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We prove weak convergence of sums over triangular arrays to the compound Poisson
limit using Tikhomirov’s method. The result is applied to statistical estimation of the
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1 Introduction and main result

This paper is concerned with weak convergence of sums over triangular arrays with
certain dependence structure to the compound Poisson distribution. It is motivated
by the threshold estimation problem, described in details in Section 2. We consider
triangular arrays of random variables Yn,j , j = 1, ..., n, n ∈ N with rows, adapted to a
filtration (Fj), j ∈ N. Yn,j ’s are asymptotically negligible and satisfy a weak dependence
(mixing) condition made precise by the following assumptions.

A1. there is a constant C1 > 0, such that

P(Yn,j 6= 0) ≤ C1

n
, and E|Yn,j | ≤

C1

n
, j = 1, ..., n

and

E|Yn,j |1{Yn,i 6=0} ≤
(
C1

n

)2

, i 6= j.

A2. there is an integer ` ≥ 1, such that∣∣∣E(Yn,j∣∣Fi)− EYn,j∣∣∣ ≤ C1

n
α(j − i), i ≤ j − `

where α(n) ≥ 0 is a decreasing sequence with limn→∞ α(n) = 0

A3. for a measurable function |v(x)| ≤ 1, x ∈ Rn−j+1∣∣∣E(v(Yn,j , ..., Yn,n)
∣∣Fi)− Ev(Yn,j , ..., Yn,n)

∣∣∣ ≤ α(j − i), i < j
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Compound Poisson approximation for triangular arrays

The following condition on the individual characteristic functions φn,j(t) = EeitYn,j

together with the above assumptions, will assure convergence of the sums

Sn =

n∑
j=1

Yn,j , n ∈ N,

to the compound Poisson law (hereafter we shall abbreviate ϕ̇(t) = d
dtϕ(t), etc.):

A4. There exists a characteristic function ϕ(t) and positive constants C2 and µ such
that ∣∣∣φ̇n,j(t)− n−1µϕ̇(t)

∣∣∣ ≤ C2n
−2, t ∈ R.

Note that the mixing in A2 and A3 can be arbitrarily weak. Further assumptions on
the rate of convergence of α(k) to zero, such as:

A5. α(k) ≤ C3r
k for some r ∈ (0, 1) and C3 > 0.

allow to obtain rates of convergence in an appropriate metric. Below we shall work
with the Lévy distance, defined for a pair of distribution functions F and G by (see e.g.
[10])

L(G,F ) = inf
{
h > 0 : G(x− h)− h ≤ F (x) ≤ G(x+ h) + h, ∀ x

}
.

Our main result is the following:

Theorem 1.1. Let Yn,j , j = 1, ..., n, n ∈ N be a triangular array of random variables,
whose rows are adapted to a filtration (Fj), j ∈ N and satisfy the assumptions A1-A4.
Then

Sn =

n∑
j=1

Yn,j
d−−−−→

n→∞
S, (1.1)

where S has the compound Poisson distribution, with intensity µ and i.i.d. jumps with
characteristic function ϕ(t).

Moreover, if the assumption A5 holds then there is a constant C > 0, such that for
all n large enough,

L
(
L(Sn),L(S)

)
≤ Cn−1/2 log n, (1.2)

where L
(
L(Sn),L(S)

)
is the Lévy distance between the distribution functions of Sn and

S.

Remark 1.2. Both the constant C and the smallest n for which (1.2) holds, can be found
explicitly in terms of the Ci’s and α(·), mentioned in the assumptions above. Also bounds
on the Lévy distance can be obtained similarly for e.g. polynomially decreasing α(·), by
replacing b log n with nδ for some δ > 0 in the proof of Theorem 1.1 and optimizing the
right hand side of the corresponding inequality, analogous to (3.5) below.

In application to threshold estimation, Yn,j is derived from an autoregressive sta-
tionary process Xj , generated by the recursion

Xj = h(Xj−1) + εj , j ≥ 1, (1.3)

where h(·) is a given measurable function and (εj) is a sequence of i.i.d. random vari-
ables, with continuous positive probability density q(·). As explained in Section 2, in
this context

Yn,j := f(εj)1{Xj−1∈Bn},
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Compound Poisson approximation for triangular arrays

where Bn := [0, 1/n], f(·) is a measurable function and

Sn :=

n∑
j=1

f(εj)1{Xj−1∈Bn}.

