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Abstract

This work is concerned with the analysis of a stochastic approximation algorithm
for the simulation of quasi-stationary distributions on finite state spaces. This is a
generalization of a method introduced by Aldous, Flannery and Palacios. It is shown
that the asymptotic behavior of the empirical occupation measure of this process is
precisely related to the asymptotic behavior of some deterministic dynamical system
induced by a vector field on the unit simplex. This approach provides new proof of
convergence as well as precise asymptotic rates for this type of algorithm. In the last
part, our convergence results are compared with those of a particle system algorithm
(a discrete-time version of the Fleming-Viot algorithm).
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1 Introduction

Let (Yn)n≥0 be a Markov chain on a finite state space F with transition matrix
P = (Pi,j)i,j∈F . We assume that this process admits an (attainable) absorbing state, say
0, and that F ∗ = F\{0} is an irreducible class for P ; this means that Pi,0 > 0 for some
i ∈ F ∗, P0,i = 0 for all i ∈ F ∗ and

∑
k≥0 P

k
i,j > 0 for all i, j ∈ F ∗. Note that there is no

assumption here that P is aperiodic. For all i ∈ F and any probability measure µ on F
(or F ∗), we set

Pi ( · ) = P ( · | Y0 = i) , Pµ =
∑
i∈F

µ(i)Pi,

and we let Ei,Eµ denote the corresponding expectations. Classical results (i.e. [15]
and [24, Theorem 2 p 53, Vol. 2]) imply that Yn is absorbed by 0 in finite time and
admits a unique probability measure ν on F ∗, called a quasi-stationary distribution
(QSD), satisfying, for every k ∈ F ∗,

ν(k) = Pν(Y1 = k | Y1 6= 0) =

∑
i∈F∗ ν(i)Pi,k∑
i,j∈F∗ ν(i)Pi,j

=

∑
i∈F∗ ν(i)Pi,k

1−
∑
i∈F∗ ν(i)Pi,0

.
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Simulation of quasi-stationary distributions

If we furthermore assume that P is aperiodic, then (see for instance [15, Section 4]) for
any probability measure µ on F ∗ and k ∈ F ∗,

lim
n→+∞

Pµ(Yn = k | Yn 6= 0) = ν(k). (1.1)

The existence and uniqueness of this measure can be proved through the Perron-
Frobenius Theorem [24, Theorem 2 p 53, Vol. 2] because a probability measure ν

is a QSD if and only if it is a left eigenvector of P (associated to some eigenvalue
λ ∈ (0, 1))[15]; namely

νP = λν ⇔ ∀k ∈ F ∗,
∑
i∈F∗

ν(i)Pi,k = λν(k). (1.2)

Summing on k the previous expressions gives the following expression of λ:

λ = 1−
∑
i∈F∗

ν(i)Pi,0. (1.3)

Quasi-stationary distributions have many applications as illustrated for instance in
[14, 26, 29, 30] and their computation is of prime importance. This can be achieved
with deterministic algorithms coming from numerical analysis [30, section 6] based on
equation (1.2), but these type of method fails to be efficient with large state spaces. An
alternative approach is to use stochastic algorithms (even if naive Monte-Carlo methods
are not well-suited as illustrated in the introduction of [31]). Our main purpose here is
to analyze a class of such algorithms based on a method that was introduced by Aldous,
Flannery and Palacios [1] and which can be described as follows.

Let ∆ be the unit simplex of probabilities over F ∗. For x ∈ ∆, let K[x] be a Markov
kernel defined by

∀i, j ∈ F ∗, K[x]i,j = Pi,j + Pi,0x(j). (1.4)

and let (Xn)n≥0 be a process on F ∗ such that for every n ≥ 0,

∀i, j ∈ F ∗, P (Xn+1 = j | Fn) = K[xn]i,j , on {Xn = i}, (1.5)

where

xn =
1

n+ 1

n∑
k=0

δXk
(1.6)

stands for the empirical occupation measure of the process and Fn = σ{Xk, k ≤ n}. In
words, the process behaves like (Yn)n≥0 until it dies (namely it hits 0) and, when it dies,
comes back to life in a state randomly chosen according to it’s empirical occupation
measure.

