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We prove that, on the classical Wiener space, the random variable M = sup0≤t≤T Wt
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1 Introduction

Functions of bounded variation (BV ) on abstract Wiener spaces were first intro-
duced by M. Fukushima and M. Hino in [13] and [8] and subsequently studied with
tools from geometric measure theory by L. Ambrosio and his co-workers (see e.g. [3],
[2] and [1]). In [16], M. Pratelli and the author began to investigate some properties of
BV functions in the classical Wiener space.

The aim of this article is to study in the BV framework the Malliavin regularity
of the maximum of a Wiener process, M = sup0≤t≤T Wt, which is well-known to be
differentiable only once. This was initially motivated by possible applications, e.g. for
the computation of Greeks for barrier options using Malliavin calculus, as in [10], where
it also is explicitly remarked that this lack of differentiability forces the introduction of
many technicalities. As remarked by an anonymous referee, the results obtained here
may also be connected to integration by parts formulas in convex sets in Wiener spaces,
which were first studied by L. Zambotti in [19] (see also [11], [9] and [15] for further
developments): this certainly requires deeper investigations.

In this article, therefore, we focus on the second distributional derivative D2M and
the main result, Theorem 3.1, shows that it is a measure, with finite total variation (i.e.
the Malliavin derivative ∇M is BV ). Moreover, Theorem 3.3 shows that the total vari-
ation measure

∣∣D2M
∣∣, which is a finite Borel measure on Ω = C0 (0, T ), is concentrated

on the trajectories which attain the global maximum at least twice.

In the next section, we collect some easy or well-known facts about BV functions on
the classical Wiener space; then we proceed with the main results.
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BV-regularity for ∇M

2 Preliminary results

In all what follows, let T > 0 be fixed and let
(
Ω = C0 (0, T ) ,P, H1

0 ∼ L2(0, T )
)

be the
classical Wiener space, where P is the Wiener measure, L2(0, T ) = L2 ([0, T ] ,L ) and L
denotes the Lebesgue measure on the interval. We also write L 2 = L ⊗L .

We completely refer to [16], Section 2, for a detailed introduction to BV functions
in the classical Wiener space setting: in this section we mainly recall and extend to the
Hilbert space-valued case the definition together with a fundamental result. We also
remark that, below, the square integrability condition is not optimal but provides an
easier formulation.

Let (K, |·|) be some separable Hilbert space and letK⊗L2(0, T ) denote the Hilbertian
tensor product, which is equivalent to a suitable space of Hilbert-Schmidt operators. To
keep notation simple, 〈·, ·〉 denotes any scalar product (there is no danger of confusion).

In all what follows, given h′ ∈ L2(0, T ), we write h (t) =
∫ t

0
h′ (s) ds. When g is a

cylindrical smooth function defined on Ω, ∂hg denotes the directional derivative of g
along the direction h ∈ C0 (0, T ), while we write

∂∗hg = ∂hg − g
∫ T

0

h′ (s) dWs,

so that −∂∗h is adjoint to ∂h, in L2 (Ω,P), i.e. when X is also smooth, it holds E [g∂hX] =

−E [X∂∗hg]. BV functions are precisely those r.v.’s such that the identity just written
still holds, for any h ∈ H1

0 , when the l.h.s. is replaced with a suitable measure DX, with
finite total variation measure, |DX|.

Definition 2.1. A K-valued X ∈ L2 (Ω,P;K) is said to be of bounded variation (BV )
if there exists a K ⊗ L2(0, T )-valued measure DX, with finite total variation, such that,
for every k ∈ K, h′ ∈ L2(0, T ) and every cylindrical smooth function g, it holds∫

Ω

g d 〈DX, k ⊗ h′〉 = −E [〈X, k〉 ∂∗hg] .

Remark 2.2. We use the following notation, already introduced in [16], which slightly
differs from that commonly used in the framework of Malliavin calculus, e.g. in [14]:
we write ∇X = (∂tX)0≤t≤T for the usual Malliavin derivative, while DX stands for the
measure-derivative.

