφ(Y ) = Eφ
[ N∑
i=1

AiY
(i)
]
≥ Eφ

[ N∑
i=1

E1AiY
(i)
]

= Eφ(EY · Y1) = Eφ(Y1), (3.11)

hence Eφ(Y1) <∞.

4 Proof of Theorem 1.2

In the remark after Theorem 1.2, we mentioned that the condition in Theorem 1.2
that ε(x) is positive and slowly varying at∞ can be relaxed to the condition that `(x) is
concave, as shown by the following lemma. As usual, we write

f(x) � g(x) if 0 < lim inf
x→∞

f(x)

g(x)
≤ lim sup

x→∞

f(x)

g(x)
<∞ ,

and f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.

Lemma 4.1. Let ε(·) be positive and slowly varying at∞. Then there exists a concave
function `1 such that `1(x) � `(x).
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Proof. Notice that any slowly varying function ` posses a smoothed version `2 in the
sense that `(x) ∼ `2(x) as x→∞, with `2 of the form

`2(x) = c exp

(∫ x

a0

ε2(t)

t
dt

)
, x > a0, (4.1)

ε2(·) infinitely differentiable on (a0,∞), and limx→∞ ε2(x) = 0 (see [9, Theorem 1.3.3]).
The value of a0 and those of `(x) on [0, a0] will not be important for our purpose. Therefore,
without loss of generality, we suppose from now on that ` is of the form (1.3) with a0 = 1,
c(x) = 1, and ε(·) is infinitely differentiable.

Since ε(·) is continuous, we have `′(x) = x−1`(x)·ε(x). As both `(·) and ε(·) are positive
and slowly varying at ∞, the function `′(·) is regularly varying with order −1 (which
means that x`′(x) is a slowly varying function at ∞). Let ψ(x) = inf{`′(t) : 1 ≤ t ≤ x}
for x ≥ 1, then we have `′(x) ∼ ψ(x) when x → ∞ (see [9, Theorem 1.5.3]). Since ψ(·)
is positive and decreasing, we see that `(x) � `1(x) :=

∫ x
1
ψ(t)dt (x ≥ 1) and `1(·) is a

positive concave function on [1,∞).

Proof of Theorem 1.2. By Lemma 4.1, it suffices to consider the case where ` is concave.
So we suppose that ` is concave, and write φ(x) = x`(x). By Lemma 3.2 of [18], we can
and we assume that the function φ is convex, the functions x 7→ φ1/2(x) = φ(x1/2) and `
are concave with `(0) = 0.

Since ρ is convex on (1, 1 + δ) with ρ′(1) < 0 and ρ(1 + δ) < ∞, there exists some
ε ∈ (0, δ) such that

ρ(1 + ε) := a < 1.

Pick b ∈ (a1/ε, 1). As the function φ1/2 is concave, by Lemma 2.1, we have

Eφ(|Y ∗ − 1|) ≤ C
∞∑
n=1

E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|) := C

∞∑
n=1

[I1(n) + I ′1(n)] , (4.2)

where

I1(n) = E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|)1{Xu≤bn−1}

and

I ′1(n) = E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|)1{Xu>bn−1}.

In the following, we will show that both I1(n) and I ′1(n) are summable on n. In fact,
as ` is increasing and Bu are independent of Xu for all u ∈ Tn−1, we have

I1(n) ≤ E
∑

u∈Tn−1

Xu|Bu|`(bn−1|Bu|)

= E|B∅|`(bn−1|B∅|) ≤ CE|B∅|
∫ bn−2|B∅|

bn−1|B∅|

`(t)

t
dt.

Taking sum on n, we obtain

∞∑
n=1

I1(n) ≤ CE|B∅|
∫ |B∅|
0

`(t)

t
dt

≤ C[E|B∅|ˆ̀(|B∅|) + 1] ≤ C[EY1 ˆ̀(Y1) + 1] <∞ , (4.3)
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which shows the summability of I1(n). For I ′1(n), as ` is increasing and slowly varying at
∞, by Potter’s theorem and the independence between Bu and Xu (u ∈ Tn−1), we have

I ′1(n) ≤ CE
∑

u∈Tn−1

Xu|Bu|`(bn−1|Bu|) · (b1−nXu)ε

≤ CE|B∅|`(|B∅|) · b(1−n)ε · E
∑

u∈Tn−1

X1+ε
u = CE|B∅|`(|B∅|) · (ab−ε)n−1.