Theorem 1.1 implies that under appropriate conditions, Sn converges weakly to the
compound Poisson random variable with i.i.d. jumps, distributed as f(ε1), and the in-
tensity µ := p(0), where p(·) is the unique invariant density of (Xj).

Somewhat surprisingly, we were not able to find in the literature a general result,
from which this limit could be deduced. In this regard, one naturally thinks of Stein’s
method or martingale convergence results. Stein’s method appears to be particularly
well suited to the compound Poisson distribution with integer valued jumps (see e.g.
[3], [2]). The results such as [4], [18, 19], [5] or [17] come close, but apparently do not
quite fit our setting.

In the particular case, when Ef(εj) = 0, Sn becomes a sum over the array of mar-
tingale differences Yn,j := f(εj)1{Xj−1∈Bn}, j = 1, ..., n with the quadratic variation
sequence

Vn,m =

m∑
j=1

1{Xj−1∈Bn}Ef
2(ε1), m = 1, ..., n.

A typical martingale limit result such as e.g. [6] or Theorem 2.27 Ch. VIII §2c in [13]
requires that Vn,n converges in probability. However in our case Vn,n converges only
in distribution (to a Poisson random variable), but not in probability (since e.g. Vn,n is
uniformly integrable, but is not a Cauchy sequence in L1). It is known that Sn may have
a different limit or no limit at all, if the convergence in probability of quadratic variation
is replaced with convergence in distribution (see [1] and the references therein), so that
the martingale results also do not appear applicable1.

The objective of this paper is to give a proof of Theorem 1.1, using Tikhomirov’s
method from [20]. Originally applied to CLT in the dependent case, it turns to be re-
markably suitable to the setting under consideration. Before proceeding to the proof in
Section 3, we shall discuss in more details the application, in which the aforementioned
convergence arises.

2 Application to threshold estimation

Suppose one observes a sample Xn = (X1, ..., Xn) from a threshold autoregressive
(TAR) time series, generated by the recursion

Xj = g+(Xj−1)1{Xj−1≥θ} + g−(Xj−1)1{Xj−1<θ} + εj , j ∈ Z+, (2.1)

where g+(·) and g−(·) are known functions and (εj) is a sequence of i.i.d. random
variables with known probability density q(·). The unknown threshold parameter θ,
taking values in an open interval Θ := (a, b) ⊂ R, is to be estimated from the sample
Xn. TAR models, such as (2.1), have been the subject of extensive research in statistics
and econometrics (see e.g. [21] and the recent surveys [22], [11], [8]).

From the statistical analysis point of view, this estimation problem classifies as “sin-
gular”, since the corresponding likelihood function

Ln(Xn; θ) =

n∏
j=1

q
(
Xj − g+(Xj−1)1{Xj−1≥θ} − g−(Xj−1)1{Xj−1<θ}

)
(2.2)

1in this connection, it is interesting to note, that in the analogous continuous time setting, the quadratic
variation does converge in probability, essentially due to the continuity of the sample paths, see [14]
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Compound Poisson approximation for triangular arrays

is discontinuous in θ. Typically in such problems, the sequence of the Bayes estimators

θ̃n :=

∫
Θ
θLn(Xn; θ)π(θ)dθ∫

Θ
Ln(Xn; θ)π(θ)dθ

, n ≥ 1

is asymptotically efficient in the minimax sense for an arbitrary continuous prior density
π(·) (see [12]). The asymptotic distribution of these estimators is determined by the
weak limit of the likelihood ratios as follows. Let θ0 ∈ Θ be the true unknown value
of the parameter and rn an increasing sequence of numbers. The change of variables
u = rn(θ − θ0) ∈ rn(Θ− θ0) =: Un gives

rn(θ̃n − θ) =

∫
Un

uZn(u)π(θ0 + u/rn)du∫
Un

Zn(u)π(θ0 + u/rn)du
,

where Zn(u), n ≥ 1 are the rescaled likelihood ratios

Zn(u) =
Ln(Xn; θ0 + u/rn)

Ln(Xn; θ0)
, u ∈ Un.