This process is not Markovian and can be understood as an urn process or a reinforced
random walk. Using the natural embedding of urn processes into continuous-time multi-
type branching processes [2, section V.9], Aldous, Flannery and Palacios prove the
convergence of (xn) to the QSD. As well illustrated in [28], another powerful method
for analyzing the behavior of processes with reinforcement is stochastic approximation
theory [8, 21] and its dynamical system counterpart [4]. Relying on this approach, we
analyze a more general algorithm in which (xn)n≥0 is a weighted empirical measure.
We then recover [1, Theorem 3.8] in this more general context with explicit rates of
convergence. We also a provide a central limit theorem and prove the convergence
of (Xn)n≥0. Note that, when γn = 1/n the recent work [9] also provides a central limit
theorem, using similar techniques. This enables us to compare its convergence rates
with a different algorithm which is a discrete-time version of the algorithm studied in
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Simulation of quasi-stationary distributions

[10, 13, 18, 32] and is close (but different) to the one used in [16, 17]. We only give some
qualitative bounds and we do not compare these two algorithms in terms of complexity.
We describe it and give a new bound for the convergence based on [7] in Section 3.

Outline: the next subsection introduces our main results. The proofs are in Section
2. We study the dynamical system in 2.1, relate its long term behavior to the long term
behavior of (xn)n≥0 in 2.2, and end the proof in 2.3. Finally, Section 3 treats the second
algorithm based on a particle system.

1.1 Main results

Assume that F ∗ contains d ≥ 2 elements and let us define the unit simplex of probabil-

ity measures on F ∗ by ∆ =
{
x ∈ Rd

∣∣∣xi ≥ 0,
∑d
i=1 xi = 1

}
. We endow Rd with the classi-

cal l1-norm: ‖x‖ =
∑
i∈F∗ |x(i)| and ∆ with the induced distance (which corresponds, up

to a constant, to the total variation distance). Given x ∈ ∆, we denote by π(x) the invari-

ant distribution of K[x], defined in (1.4), and we let h : ∆→ T∆ =
{
x ∈ Rd

∣∣∣∑d
i=1 xi = 0

}
denote the vector field given by h(x) = π(x)− x. Our aim is to study the weighted empir-
ical occupation measure (xn)n≥0, defined for every n ≥ 0 by

xn+1 = (1− γn)xn + γnδXn+1
= xn + γn(h(xn) + εn), (1.7)

where εn = δXn+1 − π(xn), (γn)n≥0 is a decreasing sequence on (0, 1) verifying∑
n≥0

γn = +∞ and lim
n→+∞

γn ln(n) = 0, (1.8)

and the process (Xn)n≥0 satisfies (1.5). Let us set τ0 = 0,

τn =

n∑
k=1

γk, and l(γ) = lim sup
n→+∞

ln(γn)

τn
. (1.9)

For instance, if
γn = An−α ln(n)−β , A > 0, α, β ≥ 0,

then

l(γ) =


0, if (α, β) ∈ (0, 1)×R+,

− 1/A if α = 1, β = 0,

−∞ if (α, β) ∈ {1} × (0, 1].

Remark 1.1. The sequence (1.6) corresponds to the choice γn = 1
n+2 . More generally,

let (ωn)n≥0 be a sequence of positive numbers, related to (γn)n≥0 by

γn =
ωn∑n
i=0 ωk

⇔ ωn =
κγn∏n

k=0(1− γi)
,

for some κ > 0, then

xn =

∑n
i=0 ωiδXi∑n
i=0 ωi

.

Notice that with ωn = na for a > −1, γn ∼ 1+a
n .

The sequence (xn)n≥0 is often called a stochastic approximation algorithm with
decreasing step [4, 8, 21]. Its long time behavior can be related to the long time behavior
of the flow Φ induced by h; namely the solution to{

∀t ≥ 0,∀x ∈ ∆, ∂tΦ(t, x) = h(Φ(t, x)),

Φ(0, x) = x.
(1.10)
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In order to state our main result, let us introduce some notation. By the Perron-Frobenius
Theorem [24, Theorem 2 p 53, Vol. 2], eigenvalues of P can be ordered as

1 > λ1 ≥ |λ2| ≥ · · · ≥ |λd| ≥ 0,

where λ1 = λ (defined in (1.3)) and λi 6= λ for all i ≥ 2. Set

R = 1− (1− λ) max
i≥2

Re

(
1

1− λi

)
, (1.11)

where Re is the real part application on C. Since |1 − λ| < |1 − λi| for i ≥ 2, we have
R > 0.