In particular, the Malliavin space D1,2 (P) consists of all the real valued random
variables X ∈ L2 (P) such that DX = ∇X.P, with |∇X| ∈ L2 (P).

A key feature of BV functions is summarized in the following closure result, whose
proof proceeds along the same lines as in the last part of Theorem 4.1 in [3], where the
real-valued case is settled.

Proposition 2.3. Given X ∈ L2 (Ω,P;K), if there exists some sequence (Xn)n≥1 ⊆
BV ∩ L2 (P;K) which converges to X in L2 (P;K), with

sup
n≥1
|DXn| (Ω) <∞,

then X is BV .

We discuss now the notion of measure-second derivative, which is precisely the reg-
ularity that we are going to prove for the maximum of the Wiener process.

Definition 2.4. A real random variable X ∈ D1,2 (P) is said to admit a measure D2X

as second derivative if the L2(0, T )-valued random variable ∇X is BV .
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BV-regularity for ∇M

Remark 2.5. If X admits a second derivative D2X, it follows that, for every k′, h′ ∈
L2(0, T ) and every cylindrical smooth function g, we can integrate by parts twice:∫

Ω

g d
〈
D2X, k′ ⊗ h′

〉
= E [X∂∗k(∂∗hg)] .

After Lemma 1 in [16], any L2(0, T )-valued measure can be identified with a measure
on the product space Ω× [0, T ] and, by disintegration, if X is a BV function, then there
exists some family of real-valued Borel measures (DtX)0≤t≤T on Ω = C0 (0, T ) such
that, for h′ ∈ L2(0, T ) and any smooth function g, it holds∫

Ω

g d 〈DX,h′〉 =

∫ T

0

h′ (t)

∫
Ω

g dDtXdt.

Such a family of measures is then unique up to Lebesgue-negligible sets in [0, T ]. More-
over, if X ∈ D1,2 (P), then L -a.e. t ∈ [0, T ], the measure DtX is absolutely continuous
with respect to P and its density is given by ∂tX, so that one finds as a special case the
usual identification of a Malliavin derivative ∇X with a process (∂tX)0≤t≤T .

When K = L2(0, T ), since K ⊗ L2(0, T ) ∼ L2([0, T ]2,L 2), a similar argument proves
that if X admits a second derivative as a measure D2X, it can be identified with a real
measure on the product space Ω × [0, T ]2. Moreover, it can be proved that there exists
a family of real-valued measures

(
D2
s,tX

)
0≤s,t≤T on Ω such that for k′, h′ ∈ L2(0, T ) and

any smooth function g, it holds∫
Ω

g d
〈
D2X, k′ ⊗ h′

〉
=

∫
[0,T ]2

k′ (s)h′ (t)

[∫
Ω

g dD2
s,tX

]
dsdt.

As above, such a family of measures is then unique up to L 2-negligible sets in [0, T ]2,
i.e. if (µs,t)0≤s,t≤T is another family of measures with satisfies the conditions above,

then L 2-a.e. (s, t) ∈ [0, T ]2, it holds D2
s,tX = µs,t. Finally, it is not difficult to argue that,

L -a.e. t ∈ [0, T ], the (real valued) random variable ∂tX is BV and, L -a.e. s ∈ [0, T ], it
holds Ds∂tX = D2

s,tX.

2.1 A concentration result for level sets

This subsection develops the key argument to prove Theorem 3.3 below, only in
a more general setting. Moreover, Proposition 2.6 can be used also in the proof of
Theorem 3.1 although, there, it can be replaced with finite-dimensional arguments.

Given X ∈ D1,2 (P), the Coarea formula (Theorem 3.7 in [2]) implies that L -a.e. t ∈
R, the set {X > t} has finite perimeter, i.e. I{X>t} is a BV function (see also Proposition
8 in [16] for sufficient conditions such that, for a given t, {X > t} has finite perimeter).
Here, we prove that it is always possible to identify some Borel representative X̃ for X,
such that the perimeter measure is concentrated on the set where X̃ = t: indeed, given
a sequence of smooth cylindrical functions (Xn) ⊆ D1,2 (P) fast convergent to X in this
space, i.e. ‖Xn −Xn+1‖D1,2 ≤ 2−n, set

X̃ (ω) = lim sup
n→∞

Xn (ω) ,

which is the so-called the quasi-continuous representative for X, with respect to the
(2, 1)-capacity (see e.g. [12], chapter IV). Using this notation, the following proposition
holds true.

