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Lower bounds for bootstrap percolation
on Galton-Watson trees
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Abstract

Bootstrap percolation is a cellular automaton modelling the spread of an ‘infection’
on a graph. In this note, we prove a family of lower bounds on the critical probability
for r-neighbour bootstrap percolation on Galton-Watson trees in terms of moments
of the offspring distributions. With this result we confirm a conjecture of Bollobas,
Gunderson, Holmgren, Janson and Przykucki. We also show that these bounds are
best possible up to positive constants not depending on the offspring distribution.
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1 Introduction

Bootstrap percolation, a type of cellular automaton, was introduced by Chalupa,
Leath and Reich [1] and has been used to model a number of physical processes. Given
a graph G and threshold r» > 2, the r-neighbour bootstrap process on (G is defined as
follows: Given A C V(G), set Ay = A and for each t > 1, define

A=A, U{v e V(G): [N(w)NA_| >},

where N(v) is the neighbourhood of v in (. The closure of a set A is (A) = ;- 4:-
Often the bootstrap process is thought of as the spread, in discrete time steps, of an
‘infection’ on a graph. Vertices are in one of two states: ‘infected’ or ‘healthy’ and a
vertex with at least r infected neighbours becomes itself infected, if it was not already,
at the next time step. For each ¢, the set A; is the set of infected vertices at time ¢. A
set A C V(G) of initially infected vertices is said to percolate if (A) = V(G).

Usually, the behaviour of bootstrap processes is studied in the case where the ini-
tially infected vertices, i.e., the set A, are chosen independently at random with a fixed
probability p. For an infinite graph G the critical probability is defined by

pe(G,r) = inf{p : Pp((4) = V(G)) > 0}.

This is different from the usual definition of critical probability for finite graphs, which
is generally defined as the infimum of the values of p for which percolation is more likely
to occur than not.
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Lower bounds for bootstrap percolation on Galton-Watson trees

In this paper, we consider bootstrap percolation on Galton-Watson trees and answer
a conjecture in [3] on lower bounds for their critical probabilities. For any offspring
distribution £ on IN U {0}, let T¢ denote a random Galton-Watson tree (the family tree
of a Galton-Watson branching process) with offspring distribution £ which we define as
follows. Starting with a single root vertex in level 0, at each generation n = 1,2,3,...
every vertex in level n — 1 gives birth to a random number of children in level n, where
for every vertex the number of offspring is distributed according to the distribution &
and is independent of the number of children of any other vertex. For any fixed offspring
distribution ¢, the critical probability p.(T¢,r) is almost surely a constant (see Lemma
3.2 in [3]) and we shall give lower bounds on the critical probability in terms of various
moments of &.

Bootstrap processes on infinite regular trees were first considered by Chalupa,
Leath and Reich [1]. Later, Balogh, Peres and Pete [2] studied bootstrap percolation on
arbitrary infinite trees and one particular example of a random tree given by a Galton-
Watson branching process. In [3], Galton-Watson branching processes were further
considered, and it was shown that for every r» > 2, there is a constant ¢, > 0 so that

= g (5)

and in addition, for every a € (0, 1], there is a positive constant ¢, , so that,

-1/«

pe(Te,r) > cra (BET]) (1.1)

Additionally, in [3] it was conjectured that for any r > 2, inequality (1.1) holds for
any a € (0,7 — 1]. As our main result, we show that this conjecture is true. For the
proofs to come, some notation from [3] is used. If an offspring distribution ¢ is such
that P({¢ < r) > 0, then one can easily show that p.(T¢,r) = 1. With this in mind, for
r-neighbour bootstrap percolation, we only consider offspring distributions with & > r
almost surely.

