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1 Introduction

The Brascamp-Lieb moment inequality plays an important role in statistical mechan-
ics, such as in the analysis of gradient interface models; see, e.g., [10, 8, 12]. It asserts
that centered moments of a distribution with log-concave density relative to a Gaussian
distribution do not exceed those of that Gaussian’s; it is used to derive the tightness
of finite-volume Gibbs measures describing the static interface, strict convexity of the
associated surface tension, and so on.

The Skorokhod embedding problem is to find a stopping time T for one-dimensional
Brownian motion B such that B(T ) is distributed as a given probability measure on R.
The problem was proposed by Skorokhod [17] and a number of solutions have been
constructed since then ([15]); they are applied to the proof of Donsker’s invariance
principle, robust pricings of options in mathematical finance (see, e.g., [13]), and so on.

In this paper, we reveal a connection between the Brascamp-Lieb inequality and the
Skorokhod embedding of Bass [1]; as a by-product, we also provide error bounds for
the inequality in terms of the variance by applying the Itô-Tanaka formula. Let Y be an
n-dimensional Gaussian random variable defined on a probability space (Ω,F , P ) with
law ν. Let X be an n-dimensional random variable on (Ω,F , P ), whose law µ is given in
the form

µ(dx) =
1

Z
e−V (x) ν(dx) (1.1)

with V : Rn → R a convex function, where

Z :=

∫
Rn
e−V (x) ν(dx) ∈ (0,∞).
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A connection of the Brascamp-Lieb inequality with Skorokhod embedding

In what follows, we fix v ∈ Rn (v 6= 0) arbitrarily. For a one-dimensional random variable
ξ, we denote its variance by var(ξ): var(ξ) = E[(ξ − E[ξ])2]. We set a := var(v · Y ). Here
a · b denotes the inner product of a, b ∈ Rn. We also set

p(t;x) :=
1√
2πt

exp

(
−x

2

2t

)
, t > 0, x ∈ R.

The result of this paper is stated as follows:

Theorem 1.1. For every convex function ψ on R, we have the following.

(i) It holds that

E [ψ (v · Y − E [v · Y ])] ≥ E [ψ (v ·X − E [v ·X])] . (1.2)

More precisely, we have

E [ψ (v · Y − E [v · Y ])] ≥E [ψ (v ·X − E [v ·X])]

+
1

2

∫
R

ψ′′(dx)

∫ a−1(a−var(v·X))2

0

ds p
(
s;
√
x2 + a

)
, (1.3)

where ψ′′(dx) denotes the second derivative of ψ in the sense of distribution.

(ii) For every p > 1, it holds that

E [ψ (v · Y − E [v · Y ])] ≤E [ψ (v ·X − E [v ·X])]

+ C(a, ψ, q) (a− var(v ·X))
1
2p . (1.4)

Here C(a, ψ, q) ∈ [0,∞] is given by

C(a, ψ, q) = (a(1 + q))
1
2q

∫
R

ψ′′(dx) p

(
1;

x√
a(1 + q)

)
with q the conjugate of p: p−1 + q−1 = 1. Note that a− var(v ·X) ≥ 0 by (1.2).

The above inequalities (1.2)–(1.4) are understood to hold also in the case that both sides
are infinity.

Remark 1.2. (1) The inequality (1.2) is called the Brascamp-Lieb inequality. It was
originally proved by Brascamp and Lieb [4, Theorem 5.1] in the case ψ(x) = |x|p, p ≥ 1;
it was then extended to general convex ψ’s by Caffarelli [5, Corollary 6] based on a
deep understanding of optimal transportation between µ and ν, and the related Monge-
Ampère equation.
(2) In the case ψ′′(R) <∞, letting p→ 1 in (1.4) yields

E [ψ (v · Y − E [v · Y ])]− E [ψ (v ·X − E [v ·X])] ≤ 1√
2π
ψ′′(R) (a− var(v ·X))

1
2 .

Taking ψ(x) = |x|, after some manipulation we see that

E [|v ·X − E [v ·X]|]
var(v ·X)

≥ 1√
2πvar(v · Y )

for any convex V .
(3) In the case ψ(x) = x2, inequalities (1.3) and (1.4) hold merely in the obvious manner;
in other words, they do not give any information on var(v ·X), other than var(v ·X) ≤ a.
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By [4, Theorem 4.1], we remark that if V ∈ C2(Rn), then var(v · X) admits the upper
bound ∫

Rn
µ(dx) v ·

(
Σ−1 +D2V (x)

)−1
v,

which is less than or equal to a ≡ v ·Σv. Here Σ is the covariance matrix of the Gaussian
ν and D2V is the Hessian of V .