If rn can be chosen so that Zn(u), u ∈ R converges weakly to a random process Z(u),
u ∈ R in an appropriate topology, then

rn(θ̃n − θ)
d−−−−→

n→∞

∫
R
uZ(u)du∫
R
Z(u)du

, (2.3)

holds (a comprehensive account of this approach can be found in [12]).
For the likelihoods as in (2.2), a simple calculation (see eq. (4) in [9]) reveals that

logZn(u) =

n∑
j=1

1{Xj−1∈Bn} log
q
(
εj + δ(Xj−1)

)
q
(
εj
) , u ≥ 0 (2.4)

where Bn := [θ0, θ0 +u/n] and δ(x) := g+(x)−g−(x), and a similar expression is obtained
for u < 0. It can be shown that (2.3) indeed holds with rn := n, if (Xj) is a sufficiently
fast mixing with the unique invariant probability density p(x; θ0), and the sequence
logZn(u) converges weakly to the compound Poisson process

logZ(u) :=


∑Π+(u)
j=1 log

q
(
ε+j +δ(θ0)

)
q
(
ε+j

) u ≥ 0∑Π−(−u)
j=1 log

q
(
ε−j −δ(θ0)

)
q
(
ε−j

) u < 0

, (2.5)

where (ε±j ) are i.i.d. copies of ε1 and Π+(u) and Π+(u) are independent Poisson pro-
cesses with the same intensity p(θ0; θ0).

The rate rn = n and the Poisson behavior is typical for discontinuous likelihoods
(see e.g. Ch. 5, [12]). For the linear TAR model, i.e. when g±(x) = ρ±x with constants
ρ− 6= ρ+, this asymptotic appeared in [7] and the aforementioned generalization is taken
from [9].

One particularly interesting ingredient in the proof, which is the main focus of this
article, is the convergence of the finite dimensional distributions of Zn(u) to those of
Z(u). In its prototypical form, the problem can be restated as follows. Consider the
stationary Markov sequence (Xj), generated by the recursion (1.3) and let (cf. (2.4))

Sn :=

n∑
j=1

f(εj)1{Xj−1∈Bn}, (2.6)
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Compound Poisson approximation for triangular arrays

where Bn := [0, 1/n] and f(·) is a measurable function. It is required to show that, the
sums (Sn) converge weakly to the compound Poisson random variable with i.i.d. jumps,
distributed as f(ε1), and the intensity p(0), where p(·) is the unique invariant density of
(Xj).

This convergence is not hard to prove using the blocks technique: Sn is partitioned
into, say, n1/2 blocks of n1/2 consecutive summands, n1/4 of which are discarded. Re-
moving total of n1/2 · n1/4 out of n terms in the sum does not alter its limit, but the
residual blocks become nearly independent, if the mixing is fast enough. Moreover, a
single event {Xj ∈ Bn} occurs within each block with probability of order n−1/2 and
hence the sum over approximately independent n1/2 blocks yields the claimed com-
pound Poisson behavior. This approach dates back to at least [15] in the Poisson case,
and the details for the compound Poisson setting can be found in [9].

An alternative proof now can be given by applying Theorem 1.1:

Corollary 2.1. Let (Xj) be defined by (1.3) and Sn by (2.6). Assume that

i. ε1 has positive Lipschitz continuous bounded probability density q(x), x ∈ R with
the finite first absolute moment

∫
R
|x|q(x)dx <∞

ii. for some r ∈ (0, 1) and C > 0,

|h(x)| ≤ r|x|, ∀ |x| ≥ C

iii. E|f(ε1)| <∞ and for some constant C ′,

sup
z,x∈[0,n−1]

|f
(
z − h(x)

)
| ≤ C ′

for all n large enough.

Then the Markov process (Xj) has unique invariant density p(x), x ∈ R, which is
positive, Lipschitz continuous and bounded; for stationary (Xj), the sums (Sn) converge
weakly to the compound Poisson random variable with intensity p(0) and i.i.d. jumps
with the same distribution as f(ε1).

Remark 2.2. The Corollary 2.1 verifies the weak convergence of the one-dimensional
distributions of the processes logZn(u) from (2.4) to those of logZ(u), u ∈ R defined
in (2.5). The convergence of finite dimensional distributions of higher orders can be
treated along the same lines. The limit (2.3) then follows from the tightness of the
sequence of processes logZn(u) (see [9] for further details).

Remark 2.3. The assumption iii holds if e.g. f(·) and h(·) are continuous at 0.