Definition 1.1. For everyr > 2 and k > r, define

o(@) = PBin(k,1-z)<r—1) z_: (k‘) (L = )

x . 1
=0

and for any offspring distribution £ with £ > r almost surely, define

Gi(x) = Y P(€ = k)gh(a).

k>r

Some facts, which can be proved by induction, about these functions are used in the
proofs to come. For any r > 2, we have g7 (z) = Z;;Ol(l —z)" and for any k > r,

el 4
gr(z) — gp(x) = Z <r B 1) 771 =) (1.2)

Hence, for all distributions { we have G{(z) < g;(z) for z € [0,1].
Developing a formulation given by Balogh, Peres and Pete [2], it was shown in [3]
(see Theorem 3.6 in [3]) that if £ > r, then

1

pe(Te,7) =1— ———F .
( ¢ ) maXge[o,1] Gg(ﬂf)

(1.3)
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2 Results

In this section, we shall prove a family of lower bounds on the critical probability
pe(Te, ) based on the (1+a)-moments of the offspring distributions ¢ for all o € (0,7 —1],
using a modification of the proofs of Lemmas 3.7 and 3.8 in [3] together with some
properties of the gamma function and the beta function.

The gamma function is given, for z with R(z) > 0, by I'(z) = [, t*~! exp(—t) dt and
for all n € IN, satisfies I'(n) = (n — 1)!. The beta function is glven for R(x), R(y) > 0, by
B(z,y) = fol t*=1(1 — t)¥~! dt and satisfies B(z,y) = % We shall use the following
bounds on the ratio of two values of the gamma function obtained by Gautschi [4]. For
n € Nand 0 < s <1 we have

1 \' _Tn+s) (1)
(1) =rnsG) o

Let us now state our main result.

Theorem 2.1. For eachr > 2 and a € (0,r — 1], there exists a constant ¢, , > 0 such
that for any offspring distribution ¢ with E[¢1T%] < co, we have

Pe(Te,) > era (B [614°])

We prove Theorem 2.1 in two steps. First, in Lemma 2.2, we show that it holds for
€ (0,r — 1). Then, in Lemma 2.3, we consider the case o =7 — 1.

-1/«

Lemma 2.2. Forallr > 2 and « € (0,r — 1), there exists a positive constant ¢, , such
that for any distribution ¢ with E[¢11%] < oo, we have

-1/
pe(Te,r) > era (E[614°]) 77
Proof. Fixr > 2, o € (0,7—1) with « ¢ Z and an offspring distribution £. Sett = |« and
e=a—tsothate € (0,1) and ¢ is an integer with ¢ € [0,r — 2]. Set M = max,¢(o,1) G¢ ()
and fix y € [0, 1] with the property that g/ (1 —y) = M. Such a y can always be found
since Gg(z) < gy () in [0,1], GE(1) = g;(1) = 1 and g; () is continuous. Thus, M =
14+y+...+%" ! and so by equation (1.3)

1 y(l—yr’1)>r—1

ch =1-—=
p(fr) M 1—yr = r

y. (2.2)

A lower bound on p.(T¢,r) is given by considering upper and lower bounds for the
1 g, (x)—Gg (:v)
lntegI‘al f W dx
For the upper bound, using the definition of the beta function, for every k > r

k—1

1 : 1
9r@) = 9 (@) g i / (1 - g)rre

/O (1—z)ot2 dm*Z r—1) ), * (1-2) dz (by eq. (1.2))
~ (i

_Z<T_1)B(ir+l,r1a)

= i (=) —1-a)
—iz G-+l TG-a)

B i(i—1)...(— TG —1t)
Z z—r—|—1 T(E—t—eg)
. 'r—1—t—¢)
(r—D(r—=2)...r =1=tT(r—1-1)

(2.3)
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Let 1 = ¢1(r, @) = Goy=p —o—i—9r—7—7- Note that by inequality (2.1), for ¢t <r -2,

F%r(:i;i;)i) > (r—ll—t)f and so ¢; > W = (r — 1)7®. On the other hand, if t = r — 2,
_I'l—e) _ I'(2—e¢)
then ¢; = (T,l‘; = 0= 5)(7"5 ! = 2(r— 1)'(1 )’

Thus, continuing equation (2.3), applying inequality (2.1) again yields

SNi(i—1)...(i— TG — 1) I'r—1—-t—e¢)
D o 2 AR s = i e L e

12 r'+1 (= 1)(i—2)...(i—t)(i—t)F

<re E it+5

1+t+e 1+«
k kK Te.