The rest of the paper is organized as follows: In Section 2 we prove Theorem 1.1.
The Brascamp-Lieb inequality (1.2) is proved in Subsection 2.1; we devote Subsec-
tion 2.2 to the proof of (1.3) and (1.4); in Subsection 2.3 we prove Lemma 2.1, which
plays an essential role in the proof of Theorem 1.1. In the appendix we discuss an
extension of the Brascamp-Lieb inequality to the case with V not necessarily convex.

For every real-valued function f on R and for every x ∈ R, we denote respectively by
f ′+(x) and f ′−(x) the right- and left-derivatives of f at x if they exist. For each x, y ∈ R,
we write x ∧ y = min{x, y} and x+ = max{x, 0}. Other notation will be introduced as
needed.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Without loss of generality, we may
assume that ν is centered: E[Y ] = 0. Moreover, Theorem 4.3 of [4] reduces the proof to
the case n = 1; that is, the density of the law P ◦(v ·X)

−1 relative to the one-dimensional
Gaussian measure P ◦ (v · Y )

−1 is log-concave. Therefore in what follows, we take the
Gaussian measure ν in (1.1) as

ν(dx) =
1√
2πa

exp

(
−x

2

2a

)
dx, x ∈ R,

and V as a convex function on R. We accordingly write X and Y for v · X and v · Y ,
respectively; that is, X is distributed as µ and Y as ν.

2.1 Proof of (1.2)

In this subsection we prove the inequality (1.2) in Theorem 1.1. We denote by Fµ
the distribution function of µ:

Fµ(x) :=
1

Z

∫ x

−∞
e−V (y) ν(dy), x ∈ R.

We also set

Φ(x) :=
1√
2π

∫ x

−∞
exp

(
−1

2
y2
)
dy, x ∈ R,

and

g := F−1µ ◦ Φ. (2.1)

Here F−1µ : (0, 1) → R is the inverse function of Fµ. Apparently g is differentiable and
strictly increasing. By convexity of V we have moreover

Lemma 2.1. It holds that g′(x) ≤
√
a for all x ∈ R.

We postpone the proof of this lemma to Subsection 2.3. Once this lemma is shown,
the proof of (1.2) is straightforward from the Skorokhod embedding of Bass [1]; for
other types of embeddings, we refer the reader to the detailed survey [15] by Obłój. Let
{Wt}t≥0 be a standard one-dimensional Brownian motion on (Ω,F , P ).
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Proof of (1.2). Note that g(W1) is distributed as µ. Applying Clark’s formula (see, e.g.,
[14, Appendix E]) to g(W1) yields

g(W1)− E [g(W1)] =

∫ 1

0

a(s,Ws) dWs P -a.s.,

where for 0 ≤ s ≤ 1 and y ∈ R,

a(s, y) :=
∂

∂y
E [g(y +W1−s)]

=E [g′(y +W1−s)] . (2.2)

By the Dambis-Dubins-Schwarz theorem (see, e.g., [16, Theorem V.1.6]), there exists a
Brownian motion {B(t)}t≥0 on (Ω,F , P ) such that∫ t

0

a(s,Ws) dWs = B

(∫ t

0

a(s,Ws)
2 ds

)
for all 0 ≤ t ≤ 1, P -a.s.

We know from [1] that T :=
∫ 1

0
a(s,Ws)

2 ds is a stopping time in the natural filtration of
B. Moreover, by (2.2) and Lemma 2.1, we have T ≤ a P -a.s. We denote by {Lxt }t≥0,x∈R
the local time process of B. For every x ∈ R, Tanaka’s formula yields

E
[
(B(a)− x)

+
]

= E
[
(B(T )− x)

+
]

+
1

2
E [Lxa − LxT ] , (2.3)

E
[
(x−B(a))

+
]

= E
[
(x−B(T ))

+
]

+
1

2
E [Lxa − LxT ] . (2.4)

From (2.3) and (2.4), it follows that for every convex ψ,

E [ψ (B(a))] = E [ψ (B(T ))] +
1

2

∫
R

ψ′′(dx)E [Lxa − LxT ] . (2.5)