By the definition of b, we have ab−ε < 1, hence

∞∑
n=1

I ′1(n) ≤ CE|B∅|`(|B∅|) ·
∞∑
n=1

(ab−ε)n−1 <∞ , (4.4)

which shows the summability of I ′1(n).
It follows from (4.2), (4.3) and (4.4) that Eφ(|Y ∗ − 1|) < ∞, which is equivalent to

Eφ(Y ∗) <∞. Evidently Eφ(Y ) ≤ Eφ(Y ∗) <∞ as ` is increasing. This ends the proof of
Theorem 1.2.

5 New proof of non-degeneration of Y

The argument in the proof of Theorem 1.2 can be used to study the non-degeneration
of Y , leading to a new proof of the following result of Biggins (1977).

Proposition 5.1. Assume (1.6) and E
∑N
i=1Ai(ln

+Ai)
2 <∞. Then

EY ∗ <∞ and EY = 1.

In fact, the condition E
∑N
i=1Ai(ln

+Ai)
2 <∞ in Proposition 5.1 can be removed (see

[20]) as mentioned earlier. However, we need this condition in the following proof as in
the approach of Biggins (1977). Notice that the conclusions EY ∗ <∞ and EY = 1 are
equivalent by (3.1).

Proof of Proposition 5.1. Let

`(x) =

{
1− 1

2x , if x > 1;
x
2 , if x ≤ 1.

It is easy to see that the function φ(x) = x`(x) is convex and the function φ1/2(x) = φ(x1/2)

is concave. Hence by Lemma 2.1, we have

Eφ(|Y ∗ − 1|) ≤ C
∞∑
n=1

E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|). (5.1)

Pick b ∈ (eρ
′(1), 1). We divide the domain of integration above into two parts according

to {Xu ≤ bn−1 : u ∈ Tn−1} and {Xu > bn−1 : u ∈ Tn−1}. For the first part, with the same
argument as in (4.3), we obtain

∞∑
n=1

E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|)1{Xu≤bn−1} ≤ CE|B∅|
∫ |B∅|
0

`(t)

t
dt

≤ CE|B∅|ˆ̀(|Bu|) <∞ . (5.2)

Here, 1A is the indicative function of the Borel set A. For the second part, as ` is bounded
by 1 and Bu is independent of Xu (u ∈ Tn−1), we have

∞∑
n=1

E
∑

u∈Tn−1

Xu|Bu|`(Xu|Bu|)1{Xu>bn−1} ≤ E|B∅| ·
∞∑
n=1

E
∑

u∈Tn−1

Xu1{Xu>bn−1} (5.3)
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Define the probability measure Q on B(R) by

Q(B) = E

N∑
i=1

Ai1B(Ai), B ∈ B(R),

where B(R) is the Borel field on R. Let Ã1, Ã2, . . . be i.i.d. random variables with common
distribution Q, and define Π0 = 1 and Πn =

∏n
i=1 Ãi for n ≥ 1. By Lemma 4.1 (iii) of [7]

(see also [1], Lemma 4.1), for any nonnegative measurable function f , we have

Ef(Πn−1) = E
∑

u∈Tn−1

Xuf(Xu);

in particular,

E
∑

u∈Tn−1

Xu1{Xu>bn−1} = Q(Πn−1 > bn−1). (5.4)

As E ln Ã1 = ρ′(1) < ln b and E(ln+ Ã1)2 = E
∑N
i=1Ai(ln

+Ai)
2 < ∞, by Lemma 6.1 of

[18], we see that
∞∑
n=1

Q(Πn−1 > bn−1) <∞.

Together with (5.4), this shows the convergence of the left series in (5.3).
It follows from (5.1), (5.2) and (5.3) that Eφ(|Y ∗ − 1|) < ∞, which is equivalent

to EY ∗ < ∞. This implies that EY = 1 by the dominated convergence theorem, as
Yn ≤ Y ∗.
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