Proof. Under the assumptions i and ii, the standard ergodic theory of Markov chains
(see e.g. Theorem 16.0.2 in [16]) implies that (Xj) is irreducible, aperiodic and pos-
itive recurrent Markov chain with the unique invariant measure. Due to the addi-
tive structure of the recursion (1.3), the invariant measure has density p(·), which is
positive and continuous with the same Lipschitz constant Lq as the density q(·) and
‖p‖∞ ≤ ‖q‖∞ := supx∈R q(x). Moreover, (Xj) is geometrically mixing, i.e. there exist
positive constants R and ρ < 1, such that for any measurable function |g(x)| ≤ 1∣∣∣∣E(g(Xj)|Fi

)
−
∫
R

g(x)p(x)dx

∣∣∣∣ ≤ Rρj−i, j > i, (2.7)
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Compound Poisson approximation for triangular arrays

where Fj = σ{εi, i ≤ j}. Define Yn,j := f(εj)1{Xj−1∈Bn}, then

E|Yn,j | = E|f(εj)|P(Xj−1 ∈ Bn) = E
∣∣f(ε1)

∣∣ ∫ 1/n

0

p(x)dx ≤ E|f(ε1)|‖q‖∞n−1,

and similarly
P(Yn,j 6= 0) ≤ P(Xj−1 ∈ Bn) ≤ ‖q‖∞n−1.

Further, for i < j − 1,

E
∣∣Yn,i1{Yn,j 6=0}

∣∣ = E
∣∣f(εi)|1{Xi−1∈Bn}P(Yn,j 6= 0|Fi) ≤
E
∣∣f(εi)|1{Xi−1∈Bn}P(Xj−1 ∈ Bn|Fi) ≤
E
∣∣f(εi)|1{Xi−1∈Bn}‖q‖∞n

−1 ≤ E
∣∣f(ε1)|‖q‖2∞n−2,

and

E
∣∣1{Yn,i 6=0}Yn,j

∣∣ = E1{Yn,i 6=0}E
(
|Yn,j |

∣∣Fi) ≤
E1{Xi−1∈Bn}E

(∣∣f(εj)
∣∣1{Xj−1∈Bn}

∣∣Fi) ≤ E∣∣f(ε1)
∣∣‖q‖2∞n−2.

Similarly,

E|Yn,j−1|1{Yn,j 6=0} ≤ E1{Xj−2∈Bn}|f(εj−1)|1{Xj−1∈Bn} =

E1{Xj−2∈Bn}E
(
|f(εj−1)|1{h(Xj−2)+εj−1∈Bn}|Fj−2

)
=

E1{Xj−2∈Bn}

∫
R

|f(y)|1{h(Xj−2)+y∈Bn}q(y)dy =

E1{Xj−2∈Bn}

∫ n−1

0

∣∣f(z − h(Xj−2)
)∣∣q(z − h(Xj−2)

)
dz ≤

‖q‖∞E1{Xj−2∈Bn}n
−1 sup

z,x∈[0,n−1]

|f
(
z − h(x)

)
| ≤ ‖q‖2∞n−2C ′

and
E1{Yn,j−1 6=0}|Yn,j | ≤ E1{Xj−2∈Bn}|f(εj)|1{Xj−1∈Bn} ≤ E

∣∣f(ε1)
∣∣‖q‖2∞n−2.

Hence A1 is satisfied for all n large enough with

C1 :=
(
‖q‖2∞ ∨ 1

)(
E
∣∣f(ε1)

∣∣ ∨ C ′ ∨ 1
)
.

Further, by the Markov property,

E(Yn,j |Fj−2) = E
(
1{Xj−1∈Bn}E

(
f(εj)|Fj−1

)∣∣Fj−2

)
=

Ef(ε1)P
(
Xj−1 ∈ Bn

∣∣Xj−2

)
=: H(Xj−2),

and ∣∣H(Xj−2)
∣∣ ≤ ∣∣Ef(ε1)

∣∣‖q‖∞n−1 ≤ C1n
−1.

Hence by (2.7), for i < j − 1,∣∣∣E(Yn,j∣∣Fi)− EYn,j∣∣∣ =
∣∣∣E(E(Yn,j∣∣Fj−2

)
|Fi
)
− EE

(
Yn,j

∣∣Fj−2

)∣∣∣ =∣∣∣E(H(Xj−2)|Fi
)
− EH(Xj−2)

∣∣∣ ≤ C1n
−1Rρj−i−2,

and A2 holds with ` = 2 and
α(k) := Rρk−2. (2.8)

ECP 17 (2012), paper 29.
Page 6/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2009
http://ecp.ejpecp.org/


Compound Poisson approximation for triangular arrays

The assumption A3 is checked similarly. Finally,

φ̇n,j(t) = Eif(εj)1{Xj−1∈Bn}e
itf(εj)1{Xj−1∈Bn} = Eif(εj)1{Xj−1∈Bn}e

itf(εj) =

E1{Xj−1∈Bn}E
(
if(εj)e

itf(εj)
∣∣Fj−1

)
= P(X1 ∈ Bn)ϕ̇(t),

where ϕ(t) = Eeitf(ε1) and interchanging derivative and the expectation is valid by the
dominated convergence and iii.