Indeed, by Fubini’s theorem,∫
[0,∞)

ψ′′(dx)E
[
(B(a)− x)

+
]

+

∫
(−∞,0)

ψ′′(dx)E
[
(x−B(a))

+
]

= E
[
ψ (B(a))− ψ′−(0)B(a)− ψ(0)

]
= E [ψ (B(a))]− ψ(0),

which is equal, by (2.3), (2.4) and E [B(T )] = 0, to the right-hand side of (2.5) with ψ(0)

subtracted. Hence (2.5) holds. As ψ′′ is a nonnegative measure and T ≤ a a.s., it is
immediate from (2.5) that

E [ψ (B(a))] ≥ E [ψ (B(T ))] , (2.6)

which is nothing but (1.2) since

B(T ) = g(W1)− E [g(W1)]
(d)
= X − E [X] (2.7)

and B(a)
(d)
= Y . The proof is complete.

Remark 2.2. (1) For any convex ψ such that
∫ ·
0
ψ′− (B(s)) dB(s) is a martingale, the

identity (2.5) is immediate from the Itô-Tanaka formula.
(2) For any convex ψ such that E [|ψ (B(a))|] <∞ (i.e., E [ψ (B(a))] <∞), the inequality
(2.6) follows readily from the optional sampling theorem applied to the submartingale
{ψ(B(t))}0≤t≤a.
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(3) Let {β(t)}t≥0 be a standard one-dimensional Brownian motion and τ denote Root’s

solution that embeds the law of X −E[X] in β: β(τ)
(d)
= X −E[X]. Since τ is of minimal

residual expectation, it follows that τ is also bounded from above by a, which indicates
that the Brascamp-Lieb inequality (1.2) can also be proved by using Root’s solution.
For the construction of embedding due to D.H. Root and the notion of minimal residual
expectation, see [13, Section 5.1] and references therein. In addition, the boundedness
of Root’s solution as noted above in the Brascamp-Lieb framework gives an answer to
the question raised in [7, Section 7] as to when Root’s barrier is bounded; see also the
proof of Proposition A.1 below.
(4) The author is informed by one of the referees that another proof of (1.2) is possi-
ble by using the Helffer-Sjöstrand random walk representation; for the representation
and its connection with the Brascamp-Lieb and other related inequalities, we refer the
reader to [9, Section 4], where a proof of (1.2) with ψ(x) = x2 by means of the Helffer-
Sjöstrand representation is presented.

2.2 Proof of (1.3) and (1.4)

In this subsection we prove the inequalities (1.3) and (1.4) in Theorem 1.1. We keep
the notation in the previous subsection. By (2.5), the proof is reduced to showing the
following proposition.

Proposition 2.3. (1) It holds that for all x ∈ R,

E [Lxa − LxT ] ≥
∫ a−1(a−var(X))2

0

ds p
(
s;
√
x2 + a

)
. (2.8)

(2) For every p > 1, it holds that for all x ∈ R,

E [Lxa − LxT ] ≤ 2 (a(1 + q))
1
2q p

(
1;

x√
a(1 + q)

)
(a− var(X))

1
2p . (2.9)

To prove these estimates, we prepare a lemma.

Lemma 2.4. For every t > 0 and x ∈ R, we have

E [Lxt ] =

∫ t

0

ds p(s;x) (2.10)

= 2

∫ ∞
0

dy (y − |x|)+ p(t; y) (2.11)

= 2

∫ ∞
0

dy
(√

t y − |x|
)+

p(1; y). (2.12)

Proof. The first equality is seen from the occupation time formula. The second is due
to the identity

{Lxt }t≥0
(d)
=
{(

max
0≤s≤t

B(s)− |x|
)+}

t≥0

for every x ∈ R, which is deduced from Lévy’s theorem for Brownian local time. The
third one follows from change of variables.

The proof of the proposition then proceeds as follows. Recall T ≤ a a.s.

Proof of Proposition 2.3. (1) By the strong Markov property of Brownian motion,

E [Lxa − LxT ] = E

[
E
[
Lx−za−t

] ∣∣∣
(t,z)=(T,B(T ))

]
. (2.13)
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By (2.12), this is rewritten as

2E

[∫ ∞
0

dy
(√

a− T y − |x−B(T )|
)+

p(1; y)

]
.