Proposition 2.6. Given X ∈ D1,2 (P), if {X > t} has finite perimeter, then∣∣DI{X>t}∣∣ {ω ∈ Ω
∣∣ X̃ (ω) 6= t

}
= 0,

where
∣∣DI{X>t}∣∣ denotes the total variation measure of DI{X>t}.
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For more details on the total variation measure, we refer to [16], Section 2.3, and
also [2], Section 2.1.

Proof. We provide here an argument which relies upon the following general facts: the
perimeter measure is a suitable restriction of the 1-codimensional spherical Hausdorff
measure ρ1 (Theorem 1.3 in [1]); moreover ρ1 is absolutely continuous with respect to
the (2, 1)-capacity, i.e. sets with null capacity are ρ1-negligible (Theorem 9 in [7]).

Keeping the notation introduced above, from the the general theory of quasi-sure
analysis it follows that the sequence {Xn (ω)}n≥1 converges to X̃ (ω) for every ω ∈ Ω,
with the exception of a set of null capacity. Using the facts stated above, the conver-
gence holds both P-almost surely and ρ1-a.e. and therefore it holds

∣∣DI{X>t}∣∣-a.e.
Let h′ ∈ L2(0, T ), let ψ be a smooth cylindrical function on Ω and let φ be a smooth

function, defined on R, with compact support contained in the half line (−∞, t), so that
φn = φ◦Xn is also a smooth cylindrical function for any n ≥ 1. The following integration
by parts holds: ∫

Ω

φnψ d
〈
h′, DI{X>t}

〉
= −E

[
I{X>t} (ψ ∂hφn + φn ∂

∗
hψ)

]
.

As n→∞, the left hand side converges to∫
Ω

(
φ ◦ X̃

)
ψ d
〈
h′, DI{X>t}

〉
by Lebesgue’s dominated convergence theorem, while the right hand side converges to

−E
[
I{X>t} (ψ ∂h (φ ◦X) + (φ ◦X) ∂∗hψ)

]
= 0,

by the assumption on the support of φ. Since φ, ψ and h′ are arbitrary, we conclude that∣∣DI{X>t}∣∣ (X̃ < t
)

= 0.

Using DI{X>t} = −DI{X≤t}, the case of {X̃ > t} follows similarly.

3 Main results

For 0 ≤ a ≤ b ≤ T , define

M[a,b] = sup {Wt : a ≤ t ≤ b} , σ[a,b] = inf
{
a ≤ t ≤ b : Wt = M[a,b]

}
,

and write M = M[0,T ], σ = σ[0,T ]. It is well known (see [14], pp. 91-98) that M ∈ D1,p (P)

for any p ≥ 1, with ∇M = I[0,σ[, i.e.

∂tM = I{σ>t} = I{M[0,t]<M[t,T ]}. (3.1)

For any t, write ∆tM = M[t,T ] − M[0,t], which is Mallavin differentiable and has an
absolutely continuous law with bounded density lt (this last fact is elementary, since the
joint law of (M[0,t],Wt) is explicitly known).

Theorem 3.1. The random variableM admits a second derivative as a measureD2M =(
D2
s,tM

)
0≤s,t≤T , with finite total variation.

Moreover, L -a.e. t ∈ [0, T ], for any h′ ∈ L2(0, T ) and any smooth cylindrical function
g, it holds∫ T

0

h′ (s)

[∫
Ω

g dD2
s,tM

]
ds = lt (x)E

[
g
[
h
(
σ[t,T ]

)
− h

(
σ[0,t]

)] ∣∣∆tM = x
]
|x=0

, (3.2)

where the r.h.s. side is intended as its continuous version (which exists), evaluated at
zero.
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Remark 3.2. The random variable M , being the supremum of a family of linear func-
tionals, is convex: from [6], Corollary 6.5.5, we already recover the existence ofD2

h1,h2
M

along every pair h1, h2 ∈ L2(0, T ).