<rc =rc

Thus, taking expectation over k with respect to &,

' gr(x) — Gy(x) o
A W dzx S TCl]E[§1+ } (24)

Consider now a lower bound on the integral:

/19:(9:)02(@ dx>/1—y gr(@) — M
0 0

(1—z)*te (1— )2t
I T VI S |
= /0 7m + ; W dx
NS — 1 Y
(@ +1)(1 —x)tte * ; (o —i)(1 — x)a—i] .

D () B ) B

=0 i=t+1
1 M—1 a+1_1 t i, r—2 a _ i
5 (M () 5
i=0 i=t4+1
_1<(1+y+y + -+zf‘2)(y"‘“—1)jth:yl—y"‘Jr = yo‘—zﬁ)
Yy (a+1) oa-i A i-a
t i r—2 r—2 t
1 _1 1 7 7 a+1+1 7 «
:a<a—|—1+a Z(ay—z_azj—1>+ ya—l—l a ail_zay—l
Yy 1=0 1=t+1 =0

Y2
S|~
/N
2
Q»—l
+
=
|
Q |w
+1 +
—_
|
ch
()
IS
N——

V2
S|
7N
2
e —
+
=
I
<
Q
F
=
=}
+
e
|
~
N~

Set ca = o) = Zfié = +117i and consider separately two different cases. For the
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first, if y®cy > then since E[¢2T!] > 1,

1
2a(a+1)

1 1
>

14+a1—1
~ 2a(a+1)eg — 2cu(cu—|—1)czE[§ T

1/
Thus, if ¢, = (m) , then y > yE[¢IHo] Ve,
: 1
In the second case, if y* < Sa(atDe’ then
Lgi(z) — Gi(x 1 1
/ Mdmzii. (2.5)
o (L—a)te y* 2a(a+ 1)

Combining equation (2.5) with equation (2.4) yields

1 1
> i ) 1+a]—1
T 2a(a+1)re ]

(03

Y

and setting ¢} = (2a(a 4 1)re;) =Y gives y > ¢} E[¢1 o]~/

Finally, set ¢, o = 1 min{c{, ¢4} so that by inequality (2.2) we obtain,

r—1 B
pe(Te,m) 2 ——y > ¢ B0

For every natural number n € [1,7 — 2], note that lim, ,,- ¢, > 0 and, by the
monotone convergence theorem, there is a constant ¢, > 0 so that

pc(Tfa 7“) > cr,nE[gH_n]_l/n'
This completes the proof of the lemma. O

In the above proof, as a — (r —1)7, ci(r, @) — oo and hence lim,_,(,_1)- ¢,o = 0, SO
the proof of Lemma 2.2 does not directly extend to the case o« = r — 1. We deal with
this problem in the next lemma. Using a different approach we prove an essentially
best possible lower bound on p.(T¢,r) based on the r-th moment of the distribution
&. The sharpness of our bound is demonstrated by the b-branching tree T3, a Galton-
Watson tree with a constant offspring distribution, for which, as a function of b, we have

Pe(Tp,m) = (1 +0(1))(1 —1/r) ((”;,1)’)1/(7‘_1) (see Lemma 3.7 in [3]).

Lemma 2.3. For anyr > 2 and any offspring distribution ¢ with E[£"] < oo,

miten= (1-2) ()

Proof. As in the proof of Lemma 3.7 of [3] note that for every £k > r and ¢ € [0, 1],

P(Bin(k,t) <r—1) 1—P(Bin(k,t) >r)

r(1—t) = =
gk( ) 1—¢ 11
e L - T 2.6)
- 1-t - 1-t ’
Using the lower bound in inequality (2.6) for the function Gg(x) yields
Gi(1—t)> > P(E=k) Lo gkt 1 Bl
¢ = B 1-t 1—-t
k>r
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1/(r—1)
Evaluating the function G¢(1 —t) att =19 = (%) yields
— 4B 1-1g
Gt (1 —t) > r! _ r =
§( O) - 1—1tp 1—tp

Since the maximum value of G () is at least as big as G{(1 — to), by equation (1.3),
1 C Gi(1—tg) —1
G{(1—to) Gi(1 —to)

to(1—=2) 1—to
1—ty 1— 1

S0 (1)

(- ()

This completes the proof of the lemma. O

pC(Tfyr) Z 1 -

Theorem 2.1 now follows immediately from Lemmas 2.2 and 2.3.