Using Fubini’s theorem and Jensen’s inequality, we bound the above expression from
below by

2

∫ ∞
0

dy
(
E
[√

a− T
]
y − E [|x−B(T )|]

)+
p(1; y). (2.14)

By the optional sampling theorem and Schwarz’s inequality,

E [|x−B(T )|] ≤ E [|x−B(a)|]

≤
√
x2 + a.

Plugging this estimate into (2.14) and using the identity between (2.12) and (2.10) lead
to

E [Lxa − LxT ] ≥
∫ E[

√
a−T ]

2

0

ds p
(
s;
√
x2 + a

)
.

Since
√
a− t ≥ a−1/2(a− t) for 0 ≤ t ≤ a, we see that

E
[√

a− T
]2
≥ a−1 (a− E[T ])

2

= a−1 (a− var(X))
2
,

where the equality follows from Wald’s identity

E[T ] = E
[
B(T )2

]
(2.15)

and from (2.7). This proves (2.8).
(2) First we show that for every t > 0 and x ∈ R,

E

[∫ t

0

ds p (s; |x−B(T )|)
]
≤
∫ a+t

0

ds p(s;x). (2.16)

By the identity between (2.10) and (2.11), and by Fubini’s theorem, the left-hand side
is equal to

2

∫ ∞
0

dy E
[
(y − |x−B(T )|)+

]
p(t; y). (2.17)

We note the identity (y − |x− z|)+ = (z − x+ y)+ ∧ (x+ y − z)+ for z ∈ R, to bound the
expectation in the integrand from above by

E
[
(B(T )− x+ y)

+
]
∧ E

[
(x+ y −B(T ))

+
]

≤ E
[
(B(a)− x+ y)

+
]
∧ E

[
(x+ y −B(a))

+
]

= E
[
(B(a) + y − |x|)+

]
.

Here for the inequality, we used the optional sampling theorem; the equality follows

from the monotonicity of E
[
(B(a)− x+ y)

+
]

in x and the symmetry in the sense that

ECP 19 (2014), paper 61.
Page 6/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3025
http://ecp.ejpecp.org/


A connection of the Brascamp-Lieb inequality with Skorokhod embedding

E
[
(B(a)− (−x) + y)

+
]

= E
[
(x+ y −B(a))

+
]
. Therefore (2.17) is dominated by

2

∫ ∞
0

dy

∫
R

dz (z + y − |x|)+ p(a; z)p(t; y)

= 2

∫
R

du
(√

a + t u− |x|
)+

p(1;u)

∫ √a−1t u

−∞
dv p(1; v)

≤ 2

∫ ∞
0

du
(√

a + t u− |x|
)+

p(1;u),

where we changed variables with u = z+y√
a+t

and v = tz−ay√
at(a+t)

for the equality. Now (2.16)

follows from the identity between (2.12) and (2.10).
By (2.13), (2.10) and Hölder’s inequality,

E [Lxa − LxT ] ≤
(

1

2π

) 1
2p

E

[∫ a−T

0

ds√
s

] 1
p

E

[∫ a

0

ds p (s;
√
q|x−B(T )|)

] 1
q

=

(
2

π

) 1
2p

q
1
2qE

[√
a− T

] 1
p

E

[∫ aq−1

0

ds p (s; |x−B(T )|)

] 1
q

.

By Jensen’s inequality, and by (2.15) and (2.7),

E
[√

a− T
]
≤ (a− E[T ])

1
2 = (a− var(X))

1
2 .

Moreover, by (2.16),

E

[∫ aq−1

0

ds p (s; |x−B(T )|)

]
≤
∫ a(1+q−1)

0

ds p(s;x)

≤
(

2a(1 + q)

πq

) 1
2

exp

{
− qx2

2a(1 + q)

}
.

Combining these leads to (2.9) and ends the proof of Proposition 2.3.

Proof of (1.3) and (1.4). They are immediate from (2.5) and Proposition 2.3.

2.3 Proof of Lemma 2.1

We conclude this section with the proof of Lemma 2.1; the assertion itself is corre-
sponding to that of [5, Theorem 11] in the case of one dimension, where we can give
a more straightforward proof which we think is worthy of presentation. To begin with,
note that we only need to consider the case a = 1; indeed, setting

Ṽ (x) := V
(√

ax
)
, F̃µ(x) :=

√
a

Z

∫ x

−∞
exp

(
−1

2
y2 − Ṽ (y)

)
dy,

we have Fµ(x) = F̃µ
(
x/
√
a
)
, from which it follows that

F−1µ ◦ Φ(x) =
√
aF̃−1µ ◦ Φ(x).