Theorem 1.2 (Convergence of (xn)n≥0 to the quasi-stationary distribution). With proba-
bility one, xn tends to ν. If furthermore l(γ) < 0, then

lim sup
n→+∞

1

τn
ln (‖xn − ν‖) ≤ max

(
−R, l(γ)

2

)
a.s.

This leads to the following result which generalize and specify the rates of conver-
gence of [1, Theorem 3.8]

Corollary 1.3. Suppose γn = A
n for some A > 0 (or, with the notation of Remark 1.1,

ωn = nA−1) then for all θ < min (RA, 1/2), there exists a random constant C > 0 such
that

∀n ≥ 0, ‖xn − ν‖ ≤ Cn−θ a.s.

Using general results on stochastic approximation, we are also able to quantify more
precisely this convergence, as shown by the following theorem.

Theorem 1.4 (Central limit theorem). If one of the following conditions is satisfied

i)
∑
k≥0 γk = +∞,

∑
k≥0 γ

2
k <∞ and limk→+∞ γ−1k ln(γk−1/γk) = 0;

ii)
∑
k≥0 γk = +∞,

∑
k≥0 γ

2
k <∞ and limk→+∞ γ−1k ln(γk−1/γk) = γ−1∗ < 2R;

then there exists a covariance matrix V such that

γ−1/2n (xn − ν)
d−→

n→+∞
N (0, V ).

From the Cesàro Theorem, if Assumption ii) of the last theorem holds then γ−1∗ =

−l(γ). In particular, under this assumption, the limiting result of Theorem 1.2 is an
equality. In case γn = 1/n this convergence result has been already proved in the
recent work [9] with a similar approach. Furthermore, this gives the following trivial
consequence.

Corollary 1.5 (Lp−bound for the convergence of (xn)n≥0). Under the previous assump-
tions, there exists for all p ≥ 1 Cp > 0 such that for every n ≥ 0,

lim
n→∞

γ−1/2n E

[∑
i∈F∗

|xn(i)− ν(i)|p
]1/p

= Cp

Note that this result extends [20, Theorem 1.2] and [19, Theorem 2.2] when consid-
ering a finite state space and this particular type of kernel K[x].

Finally, not only the (weighted) empirical occupation measure of (Xn)n≥0 converges
almost surely to ν but (Xn) itself converges in distribution to ν as shown by the next
result.
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Corollary 1.6 (Convergence in law to ν). Let (µn)n≥0 be the sequence of laws of (Xn)n≥0.

Then
lim

n→+∞
‖µn − ν‖ = 0.

If we furthermore assume that the assumptions of Theorem 1.4 hold, there exists C > 0

and 0 < ρ < 1 such that
‖µn+p − ν‖ ≤ C(ρp + p

√
γn).

Proofs of these results are given in Section 2 and in particular in 2.2.

2 Study of the flows and proofs of our main results

As explained in the introduction, the proof is based on the ODE method. We study
Φ and apply its properties to (xn)n≥0 with classical results on perturbed ODE. So we
decompose this section into three subsections: the study of the flow Φ, the study of the
noise (εn)n≥0 and finally the proof of the main theorems.

2.1 Analysis of the flow

For any x, y ∈ Rd, we will use the following notation:

〈x, y〉 =
∑
i∈F∗

x(i)y(i),

and 1 will denote the unit vector; namely 1(i) = 1 for every i ∈ F ∗. Let us begin by
giving a more tractable expression for π. As P̂ = (Pi,j)i,j∈F∗ is sub-stochastic, the matrix
A =

∑
k≥0 P̂

k is well defined and is the inverse of I − P̂ , where I stands for the identity
matrix. Furthermore,

∀x ∈ ∆, π(x) =
xA

〈xA,1〉
. (2.1)

Indeed, let γ =
∑
i∈F∗ π(x)(i)Pi,0. Then

π(x)K[x] = π(x)⇔ π(x) · (P̂ − I) = −γx⇔ π(x) = γx · (I − P̂ )−1 = γx ·A,

and as π(x) ∈ ∆, we have

1 =
∑
i∈F∗

π(x)(i) = γ
∑
i∈F∗

(x ·A)(i) = γ〈xA,1〉.

The next lemma follows from classical results on linear dynamical systems.