Since the invariant density is Lipschitz, it follows that∣∣∣φ̇n,j(t)− p(0)
1

n
ϕ̇(t)

∣∣∣ ≤ Lqn−2,

which verifies A4 and the claim now follows from Theorem 1.1. In fact, the assumption
A5 holds by virtue of (2.8) and the Lévy distance to the limit distribution converges at
the rate, claimed in (1.2).

3 Proof of Theorem 1.1

Tikhomirov’s approach [20] is applicable, when the characteristic function of the
limit distribution uniquely solves an ordinary differential equation. Roughly, the idea
is then to show that the characteristic functions of the prelimit distributions satisfy the
same equation in the limit.

The characteristic function of the compound Poisson distribution with intensity µ

and characteristic function of the jumps ϕ(t) is given by

ψ(t) = eµ(ϕ(t)−1), t ∈ R

which solves uniquely the initial value problem

ψ̇(t) = µϕ̇(t)ψ(t), ψ(0) = 1, t ∈ R.

Since E|Sn| < ∞, the characteristic function ψn(t) := EeitSn is continuously differ-
entiable and ∆n(t) := ψ(t)− ψn(t) satisfies

∆̇n(t) = µϕ̇(t)∆n(t) + rn(t), t ∈ R,

subject to ∆n(0) = 0, where rn(t) := µϕ̇(t)ψn(t)− ψ̇n(t). Solving for ∆n(t) gives

∆n(t) =

∫ t

0

exp
(
µ
(
ϕ(t)− ϕ(s)

))
rn(s)ds, t ≥ 0. (3.1)

As we show below, for any constant b > 0, such that b log n is a positive integer,

|rn(t)| ≤ C2n
−1 + 3C1α(b log n) + 8C2

1b
log n

n
, t ≥ 0 (3.2)

and, since |ϕ(t)| ≤ 1, it follows from (3.1) that

|∆n(t)| ≤ e2µ

∫ t

0

|rn(s)|ds ≤ e2µ

(
C2n

−1 + 3C1α(b log n) + 8C2
1b

log n

n

)
t, t ≥ 0. (3.3)

Similar bound holds for t < 0 and the claimed weak limit (1.1) follows, once we check

ECP 17 (2012), paper 29.
Page 7/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2009
http://ecp.ejpecp.org/


Compound Poisson approximation for triangular arrays

(3.2). To this end, we have

ψ̇n(t) :=
d

dt
EeitSn = E

d

dt
exp

(
it

n∑
j=1

Yn,j

)
=

n∑
k=1

EiYn,k exp
(
it

n∑
j=1

Yn,j

)
=

n∑
k=1

EiYn,ke
itYn,k exp

(
it
∑
j 6=k

Yn,j

)
=

n∑
k=1

EiYn,ke
itYn,k exp

(
it

∑
|j−k|>b logn

Yn,j

)
+

n∑
k=1

EiYn,ke
itYn,k

(
exp

(
it
∑
j 6=k

Yn,j

)
− exp

(
it

∑
|j−k|>b logn

Yn,j

))
:= J1 + J2

where we used E|Sn| <∞ and the dominated convergence to interchange the derivative
and the expectation. Note that

∣∣eix − ei(x+y)
∣∣ ≤ 21{y 6=0} for any x, y ∈ R, and hence by

the assumption A1

|J2| ≤
n∑
k=1

E|Yn,k|
∣∣∣∣ exp

(
it
∑
j 6=k

Yn,j

)
− exp

(
it

∑
|j−k|>b logn

Yn,j

)∣∣∣∣ ≤ (3.4)

2

n∑
k=1

E|Yn,k|1{∑|j−k|≤b log n,j 6=k Yn,j 6=0} ≤ 2

n∑
k=1

E|Yn,k|
∑

|j−k|≤b logn,j 6=k

1{Yn,j 6=0} ≤ 4C2
1b

log n

n
.