It is not possible to extend a result of the form of Theorem 2.1 to a > r — 1, as
demonstrated, again, by the regular b-branching tree. For every «, the (1+«)-th moment
of this distribution is b'* and the critical probability for the constant distribution is

pe(hr) = (1 o(1)(1 - 1/m) (52) 7

As we already noted, Lemma 2.3 is asymptotically sharp, giving the best possible
constant in Theorem 2.1 for any » > 2 and o = r — 1. We now show that for « € (0,7 —1),
Theorem 2.1 is also best possible, up to constants. In [3], it was shown that for every
r > 2, there is a constant C,. such that if b > (r—1)(log(4r) + 1) then there is an offspring

distribution 7,.;, with E[,.;] = band p.(T), ,,r) < C, exp (

— ) (see Lemma 3.10in [3]).

In particular, it was shown that there are k1 = k1(r,0) < (r — 2) exp (r T+ 1) —1and
A, X € (0,1) so that the distribution 7, ; is given by
k(%lm r<k<k,k#2r+1

Py =k) = l—1—)\A k=r
ot (L= VA k=2r+1.

For any a > 0, the (o + 1)-th moment of 7, is bounded from above as follows,
a+1 < (r a+1 atl 4 at1
;k(k RO 4 XAret 4 (1= M) A(2r 4+ 1)
k1

<2(r—1)) k2020 + 1))
k=r

k141
<2(r—1) / 2 Vdr o7t £ 2(2r +1)0T!

LT; D) (ky +1)® +3(2r 4+ 1)2F!
Ar—1) ((r —2)exp <rfl + 1))“ +3(2r + 1)*H,

<

IN

(07

ECP 19 (2014), paper 42. ecp.ejpecp.org
Page 6/7


http://dx.doi.org/10.1214/ECP.v19-3315
http://ecp.ejpecp.org/

Lower bounds for bootstrap percolation on Galton-Watson trees

where the 7~ ! term makes the inequality hold for o < 1. In particular, there is a
constant C,, so that for b sufficiently large, E[n'T]'/* < C, , exp (%1) Thus, for
some positive constant C’

r,a’

b
pC(Tﬂrwr) S C’/‘ exp <_1) S C;aE[nita]_l/a'
il Tv ’ El

Hence the bounds in Theorem 2.1 are sharp up to a constant that does not depend on
the offspring distribution &.

References

[1] J. Chalupa, PL. Leath, and G.R. Reich, Bootstrap percolation on a Bethe latice, J. Phys. C, 12
(1979), L31-L35.

[2] J. Balogh, Y. Peres, and G. Pete, Bootstrap percolation on infinite trees and non-amenable
groups, Combin. Probab. Comput. 15 (2006), 715-730. MR-2248323

[3] B. Bollobas, K. Gunderson, C. Holmgren, S. Janson, and M. Przykucki, Bootstrap percolation
on Galton-Watson trees, Electron. J. Probab. 19 (2014), no. 13, 1-27. MR-3164766

[4] W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma
function, J. Math. and Phys. 38 (1959/60), 77-81. MR-0103289

ECP 19 (2014), paper 42. ecp.ejpecp.org
Page 7/7


http://www.ams.org/mathscinet-getitem?mr=2248323
http://www.ams.org/mathscinet-getitem?mr=3164766
http://www.ams.org/mathscinet-getitem?mr=0103289
http://dx.doi.org/10.1214/ECP.v19-3315
http://ecp.ejpecp.org/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

Free for authors, free for readers

Quick publication (no backlog)

Low cost, based on free software (OJS?)

Non profit, sponsored by IMS?, BS?, PKP*
Purely electronic and secure (LOCKSS®)

Donate to the IMS open access fund® (click here to donate!)

e Submit your best articles to EJP-ECP

e Choose EJP-ECP over for-profit journals

10JS: Open Journal Systems http://pkp.sfu.ca/ojs/

2IMS: Institute of Mathematical Statistics http://www.imstat.org/

3BS: Bernoulli Society http://www.bernoulli-society.org/

4PK: Public Knowledge Project http://pkp.sfu.ca/

SLOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

SIMS Open Access Fund: http://www.imstat.org/publications/open.htm


http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Results
	References