Lemma 2.1 (Long time behavior of Φ). For all α ∈ (0, R), there exists C = Cα > 0 such
that for all x ∈ ∆ and t ≥ 0, we have

‖Φ(t, x)− ν‖ ≤ Ce−αt‖Φ(0, x)− ν‖. (2.2)

Proof. Let us consider Φ1 : (t, x) 7→ x · etA. Writing x = ν + (x − ν) and using νA =

(1− λ)−1ν, one obtains

Φ1(t, x) = e(1−λ)
−1t
(
ν + (x− ν)et(A−(1−λ)

−1I)
)
. (2.3)

Let
β < (1− λ)−1 −max

i≥2
Re((1− λi)−1).

Using for instance a Dunford decomposition, we get that for t large enough

‖et(A−(1−λ)
−1I)‖ = sup

‖u‖=1

‖et(A−(1−λ)
−1I)u‖ ≤ e−βt
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Let now Φ2 be the semiflow on ∆ defined for all t ≥ 0 and x ∈ ∆ by

Φ2(t, x) =
Φ1(t, x)

〈Φ1(t, x),1〉
.

For every t ≥ 0, x ∈ ∆, Φ2(t, x) belongs trivially to ∆ because xetA possesses positive
coordinates and 〈Φ2(t, x),1〉 = 1. It follows from (2.3) that for some C > 0,

∀t ≥ 0, ‖Φ2(t, x)− ν‖ ≤ Ce−βt‖x− ν‖.

Now, note that Φ2 and Φ have the same orbits (up to a time re-parametrization). Indeed,
differentiating in t, we find that∀t ≥ 0,∀x ∈ ∆, ∂tΦ2(t, x) = 〈Φ2(t, x)A,1〉

(
Φ2(t, x)A

〈Φ2(t, x)A,1〉
− Φ2(t, x)

)
,

∀x ∈ ∆, Φ2(0, x) = x.

Hence,
∀t ≥ 0, ∀x ∈ ∆, Φ(s(t, x), x) = Φ2(t, x), (2.4)

where

s(t, x) =

∫ t

0

〈Φ2(x, u)A,1〉du.

This mapping (i.e. t 7→ s(t, x)) is strictly increasing because Φ2(x, u) belongs to ∆ so
that 〈Φ2(x, u)A,1〉 > 0 for all u ≥ 0. It follows from (2.3) that s(t, x)/t tends to (1− λ)−1,
uniformly in x ∈ ∆ as t tends to infinity. Thus, fixing α < β(1−λ) < R, for t large enough,
we have βt > αs(t, x) and, consequently,

‖Φ(s(t, x), x)− ν‖ ≤ Ce−αs(t,x)‖x− ν‖ ⇔ ‖Φ(s, x)− ν‖ ≤ Ce−αs‖x− ν‖,

for s large enough. Replacing C by a sufficiently larger constant, the previous inequality
holds for all time and this proves the Lemma.

Remark 2.2 (Probabilistic interpretation of A,Φ1,Φ2). Observe that A is the Green func-
tion defined as

∀i, j ∈ F ∗, Ai,j = Ei

∑
k≥0

1Yk=j

 .
In particular,

(A1)i = Ei [T0] ,

where T0 = inf{n ≥ 0 | Yn = 0}. Moreover, Φ1 can be understood as the mean measure
of a branching particle system and Φ2 is then the renormalized main measure. See [11]
or [12, Chapitre 4] for details.

Corollary 2.3 (Gradient estimate). Let Dh(ν) denote the Jacobian matrix of h at ν. Then

lim
t→∞

1

t
ln(‖etDh(ν)‖) = lim sup

t→∞

1

t
ln(‖etDh(ν)‖) ≤ −R.

In particular, eigenvalues of Dh(ν) have their real parts bounded by −R.

Proof. Set Φt(·) = Φ(t, ·). The mapping x 7→ h(x) being C∞, classical results on ordinary
differential equations imply that Φ is C∞ and satisfies the variational equation

∂tDΦt(x) = Dh(Φt(x)) ·DΦt(x)
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with initial condition DΦ0(x) = I. Thus, because Φt(ν) = ν,

DΦt(ν) = etDh(ν)

Now, fix t ≥ 0 and α < R. On the first hand, using Lemma 2.1 we get that

s−1‖Φt(ν + su)− Φt(ν)‖ ≤ Ce−αt‖u‖

for every s ≥ 0 and u ∈ Rd. Taking the limit s→ 0 leads to

‖etDh(ν).u‖ = ‖DΦt(ν) · u‖ ≤ Ce−αt‖u‖.