Therefore the assertion of Lemma 2.1 is equivalent to(
F̃−1µ ◦ Φ

)′
≤ 1.

Note that Ṽ remains convex.
From now on we let a = 1. We utilize the following:
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Lemma 2.5. It holds that for all x ∈ R,

F ′µ(x) ≥ Φ′
(
x+ V ′−(x)

)
.

Proof. Since V (y)− V (x) ≥ V ′−(x)(y − x) for all x, y ∈ R, we have

1

F ′µ(x)
=

∫
R

exp

(
−1

2
y2 − V (y)

)
dy × exp

(
1

2
x2 + V (x)

)
≤ exp

(
1

2
x2
)∫

R

exp

{
−1

2
y2 − V ′−(x)(y − x)

}
dy

= exp

{
1

2

(
x+ V ′−(x)

)2}×√2π,

which is the desired inequality.

The proof of Lemma 2.1 follows readily from the above lemma.

Proof of Lemma 2.1. Since

g′(x) =
Φ′(x)

F ′µ ◦ F−1µ (Φ(x))
,

the assertion of the lemma with a = 1 is equivalent to

G(ξ) := F ′µ ◦ F−1µ (ξ)− Φ′ ◦ Φ−1(ξ) ≥ 0 for all ξ ∈ (0, 1). (2.18)

First note that

G(0+) = G(1−) = 0 (2.19)

because both F ′µ ◦ F−1µ and Φ′ ◦ Φ−1 are zero at ξ = 0+ and ξ = 1−. Next, G is both
right- and left-differentiable since F ′µ is and since F−1µ is monotone. Suppose now that
G has a local minimum at some ξ0 ∈ (0, 1). Then G′−(ξ0) ≤ 0 and G′+(ξ0) ≥ 0. Since

G′±(ξ) =

(
F ′µ
)′
±

F ′µ
◦ F−1µ (ξ) + Φ−1(ξ)

= −
(
x+ V ′±(x)

) ∣∣
x=F−1

µ (ξ)
+ Φ−1(ξ),

we have (
x+ V ′+(x)

) ∣∣
x=F−1

µ (ξ0)
≤ Φ−1(ξ0) ≤

(
x+ V ′−(x)

) ∣∣
x=F−1

µ (ξ0)
,

which entails that

Φ−1(ξ0) =
(
x+ V ′−(x)

) ∣∣
x=F−1

µ (ξ0)

because V ′−(x) ≤ V ′+(x) for all x ∈ R by convexity. Hence by Lemma 2.5

G(ξ0) =
{
F ′µ(x)− Φ′

(
x+ V ′−(x)

)} ∣∣
x=F−1

µ (ξ0)
≥ 0.

Combining this observation with (2.19), we conclude (2.18). This finishes the proof.
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Appendix

In this appendix we discuss an extension of the Brascamp-Lieb inequality (1.2) to
the case with potential function V not necessarily convex. To avoid complexity, we
restrict ourselves to one dimension; multidimensional generalizations may be done by
considering a one-dimensional marginal, namely the law of v · X for every v ∈ Rn,
with X being an n-dimensional random variable. Recently, gradient interface models
with nonconvex potentials have been studied with great interest, see, e.g., [2, 6, 3];
we expect that the result presented here has a contribution to that study. A type of
Brascamp-Lieb inequalities with nonconvex potentials is also discussed by Funaki and
Toukairin [11, Section 4] with some restriction on convex ψ.

For a given α > 0, suppose that the function k ∈ C1(R) satisfies

k′(x) ≥
√
α for all x ∈ R. (A.1)

Set

U(x) =
1

2
|k(x)|2 − log k′(x), x ∈ R, (A.2)

and let the distribution µ on R be given in the form

µ(dx) =
1

Z ′
e−U(x) dx,

where the normalizing factor Z ′ =
∫
R
e−U(x) dx is equal to

√
2π. Let X be a random

variable distributed as µ, and Y a centered Gaussian random variable with variance
1/α. Under the above assumption, we have

Proposition A.1. For every convex function ψ on R, it holds that

E [ψ (X − E[X])] ≤ E [ψ (Y )] . (A.3)

Proof. Since the distribution function Fµ of µ is written as

Fµ(x) =

∫ x

−∞

1√
2π
k′(y) exp

{
−1

2
|k(y)|2

}
dy

= Φ (k(x)) ,

the function g defined by (2.1) is equal to k−1, the inverse function of k. Therefore by
assumption (A.1), we have g′(x) ≤ 1/

√
α for all x ∈ R, hence the same proof as that of

(1.2) applies.