Theorem 3.3. The total variation measure
∣∣D2M

∣∣, which is a finite measure on Ω, is
concentrated on the paths that attain the global maximum at least twice: in particular,
it is singular with respect to P.

Remark 3.4. It is also possible to refine the previous result and prove that L 2-a.e.
(s, t), with 0 ≤ s ≤ t ≤ T , the measure

∣∣D2
s,tM

∣∣ is concentrated on the paths that attain
the global maximum at least twice, once before s and once after t.

Corollary 3.5. The random time σ is BV , with derivative Dσ concentrated on the
trajectories that attain the global maximum at least twice.

Proof. It follows from σ =
∫ T

0
∂sMds =

〈
I[0,T [,∇M

〉
.

3.1 Proof of Theorem 3.1

The existence of D2M follows from Proposition 2.3: we provide a sequence of func-
tions (Mn)n≥1 convergent to M in D1,2 (P), such that every ∇Mn is BV and

∣∣D2Mn

∣∣ (Ω)

is bounded, uniformly in n ≥ 1.
First, we need a lemma on Gaussian random walks. Given n ≥ 1, on the standard

n-dimensional Gaussian space (Rn, γ = γn), let (Xi)1≤i≤n be the sequence of standard

projections: Xi (x) = xi. Let W0 = 0 and Wk =
∑k
i=1Xi, for all k ≥ 1, so that (Wk)

n
k=0 is

a Gaussian random walk, starting at the origin, of length n. Write An for the set

An =

n⋂
k=0

{Wk ≤ 0} .

An asymptotic estimate (in terms of n) of the probabilities γ (An) and γ (An |Wn = 0)

will be needed, where we write

γ (An |Wn = 0) =

∣∣DγI{Wn>0}
∣∣ (An)∣∣DγI{Wn>0}
∣∣ (Rn)

,

and DγI{Wn>0} denotes the measure-derivative in the space BV (γ), which is a finite-
dimensional abstract Wiener space (see e.g. [2] for the theory of BV functions in ab-
stract Wiener spaces). However, in this finite-dimensional setting, for a function u, it
is not difficult to relate Dγu with Du, the measure-derivative in the sense of Euclidean
BV functions, in this way (provided that both exist):

Dγu =
e−

|x|2
2

(2π)
n/2

Du. (3.3)

Lemma 3.6. With the notations above, for every n ≥ 1,

γ (An) =

(
2n

n

)
1

4n
and γ (An |Wn = 0) =

1

n
.

The following estimates are then obtained using Stirling approximation for the fac-
torial and the value

∣∣DγI{Wn>0}
∣∣ (Rn) = (2π)

−1/2 (proved e.g. in [2], Corollary 3.11).

Corollary 3.7. For some absolute constant C > 0, it holds for every n ≥ 1,

γ (An) ≤ Cn−1/2 and
∣∣DγI{Wn>0}

∣∣ (An) ≤ Cn−1.
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Proof. (of Lemma 3.6). The first formula follows from a classical result, due to E. Sparre
Andersen (see articles [4], [18] and also [17], page 218):

∞∑
n=0

γ (An) tn = exp

{ ∞∑
k=1

tk

k
γ (Wk ≤ 0)

}
,

for every 0 ≤ t < 1. Since γ (Wk ≤ 0) = 1/2,

∞∑
n=0

γ (An) tn = (1− t)−1/2
=

∞∑
n=0

(
2n

n

)
1

4n
tn.

The second identity follows from a variation of a proof developed in [5]. To keep
notation simple, let us introduce the probability measure

µ =

∣∣DγI{Wn>0}
∣∣∣∣DγI{Wn>0}

∣∣ (Rn)
,

and write

Bm =

n−1⋂
i=0

{Wi ≤Wm} ∩ {Wn = 0} ,

for m = 0, . . . , n. We remark that Bn = B0. Using the Euclidean theory of BV functions,
or adapting the proof of Proposition 2.6, it is not difficult to show that the measure µ is
concentrated on the hyperplane {Wn = 0}, so that µ (B0) = µ (An) .