This ends the proof.

2.2 Links between (xn)n≥0 and Φ

Let us rapidly recall some definitions of [4]. To this end, we define the following
continuous time interpolations X̂, X̄, ε̄, γ̄ : R+ → Rd by

X̂(τn + s) = xn + s
xn+1 − xn
τn+1 − τn

, X̄(τn + s) = xn, ε̄(τn + s) = εn+1 and γ̄(τn + s) = γn+1,

for every n ∈ N and s ∈ [0, γn+1). We also set m : t 7→ sup{k ≥ 0 | t ≥ τk}. A continuous
map Z : R+ 7→ ∆ is called an asymptotic pseudo-trajectory of Φ if for all T > 0,

lim
t→+∞

sup
0≤s≤T

‖Z(t+ s)− Φs(Zt)‖ = 0.

Given r < 0, it is called a r−pseudo-trajectory of Φ if

lim sup
t→+∞

1

t
ln

(
sup

0≤s≤T
‖Z(t+ s)− Φs(Zt)‖

)
≤ r,

for some (or all) T > 0. We have

Lemma 2.4 (Pseudo-trajectory property of X̂). With probability one, X̂ is an asymptotic
pseudo-trajectory of Φ. If furthermore l(γ) < 0 then X̂ is almost surely a l(γ)/2-pseudo-
trajectory of Φ.

Proof. The proof is similar to [3, Section 5]. Let π(x) be the matrix over F ∗ be defined
by π(x)i,j = π(x)j .

By irreducibility of K[x] the continuous time Markov semi-group (et(K[x]−I))t≥0 con-
verge at an exponential rate toward π(x). Thus, for all x ∈ ∆ the matrix

Q[x] = −
∫ ∞
0

((et(K[x]−I))− π(x))dt

is well defined. Using that (K[x]− I) is the generator of the semigroup (et(K[x]−I))t≥0, it
is classic (and easy) to see that Q[x] is solution to the Poisson equation:

(I −K[x])Q[x] = Q[x](I −K[x]) = I − π(x).

We can write
γnεn = δ1n + δ2n + δ3n + δ4n,

where, for all j ∈ F ∗, we have

δ1n(j) = γn
(
Q[xn]Xn+1,j −K[xn]Q[xn]Xn,j

)
,
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δ2n(j) = γnK[xn]Q[xn]Xn,j − γn−1K[xn]Q[xn]Xn,j ,

δ3n(j) = γn−1K[xn]Q[xn]Xn,j − γnK[xn+1]Q[xn+1]Xn+1,j ,

and
δ4n(j) = γn

(
K[xn+1]Q[xn+1]Xn+1,j −K[xn]Q[xn]Xn+1,j

)
.

Continuity, smoothness of Q and compactness of ∆ ensure the existence of C > 0 such
that

‖δ2n‖ ≤ C(γn−1 − γn), ‖
k∑
i=n

δ3i ‖ ≤ Cγn−1 and ‖δ4n‖ ≤ Cγn‖xn+1 − xn‖ ≤ Cγ2n.

Now, if Fn = σ{Xk | k ≤ n}, the term δ1n is a Fn−1-martingale increment and there
exists C1 > 0 such that ‖δ1n‖2 ≤ C1γ

2
n. Namely, for every n0 ≥ 0 , if for all n ≥ n0 + 1,

Mn =
∑n−1
k=n0

δ1k then (Mn)n≥n0+1 is a (Fn)n≥n0+1-martingale. From these inequalities,
we have

∆(t, T ) = sup
0≤u≤T

‖
∫ t+u

t

ε̄(s)ds‖

≤ sup
0≤u≤T

‖
∫ τm(t+u)

τm(t)

ε̄(s)ds‖+ sup
0≤u≤T

‖
∫ t

τm(t)

ε̄(s)ds‖+ sup
0≤u≤T

‖
∫ t+u

τm(t+u)

ε̄(s)ds‖

≤ sup
0≤u≤T

‖
m(t+u)−1∑
j=m(t)

γj+1εj+1‖+ C2 sup
0≤u≤T

|t− τm(t)|+ C2 sup
0≤u≤T

|t+ u− τm(t+u)|

≤ sup
0≤u≤T

‖
m(t+u)−1∑
j=m(t)