Further, by the triangle inequality∣∣∣∣EiYn,keitYn,k exp

(
it

∑
|j−k|>b logn

Yn,j

)
− φ̇n,k(t)ψn(t)

∣∣∣∣ =

∣∣∣∣EiYn,keitYn,k exp

(
it

∑
|j−k|>b logn

Yn,j

)
− EiYn,keitYn,kE exp

(
it

n∑
j=1

Yn,j

)∣∣∣∣ ≤∣∣∣∣EYn,keitYn,k exp

(
it

∑
|j−k|>b logn

Yn,j

)
− EYn,keitYn,kE exp

(
it

∑
|j−k|>b logn

Yn,j

)∣∣∣∣+
∣∣∣EYn,keitYn,k

∣∣∣∣∣∣∣E exp

(
it

∑
|j−k|>b logn

Yn,j

)
− E exp

(
it

n∑
j=1

Yn,j

)∣∣∣∣ =: J3 + J4.

Similarly to (3.4), we have

|J4| ≤ E|Yn,k|E
∣∣∣∣ exp

(
it

∑
|j−k|>b logn

Yn,j

)
− exp

(
it

n∑
j=1

Yn,j

)∣∣∣∣ ≤
2E|Yn,k|E1{∑|j−k|≤b log n Yn,j 6=0} ≤ 2E|Yn,k|

∑
|j−k|≤b logn

P(Yn,j 6= 0) ≤ 4C2
1b

log n

n2
.

For brevity, define

U := exp

(
it

∑
j<k−b logn

Yn,j

)
, V := Yn,ke

itYn,k , W := exp

(
it

∑
j>k+b logn

Yn,j

)
.

By the triangle inequality,∣∣EUVW − EV EUW ∣∣ ≤ ∣∣EUVW − EUV EW ∣∣+∣∣EUV EW − EUEV EW ∣∣+
∣∣EUEV EW − EV EUW ∣∣.

Since U and V are Fk-measurable, |U | ≤ 1, |W | ≤ 1 and E|V | ≤ C1n
−1, A3 implies∣∣EUVW − EUV EW ∣∣ ≤ E|UV |∣∣E(W |Fk)− EW

∣∣ ≤ C1n
−1α(b log n),
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and, since U is measurable with respect to Fk−b logn,∣∣EUEV EW − EV EUW
∣∣ ≤ |EV |E|U |∣∣EW − E(W |Fk−b logn)

∣∣ ≤ C1n
−1α(2b log n).

Further, by A2 for b log n ≥ `,∣∣EUV EW − EUEV EW ∣∣ ≤ |EW |E|U |∣∣E(V |Fk−b logn)− EV
∣∣ ≤ C1n

−1α(b log n).

Hence

|J3| =
∣∣∣EUVW − EV EUW ∣∣∣ ≤ 3C1n

−1α(b log n),

and consequently, by A4

∣∣∣J1 − µϕ̇(t)ψn(t)
∣∣∣ =

∣∣∣∣ n∑
k=1

EiYn,ke
itYn,k exp

(
it

∑
|j−k|>b logn

Yn,j

)
− µϕ̇(t)ψn(t)

∣∣∣∣ ≤
C2n

−1 + 3C1α(b log n) + 4C2
1b

log n

n
.

Assembling all parts together, we obtain (3.2).
The bound (1.2) for the Lévy metric is obtained by means of Zolotorev’s inequality

[23],

L
(
L(Sn),L(S)

)
≤ 1

π

∫ T

0

|ψn(t)− ψ(t)|
t

dt+ 2e
log T

T
, T > 1.3,

which in view of the bound in (3.3) gives

L
(
L(Sn),L(S)

)
≤ e2µ

π

(
C2n

−1 + 3C1α(b log n) + 2C2
1b

log n

n

)
T + 2e

log T

T
. (3.5)

If α(k) decays geometrically as in A5, the bound (1.2) is obtained by choosing T = n1/2

and b ≥ 1
log 1/r .

Remark 3.1. The rate in (1.2) is not as sharp as the one, obtained by Tikhomirov in
[20] in the CLT case. Apparently, the deficiency originates in the specific form of the
compound Poisson characteristic function ψ(t) = eµ(ϕ(t)−1), which does not vanish as
t → ∞. More specifically, the integration kernel K(s, t) := eµ(ϕ(t)−ϕ(s)) in (3.1) does
not decay when t is fixed and s decreases, which contributes the linear growth in t of
the right hand side of (3.3) and the corresponding linear growth in T in (3.5). In the
Gaussian case, this kernel has the form K(s, t) := es

2/4−t2/4 (see eq. (3.25) page 809 in
[20]), which yields better balance between growth in t and the decrease in n. It seems
that in the compound Poisson setting under consideration the rate cannot be essentially
improved within the framework of Tikhomirov’s method.
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