We are going to show that µ (Bm) = 1/n for m = 0, . . . , n− 1. Let θ : Rn → Rn be the
cyclical permutation of coordinates

(x1, . . . , xn) = x 7→ θ (x) = (x2, x3, . . . , xn, x1) ,

and notice that both γ and µ are θ-invariant, so that

µ
(
θ−1 (A)

)
= µ (A)

for any Borel set A ⊆ Rn. Since Wk ◦ θ = Wk+1 −X1, for 0 ≤ k < n, while Wn ◦ θ = Wn,
it holds for m = 0, . . . , n− 1,

θ−1 (Bm) =

n−1⋂
i=1

{Wi ≤Wm+1} ∩ {0 = Wn ≤Wm+1} = Bm+1.

But Bn = B0, so that µ (B0) = µ (Bm) for m = 0, . . . , n− 1. Moreover,

1 = µ ({Wn = 0}) = µ

(
n−1⋃
m=0

Bm

)
=

n−1∑
m=0

µ (Bm) ,

where the last identity follows from the fact that, for 0 ≤ m < k ≤ n− 1,

Bm ∩Bk ⊆ {Wm −Wk = 0,Wn = 0} ,

and the right hand side above is neglected by µ, since it is a linear subspace of codi-
mension 2 and it can be shown that µ is absolutely continuous with respect to the
(n − 1)-dimensional Hausdorff measure on the hyperplane {Wn = 0}. This last fact fol-
lows either from the Euclidean theory of BV functions or after Theorem 1.3 in [1].
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We conclude with the proof of Theorem 3.1. For fixed n ≥ 1, writeWk =
√
n/TWkT/n,

for 0 ≤ k ≤ n, and

Mn =
√
T/nmax {Wk : k = 0, . . . , n} =

√
T/n

n∑
k=0

IEk
Wk, (3.4)

where Ek =
⋂n
i=0 {Wi ≤Wk}. By plain Malliavin calculus, it holds Mn ∈ D1,2 (P) with

∇Mn =

n∑
k=0

IEk
I[0,kT/n],

which is a finite sum ofBV maps, since every Ek is a finite intersection of sets with finite
perimeter. Indeed, using this formula it is also easy to show that (Mn)n≥1 converges to
M ∈ D1,2 (P): this is the classical proof that M is Malliavin differentiable.

It is enough to prove that the sequence of total variations
∣∣D2Mn

∣∣ (Ω) is bounded.
With a slight variation of Proposition 3.5 in [3], to deal with vector valued r.v.’s, the
computation can be performed on (Rn, γ), where the notation for (Wk)

n
k=0 can be con-

sistently identified with that of the lemma above. Therefore, we consider now Mn,
defined by means of (3.4), as a function on Rn.

Moreover, let (ek)k=0,...,n be the standard basis in Rn and, for k = 0, . . . , n, let sk be

the vector
∑k
i=0 ei. Since ∇Mn =

∑n
k=0 IEk

sk, the second derivative of Mn is then given
by

D2Mn =
√
T/n

n∑
k=0

sk ⊗DIEk
=
√
T/n

n∑
k,m=0

IEk
sk ⊗DI{Wm≤Wk},

where a Leibniz rule has been applied to show that

DIEk
=

n∑
m=0

IEk
DI{Wm≤Wk},

which can be proved by a direct computation in the Euclidean setting.
Since DI{Wm≤Wk} = −DI{Wk≤Wm}, it holds

D2Mn =
√
T/n

∑
0≤m<k≤n

IEk
(sk − sm)⊗DI{Wm≤Wk},

so that it is sufficient for fixed m < k, to provide a bound to the quantity√
T/n

∣∣IEk
.(sk − sm)⊗DI{Wm≤Wk}

∣∣ (Rn) =
√

(m− k)T/n
∣∣DI{Wm≤Wk}

∣∣ (Ek) .

By Proposition 2.6, the measure above is concentrated on {Wm = Wk} and therefore
there is no loss of generality if we substitute Ek with

m⋂
i=0

{Wi −Wm ≤ 0}
k⋂

i=m

{Wi −Wm ≤ 0}
n⋂
i=k

{Wi −Wk ≤ 0} .