δ1j+1‖+ sup
0≤u≤T

‖
m(t+u)−1∑
j=m(t)

δ2j+1‖+ sup
0≤u≤T

‖
m(t+u)−1∑
j=m(t)

δ3j+1‖

+ sup
0≤u≤T

‖
m(t+u)−1∑
j=m(t)

δ4j+1‖+ 2C2γm(t)+1

≤ sup
0≤u≤T

‖
m(t+k)−1∑
j=m(t)

δ1j+1‖+ Cγm(t) + Cγm(t) + C3Tγm(t)+1 + C4γm(t)+1,

for some C3, C4 > 0. If we set Un+1 = δ1n then following [4, Proposition 4.4], under
(1.8), we see that the last term tends to zero. Using [4, Proposition 4.1], this proves
the first part of the statement. Let us now prove that it is a l(γ)/2−pseudo-trajectory.
Thanks to (1.8), Inequality (11) of [4, Proposition 4.1] and the beginning of the proof of
[4, Proposition 8.3], it is enough to prove that lim supt→∞ ln(∆(t, T ))/t ≤ l(γ)/2. From
the previous decomposition, it is enough to prove

lim sup
t→∞

1

t
ln

 sup
0≤k≤T

‖
m(t+k)−1∑
j=m(t)

δ1j+1‖

 ≤ l(γ)/2 a.s.

and again the end of the proof is the same as in the Robbins-Monro algorithm situation
(see the proof of [4, Proposition 8.3]).

2.3 Proof of the main results

Proof of Theorem 1.2. By Lemma 2.1, {ν} is a global attractor for Φ; a global attractor
is an attractor whose basin is all the space, see [4, page 22]. Thus, it contains the limit
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set of every (bounded) asymptotic pseudo-trajectory (see e.g [4, Theorem 6.9] or [4,
Theorem 6.10]). Lemma 2.4 gives the almost-sure convergence. The second part of
Theorem 1.2 follows directly from [4, Lemma 8.7] and Lemma 2.4.

Proof of Corollary 1.3. Since the limsup in the definition of l(γ) is a limit, the result is a
direct consequence of Theorem 1.2.

Proof of Theorem 1.4. Let us check that our model satisfies the assumptions of [23,
Theorem 2.1]. Hypothesis C1 holds because of the Perron-Frobenius Theorem for (a),
Corollary 2.3 for (c) ((b) is trivial). Using the notations of this paper and the one of the
proof of Lemma 2.4, we have

en+1 = γ−1n δ1n and rn = γ−1n (δ2n + δ3n + δ4n).

Assumption C2(a) holds, Assumption C2(b) holds with Am = Am,k = Ω, where Ω is our
probability space. Note that xn → ν with probability one.

Checking Assumption C2(c) is more tricky but usual. Indeed, let us mimic [23,
Section 4]. Let

Fx(X)i,j = (
∑
k∈F∗

Q[x]k,jQ[x]k,iK[x]X,k)−K[x]Q[x]X,iK[x]Q[x]X,j

be a kind of covariance matrix. We have

E [en+1(i)en+1(j) | Fn] = Fxn(Xn)i,j = (U∗)i,j + (D1
n)i,j + (D2

n)i,j ,

where U∗ =
∑
k∈F∗ Fν(k)νk,

D1
n =

∑
k∈F∗

(Fxn(k)π(xn)k − Fν(k)νk)

which tends almost surely to 0 thanks to Theorem 1.2 and

D2
n = Fxn

(Xn)−
∑
k∈F∗

Fxn
(k)π(xn)k.

It rests to prove that

lim
n→∞

γnE

[
‖

n∑
m=1

D2
m‖

]
= lim
n→∞

γnE

[
‖

n∑
m=1

(
Fxm

(Xm)−
∑
k∈F∗

Fxm
(k)π(xm)k

)
‖

]
= 0.

To this end, we use again the solution of the Poisson equation Q introduced in the proof
of Lemma 2.4. Indeed following [23] we set Ux(X) = Q[x]Fx(X), which satisfies

(I −K[x])Ux = Fx(X)−
∑
k∈F∗

Fx(k)π(x)k,

and
D2,a
n = Uxn

(Xn+1)−K[xn]Uxn
(Xn),

D2,b
n = Uxn

(Xn)− Uxn
(Xn+1).

We have D2
n = D2,a

n +D2,b
n . Arguments that follow come from directly to [23, page 16].