Remark A.2. (1) In the case that the Gaussian measure ν in (1.1) has mean 0 and
variance 1/

√
α, we may write (1.1) as

µ(dx) =
1√
2π

exp

(
−1

2
αx2 − V (x)− C

)
dx

by suitably picking a constant C. Lemma 2.1 indicates that the function R 3 x 7→
1
2αx

2 + V (x) + C with V convex can be expressed as (A.2) for some k satisfying (A.1).
(2) In addition to (A.1), if we assume that

k′(x) ≤
√
β for all x ∈ R,

with some β > α, then we also have the reverse inequality

E [ψ(Y ′)] ≤ E [ψ (X − E[X])] (A.4)

for every convex ψ. Here Y ′ is a centered Gaussian random variable with variance 1/β.
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We conclude this paper with two examples of U .

Example A.3 (double-well type). Take α = 1 and k(x) = x+ x3. Then

U(x) =
1

2
x2 + x4 +

1

2
x6 − log

(
1 + 3x2

)
.

This potential U has a double-well near the origin.

Example A.4 (log-mixture of centered Gaussians). For given p, q > 0 and 0 < a < b

such that

p√
a

+
q√
b

= 1, (A.5)

we take

k(x) = Φ−1
(
p√
a

Φ
(√
ax
)

+
q√
b
Φ
(√

bx
))

.

Then the corresponding U is expressed as

U(x) = − log
(
pe−

1
2ax

2

+ qe−
1
2 bx

2
)
. (A.6)

This type of potentials is dealt with in [2, 6, 3]. The function k satisfies

p ≤ k′(x) ≤
√
b for all x ∈ R, (A.7)

hence we have (A.3) with α = p2 and (A.4) with β = b. To verify (A.7), we start with the
expression

k′(x) =
pΦ′ (

√
ax) + qΦ′

(√
bx
)

Φ′ ◦ Φ−1
(
p√
a
Φ (
√
ax) + q√

b
Φ
(√

bx
)) . (A.8)

To prove the lower bound, it is sufficient to take x ≤ 0 by symmetry. Then, as

p√
a

Φ
(√
ax
)

+
q√
b
Φ
(√

bx
)
≤ Φ

(√
ax
)
≤ 1

2
,

the denominator of (A.8) is dominated by

Φ′ ◦ Φ−1
(
Φ
(√
ax
))

= Φ′
(√
ax
)

because Φ′ ◦ Φ−1 is increasing on (0, 1/2]. Therefore

k′(x) ≥ p+ qe−
1
2 (b−a)x

2

and the lower bound follows. For the upper bound, we use the concavity of Φ′ ◦ Φ−1:(
Φ′ ◦ Φ−1

)′′
= −

(
Φ−1

)′
< 0. Noting the relation (A.5), we apply Jensen’s inequality to

see that the denominator of (A.8) is bounded from below by

p√
a

Φ′ ◦ Φ−1
(
Φ
(√
ax
))

+
q√
b
Φ′ ◦ Φ−1

(
Φ
(√

bx
))
≥ 1√

b

{
pΦ′

(√
ax
)

+ qΦ′
(√

bx
)}

,

from which we obtain the upper bound in (A.7). We end this example with a remark
that this upper bound also holds true in a general situation where k is given by

k(x) = Φ−1
(∫ ∞

0

ρ(dκ)√
κ

Φ
(√
κx
))
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for a positive measure ρ on (0,∞) such that its support is included in (0, b] and∫ ∞
0

ρ(dκ)√
κ

= 1.

The potential U corresponding to this k is given in the form

U(x) = − log

∫ ∞
0

ρ(dκ) e−
1
2κx

2

,

which is referred to as a log-mixture of centered Gaussians in [3].

Remark A.5. For U given by (A.6), a concrete calculation shows that in fact (A.3) holds
with α = a, which gives a better bound than the one discussed above because p2 < a by
the relation (A.5).
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