Moreover, due to the independence of the increments and the explicit characterization
of the measure-derivative provided by 3.3, it is not difficult to conclude that the quantity
above splits into the product of three terms, where two of them are

γ

(
m⋂
i=0

{Wi −Wm ≤ 0}

)
γ

(
n⋂
i=k

{Wi −Wk ≤ 0}

)
,
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and the third is ∣∣DI{Wm≤Wk}
∣∣( k⋂

i=m

{Wi −Wm ≤ 0}

)
.

Using the estimates established in Corollary 3.7, summing upon 0 ≤ m < k ≤ n, it holds∣∣D2Mn

∣∣ (Ω) ≤ C3
√
T

∑
0<m<k<n

1√
m (k −m) (n− k)n

+R (n)

where R (n) takes into account the contribution of the terms with m = 0 or k = n. As
n→∞, R (n) is easily seen to be infinitesimal while the sum converges to∫ 1

0

dt

∫ 1

t

ds√
t (s− t) (1− s)

<∞.

This settles the existence of D2M . Formula (3.2) is indeed an application of Proposi-
tion 8 in [16], together with the fact that L -a.e. t ∈ [0, T ], D2

s,tM = Ds∂tM . As already
remarked ∂tM is the indicator function of the zero level set for the function ∆tM , which
admits I[σ[0,t],σ[t,T ]] as Malliavin derivative.

3.2 Proof of Theorem 3.3

After Theorem 3.1, L -a.e. t ∈ [0, T ], ∂tM is BV : it is then sufficient to prove that,
for every h′ ∈ L2(0, T ), the real measure µ = 〈h′, D∂tM〉 (actually, its total variation
measure) is concentrated on the set of paths that attain the global maximum twice.

As already noticed, ∂tM is the indicator function of the set {∆tM > 0}, which is
BV : after Proposition 2.6, µ is concentrated on the set {∆tM = 0}, where ∆tM is
intended as its natural representative, which is defined everywhere. When ∆tM = 0,
i.e. M[0,t] = M[t,T ], the global maximum is attained twice, with the possible exception of
the case M[0,t] = Wt = M[t,T ].

Therefore, the theorem will follow if we prove that µ is always concentrated on the
set A ∪B, where A =

{
M[0,t] > Wt

}
and B =

{
M[t,T ] > Wt

}
. In particular, we are going

to prove that, if h′ = 0 a.e. on [0, t], then µ is concentrated on A while, if h′ = 0 a.e.
on [t, T ], it is concentrated on B: then, the general case follows simply decomposing
h′ = h′I[0,t[ + h′I[t,T ].

The argument is a slight variation of the proof of Proposition 2.6, and the two cases
are treated similarly: for brevity we consider only the case h′ = 0 a.e. on [0, t].

Let ψ be some smooth cylindrical function and let φ be a smooth function, defined
on R, with compact support contained in the half line (−∞, ε), for some ε > 0, with 0 ≤
φ ≤ 1. Arguing as in the proof of Proposition 2.6, i.e. by fast approximating M[0,t] −Wt

in D1,2 (P) and passing to the limit, the following integration by parts holds:∫
Ω

φ ◦
(
M[0,t] −Wt

)
ψdµ = −E

[
I{∆tM>0}

(
φ ◦
(
M[0,t] −Wt

))
∂∗hψ

]
,

since ∂hφ
(
M[0,t] −Wt

)
= 0 by the assumption on the support of h′ and the fact that

∂s
(
M[0,t] −Wt

)
= 0 for s ∈ [t, T ]. Being φ arbitrary, it follows by Hölder inequality that,

for some constant C depending only ψ and h′, it holds∣∣(ψµ)
{
M[0,t] −Wt < ε

}∣∣ ≤ C (ψ, h′)P
(
M[0,t] −Wt ≤ ε

)1/2
,

so that, as ε goes to zero, we conclude that

(ψµ) (Ω \A) = (ψµ)
{
M[0,t] −Wt ≤ 0

}
= 0,

which leads to the thesis, being ψ also arbitrary.
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