Note that, with the notations of [23], Assumption A3 holds with constant functions V1
and V2 , b = 1, τ̄ = 1. Indeed recall that the state space is finite and then all regular-
ity and boundedness assumptions are satisfied. From Theorem 1.2, the convergence
assumptions also hold.
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Sequence (D2,a
n )n≥0 is a martingale increment sequence and, thanks to the Burkholder

inequality, we have

E

[
‖

n∑
m=1

D2,a
m ‖2

]
≤ Cn,

for some C > 0. Now the Cauchy-Schwarz inequality gives

lim
n→∞

γnE

[
‖

n∑
m=1

D2,a
m ‖

]
≤ lim
n→∞

γn
√
Cn = 0,

because
∑
n≥0 γn = +∞ and

∑
n≥0 1/

√
n < +∞.

Sequence (D2,b
n )n≥0 can be written as a telescopic sum and then

E

[
‖

n∑
m=1

D2,a
m ‖2

]
≤ C

(
1 +

n∑
k=1

γ2k

)
,

for some C > 0 (again see [23, page 16] for details). The limiting assumption is then
satisfied because

∑
n≥0 γ

2
n < +∞. Assumption C3 is then satisfied. Finally, the last

assumption C4 is supposed to be true in our setting.

Remark 2.5 (SA with controlled Markov chain dynamics). Our sequence (xn)n≥0 is an
instance of the so-called SA with controlled Markov chain dynamics introduced in [23,
Section 4]. Instead of our proof for the central limit theorem, we could use [23, Propo-
sition 4.1]. Nevertheless, it would weaken the assumption on (γn)n≥0 (see Assumption
A2).

Proof of Corollary 1.5. The Lp−norm are continuous bounded functions on ∆ thus the
result is straightforward.

Proof of Corollary 1.6. By irreducibility of P (and hence K[ν]), νi > 0 for all i. Thus,
K[ν]ii ≥ Pi0νi > 0 for all i such that Pi0 > 0. This shows that K[ν] is aperiodic. Therefore,
by the ergodic theorem for finite Markov chains, there exist C0 > 0 and ρ ∈ [0, 1) such
that for all x ∈ ∆

‖xKn[ν]− ν‖ ≤ C0ρ
n.

In particular, ν is a global attractor for the discrete time dynamical system on ∆ induced
by the map x 7→ xK[ν]. To prove that µn → ν it then suffices to prove that (µn) is an
asymptotic pseudo trajectory of this dynamics (that is ‖µnK[ν]− µn+1‖ → 0) because the
limit set of a bounded asymptotic pseudo-trajectory is contained in every global attractor
(see e.g [4, Theorem 6.9] or [4, Theorem 6.10]). Now,

‖µnK[ν]− µn+1‖ =
∑
j∈F∗

|µnK[ν](j)− µn+1(j)| =
∑
j∈F∗

|E [K[ν]Xn,j −K(xn)Xn,j ]|

=
∑
j∈F∗

|E [PXn,0(ν(j)− xn(j))]| ≤ max
i∈F∗

Pi,0E [‖ν − xn‖]

and the proof follows from Theorem 1.2 and dominated convergence.
If one now suppose that assumptions of Corollary 1.5 hold, then, in view of the

preceding inequality, there exists C > 0 such that

‖µnK[ν]− µn+1‖ ≤ C
√
γn.

Therefore

‖µn+p − µnK[ν]p‖ = ‖
p−1∑
i=0

(µn+iK[ν]− µn+i+1)K[ν]p+i−1‖ ≤ C
p−1∑
i=0

√
γn+i ≤ pC

√
γn
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and
‖µn+p − ν‖ ≤ ‖µn+p − µnK[ν]p‖+ ‖µnK[ν]p − ν‖ ≤ pC√γn + C0ρ

p.

3 A second model based on interacting particles

In continuous-time, a mainstream method to simulate QSD is the so-called Fleming-
Viot particle system. It was introduced and well studied in [10] for the Brownian motion
and in [18] for general Markov processes. See also [13, 22, 25, 32]. Here, we study and
give some applications of [7] for a discrete version of this algorithm. This one is based
on a particle system evolving as follows: at each time, we choose, uniformly at random,
a particle i and replace it by another one j; this one is choosen following the probability
Pi,j or uniformly on the others particles with probability Pi,0. In this work we will study
a slight modification; we allow us the choice to replace the died particle on its previous
position. More precisely, let N ≥ 2 and consider (XN

n )n≥0 be the Markov chain on ∆

with transition

P

(
XN (n+ 1) = x+

1

N
(δj − δi) | XN (n) = x

)
= pi,j(x), (3.1)

where
pi,j(x) = x(i) (Pi,j + Pi,0x(j)) = x(i)K[x]i,j , (3.2)

for every x ∈ ∆, n ≥ 0, i, j ∈ F ∗. This algorithm is relatively close to the one used in
[16, 17] in non-linear filtering. In their setting, all particles move and die at each step. In
our setting, only one particle moves at each step, and this dynamics is then closer to the
continuous-time algorithm. We are interested in the limit of Markov chains XN , when N
is large, and with the time scale δ = 1/N . The key element for such approximation is the
vector field F = (Fj)j∈F∗ , defined by

∀x ∈ ∆,∀j ∈ F ∗, Fj(x) =
∑
i6=j

(pi,j(x)− pj,i(x)),

which, for large N and short time intervals, gives the expected net increase share during
the time interval, per time unit. The associated mean-field flow Ψ is the solution to{

∀t ≥ 0,∀x ∈ ∆, ∂tΨ(t, x) = F (Ψ(t, x)),

∀x ∈ ∆, Ψ(0, x) = x.
(3.3)

Using (3.2), we have

∀j ∈ F ∗,∀x ∈ ∆, Fj(x) =
∑
i∈F∗

xi(Pi,j + xjPi,0)− xj ,

and Ψ is then the conditioned semi-group of the absorbed Markov process (Ut)t≥0
generated by (P − I). More precisely, for all j ∈ F ∗, t ≥ 0 and x ∈ ∆, we have

Ψ(t, x) =

∑
i∈F∗ x(i)P (Ut = j | U0 = i)∑
i∈F∗ x(i)P (Ut 6= 0 | U0 = i)

=
xet(P−I)

〈xet(P−I),1〉
.

This model was studied in a more general setting in [7]. In particular if we set

∀s ∈ [0, 1), X̄N ((n+ s)/N) = XN
n + s(XN

n+1 −XN
n ),

then we have
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Theorem 3.1 (Deviation inequality). For every T > 0, there exists a (explicit) constant
c = cT > 0 such that for any ε > 0, x ∈ ∆ and N large enough,

P

(
max
0≤t≤T

‖X̄N (t)−Ψ(t, x)‖ ≥ ε | XN (0) = x

)
≤ 2de−cε

2N .

In particular, for all θ < 1/2, we have

lim
N→+∞

Nθ max
0≤t≤T

‖X̄N (t)−Ψ(t, x)‖ = 0 a.s. (3.4)

and
lim

N→+∞
lim

n→+∞
XN
n = ν a.s. (3.5)

Proof. This results from [7, Lemma 1], Borel-Cantelli Lemma and [7, Proposition 6]. The
constant c is given by

c =
e−2lFT

8T
√√

2 + ‖F‖22
,

where lF is the Lipschitz constant of F on the compact set ∆ and ‖F‖22 the supremum of
‖F (x)‖22 over ∆.

Remark 3.2 (Continuous-time case). Firstly, if we consider our discrete-time algorithm
indexed by a Poisson process, we recover the Fleming-Viot algorithm, see [7, Section 6]
for details. This enables us to compare this result with previous works on Fleming-Viot
algorithm. Articles [32, Theorem 1] and [18, Theorem 1.1] give a L1-bound in a more
general setting (not finite state space) but to our knowledge, (3.4) and (3.5) are the first
almost-sure convergence results.
However, none of these works give a rate of convergence to the QSD. Using t = γ ln(N)

in [13, Corollary 1.5] (and its proof) and [13, Remark 2.8], we have a uniform error term
in N−γ for the approximation of the QSD, where γ depends on the rate of convergence
of the conditioned semi-group to equilibrium. Even if our setting is in discrete time, this
result can be compared with our Theorem 1.2 (and Corollary 1.5, more precisely).

Remark 3.3 (Time versus spatial empirical measure). In this work, we compare two
dynamics based on K[µr] where µr is either the time occupation measure or the spatial
occupation measure. The analyses of the resultant flows, Φ and Ψ are very similar. This
analogy was already observed in previous works with the Mc Kean-Vlasov equation; see
[5, 6].
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